1
|
Prabakaran NN, Prasad S, Krishnan K, Venkatabalasubramanian S. Geraniin: A dietary ellagitannin as a modulator of signalling pathways in cancer progression. Fitoterapia 2024; 177:106107. [PMID: 38950635 DOI: 10.1016/j.fitote.2024.106107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/03/2024]
Abstract
Cancer remains a global health challenge, necessitating the exploration of novel therapeutic agents. Current treatment options are unable to overwhelm and cure the cancer burden. Hence, identifying new bioactive molecular entities with potent anticancer activity is the need of the hour. Ellagitannin Geraniin (GN) is one such evidence-based novel bioactive molecular entity (BME) available from different natural sources that can effectively combat cancer. This narrative review attempts to investigate the potential of BME-GN from 2005 to 2023 as an efficient molecular anti-cancer therapeutic against diverse cancers. We provide information on GN's pharmacological advantages, metabolite profile, and capacity to modulate multiple molecular targets involved in the hallmarks of cancer. Using the search terms "Geraniin," "Gallic acid," "Ellagitannin," "pharmacological properties," "health," "antioxidant," "apoptosis," "disease management," "anti-proliferative," "in vitro," "anti-inflammatory," "anti-angiogenic," "in vivo," and "clinical trials," We searched the scientific literature using Scopus, Web of Science, Google Scholar, and PubMed. We removed publications that included overlap or equivalent content and used the most recent review on each issue as our primary reference. From an initial pool of 430 articles, 52 studies met the search criteria. These studies collectively provide substantial in vitro, in vivo, and clinical evidence of GN's potential to combat diverse cancers. Mechanistic insights revealed its involvement in fostering apoptosis, anti-inflammatory, and modulation of key signalling pathways implicated in the hallmarks of cancer. GN's pleiotropic pharmacological and molecular therapeutic properties strongly suggest its potential as a promising anticancer agent.
Collapse
Affiliation(s)
- Naresh Narayanan Prabakaran
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, Tamil Nadu, India
| | - Suvaasni Prasad
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, Tamil Nadu, India
| | - Kiruthigaa Krishnan
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, Tamil Nadu, India
| | | |
Collapse
|
2
|
Yakkala PA, Naaz F, Shafi S, Kamal A. PI3K and tankyrase inhibitors as therapeutic targets in colorectal cancer. Expert Opin Ther Targets 2024; 28:159-177. [PMID: 38497299 DOI: 10.1080/14728222.2024.2331015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 03/12/2024] [Indexed: 03/19/2024]
Abstract
INTRODUCTION The pathways like Wingless-related integration (Wnt/β-catenin) and PI3K play an important role in colorectal cancer (CRC) development; however, their roles are distinct in the process of oncogenesis. Despite their differences, these pathways interact through feedback mechanisms and regulate the common effectors both in the upstream and the downstream processes in normal and pathological conditions. Their ability to reciprocally control each other is a primary resistance mechanism for the selective inhibitors in CRC. AREA COVERED This review highlights the Wnt/β-catenin and PI3K pathways that are interrelated in CRC, recent advances and some key perspectives in developing inhibitors that could target the tankyrase enzyme and PI3K, apart from a brief description of the potential of dual inhibitors of PI3K and Tankyrases (TNKS). EXPERT OPINION Recent research has focused on overcoming the challenges particularly relating to the resistance and efficacy of dual inhibitors targeting PI3K and tankyrase proteins. Despite these challenges, PI3K as well as tankyrases remain promising therapeutic targets for the treatment of solid tumors. The design of potent inhibitors is crucial to effectively block these protein signaling pathways. Moreover, it is essential to explore the potential of dual-target inhibition of other signaling pathways in conjunction with PI3K and tankyrase.
Collapse
Affiliation(s)
- Prasanna Anjaneyulu Yakkala
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Fatima Naaz
- Department of Chemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Syed Shafi
- Department of Chemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Ahmed Kamal
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
- Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Medchal, India
- Environment, Forests, Science & Technology Department, Telangana State Council of Science & Technlogy, Hyderabad, India
| |
Collapse
|
3
|
De S, Paul S, Manna A, Majumder C, Pal K, Casarcia N, Mondal A, Banerjee S, Nelson VK, Ghosh S, Hazra J, Bhattacharjee A, Mandal SC, Pal M, Bishayee A. Phenolic Phytochemicals for Prevention and Treatment of Colorectal Cancer: A Critical Evaluation of In Vivo Studies. Cancers (Basel) 2023; 15:993. [PMID: 36765950 PMCID: PMC9913554 DOI: 10.3390/cancers15030993] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/30/2023] [Accepted: 01/30/2023] [Indexed: 02/08/2023] Open
Abstract
Colorectal cancer (CRC) is the third most diagnosed and second leading cause of cancer-related death worldwide. Limitations with existing treatment regimens have demanded the search for better treatment options. Different phytochemicals with promising anti-CRC activities have been reported, with the molecular mechanism of actions still emerging. This review aims to summarize recent progress on the study of natural phenolic compounds in ameliorating CRC using in vivo models. This review followed the guidelines of the Preferred Reporting Items for Systematic Reporting and Meta-Analysis. Information on the relevant topic was gathered by searching the PubMed, Scopus, ScienceDirect, and Web of Science databases using keywords, such as "colorectal cancer" AND "phenolic compounds", "colorectal cancer" AND "polyphenol", "colorectal cancer" AND "phenolic acids", "colorectal cancer" AND "flavonoids", "colorectal cancer" AND "stilbene", and "colorectal cancer" AND "lignan" from the reputed peer-reviewed journals published over the last 20 years. Publications that incorporated in vivo experimental designs and produced statistically significant results were considered for this review. Many of these polyphenols demonstrate anti-CRC activities by inhibiting key cellular factors. This inhibition has been demonstrated by antiapoptotic effects, antiproliferative effects, or by upregulating factors responsible for cell cycle arrest or cell death in various in vivo CRC models. Numerous studies from independent laboratories have highlighted different plant phenolic compounds for their anti-CRC activities. While promising anti-CRC activity in many of these agents has created interest in this area, in-depth mechanistic and well-designed clinical studies are needed to support the therapeutic use of these compounds for the prevention and treatment of CRC.
Collapse
Affiliation(s)
- Samhita De
- Division of Molecular Medicine, Bose Institute, Kolkata 700 054, India
| | - Sourav Paul
- Department of Biotechnology, National Institute of Technology, Durgapur 713 209, India
| | - Anirban Manna
- Division of Molecular Medicine, Bose Institute, Kolkata 700 054, India
| | | | - Koustav Pal
- Jawaharlal Institute Post Graduate Medical Education and Research, Puducherry 605 006, India
| | - Nicolette Casarcia
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Arijit Mondal
- Department of Pharmaceutical Chemistry, M.R. College of Pharmaceutical Sciences and Research, Balisha 743 234, India
| | - Sabyasachi Banerjee
- Department of Pharmaceutical Chemistry, Gupta College of Technological Sciences, Asansol 713 301, India
| | - Vinod Kumar Nelson
- Department of Pharmacology, Raghavendra Institute of Pharmaceutical Education and Research, Anantapur 515 721, India
| | - Suvranil Ghosh
- Division of Molecular Medicine, Bose Institute, Kolkata 700 054, India
| | - Joyita Hazra
- Department of Biotechnology, Indian Institute of Technology, Chennai 600 036, India
| | - Ashish Bhattacharjee
- Department of Biotechnology, National Institute of Technology, Durgapur 713 209, India
| | | | - Mahadeb Pal
- Division of Molecular Medicine, Bose Institute, Kolkata 700 054, India
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| |
Collapse
|
4
|
Zhang X, Huang H, Sun S, Li D, Sun L, Li Q, Chen R, Lai X, Zhang Z, Zheng X, Wong WL, Wen S. Induction of Apoptosis via Inactivating PI3K/AKT Pathway in Colorectal Cancer Cells Using Aged Chinese Hakka Stir-Fried Green Tea Extract. Molecules 2022; 27:molecules27238272. [PMID: 36500365 PMCID: PMC9737789 DOI: 10.3390/molecules27238272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Food extract supplements, with high functional activity and low side effects, play a recognized role in the adjunctive therapy of human colorectal cancer. The present study reported a new functional beverage, which is a type of Chinese Hakka stir-fried green tea (HSGT) aged for several years. The extracts of the lyophilized powder of five HSGT samples with different aging periods were analyzed with high-performance liquid chromatography. The major components of the extract were found to include polyphenols, catechins, amino acids, catechins, gallic acid and caffeine. The tea extracts were also investigated for their therapeutic activity against human colorectal cancer cells, HT-29, an epithelial cell isolated from the primary tumor. The effect of different aging time of the tea on the anticancer potency was compared. Our results showed that, at the cellular level, all the extracts of the aged teas significantly inhibited the proliferation of HT-29 in a concentration-dependent manner. In particular, two samples prepared in 2015 (15Y, aged for 6 years) and 2019 (19Y, aged for 2 years) exhibited the highest inhibition rate for 48 h treatment (cell viability was 50% at 0.2 mg/mL). Further, all the aged tea extracts examined were able to enhance the apoptosis of HT-29 cells (apoptosis rate > 25%) and block the transition of G1/S phase (cell-cycle distribution (CSD) from <20% to >30%) population to G2/M phase (CSD from nearly 30% to nearly 10%) at 0.2 mg/mL for 24 h or 48 h. Western blotting results also showed that the tea extracts inhibited cyclin-dependent kinases 2/4 (CDK2, CDK4) and CylinB1 protein expression, as well as increased poly ADP-ribose polymerase (PRAP) expression and Bcl2-associated X (Bax)/B-cell lymphoma-2 (Bcl2) ratio. In addition, an upstream signal of one of the above proteins, phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signalling, was found to be involved in the regulation, as evidenced by the inhibition of phosphorylated PI3K and AKT by the extracts of the aged tea. Therefore, our study reveals that traditional Chinese aged tea (HSGT) may inhibit colon cancer cell proliferation, cell-cycle progression and promoted apoptosis of colon cancer cells by inactivating PI3K/AKT signalling.
Collapse
Affiliation(s)
- Xinyue Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
- Tea Research Institute, Guangdong Key Laboratory of Tea Resources Innovation & Utilization/Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Haiying Huang
- Tea Research Institute, Meizhou Academy of Agriculture and Forestry Sciences, Meizhou 514071, China
| | - Shili Sun
- Tea Research Institute, Guangdong Key Laboratory of Tea Resources Innovation & Utilization/Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Dongli Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Lingli Sun
- Tea Research Institute, Guangdong Key Laboratory of Tea Resources Innovation & Utilization/Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Qiuhua Li
- Tea Research Institute, Guangdong Key Laboratory of Tea Resources Innovation & Utilization/Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Ruohong Chen
- Tea Research Institute, Guangdong Key Laboratory of Tea Resources Innovation & Utilization/Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Xingfei Lai
- Tea Research Institute, Guangdong Key Laboratory of Tea Resources Innovation & Utilization/Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Zhenbiao Zhang
- Tea Research Institute, Guangdong Key Laboratory of Tea Resources Innovation & Utilization/Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Xi Zheng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Wing-Leung Wong
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
- Correspondence: (W.-L.W.); (S.W.)
| | - Shuai Wen
- Tea Research Institute, Guangdong Key Laboratory of Tea Resources Innovation & Utilization/Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Correspondence: (W.-L.W.); (S.W.)
| |
Collapse
|
5
|
Caponio GR, Cofano M, Lippolis T, Gigante I, De Nunzio V, Difonzo G, Noviello M, Tarricone L, Gambacorta G, Giannelli G, De Angelis M, Notarnicola M. Anti-Proliferative and Pro-Apoptotic Effects of Digested Aglianico Grape Pomace Extract in Human Colorectal Cancer Cells. Molecules 2022; 27:molecules27206791. [PMID: 36296379 PMCID: PMC9611208 DOI: 10.3390/molecules27206791] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/05/2022] [Accepted: 10/08/2022] [Indexed: 12/12/2022] Open
Abstract
Grape pomace (GP)—the major by-product of winemaking processes—still contains bioactive molecules with known beneficial properties for human health, such as an antiradical scavenging activity or an antiproliferative activity of tumors. In vitro studies have demonstrated that GP polyphenols specifically influence colon cancer cell proliferation. In addition to previously published work, we tested the phenolic compounds of Aglianico GP following an in vitro simulated gastrointestinal digestion on colorectal cancer cell lines at different degrees of differentiation. Our experiments, using HT29 and SW480 cells, confirmed the anti-proliferative effect of GP gastrointestinal digested extract and provided intriguing insights on the way it influences the cancer cell features (i.e., viability, proliferation, and apoptosis). We observed that Aglianico GP extract showed a great ability to affect cell proliferation and apoptosis. Interestingly, both HT29 and SW480 cells produced a significant increase in Bax, and a significant increase in the Bax/Bcl-2 ratio and caspase-3. The gastrointestinal digested GP extract was previously characterized both for antioxidant activity and phenolic composition. As a result, the TPC and the antioxidant activity reached high values in the Aglianico GP digested extract, and the main compounds assessed by UHPLC-DAD were anthocyanins, phenolic acids, and flavonoids. This work shed light on the use of digested GP extract as a dietary ingredient, a very sustainable source of nutritional compounds with potential health benefits for colon cancer cell proliferation.
Collapse
Affiliation(s)
- Giusy Rita Caponio
- National Institute of Gastroenterology “Saverio de Bellis”, Research Hospital, Castellana Grotte, 70013 Bari, Italy
- Correspondence: (G.R.C.); (M.D.A.)
| | - Miriam Cofano
- National Institute of Gastroenterology “Saverio de Bellis”, Research Hospital, Castellana Grotte, 70013 Bari, Italy
| | - Tamara Lippolis
- National Institute of Gastroenterology “Saverio de Bellis”, Research Hospital, Castellana Grotte, 70013 Bari, Italy
| | - Isabella Gigante
- National Institute of Gastroenterology “Saverio de Bellis”, Research Hospital, Castellana Grotte, 70013 Bari, Italy
| | - Valentina De Nunzio
- National Institute of Gastroenterology “Saverio de Bellis”, Research Hospital, Castellana Grotte, 70013 Bari, Italy
| | - Graziana Difonzo
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy
| | - Mirella Noviello
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy
| | - Luigi Tarricone
- Council for Agricultural Research and Economics (CREA), Research Center for Viticulture and Enology, Via Casamassima 148, 70010 Bari, Italy
| | - Giuseppe Gambacorta
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy
| | - Gianluigi Giannelli
- National Institute of Gastroenterology “Saverio de Bellis”, Research Hospital, Castellana Grotte, 70013 Bari, Italy
| | - Maria De Angelis
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy
- Correspondence: (G.R.C.); (M.D.A.)
| | - Maria Notarnicola
- National Institute of Gastroenterology “Saverio de Bellis”, Research Hospital, Castellana Grotte, 70013 Bari, Italy
| |
Collapse
|
6
|
Geraniin Protects against Cerebral Ischemia/Reperfusion Injury by Suppressing Oxidative Stress and Neuronal Apoptosis via Regulation of the Nrf2/HO-1 Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2152746. [PMID: 35222793 PMCID: PMC8881129 DOI: 10.1155/2022/2152746] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/27/2022] [Indexed: 12/28/2022]
Abstract
Geraniin, a polyphenol isolated from Phyllanthus amarus, possesses extensive biological and pharmaceutical activities. In this study, we investigated the protective effect against cerebral ischemia/reperfusion (I/R) injury of geraniin and explored its potential mechanism. Middle cerebral artery occlusion/reperfusion (MCAO/R) was used to simulate cerebral I/R injury in vivo, and oxygen-glucose deprivation/reoxygenation (OGD/R) was applied to establish an in vitro model of cerebral I/R injury. In this study, we performed TTC and HE staining and adopted a neurological score method to evaluate the neuroprotective effect of geraniin in vivo and used the CCK-8 assay to assess this effect in vitro. Indices of reactive oxidation capacity were measured in vivo and in vitro to verify the antioxidant capacity of geraniin. TUNEL staining and flow cytometry were applied to measure the apoptosis rate, and Western blotting was performed to assess the expression of apoptosis-related proteins. Finally, the expression of Nrf2 and HO-1 was evaluated in vivo and in vitro by Western blotting. Geraniin significantly reduced the infarct volume, decreased neurological deficit scores, alleviated pathological changes in neurons, and increased the cell survival rate. Geraniin increased the activity of superoxide dismutase (SOD) and decreased the activity of lactate dehydrogenase (LDH) and the contents of malondialdehyde (MDA), nitric oxide (NO), and neuronal nitric oxide synthase (nNOS) in vivo and in vitro. In addition, geraniin significantly reduced the apoptosis. Furthermore, geraniin also evidently increased Nrf2 (total and nuclear) and HO-1 protein expression in vivo and in vitro. Collectively, these results imply that geraniin may exert a protective effect against cerebral I/R injury by suppressing oxidative stress and neuronal apoptosis. The mechanism underlying the protective effect of geraniin is associated with activation of the Nrf2/HO-1 pathway. Our results indicate that geraniin may be a potential drug candidate for the treatment of ischemic stroke.
Collapse
|
7
|
Alsughayyir J, Alshaiddi W, Alsubki R, Alshammary A, Basudan AM, Alfhili MA. Geraniin inhibits whole blood IFN-γ and IL-6 and promotes IL-1β and IL-8, and stimulates calcium-dependent and sucrose-sensitive erythrocyte death. Toxicol Appl Pharmacol 2022; 436:115881. [PMID: 35026210 DOI: 10.1016/j.taap.2022.115881] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 12/17/2022]
Abstract
Correlations between circulating cytokine levels and disease states are well established, and pharmacological modulation of the immune response is thus an important aspect of the assessment of investigational new drugs. Moreover, chemotherapy-related anemia is a major obstacle in cancer treatment. Geraniin (GRN), a tannin extracted from Geranium and other plants, possesses promising antitumor potential. However, the effect of GRN on whole blood (WB) cytokine response and RBC physiology remains unexplored. Heparinized blood from consented, healthy adults was challenged with 100 ng/mL of lipopolysaccharide (LPS) with and without pretreatment with 10 μM of GRN for 24 h at 37 °C, and tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ), interleukin-1β (IL-1β), IL-6, IL-8, and IL-10 were assayed by ELISA. Moreover, single-cell RBC suspensions were treated with 5-100 μM of GRN for 24 or 48 h at 37 °C and cytotoxicity and canonical eryptotic markers were examined by flow cytometry. It was revealed that GRN significantly attenuated LPS-induced IFN-γ levels, increased IL-1β, decreased IL-6 only in absence of LPS, and aggravated LPS-induced IL-8 while together with LPS significantly diminished IL-10. Furthermore, GRN induced dose-responsive, Ca2+-dependent, and sucrose-sensitive hemolysis, along with phosphatidylserine exposure and Ca2+ accumulation with no appreciable cell shrinkage or oxidative damage. GRN was also selectively toxic to platelets, significantly delayed reticulocyte maturation, and significantly disrupted leukocyte proportions. In conclusion, GRN regulates the WB cytokine response and promotes premature hemolysis and eryptosis. This study provides insights into the therapeutic utility of GRN in a highly relevant cellular model system.
Collapse
Affiliation(s)
- Jawaher Alsughayyir
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 12372, Saudi Arabia
| | - Wafa Alshaiddi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 12372, Saudi Arabia
| | - Roua Alsubki
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 12372, Saudi Arabia
| | - Amal Alshammary
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 12372, Saudi Arabia
| | - Ahmed M Basudan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 12372, Saudi Arabia
| | - Mohammad A Alfhili
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 12372, Saudi Arabia.
| |
Collapse
|
8
|
Saahene RO, Agbo E, Barnes P, Yahaya ES, Amoani B, Nuvor SV, Okyere P. A Review: Mechanism of Phyllanthus urinaria in Cancers-NF- κB, P13K/AKT, and MAPKs Signaling Activation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:4514342. [PMID: 34484390 PMCID: PMC8413045 DOI: 10.1155/2021/4514342] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/01/2021] [Accepted: 08/19/2021] [Indexed: 11/18/2022]
Abstract
Phyllanthus urinaria has been characterized for its several biological and medicinal effects such as antiviral, antibacterial, anti-inflammatory, anticancer, and immunoregulation. In recent years, Phyllanthus urinaria has demonstrated potential to modulate the activation of critical pathways such as NF-κB, P13K/AKT, and ERK/JNK/P38/MAPKs associated with cell growth, proliferation, metastasis, and apoptotic cell death. To date, there is much evidence indicating that modulation of cellular signaling pathways is a promising approach to consider in drug development and discovery. Thus, therapies that can regulate cancer-related pathways are longed-for in anticancer drug discovery. This review's focus is to provide comprehensive knowledge on the anticancer mechanisms of Phyllanthus urinaria through the regulation of NF-κB, P13K/AKT, and ERK/JNK/P38/MAPKs signaling pathways. Thus, the review summarizes both in vitro and in vivo effects of Phyllanthus urinaria extracts or bioactive constituents with emphasis on tumor cell apoptosis. The literature information was obtained from publications on Google Scholar, PubMed, Web of Science, and EBSCOhost. The key words used in the search were "Phyllanthus" or "Phyllanthus urinaria" and cancer. P. urinaria inhibits cancer cell proliferation via inhibition of NF-κB, P13K/AKT, and MAPKs (ERK, JNK, P38) pathways to induce apoptosis and prevents angiogenesis. It is expected that understanding these fundamental mechanisms may help stimulate additional research to exploit Phyllanthus urinaria and other natural products for the development of novel anticancer therapies in the future.
Collapse
Affiliation(s)
- Roland Osei. Saahene
- Department of Microbiology and Immunology, School of Medical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Elvis Agbo
- Department of Human Anatomy, Histology and Embryology, College of Medicine, Jinggangshan University, Ji'an City, Jiangxi Province, China
| | - Precious Barnes
- Department of Physician Assistant Studies, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Ewura Seidu Yahaya
- Department of Pharmacology, School of Medical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Benjamin Amoani
- Department of Biomedical Sciences, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Samuel Victor Nuvor
- Department of Microbiology and Immunology, School of Medical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Perditer Okyere
- Department of Medicine, School of Medicine and Dentistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| |
Collapse
|
9
|
Li ZL, Mi J, Lu L, Luo Q, Liu X, Yan YM, Jin B, Cao YL, Zeng XX, Ran LW. The main anthocyanin monomer of Lycium ruthenicum Murray induces apoptosis through the ROS/PTEN/PI3K/Akt/caspase 3 signaling pathway in prostate cancer DU-145 cells. Food Funct 2021; 12:1818-1828. [PMID: 33527955 DOI: 10.1039/d0fo02382e] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Anthocyanins have been reported to have effective chemopreventive activity. Lycium ruthenicum Murray is rich in anthocyanins and exhibits many biological activities. The purpose of this study was to investigate the effects and possible biological mechanism of the main anthocyanin monomer (Pt3G) of Lycium ruthenicum Murray on prostate cancer DU-145 cells. The cell proliferation was detected by methyl thiazolyl tetrazolium assay. The cell apoptosis rates were assessed by flow cytometric analysis and TUNEL assay. The expressions of apoptosis related proteins were evaluated by western blotting. Our data demonstrated that Pt3G inhibited cell proliferation, induced apoptosis and promoted cell cycle arrest at the S phase in a concentration-dependent manner (0, 100, 200 and 400 μg mL-1). Furthermore, it was shown that Pt3G decreased the mitochondrial membrane permeability through regulating the expressions of Bax and Bcl-2. Western blot analysis indicated that Pt3G significantly increased the expression of PTEN and then activated the PI3K/Akt-mediated caspase 3 pathway. In addition, our results also suggested that Pt3G activated the PTEN gene to induce the apoptosis of DU-145 cells by stimulating the overproduction of ROS. To sum up, these results indicate that Pt3G inhibits cell proliferation and induces apoptosis through the ROS/PTEN/PI3K/Akt/caspase 3 signaling pathway in prostate cancer DU-145 cells. Therefore, Pt3G of Lycium ruthenicum Murray may be a potential anti-proliferative agent for the prevention or treatment of prostate cancer.
Collapse
Affiliation(s)
- Zhan-Long Li
- College of Public Health and Management, Ningxia Medical University, Yinchuan 750004, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|