1
|
Ham CH, Kim Y, Kwon WK, Sun W, Kim JH, Kim HJ, Moon HJ. Single-cell analysis reveals fibroblast heterogeneity and myofibroblast conversion in ligamentum flavum hypertrophy. Spine J 2025; 25:1263-1275. [PMID: 39653186 DOI: 10.1016/j.spinee.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 12/01/2024] [Accepted: 12/03/2024] [Indexed: 01/06/2025]
Abstract
BACKGROUND CONTEXT The ligamentum flavum (LF) is a crucial structure in maintaining spinal stability; however, hypertrophy of the LF is a significant contributor to lumbar spinal canal stenosis (LSCS). The mechanisms linking LF hypertrophy to the exacerbation of LSCS remain incompletely understood. PURPOSE This study aimed to investigate the cellular proportions and signaling pathways observed in the hypertrophied LF. STUDY DESIGN LF tissues were obtained from 3 patients undergoing lumbar decompressive surgery. These patients had been diagnosed with LSCS prior to surgery and had an LF thickness exceeding 3.5 mm. METHODS Single-cell RNA sequencing was performed following LF tissue dissociation, and data were processed for quality control, dimensional reduction, and clustering. Differential gene expression and gene ontology analyses revealed key molecular pathways driving LF hypertrophy. Cell-cell communication analysis was analyzed to elucidate interactions among various cell types within the LF tissues. RESULTS Fibroblasts accounted for 75% of the total cells, followed by endothelial cells, T cells, macrophages, and B cells. Among heterogeneous types of fibroblasts, we identified that a subset of fibroblasts trans-differentiated into myofibroblasts. Two types of macrophages that exhibited phenotypic plasticity akin to M1 and M2 states were observed. We also identified novel signaling pathways involved in fibroblast and immune cell interaction in the hypertrophied LF, such as GAS and GRN, as well as known signaling pathways, such as TGF-β, PDGF, CXCL, and ANGPTL. CONCLUSION Our study shows the changing cellular composition and pathogenic signaling pathways involved during the process of chronic inflammation highlighting the transdifferentiation process from fibroblasts to myofibroblasts in the hypertrophied LF. CLINICAL SIGNIFICANCE The identification of pathways such as GAS, GRN, TGF-β, ANGPTL, and CXCL, which appear to potentially contribute to LF hypertrophy, could significantly enhance our understanding of the pathogenesis of LSCS.
Collapse
Affiliation(s)
- Chang Hwa Ham
- Department of Biomedical Sciences, College of Medicine, Korea University College of Medicine, Seoul 02841, Republic of Korea; Department of Neurosurgery, Korea University Guro Hospital, Seoul 08308, Republic of Korea
| | - Yiseul Kim
- Department of Biomedical Sciences, College of Medicine, Korea University College of Medicine, Seoul 02841, Republic of Korea; Department of Anatomy, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Woo-Keun Kwon
- Department of Neurosurgery, Korea University Guro Hospital, Seoul 08308, Republic of Korea
| | - Woong Sun
- Department of Biomedical Sciences, College of Medicine, Korea University College of Medicine, Seoul 02841, Republic of Korea; Department of Anatomy, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Joo Han Kim
- Department of Neurosurgery, Korea University Guro Hospital, Seoul 08308, Republic of Korea
| | - Hyun Jung Kim
- Department of Biomedical Sciences, College of Medicine, Korea University College of Medicine, Seoul 02841, Republic of Korea; Department of Anatomy, Korea University College of Medicine, Seoul 02841, Republic of Korea.
| | - Hong Joo Moon
- Department of Neurosurgery, University of Virginia, 1300 Jefferson Park Ave, Charlottesville, VA 22903, USA
| |
Collapse
|
2
|
Shin HK, Seo KJ, Lee JY, Jeon SR, Yune TY. GSK-3β and β-Catenin Signaling Pathway is Involved in Myofibroblast Transition of Ligamentum Flavum in Lumbar Spinal Stenosis Patients. Spine (Phila Pa 1976) 2023; 48:1472-1479. [PMID: 37417723 DOI: 10.1097/brs.0000000000004770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/25/2023] [Indexed: 07/08/2023]
Abstract
STUDY DESIGN Histologic analysis of the ligamentum flavum (LF) in the lumbar spine. OBJECTIVE The objective of this study is to investigate the levels of glycogen synthase kinase-3β (GSK-3β) and β-catenin in the LF tissue of patients with lumbar spinal stenosis (LSS). SUMMARY OF BACKGROUND DATA The hypertrophy of the LF is the primary cause of the progression of LSS. Recently, Wnt signaling has been proposed as one of the molecular processes contributing to LF hypertrophy. GSK-3β and β-catenin are recognized to play a crucial part in the control of this signaling pathway. MATERIALS AND METHODS From May 2020 to July 2022, LF from 51 LSS patients (LSS group) and 18 lumbar disc herniation patients (control group) were prospectively collected during surgery. Histologic analysis was investigated to confirm the progression of LF fibrosis. The levels of α-smooth muscle actin, phosphorylation of GSK-3β (p-GSK-3β; inactive form), and β-catenin were analyzed in LF with Western blot analysis to reveal the GSK-3β/β-catenin signaling pathway. Continuous variables are expressed as mean±SD and compared using the student t test. Categorical variables are compared using the χ 2 test or Fisher exact test, as appropriate. To determine the association between p-GSK-3β and LF thickness, the Pearson correlation coefficient was calculated based on the results of Western blot analysis. RESULTS The LSS group was older and had thicker LF than the controls. The LSS group showed increased collagen fiber and cellularity than the controls. The levels of α-smooth muscle actin, p-GSK-3β, and β-catenin in the LF of the LSS group were significantly higher than that of the control group. There was a strong positive correlation between p-GSK-3β (Ser9) level and LF thickness in LSS patients ( r =0.69, P =0.01). CONCLUSION This research proposes a molecular mechanism for the pathogenesis of LF hypertrophy in LSS. Specifically, GSK-3β/β-catenin signaling appears to be related to LF hypertrophy in LSS and a positive correlation exists between p-GSK-3β level and LF thickness. LEVEL OF EVIDENCE Level 3.
Collapse
Affiliation(s)
- Hong Kyung Shin
- Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Kyung Jin Seo
- Department Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul, Republic of Korea
| | - Jee Youn Lee
- Age-Related and Brain Diseases Research Center, Kyung Hee University, Seoul, Republic of Korea
| | - Sang Ryong Jeon
- Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Tae Young Yune
- Department Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul, Republic of Korea
- Age-Related and Brain Diseases Research Center, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
3
|
Melittin regulates iron homeostasis and mediates macrophage polarization in rats with lumbar spinal stenosis. Biomed Pharmacother 2022; 156:113776. [DOI: 10.1016/j.biopha.2022.113776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/20/2022] [Accepted: 09/28/2022] [Indexed: 11/21/2022] Open
|
4
|
Hsu YC, Chuang HC, Tsai KL, Tu TY, Shyong YJ, Kuo CH, Liu YF, Shih SS, Lin CL. Administration of N-Acetylcysteine to Regress the Fibrogenic and Proinflammatory Effects of Oxidative Stress in Hypertrophic Ligamentum Flavum Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1380353. [PMID: 36338342 PMCID: PMC9629932 DOI: 10.1155/2022/1380353] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/22/2022] [Accepted: 09/20/2022] [Indexed: 03/22/2025]
Abstract
Ligamentum flavum hypertrophy (LFH) is a major cause of lumbar spinal stenosis (LSS). In hypertrophic ligamentum flavum (LF) cells, oxidative stress activates intracellular signaling and induces the expression of inflammatory and fibrotic markers. This study explored whether healthy and hypertrophic LF cells respond differently to oxidative stress, via examining the levels of phosphorylated p38 (p-p38), inducible nitric oxide synthase (iNOS), and α-smooth muscle actin (α-SMA). Furthermore, the efficacy of N-acetylcysteine (NAC), an antioxidant, in reversing the fibrogenic and proinflammatory effects of oxidative stress in hypertrophic LF cells was investigated by assessing the expression levels of p-p38, p-p65, iNOS, TGF-β, α-SMA, vimentin, and collagen I under H2O2 treatment with or without NAC. Under oxidative stress, p-p38 increased significantly in both hypertrophic and healthy LF cells, and iNOS was elevated in only the hypertrophic LF cells. This revealed that oxidative stress negatively affected both hypertrophic and healthy LF cells, with the hypertrophic LF cells exhibiting more active inflammation than did the healthy cells. After H2O2 treatment, p-p38, p-p65, iNOS, TGF-β, vimentin, and collagen I increased significantly, and NAC administration reversed the effects of oxidative stress. These results can form the basis of a novel therapeutic treatment for LFH using antioxidants.
Collapse
Affiliation(s)
- Yu-Chia Hsu
- Department of Orthopaedic Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hao-Chun Chuang
- Department of Orthopaedic Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kun-Ling Tsai
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ting-Yuan Tu
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Yan-Jye Shyong
- Department of Clinical Pharmacy and Pharmaceutical Sciences, National Cheng Kung University, Tainan 70101, Taiwan
| | - Cheng-Hsiang Kuo
- Department of Biochemistry and Molecular Biology, National Cheng Kung University, Tainan, Taiwan
| | - Yuan-Fu Liu
- Department of Orthopaedic Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shu-Shien Shih
- Department of Orthopaedic Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Cheng-Li Lin
- Department of Orthopaedic Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
5
|
Kwon WK, Ham CH, Choi H, Baek SM, Lee JW, Park YK, Moon HJ, Park WB, Kim JH. Elucidating the effect of mechanical stretch stress on the mechanism of ligamentum flavum hypertrophy: Development of a novel in vitro multi-torsional stretch loading device. PLoS One 2022; 17:e0275239. [PMID: 36269774 PMCID: PMC9586365 DOI: 10.1371/journal.pone.0275239] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 09/01/2022] [Indexed: 11/05/2022] Open
Abstract
Objective We developed a novel multi-torsional mechanical stretch stress loading device for ligamentum flavum cells and evaluated its influence on the development of ligamentum flavum hypertrophy, a common cause of lumbar spinal canal stenosis. Materials and methods Stretch strength of the device was optimized by applying 5% and 15% MSS loads for 24, 48, and 72 h. A cytotoxicity assay of human ligamentum flavum cells was performed and the results were compared to control (0% stress). Inflammatory markers (interleukin [IL]-6, IL-8), vascular endothelial growth factor [VEGF], and extracellular matrix (ECM)-regulating cytokines (matrix metalloproteinase [MMP]-1, MMP-3 and MMP-9, and tissue inhibitor of metalloproteinase [TIMP]-1 and TIMP-2) were quantified via enzyme-linked immunosorbent assay. Results Using our multi-torsional mechanical stretch stress loading device, 5% stress for 24 hour was optimal for ligamentum flavum cells. Under this condition, the IL-6 and IL-8 levels, VEGF level, and MMP-1, MMP-3, and TIMP-2 were significantly increased, compared to the control. Conclusion Using the novel multi-torsional mechanical stretch stress loading device we confirmed that, mechanical stress enhances the production of inflammatory cytokines and angiogenic factors, and altered the expression of ECM-regulating enzymes, possibly triggering ligamentum flavum hypertrophy.
Collapse
Affiliation(s)
- Woo-Keun Kwon
- Department of Neurosurgery, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea,Focused Training Center for Trauma, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Chang Hwa Ham
- Department of Neurosurgery, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea,Focused Training Center for Trauma, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hyuk Choi
- Department of Medical Sciences, Graduate School of Medicine, Korea University, Seoul, Korea
| | - Seung Min Baek
- Department of Medical Sciences, Graduate School of Medicine, Korea University, Seoul, Korea
| | - Jae Won Lee
- Department of Medical Sciences, Graduate School of Medicine, Korea University, Seoul, Korea
| | - Youn-Kwan Park
- Department of Neurosurgery, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| | - Hong Joo Moon
- Department of Neurosurgery, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| | - Woong Bae Park
- Department of Neurosurgery, Ewha Womans University Seoul Hospital, Seoul, Korea
| | - Joo Han Kim
- Department of Neurosurgery, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea,* E-mail:
| |
Collapse
|
6
|
Zheng ZY, Li P, Ao X, Qian L, Peng YX, Chu J, Jiang T, Lian ZN, Zhang ZM, Wang L. Characterization of a Novel Model of Lumbar Ligamentum Flavum Hypertrophy in Bipedal Standing Mice. Orthop Surg 2021; 13:2457-2467. [PMID: 34651434 PMCID: PMC8654658 DOI: 10.1111/os.13156] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 09/08/2021] [Accepted: 09/15/2021] [Indexed: 02/06/2023] Open
Abstract
Objective To explore the main causes of hypertrophied ligamentum flavum (HLF) and the possibility of using bipedal standing mouse model to simulate the pathological changes in human HLF. Methods Thirty‐two 8‐week‐old C57BL/6 male mice were randomly assigned to the experimental group (n = 16) and control group (n = 16). In the experimental group, mice were induced to adopt a bipedal standing posture by their hydrophobia. The experimental mice were maintained bipedal standing for 8 h a day with an interval of 2 h to consume food and water. The control mice were placed in a similar environment without bipedal standing. Eight 18‐month‐old C57BL/6 male mice were compared to evaluate the LF degeneration due to aging factor. Three‐dimensional (3D) reconstruction and finite element models were carried out to analyze the stress and strain distribution of the mouse LF in sprawling and bipedal standing postures. Hematoxylin and Eosin (HE), Verhoeff‐Van Gieson (VVG), and immunohistochemistry (IHC) staining were used to evaluate the LF degeneration of mice and humans. RT‐qPCR and immunofluorescence analysis were used to evaluate the expressions of fibrosis‐related factors and inflammatory cytokines of COL1A1, COL3A1, α‐SMA, MMP2, IL‐1β, and COX‐2. Results The von Mises stress (8.85 × 10−2 MPa) and maximum principal strain (6.64 × 10−1) in LF were increased 4944 and 7703 times, respectively, in bipedal standing mice. HE staining showed that the mouse LF area was greater in the bipedal standing 10‐week‐old group ([10.01 ± 2.93] × 104 μm2) than that in the control group ([3.76 ± 1.87] × 104 μm2) and 18‐month‐old aged group ([6.09 ± 2.70] × 104 μm2). VVG staining showed that the HLF of mice (3.23 ± 0.58) and humans (2.23 ± 0.31) had a similar loss of elastic fibers and an increase in collagen fibers. The cell density was higher during the process of HLF in mice (39.63 ± 4.81) and humans (23.25 ± 2.05). IHC staining showed that the number of α‐SMA positive cells were significantly increased in HLF of mice (1.63 ± 0.74) and humans (3.50 ± 1.85). The expressions of inflammatory cytokines and fibrosis‐related factors of COL1A1, COL3A1, α‐SMA, MMP2, IL‐1β, and COX‐2 were consistently higher in bipedal standing group than the control group. Conclusion Our study suggests that 3D finite element models can help analyze the abnormal stress and strain distributions of LF in modeling mice. Mechanical stress is the main cause of hypertrophied ligamentum flavum compared to aging. The bipedal standing mice model can reflect the pathological characteristics of human HLF. The bipedal standing mice model can provide a standardized condition to elucidate the molecular mechanisms of mechanical stress‐induced HLF in vivo.
Collapse
Affiliation(s)
- Zhen-Yu Zheng
- Department of Orthopaedics, The Third Affiliated Hospital, Southern Medical University, Academy of Orthopaedics, Guangzhou, China
| | - Peng Li
- Department of Orthopaedics, The Third Affiliated Hospital, Southern Medical University, Academy of Orthopaedics, Guangzhou, China
| | - Xiang Ao
- Department of Orthopaedics, The Third Affiliated Hospital, Southern Medical University, Academy of Orthopaedics, Guangzhou, China
| | - Lei Qian
- Department of Anatomy, Guangdong Province Key Laboratory of Medical Biomechanics, Southern Medical University, Guangzhou, China
| | - Yong-Xing Peng
- Department of Orthopaedics, The Third Affiliated Hospital, Southern Medical University, Academy of Orthopaedics, Guangzhou, China
| | - Jun Chu
- Department of Orthopaedics, The Third Affiliated Hospital, Southern Medical University, Academy of Orthopaedics, Guangzhou, China
| | - Tao Jiang
- Department of Orthopaedics, The Third Affiliated Hospital, Southern Medical University, Academy of Orthopaedics, Guangzhou, China
| | - Zheng-Nan Lian
- Department of Orthopaedics, The Third Affiliated Hospital, Southern Medical University, Academy of Orthopaedics, Guangzhou, China
| | - Zhong-Min Zhang
- Department of Orthopaedics, The Third Affiliated Hospital, Southern Medical University, Academy of Orthopaedics, Guangzhou, China.,Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Liang Wang
- Department of Orthopaedics, The Third Affiliated Hospital, Southern Medical University, Academy of Orthopaedics, Guangzhou, China
| |
Collapse
|
7
|
Takeda H, Nagai S, Ikeda D, Kaneko S, Tsuji T, Fujita N. Collagen profiling of ligamentum flavum in patients with lumbar spinal canal stenosis. J Orthop Sci 2021; 26:560-565. [PMID: 32753253 DOI: 10.1016/j.jos.2020.06.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/30/2020] [Accepted: 06/24/2020] [Indexed: 01/15/2023]
Abstract
BACKGROUND Although several causes of ligamentum flavum (LF) hypertrophy have been identified, the pathomechanisms underlying LF hypertrophy are not fully understood. Because collagen fibers are essential for the maintenance of LF tissues, characterization of the collagen composition of hypertrophied LF may help to elucidate the pathology of lumbar spinal canal stenosis (LCS). This study aimed to determine the association between the collagen composition and LF hypertrophy. METHODS LF tissues were collected from 23 patients who underwent spinal decompression surgery for lumbar disorders. The cross-sectional area of LF was measured using the axial images of lumbar MRI. The expression of each collagen in human surgical samples was evaluated by real-time RT-PCR and immunohistochemical analysis. To investigate the impact of inflammatory cytokines on the expression of each collagen, we treated primary human LF cells with TNF-α or IL-1β. RESULTS Real-time RT-PCR analysis and immunohistochemistry showed that of the 28 types of collagen, collagen type I, III, V, VI, VIII were highly expressed regardless of LF hypertrophy. In addition, we found the moderate correlation between the cross-sectional area of LF and the mRNA expression level of collagen type I, III, and VI. In vitro analysis showed that the mRNA expression of collagen type I, III, V, VI, and VIII was up-regulated by treatment with TNF-α and with IL-1β. CONCLUSION Our results suggested that collagen type I, III, V, VI, and VIII were the main components of the LF extracellular matrix and that collagen type I, III, and VI may serve as useful markers of LF hypertrophy. These findings may contribute to the future development of diagnostic and treatment modalities for LF hypertrophy and even LCS.
Collapse
Affiliation(s)
- Hiroki Takeda
- Department of Orthopaedic Surgery, School of Medicine, Fujita Health University, Aichi, Japan; Department of Spine and Spinal Cord, Fujita Health University, Aichi, Japan
| | - Sota Nagai
- Department of Orthopaedic Surgery, School of Medicine, Fujita Health University, Aichi, Japan
| | - Daiki Ikeda
- Department of Orthopaedic Surgery, School of Medicine, Fujita Health University, Aichi, Japan
| | - Shinjiro Kaneko
- Department of Spine and Spinal Cord, Fujita Health University, Aichi, Japan
| | - Takashi Tsuji
- Department of Orthopaedic Surgery, National Hospital Organization Tokyo Medical Center, Tokyo, Japan.
| | - Nobuyuki Fujita
- Department of Orthopaedic Surgery, School of Medicine, Fujita Health University, Aichi, Japan.
| |
Collapse
|
8
|
Wang B, Gao C, Zhang P, Sun W, Zhang J, Gao J. The increased motion of lumbar induces ligamentum flavum hypertrophy in a rat model. BMC Musculoskelet Disord 2021; 22:334. [PMID: 33823825 PMCID: PMC8025532 DOI: 10.1186/s12891-021-04203-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/22/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The purpose of this study was to establish a novel rat model for ligamentum flavum (LF) hypertrophy using increased motion of lumbar and to elucidate the etiology of (LFH). METHODS A total number of 30 male rats were used. The increased motion of lumbar was induced by surgical resection of L5/6 posterior elements (n = 15). The other rats underwent a sham operation (n = 15). After 8 weeks, all rats were taken lateral plain X-rays. The LF from L5/6 in both groups were harvested to investigate histological, immunohistological, and real-time PCR analysis. RESULTS According to radiological results, the disc height ratio, flexion ratio, and extension ratio were larger in the rats in the experimental group than that of in the sham group. The HE staining showed that the LF thickness in the experimental group significantly increased in comparison to the sham group. The Masson trichrome staining showed that the ratio of elastic fibers to collagen fibers in experimental group was lower than that in the sham group. The protein and gene expression of TGF-β1, TNF-α, IL-1β, and Col 1 were significantly higher in the experimental group than that in the sham group. CONCLUSION A relatively safe, simple, and rapid rat model of LFH using increased motion of lumbar was established. The increased motion of lumbar could lead to high expression of inflammatory and fibrotic factors in LF, causing the accumulation of collagen fibers and decreasing of elastic fibers.
Collapse
Affiliation(s)
- Baojian Wang
- Department of Spine, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Chunyu Gao
- Department of Spine, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Ping Zhang
- Department of Pathology, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Wu Sun
- Department of Spine, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Jingru Zhang
- Department of Pathology, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Jinghua Gao
- Department of Spine, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
9
|
Wang L, Chang M, Tian Y, Yan J, Xu W, Yuan S, Zhang K, Liu X. The Role of Smad2 in Transforming Growth Factor β 1-Induced Hypertrophy of Ligamentum Flavum. World Neurosurg 2021; 151:e128-e136. [PMID: 33831616 DOI: 10.1016/j.wneu.2021.03.147] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 03/29/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Hypertrophy of the ligamentum flavum (LF) contributes to the development of spinal stenosis. Smad proteins can mediate the fibrogenesis activity through the transforming growth factor β1 (TGF-β1) pathway, but which Smad protein plays a more important role in the hypertrophy process of LF is unclear. METHODS The LF samples were obtained from 50 patients. After the LF cells (LFCs) were cultured, small interfering ribonucleic acid (siRNA) that target human phosphorylated-Smad2, 3, or 4 (p-Smad2,3,4) genes was transfected into LFCs. Next, proteins from cells were extracted and the protein levels of Smad2, Smad3, and Smad4 were detected by Western blot. The messenger ribonucleic acid level of TGF-β1 was measured by real-time polymerase chain reaction (PCR). Furthermore, an enzyme-linked immunosorbent assay was performed to test the impact of Smad2 downstream of the TGF-β1 signaling pathway. RESULTS Degeneration of the LF was characterized by an increase in disorganized elastic fibers and fibrotic transformation by extracellular collagen deposition. The gene expression analysis of fibrotic genes in LFCs showed that knockdown of phosphorylated-Smad2 by siRNA significantly reduced the protein expression level of TGF-β1 compared with other groups. The enzyme-linked immunosorbent assay suggested that the protein expression level of Smad2 can influence the downstream events of TGF-β1 signaling pathway in the LFCs. CONCLUSIONS Our findings suggest that Smad2 plays a potential role in the pathologic development of hypertrophy of LF. We also found that Smad2 knockdown by Smad-siRNA can influence the TGF-β1 signaling pathway through decreasing expression of TGF-β1, tumor necrosis factor α, and nuclear factor κb.
Collapse
Affiliation(s)
- Lianlei Wang
- Department of Orthopedic Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, P. R. China
| | - Mingzheng Chang
- Department of Orthopedic Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, P. R. China; Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P. R. China
| | - Yonghao Tian
- Department of Orthopedic Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, P. R. China
| | - Jun Yan
- Department of Orthopedic Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, P. R. China
| | - Wanlong Xu
- Department of Orthopedic Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, P. R. China
| | - Suomao Yuan
- Department of Orthopedic Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, P. R. China
| | - Kai Zhang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, P. R. China
| | - Xinyu Liu
- Department of Orthopedic Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, P. R. China; Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P. R. China.
| |
Collapse
|
10
|
Yagi K, Goto Y, Kato K, Suzuki N, Kondo A, Waseda Y, Mizutani J, Kawaguchi Y, Joyo Y, Waguri-Nagaya Y, Murakami H. p38 Mitogen-Activated Protein Kinase Is Involved in Interleukin-6 Secretion from Human Ligamentum Flavum-Derived Cells Stimulated by Tumor Necrosis Factor-α. Asian Spine J 2020; 15:713-720. [PMID: 33355843 PMCID: PMC8696066 DOI: 10.31616/asj.2020.0425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/04/2020] [Indexed: 12/26/2022] Open
Abstract
Study Design Human ligamentum flavum–derived cells (HFCs) were obtained from surgical samples for a basic experimental study. Purpose We sought to evaluate the inflammatory response of human ligamentum flavum cells to investigate hypertrophic changes occurring in the ligamentum flavum. Overview of Literature Lumbar spinal stenosis (LSS) is a disease commonly observed in the elderly. The number of patients with LSS has increased over time, yet the pathomechanisms of LSS still have not been fully elucidated. One of the clinical features of LSS is hypertrophy of the ligamentum flavum, which results in narrowing of the lumbar spinal canal. Some reports have suggested that ligamentum flavum hypertrophy is associated with inflammation and fibrosis; meanwhile, the p38 mitogen-activated protein (MAP) kinase is involved in the hypertrophy of human ligamentum flavum cells. Methods HFCs were obtained from patients with LSS who underwent surgery. HFCs were stimulated by tumor necrosis factor-α (TNF-α) and a p38 MAP kinase inhibitor, SB203580. Phosphorylation of the p38 MAP kinase was analyzed by western blotting. The concentration of interleukin-6 (IL-6) in the conditioned medium was measured by enzyme-linked immunoassay and IL-6 messenger RNA expression levels were determined by real-time polymerase chain reaction. Results TNF-α induced the phosphorylation of p38 MAP kinase in a time-dependent manner, which was suppressed by the p38 MAP kinase inhibitor, SB203580. TNF-α also stimulated IL-6 release in both a time- and dose-dependent manner. On its own, SB203580 did not stimulate IL-6 secretion from HFCs; however, it dramatically suppressed the degree of IL-6 release stimulated by TNF-α from HFCs. Conclusions This is the first report suggesting that TNF-α stimulates the gene expression and protein secretion of IL-6 via p38 MAP kinase in HFCs. A noted association between tissue hypertrophy and inflammation suggests that the p38 MAP kinase inflammatory pathway may be a therapeutic molecular target for LSS.
Collapse
Affiliation(s)
- Kiyoshi Yagi
- Department of Orthopaedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yuta Goto
- Department of Orthopaedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Kenji Kato
- Department of Orthopaedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Nobuyuki Suzuki
- Department of Orthopaedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Akira Kondo
- Department of Orthopaedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yuya Waseda
- Department of Orthopaedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Jun Mizutani
- Department of Orthopaedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yohei Kawaguchi
- Department of Orthopaedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yuji Joyo
- Department of Orthopaedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yuko Waguri-Nagaya
- Department of Orthopaedic Surgery, Nagoya City East Medical Center, Nagoya, Japan
| | - Hideki Murakami
- Department of Orthopaedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
11
|
Sun C, Zhang H, Wang X, Liu X. Ligamentum flavum fibrosis and hypertrophy: Molecular pathways, cellular mechanisms, and future directions. FASEB J 2020; 34:9854-9868. [PMID: 32608536 DOI: 10.1096/fj.202000635r] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/03/2020] [Accepted: 06/08/2020] [Indexed: 12/11/2022]
Abstract
Hypertrophy of ligamentum flavum (LF), along with disk protrusion and facet joints degeneration, is associated with the development of lumbar spinal canal stenosis (LSCS). Of note, LF hypertrophy is deemed as an important cause of LSCS. Histologically, fibrosis is proved to be the main pathology of LF hypertrophy. Despite the numerous studies explored the mechanisms of LF fibrosis at the molecular and cellular levels, the exact mechanism remains unknown. It is suggested that pathophysiologic stimuli such as mechanical stress, aging, obesity, and some diseases are the causative factors. Then, many cytokines and growth factors secreted by LF cells and its surrounding tissues play different roles in activating the fibrotic response. Here, we summarize the current status of detailed knowledge available regarding the causative factors, pathology, molecular and cellular mechanisms implicated in LF fibrosis and hypertrophy, also focusing on the possible avenues for anti-fibrotic strategies.
Collapse
Affiliation(s)
- Chao Sun
- Department of Spine Surgery, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Han Zhang
- Department of Spine Surgery, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Xiang Wang
- Department of Spine Surgery, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Xinhui Liu
- Department of Spine Surgery, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
12
|
Delen E, Doğanlar O, Delen Ö, Doğanlar ZB, Kılınçer C. The Role of JAK-STAT Signaling Activation in Hypertrophied Ligamentum Flavum. World Neurosurg 2020; 137:e506-e516. [PMID: 32059970 DOI: 10.1016/j.wneu.2020.02.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Although previous studies have reported the expression of JAK1, STAT3, and phosphorylated STAT3 in hypertrophied ligamentum flavum (LF), the role of the Janus kinase-signal transducer and activator of transcription (JAK/STAT) signaling pathway in hypertrophied LF has not been fully elucidated. The aim of this study was to identify the important JAK/STAT gene expression patterns of the 3 main receptors involved in this pathway: interferon (IFN)-γ receptor (IFN-γR), IFN-α receptor (IFNAR), and interleukin (IL)-6 receptor (IL-6R). METHODS The human LF specimens were obtained from 28 patients who underwent lumbar spine surgery for either degenerative lumbar canal stenosis (DLCS) (n = 28) or lumbar disc herniation (LDH) (n = 20). In this design, patients with LDH served as the control group. The degree of fibrosis was demonstrated by Masson's trichrome staining. The location and expression profiling of the JAK/STAT pathway were analyzed by quantitative real-time polymerase chain reaction and Western blotting. The thickness of the LF was measured with axial T1-weighted magnetic resonance imaging. RESULTS The most severe fibrotic changes were on the dorsal side of the LF. IL-6 and IFN-I expression levels were significantly increased on the dorsal side of the LF. While expression levels of IL-6R and IFNAR on the dural and dorsal side were significantly higher in the DLCS samples, IFN-γR and endothelial epidermal growth factor receptor in LF samples showed a significant increase only on the dorsal side. JAK/STAT genes were significantly expressed, especially on the dorsal side. CONCLUSIONS Our data suggest that IFNAR- and IL-6R-dependent JAK/STAT signaling pathways may be significant targets in drug development strategies for the treatment of LF hypertrophy.
Collapse
Affiliation(s)
- Emre Delen
- Department of Neurosurgery, Trakya University School of Medicine, Edirne, Turkey.
| | - Oğuzhan Doğanlar
- Department of Medical Biology, Trakya University School of Medicine, Edirne, Turkey
| | - Özlem Delen
- Department of Histology and Embryology, Trakya University School of Medicine, Edirne, Turkey
| | - Zeynep Banu Doğanlar
- Department of Medical Biology, Trakya University School of Medicine, Edirne, Turkey
| | - Cumhur Kılınçer
- Department of Neurosurgery, Trakya University School of Medicine, Edirne, Turkey
| |
Collapse
|
13
|
Mahatthanatrakul A, Kim HS, Lin GX, Kim JS. Decreasing thickness and remodeling of ligamentum flavum after oblique lumbar interbody fusion. Neuroradiology 2020; 62:971-978. [PMID: 32291464 DOI: 10.1007/s00234-020-02414-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 03/24/2020] [Indexed: 12/21/2022]
Abstract
PURPOSE Ligamentum flavum is one of the structures that could compress the spinal canal. Few studies have reported atrophy of ligamentum flavum after spinal fusion. The purpose of this study was to demonstrate the reduction of ligamentum flavum size after oblique lumbar interbody fusion (OLIF) using magnetic resonance imaging (MRI). METHOD Seventeen patients who underwent OLIF without direct decompression were included. The MRI was obtained at the preoperative period, immediate postoperative period, and the follow-up period. Disc height (DH) was measured in plain radiograph. MRI measurements were spinal canal cross-sectional area (SCSA), ligamentum flavum thickness (LFT), ligamentum flavum area (LFA), and foraminal area (FA). RESULTS Mean age of the patients was 68.5 ± 10.8. Mean times between postoperative MRI and follow-up MRI were 20.2 ± 11.9 months. Mean disc height increased from 7.6 ± 1.6 to 11.6 ± 1.7 mm at an immediate postoperative period but decreased to 10.1 ± 1.6 mm during follow-up (p < 0.001). SCSA increased from 96.9 ± 54.9 to 136.0 ± 72.7 mm2 and 171.4 ± 76.10 mm2 during follow-up (p < 0.001). LFT decreased from 3.9 ± 1.2 to 3.2 ± 0.8 mm (17.9%) and further decreased to 2.9 ± 0.7 mm during follow-up (9.4%) (p < 0.001). LFA decreased from 97.4 ± 36.9 to 86.1 ± 36.9 mm2 (11.6%) and further decreased to 77.2 ± 32.5 mm2 during follow-up (10.3%) (p = 0.001). FA increased from 69.2 ± 26.6 to 96.1 ± 23.0 mm2 and increased to 112.9 ± 23.0 mm2 during follow-up (p < 0.001). CONCLUSION OLIF could decompress the spinal canal and foraminal canal indirectly. Despite the diminishing disc height during the follow-up period, the spinal canal was further increased in size from the remodeling of the ligamentum flavum.
Collapse
Affiliation(s)
| | - Hyeun Sung Kim
- Department of Neurosurgery, Nanoori Gangnam Hospital, Seoul, South Korea
| | - Guang-Xun Lin
- Department of Orthopedics, The First Affiliated Hospital of Xiamen University, Xiamen, People's Republic of China
| | - Jin-Sung Kim
- Spine Center, Department of Neurosurgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea.
| |
Collapse
|
14
|
Ye S, Kwon WK, Bae T, Kim S, Lee JB, Cho TH, Park JY, Kim K, Hur JK, Hur JW. CCN5 Reduces Ligamentum Flavum Hypertrophy by Modulating the TGF-β Pathway. J Orthop Res 2019; 37:2634-2644. [PMID: 31334871 PMCID: PMC6899892 DOI: 10.1002/jor.24425] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 07/17/2019] [Indexed: 02/04/2023]
Abstract
Ligamentum flavum hypertrophy (LFH) is the most important component of lumbar spinal canal stenosis. Although the pathophysiology of LFH has been extensively studied, no method has been proposed to prevent or treat it. Since the transforming growth factor-β (TGF-β) pathway is known to be critical in LFH pathology, we investigated whether LFH could be prevented by blocking or modulating the TGF-β mechanism. Human LF cells were used for the experiments. First, we created TGF-β receptor 1 (TGFBR1) knock out (KO) cells with CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 biotechnology and treated them with TGF-β1 to determine the effects of blocking the TGF-β pathway. Subsequently, we studied the effect of CCN5, which has recently been proposed to modulate the TGF-β pathway. To assess the predisposition toward fibrosis, α-smooth muscle actin (αSMA), fibronectin, collagen-1, collagen-3, and CCN2 were evaluated with quantitative real-time polymerase chain reaction, western blotting, and immunocytochemistry. The TGFBR1 KO LF cells were successfully constructed with high KO efficiency. In wild-type (WT) cells, treatment with TGF-β1 resulted in the overexpression of the messenger RNA (mRNA) of fibrosis-related factors. However, in KO cells, the responses to TGF-β1 stimulation were significantly lower. In addition, CCN5 and TGF-β1 co-treatment caused a notable reduction in mRNA expression levels compared with TGF-β1 stimulation only. The αSMA protein expression increased with TGF-β1 but decreased with CCN5 treatment. TGF-β1 induced LF cell transdifferentiation from fibroblasts to myofibroblasts. However, this cell transition dramatically decreased in the presence of CCN5. In conclusion, CCN5 could prevent LFH by modulating the TGF-β pathway. © 2019 The Authors. Journal of Orthopaedic Research® published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society. J Orthop Res 37:2634-2644, 2019.
Collapse
Affiliation(s)
| | - Woo-Keun Kwon
- Department of Neurosurgery, College of Medicine, Korea University Anam Hospital, 73, Inchon-ro, Seongbuk-gu, Seoul, 02841, Korea
| | - Taegeun Bae
- Department of Medicine, Graduate School, Kyung Hee University, Seoul, Korea
| | - Sunghyun Kim
- Department of Molecular and Computational Biology, University of Southern California, Los Angeles, California
| | - Jang-Bo Lee
- Department of Neurosurgery, College of Medicine, Korea University Anam Hospital, 73, Inchon-ro, Seongbuk-gu, Seoul, 02841, Korea
| | - Tai-Hyoung Cho
- Department of Neurosurgery, College of Medicine, Korea University Anam Hospital, 73, Inchon-ro, Seongbuk-gu, Seoul, 02841, Korea
| | - Jung-Yul Park
- Department of Neurosurgery, College of Medicine, Korea University Anam Hospital, 73, Inchon-ro, Seongbuk-gu, Seoul, 02841, Korea
| | - Kyoungmi Kim
- Department of Biomedical Sciences and Department of Physiology, College of Medicine, Korea University, Seoul, Korea
| | - Junho K Hur
- Department of Pathology, College of Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Korea
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul, Korea
| | - Junseok W Hur
- Department of Neurosurgery, College of Medicine, Korea University Anam Hospital, 73, Inchon-ro, Seongbuk-gu, Seoul, 02841, Korea
| |
Collapse
|
15
|
Prasad GL. Thoracic spine ossified ligamentum flavum: single-surgeon experience of fifteen cases and a new MRI finding for preoperative diagnosis of dural ossification. Br J Neurosurg 2019; 34:638-646. [DOI: 10.1080/02688697.2019.1670333] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- G Lakshmi Prasad
- Department of Neurosurgery, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
16
|
Yang X, Chen Z, Meng X, Sun C, Li M, Shu L, Fan D, Fan T, Huang AY, Zhang C. Angiopoietin-2 promotes osteogenic differentiation of thoracic ligamentum flavum cells via modulating the Notch signaling pathway. PLoS One 2018; 13:e0209300. [PMID: 30557327 PMCID: PMC6296551 DOI: 10.1371/journal.pone.0209300] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 12/03/2018] [Indexed: 12/16/2022] Open
Abstract
Thoracic ossification of the ligamentum flavum (TOLF) is heterotopic ossification of spinal ligaments, which may cause serious thoracic spinal canal stenosis and myelopathy. However, the underlying etiology remains inadequately understood. In this study, the ossification patterns of TOLF were analyzed by micro-computer tomography (micro-CT). The expression profile of genes associated with angiogenesis was analyzed in thoracic ligamentum flavum cells at sites of different patterns of ossification using RNA sequencing. Significant differences in the expression profile of several genes were identified from Gene Ontology (GO) analysis. Angiopoietin-2 (ANGPT2) was significantly up-regulated in primary thoracic ligamentum flavum cells during osteogenic differentiation. To address the effect of ANGPT2 on Notch signaling and osteogenesis, ANGPT2 stimulation increased the expression of Notch2 and osteogenic markers of primary thoracic ligamentum flavum cells of immature ossification, while inhibition of ANGPT2 exhibited opposite effect on Notch pathway and osteogenesis of cells of mature ossification. These findings provide the first evidence for positive regulation of ANGPT2 on osteogenic differentiation in human thoracic ligamentum flavum cells via modulating the Notch signaling pathway.
Collapse
Affiliation(s)
- Xiaoxi Yang
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - Zhongqiang Chen
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - Xiangyu Meng
- Central Laboratory, Peking University International Hospital, Beijing, China
| | - Chuiguo Sun
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - Mengtao Li
- Central Laboratory, Peking University International Hospital, Beijing, China
| | - Li Shu
- Central Laboratory, Peking University International Hospital, Beijing, China
| | - Dongwei Fan
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - Tianqi Fan
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - Ann Y Huang
- Daobio, Inc. Dallas, Texas, United States of America
| | - Chi Zhang
- Central Laboratory, Peking University International Hospital, Beijing, China
- Department of Orthopedics, Peking University International Hospital, Beijing, China
- Bone Research Laboratory, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| |
Collapse
|
17
|
Engel AJ, Scott Kreiner D, Stojanovic MP. Finding an Answer: Comments on a Randomized Trial of Epidural Glucocorticoid Injections for Lumbar Spinal Stenosis. PAIN MEDICINE 2018; 18:204-210. [PMID: 28204744 DOI: 10.1093/pm/pnw127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | | | - Milan P Stojanovic
- Anesthesiology, Critical Care and Pain Medicine Service, VA Boston Healthcare System, MA, USA
| |
Collapse
|
18
|
Yamahata H, Osuka K, Aoyama T, Yasuda M, Tokimura H, Arita K, Takayasu M. Expression of the JAK/STAT signaling pathway in the ligamentum flavum of patients with lumbar spinal canal stenosis. J Orthop Sci 2017; 22:190-196. [PMID: 27889106 DOI: 10.1016/j.jos.2016.11.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 10/26/2016] [Accepted: 11/06/2016] [Indexed: 01/15/2023]
Abstract
BACKGROUND Ligamentum flavum (LF) hypertrophy is an important cause of lumbar spinal canal stenosis (LSS), one of the most common spinal disorders in the elderly. Although many cytokines are reported to be associated with LF hypertrophy, the intracellular signaling system is rarely discussed. The purpose of this study was to identify the JAK/STAT signaling pathway and to examine the role of the JAK/STAT systems in the hypertrophied LF. METHODS The LF of 10 LSS patients was analyzed and the expression of JAK1, STAT3, phosphorylated (p)-STAT3, and actin was examined by Western blot analysis. The expression of p-STAT3 was also examined by immunostaining and its positive cell ratio was compared between LSS and non-LSS samples. We measured the thickness of the LF on magnetic resonance images and studied the relationship between its thickness and the expression of p-STAT3. RESULTS JAK1, STAT3, and p-STAT3 were detected in almost all samples by Western blot analysis. Immunoreactivity against p-STAT3 was observed mainly in endothelial- and fibroblast-like cells. The expression of p-STAT3 was significantly higher in LSS than non-LSS samples; it was significantly stronger on the dorsal than the dural side of the LF and positively correlated with the thickness of the LF on the dorsal side. CONCLUSIONS The JAK/STAT signaling pathway is positively correlated with the thickness of the LF. Our findings suggest that JAK1 and STAT3 molecules are involved in and regulate LF hypertrophy.
Collapse
Affiliation(s)
- Hitoshi Yamahata
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan.
| | - Koji Osuka
- Department of Neurological Surgery, Aichi Medical University, Aichi, Japan
| | - Tatsuro Aoyama
- Department of Neurosurgery, Shinshu University, Nagano, Japan
| | - Muneyoshi Yasuda
- Department of Neurological Surgery, Aichi Medical University, Aichi, Japan
| | - Hiroshi Tokimura
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Kazunori Arita
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Masakazu Takayasu
- Department of Neurological Surgery, Aichi Medical University, Aichi, Japan
| |
Collapse
|
19
|
Change of Lumbar Ligamentum Flavum after Indirect Decompression Using Anterior Lumbar Interbody Fusion. Asian Spine J 2017; 11:105-112. [PMID: 28243378 PMCID: PMC5326718 DOI: 10.4184/asj.2017.11.1.105] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 06/09/2016] [Accepted: 06/10/2016] [Indexed: 01/15/2023] Open
Abstract
STUDY DESIGN Retrospective case series. PURPOSE The purpose of this study was to examine changes in the ligamentum flavum thickness and remodeling of the spinal canal after anterior fusion during a 10-year follow-up. OVERVIEW OF LITERATURE Extreme lateral interbody fusion provides minimally invasive treatment of the lumbar spine; this anterior fusion without direct posterior decompression, so-called indirect decompression, can achieve pain relief. Anterior fusion may restore disc height, stretch the flexure of the ligamentum flavum, and increase the spinal canal diameter. However, changes in the ligamentum flavum thickness and remodeling of the spinal canal after anterior fusion during a long follow-up have not yet been reported. METHODS We evaluated 10 patients with L4 spondylolisthesis who underwent stand-alone anterior interbody fusion using the iliac crest bone. Magnetic resonance imaging was performed 10 years after surgery. The cross-sectional area (CSA) of the dural sac and the ligamentum flavum at L1-2 to L5-S1 was calculated using a Picture Archiving and Communication System. RESULTS Spinal fusion with correction loss (average, 4.75 mm anterior slip) was achieved in all patients 10 years postsurgery. The average CSAs of the dural sac and the ligamentum flavum at L1-2 to L5-S1 were 150 mm2 and 78 mm2, respectively. The average CSA of the ligamentum flavum at L4-5 (30 mm2) (fusion level) was significantly less than that at L1-2 to L3-4 or L5-S1. Although patients had an average anterior slip of 4.75 mm, the average CSA of the dural sac at L4-5 was significantly larger than at the other levels. CONCLUSIONS Spinal stability induced a lumbar ligamentum flavum change and a sustained remodeling of the spinal canal, which may explain the long-term pain relief after indirect decompression fusion surgery.
Collapse
|
20
|
Sakai Y, Ito S, Hida T, Ito K, Harada A, Watanabe K. Clinical outcome of lumbar spinal stenosis based on new classification according to hypertrophied ligamentum flavum. J Orthop Sci 2017; 22:27-33. [PMID: 27580526 DOI: 10.1016/j.jos.2016.08.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/04/2016] [Accepted: 08/08/2016] [Indexed: 01/15/2023]
Abstract
BACKGROUND The ligamentum flavum hypertrophy is considered to be one of the important causes of development of lumbar spinal stenosis (LSS). Several histologic and biologic mechanisms in hypertrophied flavum have proposed. However, no study that investigated the relationship between clinical outcome and ligamentum flavum hypertrophy has been published. The purpose of this study was to identify a new classification of LSS, in ligamentous and nonligamentous stenosis, according to the cutoff value of the area proportion of the ligamentum flavum in the spinal canal, and to assess the value of surgical and conservative treatments for LSS based on the classification of the ligamentous stenosis. METHODS A total of 230 surgical patients with LSS were evaluated based on the cross-sectional area and intraoperative findings of the ligamentum flavum. LSS was classified as ligamentous or nonligamentous stenosis, according to the cutoff value of the proportion of the ligamentum flavum in the spinal canal. Based on the classification, the results of 234 surgical patients (103 patients with spinal fusion surgery and 131 patients with spinal decompression) and 191 patients under conservative treatment with prostaglandin E1 were evaluated, 1 year after treatments. RESULTS ROC analysis revealed that the area under the curve for the cutoff value of the proportion of the ligamentum flavum in the spinal canal was 0.4275 (sensitivity = 0.861, specificity = 0.854). Based on these criteria, ligamentous and nonligamentous stenoses were 115 and 119 in surgical patients, 97 and 94 in conservative patients, respectively. In the surgical treatment group, no significant difference was found in any of the evaluations conducted for the group with ligamentous and nonligamentous stenosis. However, in the conservative treatment group, the patients with ligamentous stenosis showed significant improvement compared with patients with nonligamentous stenosis. CONCLUSIONS Ligamentous stenosis in LSS patients had favorable outcome on conservative treatment with prostaglandin E1 derivative.
Collapse
Affiliation(s)
- Yoshihito Sakai
- National Center for Geriatric and Gerontology, Department of Orthopaedic Surgery, Japan.
| | - Sadayuki Ito
- National Center for Geriatric and Gerontology, Department of Orthopaedic Surgery, Japan
| | - Tetsuro Hida
- Nagoya University School of Medicine, Department of Orthopaedic Surgery, Japan
| | - Kenyu Ito
- Nagoya University School of Medicine, Department of Orthopaedic Surgery, Japan
| | - Atsushi Harada
- National Center for Geriatric and Gerontology, Department of Orthopaedic Surgery, Japan
| | - Ken Watanabe
- National Center for Geriatrics and Gerontology, Department of Bone and Joint Disease, Japan
| |
Collapse
|
21
|
Analysis of the Relationship between Ligamentum Flavum Thickening and Lumbar Segmental Instability, Disc Degeneration, and Facet Joint Osteoarthritis in Lumbar Spinal Stenosis. Asian Spine J 2016; 10:1132-1140. [PMID: 27994791 PMCID: PMC5165005 DOI: 10.4184/asj.2016.10.6.1132] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 05/23/2016] [Accepted: 06/08/2016] [Indexed: 01/15/2023] Open
Abstract
Study Design Cross-sectional study. Purpose To investigate the relationship between ligamentum flavum (LF) thickening and lumbar segmental instability and disc degeneration and facet joint osteoarthritis. Overview of Literature Posterior spinal structures, including LF thickness, play a major role in lumbar spinal canal stenosis pathogenesis. The cause of LF thickening is multifactorial and includes activity level, age, and mechanical stress. LF thickening pathogenesis is unknown. Methods We examined 419 patients who underwent computed tomography (CT) myelography and magnetic resonance imaging after complaints of clinical symptoms. To investigate LF hypertrophy, 57 patients whose lumbar vertebra had normal disc heights at L4–5 were selected to exclude LF buckling as a hypertrophy component. LF thickness, disc space widening angulation in flexion, segmental angulation, presence of a vacuum phenomenon, and lumbar lordosis at T12–S1 were investigated. Disc and facet degeneration were also evaluated. Facet joint orientation was measured via an axial CT scan. Results The mean LF thickness in all patients was 4.4±1.0 mm at L4–5. There was a significant correlation between LF thickness and disc degeneration; LF thickness significantly increased with severe disc degeneration and facet joint osteoarthritis. There was a tendency toward increased LF thickness in more sagittalized facet joints than in coronalized facet joints. Logistic regression analysis showed that LF thickening was influenced by segmental angulation and facet joint osteoarthritis. Patient age was associated with LF thickening. Conclusions LF hypertrophy development was associated with segmental instability and severe disc degeneration, severe facet joint osteoarthritis, and a sagittalized facet joint orientation.
Collapse
|
22
|
Analysis of the Relationship between Hypertrophy of the Ligamentum Flavum and Lumbar Segmental Motion with Aging Process. Asian Spine J 2016; 10:528-35. [PMID: 27340534 PMCID: PMC4917773 DOI: 10.4184/asj.2016.10.3.528] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/15/2015] [Accepted: 10/16/2015] [Indexed: 01/15/2023] Open
Abstract
Study Design Retrospective cross-sectional study. Purpose To investigate the relationship between ligamentum flavum (LF) hypertrophy and lumbar segmental motion. Overview of Literature The pathogenesis of LF thickening is unclear and whether the thickening results from tissue hypertrophy or buckling remains controversial. Methods 296 consecutive patients underwent assessment of the lumbar spine by radiographic and magnetic resonance imaging (MRI). Of these patients, 39 with normal L4–L5 disc height were selected to exclude LF buckling as one component of LF hypertrophy. The study group included 27 men and 12 women, with an average age of 61.2 years (range, 23–81 years). Disc degeneration and LF thickness were quantified on MRI. Lumbar segmental spine instability and presence of a vacuum phenomenon were identified on radiographic images. Results The distribution of disc degeneration and LF thickness included grade II degeneration in 4 patients, with a mean LF thickness of 2.43±0.20 mm; grade III in 10 patients, 3.01±0.41 mm; and grade IV in 25 patients, 4.16±1.12 mm. LF thickness significantly increased with grade of disc degeneration and was significantly correlated with age (r=0.55, p<0.01). Logistic regression analysis identified predictive effects of segmental angulation (odds ratio [OR]=1.55, p=0.014) and age (OR=1.16, p=0.008). Conclusions Age-related increases in disc degeneration, combined with continuous lumbar segmental flexion-extension motion, leads to the development of LF hypertrophy.
Collapse
|
23
|
Hur JW, Kim BJ, Park JH, Kim JH, Park YK, Kwon TH, Moon HJ. The Mechanism of Ligamentum Flavum Hypertrophy: Introducing Angiogenesis as a Critical Link That Couples Mechanical Stress and Hypertrophy. Neurosurgery 2016; 77:274-81; discussion 281-2. [PMID: 25850600 DOI: 10.1227/neu.0000000000000755] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Biochemical alterations associated with mechanical stress have been explored as an initiating step in the pathological progression of ligamentum flavum hypertrophy (LFH); however, this mechanism remains poorly understood. Recently, the inflammation induced after mechanical stress and the subsequent response of ligamentum flavum (LF) cells have been implicated in LFH pathology. OBJECTIVE To investigate the hypothesis that angiogenesis may be a critical link between hypertrophy and a series of stimulating events, including mechanical stress. METHODS LF from 20 lumbar spinal canal stenosis (LSCS) patients and 16 non-LSCS patients (control group) were collected during surgery. Patient demographic and radiographic data were obtained. The levels of angiogenic factors (vascular endothelial growth factor [VEGF], angiopoietin-1, vascular cell adhesion molecule, and basic fibroblast growth factor) in the LF were investigated by using an enzyme-linked immunosorbent assay. Angiogenesis was also quantified by immunohistochemical detection of CD34-positive capillaries. The correlations among clinical factors, including radiographic factors, angiogenic factors, and angiogenesis, were statistically analyzed. RESULTS The LSCS group was older and exhibited a longer symptom duration, wider segmental motion, and thicker LF than the control group. The LSCS group showed significantly higher tissue concentrations of VEGF (P < .001) that positively correlated with LF thickness (r = 0.557, P < .001) and segmental motion (r = 0.586, P < .001). The LSCS group showed significantly more CD34-positive capillaries than the control group (P = .004). CONCLUSION The LSCS group showed greater segmental motion, higher VEGF concentrations, and more CD34-positive capillaries than the control group. These data indicate that VEGF-mediated angiogenesis following mechanical stress may be a critical step within the series of pathological events in LFH.
Collapse
Affiliation(s)
- Junseok W Hur
- Department of Neurosurgery, Korea University Guro Hospital, Seoul, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
24
|
MicroRNA-221 Regulates Hypertrophy of Ligamentum Flavum in Lumbar Spinal Stenosis by Targeting TIMP-2. Spine (Phila Pa 1976) 2016; 41:275-82. [PMID: 26571175 DOI: 10.1097/brs.0000000000001226] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN A study of lumbar ligamentum flavum (LF). OBJECTIVE The aim of this study was to identify LF hypertrophy related microRNAs (miRNAs) expression profile and to investigate the role of miRNAs in the development of LF hypertrophy in lumbar spinal stenosis (LSS). SUMMARY OF BACKGROUND DATA Although histologic and biologic literature on LF hypertrophy is available, the pathomechanism is still unknown. Accumulating evidence suggests that microRNAs (miRNAs) participate in many physiologic processes, including cell proliferation, differentiation, and fibrosis, but the role of specific miRNAs involved in LF hypertrophy remains elusive. METHODS An initial screening of LF tissues miRNA expression by miRNA microarray was performed using samples from 10 patients and 10 controls, respectively. Subsequently, differential expression was validated using qRT-PCR. Then, functional analysis of the miRNAs in regulating collagens I and III expression was carried out. Western blotting and luciferase reporter assay were also used to detect the target gene. In addition, the thickness of the LF at the level of the facet joint was measured on axial T1-weighted magnetic resonance images. RESULTS We identified 18 miRNAs that were differentially expressed in patients compared with controls. Following qRT-PCR confirmation, miR-221 was significantly lower in LF tissues of patients than controls. The LF was significantly thicker in patients than that in controls. Bioinformatics target prediction identified tissue inhibitors of matrix metalloproteinase (TIMP)-2 as a putative target of miR-221. Furthermore, luciferase reporter assays demonstrated that miR-221 directly targets TIMP-2 and affects the protein expression of TIMP-2 in fibroblasts isolated from LF. Of note, miR-221 mimic reduced mRNA and protein expression of collagens I and collagen III in fibroblasts isolated from LF. CONCLUSION The downregulation of miR-221 might contribute to LF hypertrophy by promoting collagens I and III expression via the induction of TIMP-2. Our study also underscores the potential of miR-221 as a novel therapeutic target in LSS. LEVEL OF EVIDENCE 3.
Collapse
|
25
|
Ligamentum flavum hypertrophy in asymptomatic and chronic low back pain subjects. PLoS One 2015; 10:e0128321. [PMID: 26010138 PMCID: PMC4444243 DOI: 10.1371/journal.pone.0128321] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 04/26/2015] [Indexed: 01/15/2023] Open
Abstract
Purpose To examine ligamentum flavum thickness using magnetic resonance (MR) images to evaluate its association with low back pain symptoms, age, gender, lumbar level, and disc characteristics. Materials and Methods Sixty-three individuals were part of this IRB-approved study: twenty-seven with chronic low back pain, and thirty-six as asymptomatic. All patients underwent MR imaging and computed tomography (CT) of the lumbar spine. The MR images at the mid-disc level were captured and enlarged 800% using a bilinear interpolation size conversion algorithm that allowed for enhanced image quality. Ligamentum flavum thickness was assessed using bilateral medial and lateral measurements. Disc height at each level was measured by the least-distance measurement method in three-dimensional models created by CT images taken of the same subject. Analysis of variance and t-tests were carried out to evaluate the relationship between ligamentum flavum thickness and patient variables. Results Ligamentum flavum thickness was found to significantly increase with older age, lower lumbar level, and chronic low back pain (p < 0.03). No difference in ligamentum flavum thickness was observed between right and left sided measurements, or between male and female subjects. Disc height and both ligamentum flavum thickness measurements showed low to moderate correlations that reached significance (p < 0.01). Additionally, a moderate and significant correlation between disc degeneration grade and ligamentum flavum thickness does exist (p <0.001). Conclusion By measuring ligamentum flavum thickness on MR images at two different sites and comparing degrees of disc degeneration, we found that ligamentum flavum thickness may be closely related to the pathogenesis of pain processes in the spine.
Collapse
|
26
|
Angiopoietin-like protein 2 promotes inflammatory conditions in the ligamentum flavum in the pathogenesis of lumbar spinal canal stenosis by activating interleukin-6 expression. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2015; 24:2001-9. [PMID: 25735609 DOI: 10.1007/s00586-015-3835-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 02/05/2015] [Accepted: 02/22/2015] [Indexed: 01/15/2023]
Abstract
PURPOSE Chronic inflammation is thought to cause ligamentum flavum (LF) degeneration and hypertrophy in lumbar spinal canal stenosis (LSCS). Angiopoietin-like protein 2 (Angptl2) is highly expressed in hypertrophied LF. Because Angptl2 regulates interleukin-6 (IL-6) expression in various tissues, we investigated whether IL-6 is expressed in hypertrophied LF and, if so, does Angptl2 induce IL-6 expression in LF fibroblasts. METHODS LF tissue was obtained from LSCS patients and non-LSCS patients. Polymerase chain reaction (PCR) for Angptl2 and IL-6 genes and immunohistochemistry for IL-6 protein were performed in LF tissue. Fibroblasts from LF tissue were used for in vitro experiments. Expression of integrin α5β1 (an Angptl2 receptor) and Angptl2 binding to receptors on LF fibroblasts were examined by fluorescence-activated cell sorter analysis and cell adhesion assays. After Angptl2 recombinant protein treatment, NF-κB activation and IL-6 expression in LF fibroblasts were investigated by immunocytochemistry, PCR, and enzyme-linked immunosorbent assay. RESULTS IL-6 mRNA expression was increased in hypertrophied LF tissue from LSCS patients and positively correlated with LF thickness and Angptl2 mRNA expression. IL-6 protein was highly expressed in LF fibroblasts in hypertrophied LF tissue. In vitro experiments demonstrated integrin α5β1 expression on LF fibroblasts and Angptl2 binding to cells via receptors. Angptl2 stimulation promoted NF-κB nuclear translocation and induced IL-6 expression and secretion in LF fibroblasts. CONCLUSIONS Angptl2 promotes inflammation in LF tissue by activating IL-6 expression, leading to LF degeneration and hypertrophy.
Collapse
|
27
|
Kuittinen P, Sipola P, Saari T, Aalto TJ, Sinikallio S, Savolainen S, Kröger H, Turunen V, Leinonen V, Airaksinen O. Visually assessed severity of lumbar spinal canal stenosis is paradoxically associated with leg pain and objective walking ability. BMC Musculoskelet Disord 2014; 15:348. [PMID: 25319184 PMCID: PMC4203914 DOI: 10.1186/1471-2474-15-348] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 10/08/2014] [Indexed: 11/10/2022] Open
Abstract
Background Lumbar spinal stenosis (LSS) is the common term used to describe patients with symptoms related to the anatomical reduction of the lumbar spinal canal size. However, some subjects may have a markedly narrowed canal without any symptoms. This raises the question of what is the actual role of central canal stenosis in symptomatic patients. The purpose of this study was to compare radiological evaluations of LSS, both visually and quantitatively, with the clinical findings of patients with LSS. Methods Eighty patients [mean age 63 (11) years, 44% male], with symptoms severe enough to indicate LSS surgery, were included in this prospective single-center study. Lumbar magnetic resonance imaging was performed and one experienced neuroradiologist classified patients into three groups: 0 = normal or mild stenosis, 1 = moderate stenosis, and 2 = severe stenosis. In addition, the same observer measured the minimal dural sac area level by level from the inferior aspect of L1 to the inferior aspect of S1. The association between radiological and clinical findings were tested with Oswestry Disability Index, overall visual analog pain scale, specific low back pain, specific leg pain, Beck Depression Inventory, and walking distance on treadmill exercise test. Results In the visual classification of the central spinal canal, leg pain was significantly higher and walking distance achieved was shorter among patients with moderate central stenosis than in patients with severe central stenosis (7.33 (2.29) vs 5.80 (2.72); P = 0.008 and 421 (431) m vs 646 (436) m; P = 0.021, respectively). Patients with severe stenosis at only one level also achieved shorter walking distance than patients with severe stenosis of at least two levels. No correlation between visually or quantitatively assessed stenosis and other clinical findings was found. Conclusions There is no straightforward association between the stenosis of dural sac and patient symptoms or functional capacity. These findings indicated that dural sac stenosis is not the single key element in the pathophysiology of LSS. Electronic supplementary material The online version of this article (doi:10.1186/1471-2474-15-348) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pekka Kuittinen
- Department of Neurosurgery, Kuopio University Hospital, Puijonlaaksontie 2, PO Box 1777, Kuopio 70210, Finland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Nakamura T, Okada T, Endo M, Kadomatsu T, Taniwaki T, Sei A, Odagiri H, Masuda T, Fujimoto T, Nakamura T, Oike Y, Mizuta H. Angiopoietin-like protein 2 induced by mechanical stress accelerates degeneration and hypertrophy of the ligamentum flavum in lumbar spinal canal stenosis. PLoS One 2014; 9:e85542. [PMID: 24465594 PMCID: PMC3894965 DOI: 10.1371/journal.pone.0085542] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 12/05/2013] [Indexed: 02/06/2023] Open
Abstract
Chronic inflammation and subsequent fibrosis induced by mechanical stress play an important role in ligamentum flavum (LF) hypertrophy and degeneration in patients with lumbar spinal canal stenosis (LSCS). Angiopoietin-like protein 2 (Angptl2) is a chronic inflammatory mediator induced under various pathological conditions and increases the expression of TGF-β1, which is a well-characterized mediator in LF hypertrophy. We investigated whether Angptl2 is induced by mechanical stress, and whether it contributes to LF hypertrophy and degeneration by activating the TGF-β1 signaling cascade. In this study, we investigated human LF tissue and LF fibroblasts isolated from patients who underwent lumbar surgery. We found that Angptl2 was abundantly expressed in fibroblasts of hypertrophied LF tissues at both the mRNA and protein levels. This expression was not only positively correlated with LF thickness and degeneration but also positively correlated with lumbar segmental motion. Our in vitro experiments with fibroblasts from hypertrophied LF tissue revealed that mechanical stretching stress increases the expression and secretion of Angptl2 via activation of calcineurin/NFAT pathways. In hypertrophied LF tissue, expression of TGF-β1 mRNA was also increased and TGF-β1/Smad signaling was activated. Angptl2 expression in LF tissue was positively correlated with the expression of TGF-β1 mRNA, suggesting cooperation between Angptl2 and TGF-β1 in the pathogenesis of LF hypertrophy. In vitro experiments revealed that Angptl2 increased levels of TGF-β1 and its receptors, and also activated TGF-β1/Smad signaling. Mechanical stretching stress increased TGF-β1 mRNA expression, which was partially attenuated by treatment with a calcineurin/NFAT inhibitor or Angptl2 siRNA, indicating that induction of TGF-β1 expression by mechanical stretching stress is partially mediated by Angptl2. We conclude that expression of Angptl2 induced by mechanical stress in LF fibroblasts promotes LF tissue degeneration by activation of TGF-β1/Smad signaling, which results in LF hypertrophy in patients with LSCS.
Collapse
Affiliation(s)
- Takayuki Nakamura
- Department of Orthopaedic Surgery, Faculty of Life Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan
| | - Tatsuya Okada
- Department of Orthopaedic Surgery, Faculty of Life Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan
- * E-mail:
| | - Motoyoshi Endo
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan
| | - Tsuyoshi Kadomatsu
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan
| | - Takuya Taniwaki
- Department of Orthopaedic Surgery, Faculty of Life Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan
| | - Akira Sei
- Department of Orthopaedic Surgery, Faculty of Life Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan
| | - Haruki Odagiri
- Department of Orthopaedic Surgery, Faculty of Life Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan
| | - Tetsuro Masuda
- Department of Orthopaedic Surgery, Faculty of Life Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan
| | - Toru Fujimoto
- Department of Orthopaedic Surgery, Faculty of Life Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan
| | | | - Yuichi Oike
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan
- CREST, Japan Science and Technology Agency, Honcho, Kawaguchi, Saitama, Japan
| | - Hiroshi Mizuta
- Department of Orthopaedic Surgery, Faculty of Life Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan
| |
Collapse
|
29
|
Hur JW, Hur JK, Kwon TH, Park YK, Chung HS, Kim JH. Radiological significance of ligamentum flavum hypertrophy in the occurrence of redundant nerve roots of central lumbar spinal stenosis. J Korean Neurosurg Soc 2012; 52:215-20. [PMID: 23115664 PMCID: PMC3483322 DOI: 10.3340/jkns.2012.52.3.215] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 06/23/2012] [Accepted: 09/17/2012] [Indexed: 01/15/2023] Open
Abstract
Objective There were previous reports of redundant nerve roots (RNRs) focused on their clinical significance and pathogenesis. In this study, we investigated the significant radiologic findings that correlate with RNRs occurrence. These relations would provide an advanced clue for clinical significance and pathogenesis of RNRs. Methods Retrospective research was performed with data from 126 patients who underwent surgery for central lumbar spinal stenosis (LSS). Finally, 106 patients with common denominators (inter-observer accuracy : 84%) were included on this study. We divided the patients into two groups by MRI, patients with RNRs and those with no RNRs (NRNRs). Comparative analyses were performed with clinical and radiologic parameters. Results RNRs were found in 45 patients (42%) with central LSS. There were no statistically significant differences between the two groups in severity of symptoms. On the other hand, we found statistically significant differences in duration of symptom and number of level included (p<0.05). In the maximal stenotic level, ligamentum flavum (LF) thickness, LF cross-sectional area (CSA), dural sac CSA, and segmental angulation are significantly different in RNRs group compared to NRNRs group (p<0.05). Conclusion RNRs patients showed clinically longer duration of symptoms and multiple levels included. We also confirmed that wide segmental angulation and LF hypertrophy play a major role of the development of RNRs in central LSS. Together, our results suggest that wide motion in long period contribute to LF hypertrophy, and it might be the key factor of RNRs formation in central LSS.
Collapse
Affiliation(s)
- Junseok W Hur
- Department of Neurosurgery, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| | | | | | | | | | | |
Collapse
|