1
|
El-Dehaibi F, Zamora R, Yin J, Namas RA, Billiar TR, Vodovotz Y. NETWORK ANALYSIS OF SINGLE-NUCLEOTIDE POLYMORPHISMS ASSOCIATED WITH ABERRANT INFLAMMATION IN TRAUMA PATIENTS SUGGESTS A ROLE FOR VESICLE-ASSOCIATED INFLAMMATORY PROGRAMS INVOLVING CD55. Shock 2024; 62:663-672. [PMID: 39178207 DOI: 10.1097/shk.0000000000002448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
Abstract
ABSTRACT Background: Critical illness stemming from severe traumatic injury is a leading cause of morbidity and mortality worldwide and involves the dysfunction of multiple organ systems, driven, at least in part, by dysregulated inflammation. We and others have shown a key role for genetic predisposition to dysregulated inflammation and downstream adverse critical illness outcomes. Recently, we demonstrated an association among genotypes at the single-nucleotide polymorphism (SNP) rs10404939 in LYPD4 , dysregulated systemic inflammation, and adverse clinical outcomes in a broad sample of ~1,000 critically ill patients. Methods: We sought to gain mechanistic insights into the role of LYPD4 in critical illness by bioinformatically analyzing potential interactions among rs10404939 and other SNPs. We analyzed a dataset of common (i.e., not rare) SNPs previously defined to be associated with genotype-specific, significantly dysregulated systemic inflammation trajectories in trauma patients, in comparison to a control dataset of common SNPs determined to exhibit an absence of genotype-specific inflammatory responses. Results: In the control dataset, this analysis implicated SNPs associated with phosphatidylinositol and various membrane transport proteins, but not LYPD4. In the patient subset with genotypically dysregulated inflammation, our analysis suggested the co-localization to lipid rafts of LYPD4 and the complement receptor CD55, as well as the neurally related CNTNAP2 and RIMS4. Segregation of trauma patients based on genotype of the CD55 SNP rs11117564 showed distinct trajectories of organ dysfunction and systemic inflammation despite similar demographics and injury characteristics. Conclusion: These analyses define novel interactions among SNPs that could enhance our understanding of the response to traumatic injury and critical illness.
Collapse
Affiliation(s)
- Fayten El-Dehaibi
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | | | | | | | | |
Collapse
|
2
|
Li R, Ye JJ, Gan L, Zhang M, Sun D, Li Y, Wang T, Chang P. Traumatic inflammatory response: pathophysiological role and clinical value of cytokines. Eur J Trauma Emerg Surg 2024; 50:1313-1330. [PMID: 38151578 PMCID: PMC11458723 DOI: 10.1007/s00068-023-02388-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/23/2023] [Indexed: 12/29/2023]
Abstract
Severe trauma is an intractable problem in healthcare. Patients have a widespread immune system response that is complex and vital to survival. Excessive inflammatory response is the main cause of poor prognosis and poor therapeutic effect of medications in trauma patients. Cytokines are signaling proteins that play critical roles in the body's response to injuries, which could amplify or suppress immune responses. Studies have demonstrated that cytokines are closely related to the severity of injuries and prognosis of trauma patients and help present cytokine-based diagnosis and treatment plans for trauma patients. In this review, we introduce the pathophysiological mechanisms of a traumatic inflammatory response and the role of cytokines in trauma patients. Furthermore, we discuss the potential of cytokine-based diagnosis and therapy for post-traumatic inflammatory response, although further clarification to elucidate the underlying mechanisms of cytokines following trauma is warranted.
Collapse
Affiliation(s)
- Rui Li
- Trauma Medicine Center, Peking University People's Hospital, Beijing, 100044, People's Republic of China
- Key Laboratory of Trauma and Neural Regeneration (Peking University) Ministry of Education, Beijing, 100044, People's Republic of China
- National Center for Trauma Medicine of China, Beijing, 100044, People's Republic of China
| | - Jing Jing Ye
- Trauma Medicine Center, Peking University People's Hospital, Beijing, 100044, People's Republic of China
- Key Laboratory of Trauma and Neural Regeneration (Peking University) Ministry of Education, Beijing, 100044, People's Republic of China
- National Center for Trauma Medicine of China, Beijing, 100044, People's Republic of China
| | - Lebin Gan
- Trauma Medicine Center, Peking University People's Hospital, Beijing, 100044, People's Republic of China
- Key Laboratory of Trauma and Neural Regeneration (Peking University) Ministry of Education, Beijing, 100044, People's Republic of China
- National Center for Trauma Medicine of China, Beijing, 100044, People's Republic of China
| | - Mengwei Zhang
- Trauma Medicine Center, Peking University People's Hospital, Beijing, 100044, People's Republic of China
- Key Laboratory of Trauma and Neural Regeneration (Peking University) Ministry of Education, Beijing, 100044, People's Republic of China
- National Center for Trauma Medicine of China, Beijing, 100044, People's Republic of China
| | - Diya Sun
- Trauma Medicine Center, Peking University People's Hospital, Beijing, 100044, People's Republic of China
- Key Laboratory of Trauma and Neural Regeneration (Peking University) Ministry of Education, Beijing, 100044, People's Republic of China
- National Center for Trauma Medicine of China, Beijing, 100044, People's Republic of China
| | - Yongzheng Li
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, People's Republic of China.
| | - Tianbing Wang
- Trauma Medicine Center, Peking University People's Hospital, Beijing, 100044, People's Republic of China.
- Key Laboratory of Trauma and Neural Regeneration (Peking University) Ministry of Education, Beijing, 100044, People's Republic of China.
- National Center for Trauma Medicine of China, Beijing, 100044, People's Republic of China.
| | - Panpan Chang
- Trauma Medicine Center, Peking University People's Hospital, Beijing, 100044, People's Republic of China.
- Key Laboratory of Trauma and Neural Regeneration (Peking University) Ministry of Education, Beijing, 100044, People's Republic of China.
- National Center for Trauma Medicine of China, Beijing, 100044, People's Republic of China.
| |
Collapse
|
3
|
Cannon JW, Gruen DS, Zamora R, Brostoff N, Hurst K, Harn JH, El-Dehaibi F, Geng Z, Namas R, Sperry JL, Holcomb JB, Cotton BA, Nam JJ, Underwood S, Schreiber MA, Chung KK, Batchinsky AI, Cancio LC, Benjamin AJ, Fox EE, Chang SC, Cap AP, Vodovotz Y. Digital twin mathematical models suggest individualized hemorrhagic shock resuscitation strategies. COMMUNICATIONS MEDICINE 2024; 4:113. [PMID: 38867000 PMCID: PMC11169363 DOI: 10.1038/s43856-024-00535-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 05/29/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Optimizing resuscitation to reduce inflammation and organ dysfunction following human trauma-associated hemorrhagic shock is a major clinical hurdle. This is limited by the short duration of pre-clinical studies and the sparsity of early data in the clinical setting. METHODS We sought to bridge this gap by linking preclinical data in a porcine model with clinical data from patients from the Prospective, Observational, Multicenter, Major Trauma Transfusion (PROMMTT) study via a three-compartment ordinary differential equation model of inflammation and coagulation. RESULTS The mathematical model accurately predicts physiologic, inflammatory, and laboratory measures in both the porcine model and patients, as well as the outcome and time of death in the PROMMTT cohort. Model simulation suggests that resuscitation with plasma and red blood cells outperformed resuscitation with crystalloid or plasma alone, and that earlier plasma resuscitation reduced injury severity and increased survival time. CONCLUSIONS This workflow may serve as a translational bridge from pre-clinical to clinical studies in trauma-associated hemorrhagic shock and other complex disease settings.
Collapse
Affiliation(s)
- Jeremy W Cannon
- Division of Traumatology, Surgical Critical Care & Emergency Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA.
| | - Danielle S Gruen
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Pittsburgh Trauma Research Center, Pittsburgh, PA, 15213, USA
| | - Ruben Zamora
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Pittsburgh Trauma Research Center, Pittsburgh, PA, 15213, USA
- Center for Inflammation and Regeneration Modeling, McGowan Institute for Regenerative Medicine, Pittsburgh, PA, 15219, USA
| | - Noah Brostoff
- Immunetrics, now wholly owned by Simulations Plus, Pittsburgh, PA, 15219, USA
| | - Kelly Hurst
- Immunetrics, now wholly owned by Simulations Plus, Pittsburgh, PA, 15219, USA
| | - John H Harn
- Immunetrics, now wholly owned by Simulations Plus, Pittsburgh, PA, 15219, USA
| | - Fayten El-Dehaibi
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Zhi Geng
- Division of Traumatology, Surgical Critical Care & Emergency Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Rami Namas
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Pittsburgh Trauma Research Center, Pittsburgh, PA, 15213, USA
| | - Jason L Sperry
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Pittsburgh Trauma Research Center, Pittsburgh, PA, 15213, USA
| | - John B Holcomb
- Department of Surgery, University of Alabama, Birmingham, AL, 35233, USA
| | - Bryan A Cotton
- Division of Acute Care Surgery, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Jason J Nam
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Samantha Underwood
- Division of Trauma, Critical Care and Acute Care Surgery, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Martin A Schreiber
- Division of Trauma, Critical Care and Acute Care Surgery, Oregon Health & Science University, Portland, OR, 97239, USA
| | | | - Andriy I Batchinsky
- Autonomous Reanimation and Evacuation (AREVA) Research and Innovation Center, San Antonio, TX, 78235, USA
| | - Leopoldo C Cancio
- US Army Institute of Surgical Research, Fort Sam Houston, TX, 78234, USA
| | - Andrew J Benjamin
- Trauma and Acute Care Surgery, Department of Surgery, The University of Chicago, Chicago, IL, 60637, USA
| | - Erin E Fox
- Division of Acute Care Surgery, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Steven C Chang
- Immunetrics, now wholly owned by Simulations Plus, Pittsburgh, PA, 15219, USA
| | - Andrew P Cap
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Yoram Vodovotz
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Pittsburgh Trauma Research Center, Pittsburgh, PA, 15213, USA
- Center for Inflammation and Regeneration Modeling, McGowan Institute for Regenerative Medicine, Pittsburgh, PA, 15219, USA
- Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| |
Collapse
|
4
|
Wang Z, Li X, Yu P, Zhu Y, Dai F, Ma Z, Shen X, Jiang H, Liu J. Role of Autophagy and Pyroptosis in Intervertebral Disc Degeneration. J Inflamm Res 2024; 17:91-100. [PMID: 38204989 PMCID: PMC10778915 DOI: 10.2147/jir.s434896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Intervertebral disc degeneration is a chronic degenerative disease caused by the interaction of genetic and environmental factors, mainly manifested as lower back pain. At present, the diagnosis of intervertebral disc degeneration mainly relies on imaging. However, early intervertebral disc degeneration is usually insidious, and there is currently a lack of relevant clinical biomarkers that can reliably reflect early disease progression. Pyroptosis is a regulatory form of cell death triggered by the activation of inflammatory bodies and caspase, which can induce the formation of plasma membrane pores and cell swelling or lysis. Previous studies have shown that during the progression of intervertebral disc degeneration, sustained activation of inflammasomes leads to nuclear cell pyroptosis, which can occur in the early stages of intervertebral disc degeneration. Moreover, intervertebral disc nucleus pulposus cells adapt to the external environment through autophagy and maintain cellular homeostasis and studying the mechanism of autophagy in IDD and intervening in its pathological and physiological processes can provide new ideas for the clinical treatment of IDD. This review analyzes the effects of pyroptosis and autophagy on IDD by reviewing relevant literature in recent years, in order to explore the relationship between pyroptosis, autophagy and IDD.
Collapse
Affiliation(s)
- Zhiqiang Wang
- Department of Orthopedic Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215009, People’s Republic of China
| | - Xiaochun Li
- Department of Orthopedic Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215009, People’s Republic of China
| | - Pengfei Yu
- Department of Orthopedic Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215009, People’s Republic of China
| | - Yu Zhu
- Department of Orthopedic Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215009, People’s Republic of China
| | - Feng Dai
- Department of Orthopedic Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215009, People’s Republic of China
| | - Zhijia Ma
- Department of Orthopedic Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215009, People’s Republic of China
| | - Xueqiang Shen
- Department of Orthopedic Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215009, People’s Republic of China
| | - Hong Jiang
- Department of Orthopedic Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215009, People’s Republic of China
| | - Jintao Liu
- Department of Orthopedic Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215009, People’s Republic of China
| |
Collapse
|
5
|
El-Dehaibi F, Zamora R, Radder J, Yin J, Shah AM, Namas RA, Situ M, Zhao Y, Bain W, Morris A, McVerry BJ, Barclay DA, Billiar TR, Zhang Y, Kitsios GD, Vodovotz Y. A common single nucleotide polymorphism is associated with inflammation and critical illness outcomes. iScience 2023; 26:108333. [PMID: 38034362 PMCID: PMC10684809 DOI: 10.1016/j.isci.2023.108333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/25/2023] [Accepted: 10/22/2023] [Indexed: 12/02/2023] Open
Abstract
Acute inflammation is heterogeneous in critical illness and predictive of outcome. We hypothesized that genetic variability in novel, yet common, gene variants contributes to this heterogeneity and could stratify patient outcomes. We searched algorithmically for significant differences in systemic inflammatory mediators associated with any of 551,839 SNPs in one derivation (n = 380 patients with blunt trauma) and two validation (n = 75 trauma and n = 537 non-trauma patients) cohorts. This analysis identified rs10404939 in the LYPD4 gene. Trauma patients homozygous for the A allele (rs10404939AA; 27%) had different trajectories of systemic inflammation along with persistently elevated multiple organ dysfunction (MOD) indices vs. patients homozygous for the G allele (rs10404939GG; 26%). rs10404939AA homozygotes in the trauma validation cohort had elevated MOD indices, and non-trauma patients displayed more complex inflammatory networks and worse 90-day survival compared to rs10404939GG homozygotes. Thus, rs10404939 emerged as a common, broadly prognostic SNP in critical illness.
Collapse
Affiliation(s)
- Fayten El-Dehaibi
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Ruben Zamora
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Josiah Radder
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jinling Yin
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Ashti M. Shah
- Physician Scientist Training Program, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Rami A. Namas
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Michelle Situ
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Yanwu Zhao
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - William Bain
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Alison Morris
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Bryan J. McVerry
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Derek A. Barclay
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Timothy R. Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Yingze Zhang
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Georgios D. Kitsios
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Yoram Vodovotz
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Center for Inflammation and Regeneration Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
6
|
Shah AM, Zamora R, Vodovotz Y. Interleukin-17 as a spatiotemporal bridge from acute to chronic inflammation: Novel insights from computational modeling. WIREs Mech Dis 2023; 15:e1599. [PMID: 36710253 PMCID: PMC10176872 DOI: 10.1002/wsbm.1599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 01/12/2023] [Indexed: 01/31/2023]
Abstract
A systematic review of several acute inflammatory diseases ranging from sepsis and trauma/hemorrhagic shock to the relevant pathology of the decade, COVID-19, points to the cytokine interleukin (IL)-17A as being centrally involved in the propagation of inflammation. We summarize the role of IL-17A in acute inflammation, leveraging insights made possible by biological network analysis and novel computational methodologies aimed at defining the spatiotemporal spread of inflammation in both experimental animal models and humans. These studies implicate IL-17A in the cross-tissue spread of inflammation, a process that appears to be in part regulated through neural mechanisms. Although acute inflammatory diseases are currently considered distinct from chronic inflammatory pathologies, we suggest that chronic inflammation may represent repeated, cyclical episodes of acute inflammation driven by mechanisms involving IL-17A. Thus, insights from computational modeling of acute inflammatory diseases may improve diagnosis and treatment of chronic inflammation; in turn, therapeutics developed for chronic/autoimmune disease may be of benefit in acute inflammation. This article is categorized under: Immune System Diseases > Computational Models.
Collapse
Affiliation(s)
- Ashti M Shah
- Physician Scientist Training Program, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Ruben Zamora
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Center for Inflammation and Regeneration Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yoram Vodovotz
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Center for Inflammation and Regeneration Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Center for Systems Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
7
|
Zamora R, Forsberg JA, Shah AM, Unselt D, Grey S, Lisboa FA, Billiar TR, Schobel SA, Potter BK, Elster EA, Vodovotz Y. Central role for neurally dysregulated IL-17A in dynamic networks of systemic and local inflammation in combat casualties. Sci Rep 2023; 13:6618. [PMID: 37095162 PMCID: PMC10126120 DOI: 10.1038/s41598-023-33623-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 04/15/2023] [Indexed: 04/26/2023] Open
Abstract
Dynamic Network Analysis (DyNA) and Dynamic Hypergraphs (DyHyp) were used to define protein-level inflammatory networks at the local (wound effluent) and systemic circulation (serum) levels from 140 active-duty, injured service members (59 with TBI and 81 non-TBI). Interleukin (IL)-17A was the only biomarker elevated significantly in both serum and effluent in TBI vs. non-TBI casualties, and the mediator with the most DyNA connections in TBI wounds. DyNA combining serum and effluent data to define cross-compartment correlations suggested that IL-17A bridges local and systemic circulation at late time points. DyHyp suggested that systemic IL-17A upregulation in TBI patients was associated with tumor necrosis factor-α, while IL-17A downregulation in non-TBI patients was associated with interferon-γ. Correlation analysis suggested differential upregulation of pathogenic Th17 cells, non-pathogenic Th17 cells, and memory/effector T cells. This was associated with reduced procalcitonin in both effluent and serum of TBI patients, in support of an antibacterial effect of Th17 cells in TBI patients. Dysregulation of Th17 responses following TBI may drive cross-compartment inflammation following combat injury, counteracting wound infection at the cost of elevated systemic inflammation.
Collapse
Affiliation(s)
- Ruben Zamora
- Department of Surgery, University of Pittsburgh, W944 Starzl Biomedical Sciences Tower, 200 Lothrop St., Pittsburgh, PA, 15213, USA
- Center for Inflammation and Regeneration Modeling, McGowan Institute for Regenerative Medicine, Pittsburgh, PA, 15219, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Jonathan A Forsberg
- Department of Surgery, Uniformed Services University of Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD, 20814, USA
| | - Ashti M Shah
- Department of Surgery, University of Pittsburgh, W944 Starzl Biomedical Sciences Tower, 200 Lothrop St., Pittsburgh, PA, 15213, USA
| | - Desiree Unselt
- Department of Surgery, Uniformed Services University of Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD, 20814, USA
- Surgical Critical Care Initiative (SC2i), Uniformed Services University of Health Sciences, Bethesda, MD, 20814, USA
- The Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
| | - Scott Grey
- Department of Surgery, Uniformed Services University of Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD, 20814, USA
- Surgical Critical Care Initiative (SC2i), Uniformed Services University of Health Sciences, Bethesda, MD, 20814, USA
- The Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
| | - Felipe A Lisboa
- Department of Surgery, Uniformed Services University of Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD, 20814, USA
- Surgical Critical Care Initiative (SC2i), Uniformed Services University of Health Sciences, Bethesda, MD, 20814, USA
- The Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh, W944 Starzl Biomedical Sciences Tower, 200 Lothrop St., Pittsburgh, PA, 15213, USA
- Center for Inflammation and Regeneration Modeling, McGowan Institute for Regenerative Medicine, Pittsburgh, PA, 15219, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Seth A Schobel
- Department of Surgery, Uniformed Services University of Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD, 20814, USA
- Surgical Critical Care Initiative (SC2i), Uniformed Services University of Health Sciences, Bethesda, MD, 20814, USA
- The Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
| | - Benjamin K Potter
- Department of Surgery, Uniformed Services University of Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD, 20814, USA
- Surgical Critical Care Initiative (SC2i), Uniformed Services University of Health Sciences, Bethesda, MD, 20814, USA
| | - Eric A Elster
- Department of Surgery, Uniformed Services University of Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD, 20814, USA
- Surgical Critical Care Initiative (SC2i), Uniformed Services University of Health Sciences, Bethesda, MD, 20814, USA
| | - Yoram Vodovotz
- Department of Surgery, University of Pittsburgh, W944 Starzl Biomedical Sciences Tower, 200 Lothrop St., Pittsburgh, PA, 15213, USA.
- Center for Inflammation and Regeneration Modeling, McGowan Institute for Regenerative Medicine, Pittsburgh, PA, 15219, USA.
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
8
|
Bonaroti J, Billiar I, Moheimani H, Wu J, Namas R, Li S, Kar UK, Vodovotz Y, Neal MD, Sperry JL, Billiar TR. Plasma proteomics reveals early, broad release of chemokine, cytokine, TNF, and interferon mediators following trauma with delayed increases in a subset of chemokines and cytokines in patients that remain critically ill. Front Immunol 2022; 13:1038086. [PMID: 36532045 PMCID: PMC9750757 DOI: 10.3389/fimmu.2022.1038086] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/11/2022] [Indexed: 12/05/2022] Open
Abstract
Severe injury is known to cause a systemic cytokine storm that is associated with adverse outcomes. However, a comprehensive assessment of the time-dependent changes in circulating levels of a broad spectrum of protein immune mediators and soluble immune mediator receptors in severely injured trauma patients remains uncharacterized. To address this knowledge gap, we defined the temporal and outcome-based patterns of 184 known immune mediators and soluble cytokine receptors in the circulation of severely injured patients. Proteomics (aptamer-based assay, SomaLogic, Inc) was performed on plasma samples drawn at 0, 24, and 72 hours (h) from time of admission from 150 trauma patients, a representative subset from the Prehospital Plasma during Air Medical Transport in Trauma Patients at Risk for Hemorrhagic Shock (PAMPer) trial. Patients were categorized into outcome groups including Early Non-Survivors (died within 72 h; ENS; n=38), Non-Resolvers (died after 72 h or required ≥7 days of intensive care; NR; n=78), and Resolvers (survivors that required < 7 days of intensive care; R; n=34), with low Injury Severity Score (ISS) patients from the Tranexamic Acid During Prehospital Transport in Patients at Risk for Hemorrhage After Injury (STAAMP) trial as controls. The major findings include an extensive release of immune mediators and cytokine receptors at time 0h that is more pronounced in ENS and NR patients. There was a selective subset of mediators elevated at 24 and 72 h to a greater degree in NR patients, including multiple cytokines and chemokines not previously described in trauma patients. These findings were validated in a quantitative fashion using mesoscale discovery immunoassays (MSD) from an external validation cohort (VC) of samples from 58 trauma patients matched for R and NR status. This comprehensive longitudinal description of immune mediator patterns associated with trauma outcomes provides a new level of characterization of the immune response that follows severe injury.
Collapse
Affiliation(s)
- Jillian Bonaroti
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States,Pittsburgh Trauma and Transfusion Medicine Research Center, Division of Trauma and Acute Care Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Isabel Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States,Pittsburgh Trauma and Transfusion Medicine Research Center, Division of Trauma and Acute Care Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Hamed Moheimani
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States,Pittsburgh Trauma and Transfusion Medicine Research Center, Division of Trauma and Acute Care Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Junru Wu
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States,Pittsburgh Trauma and Transfusion Medicine Research Center, Division of Trauma and Acute Care Surgery, University of Pittsburgh, Pittsburgh, PA, United States,Xiangya School of Medicine, Central South University, Changsha, China
| | - Rami Namas
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States,Pittsburgh Trauma and Transfusion Medicine Research Center, Division of Trauma and Acute Care Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Shimena Li
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States,Pittsburgh Trauma and Transfusion Medicine Research Center, Division of Trauma and Acute Care Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Upendra K. Kar
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States,Pittsburgh Trauma and Transfusion Medicine Research Center, Division of Trauma and Acute Care Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yoram Vodovotz
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States,Pittsburgh Trauma and Transfusion Medicine Research Center, Division of Trauma and Acute Care Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Matthew D. Neal
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States,Pittsburgh Trauma and Transfusion Medicine Research Center, Division of Trauma and Acute Care Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jason L. Sperry
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States,Pittsburgh Trauma and Transfusion Medicine Research Center, Division of Trauma and Acute Care Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Timothy R. Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States,Pittsburgh Trauma and Transfusion Medicine Research Center, Division of Trauma and Acute Care Surgery, University of Pittsburgh, Pittsburgh, PA, United States,*Correspondence: Timothy R. Billiar,
| |
Collapse
|
9
|
Simon DW, Raphael I, Johnson KM, Dixon CE, Vagni V, Janesko-Feldman K, Kochanek PM, Bayir H, Clark RS, McGeachy MJ. Endogenous Interleukin-17a Contributes to Normal Spatial Memory Retention but Does Not Affect Early Behavioral or Neuropathological Outcomes after Experimental Traumatic Brain Injury. Neurotrauma Rep 2022; 3:340-351. [PMID: 36204388 PMCID: PMC9531893 DOI: 10.1089/neur.2022.0017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Interleukin-17 (IL-17) is a proinflammatory cytokine primarily secreted in the brain by inflammatory T lymphocytes and glial cells. IL-17+ T-helper (Th17) cells are increased in the ipsilateral hemisphere after experimental traumatic brain injury (TBI), and IL-17 levels are increased in serum and brain tissue. We hypothesized that il17a and related gene expression would be increased in brain tissue after TBI in mice and il17a-/- mice would demonstrate neuroprotection versus wild type. The controlled cortical impact (CCI) model of TBI in adult male C57BL6/J mice was used for all experiments. Data were analyzed by analysis of variance (ANOVA) or repeated-measures two-way ANOVA with the Bonferroni correction. A value of p < 0.05 determined significance. Expression of il17a was significantly reduced in the ipsilateral cortex and hippocampus by day 3 after TBI, and expression remained low at 28 days. There were no differences between il17a-/- and il17a+/+ mice in beam balance, Morris water maze performance, or lesion volume after CCI. Surprisingly, naïve il17a -/- mice performed significantly (p = 0.02) worse than naïve il17a+/+ mice on the probe trial. In conclusion, sustained depression of il17a gene expression was observed in brains after TBI in adult mice. Genetic knockout of IL-17 was not neuroprotective after TBI. IL-17a may be important for memory retention in naïve mice.
Collapse
Affiliation(s)
- Dennis W. Simon
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Children's Neuroscience Institute, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Itay Raphael
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Kendall M. Johnson
- Department of Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - C. Edward Dixon
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Vincent Vagni
- Department of Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Keri Janesko-Feldman
- Department of Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Patrick M. Kochanek
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Children's Neuroscience Institute, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Hülya Bayir
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Environmental and Occupational Health, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Children's Neuroscience Institute, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Robert S.B. Clark
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Clinical and Translational Science Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Children's Neuroscience Institute, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mandy J. McGeachy
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
10
|
Aneja A, Landy DC, Mittwede PN, Albano AY, Teasdall RJ, Isla A, Kavolus M. Inflammatory cytokines associated with outcomes in orthopedic trauma patients independent of New Injury Severity score: A pilot prospective cohort study. J Orthop Res 2022; 40:1555-1562. [PMID: 34729810 DOI: 10.1002/jor.25183] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/30/2021] [Accepted: 09/30/2021] [Indexed: 02/04/2023]
Abstract
Traumatic injury is the leading cause of mortality in patients under 50. It is associated with a complex inflammatory response involving hormonal, immunologic, and metabolic mediators. The marked elevation of cytokines and inflammatory mediators subsequently correlates with the development of posttraumatic complications. The aim was to determine whether elevated cytokine levels provide a predictive value for orthopedic trauma patients. A prospective cohort study of patients with New Injury Severity Score (NISS) > 5 was undertaken. IL-6, IL-8, IL-10, and migration inhibitory factor levels were measured within 24-h of presentation. Demographic covariates and clinical outcomes were obtained from the medical records. Fifty-eight patients (83% male, 40 years) were included. Addition of IL-6 to baseline models significantly improved prediction of pulmonary complication (LR = 6.21, p = 0.01), ICU (change in R2 = 0.31, p < 0.01), and hospital length of stay (change in R2 = 0.16, p < 0.01). The addition of IL-8 significantly improved the prediction of acute kidney injury (LR = 9.15, p < 0.01). The addition of postinjury IL-6 level to baseline New Injury Severity Score model is better able to predict the occurrence of pulmonary complications as well as prolonged ICU and hospital length of stay.
Collapse
Affiliation(s)
- Arun Aneja
- Department of Orthopaedic Surgery and Sports Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - David C Landy
- Department of Orthopaedic Surgery and Sports Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Peter N Mittwede
- Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Ashley Y Albano
- Department of Orthopaedic Surgery and Sports Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Robert J Teasdall
- Department of Orthopaedic Surgery and Sports Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Alexander Isla
- Department of Orthopaedic Surgery and Sports Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Matthew Kavolus
- Department of Orthopaedic Surgery and Sports Medicine, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
11
|
Shah AM, Zamora R, Korff S, Barclay D, Yin J, El-Dehaibi F, Billiar TR, Vodovotz Y. Inferring Tissue-Specific, TLR4-Dependent Type 17 Immune Interactions in Experimental Trauma/Hemorrhagic Shock and Resuscitation Using Computational Modeling. Front Immunol 2022; 13:908618. [PMID: 35663944 PMCID: PMC9160183 DOI: 10.3389/fimmu.2022.908618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/21/2022] [Indexed: 11/13/2022] Open
Abstract
Trauma/hemorrhagic shock followed by resuscitation (T/HS-R) results in multi-system inflammation and organ dysfunction, in part driven by binding of damage-associated molecular pattern molecules to Toll-like Receptor 4 (TLR4). We carried out experimental T/HS-R (pseudo-fracture plus 2 h of shock followed by 0-22 h of resuscitation) in C57BL/6 (wild type [WT]) and TLR4-null (TLR4-/-) mice, and then defined the dynamics of 20 protein-level inflammatory mediators in the heart, gut, lung, liver, spleen, kidney, and systemic circulation. Cross-correlation and Principal Component Analysis (PCA) on data from the 7 tissues sampled suggested that TLR4-/- samples express multiple inflammatory mediators in a small subset of tissue compartments as compared to the WT samples, in which many inflammatory mediators were localized non-specifically to nearly all compartments. We and others have previously defined a central role for type 17 immune cells in human trauma. Accordingly, correlations between IL-17A and GM-CSF (indicative of pathogenic Th17 cells); between IL-17A and IL-10 (indicative of non-pathogenic Th17 cells); and IL-17A and TNF (indicative of memory/effector T cells) were assessed across all tissues studied. In both WT and TLR4-/- mice, positive correlations were observed between IL-17A and GM-CSF, IL-10, and TNF in the kidney and gut. In contrast, the variable and dynamic presence of both pathogenic and non-pathogenic Th17 cells was inferred in the systemic circulation of TLR4-/- mice over time, suggesting a role for TLR4 in efflux of these cells into peripheral tissues. Hypergraph analysis - used to define dynamic, cross compartment networks - in concert with PCA-suggested that IL-17A was present persistently in all tissues at all sampled time points except for its absence in the plasma at 0.5h in the WT group, supporting the hypothesis that T/HS-R induces efflux of Th17 cells from the circulation and into specific tissues. These analyses suggest a complex, context-specific role for TLR4 and type 17 immunity following T/HS-R.
Collapse
Affiliation(s)
- Ashti M Shah
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ruben Zamora
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States.,Center for Inflammation and Regeneration Modeling, McGowan Institute for Regenerative Medicine, Pittsburgh, PA, United States
| | - Sebastian Korff
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Derek Barclay
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jinling Yin
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Fayten El-Dehaibi
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yoram Vodovotz
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States.,Center for Inflammation and Regeneration Modeling, McGowan Institute for Regenerative Medicine, Pittsburgh, PA, United States.,Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
12
|
Bonaroti J, Abdelhamid S, Kar U, Sperry J, Zamora R, Namas RA, McKinley T, Vodovotz Y, Billiar T. The Use of Multiplexing to Identify Cytokine and Chemokine Networks in the Immune-Inflammatory Response to Trauma. Antioxid Redox Signal 2021; 35:1393-1406. [PMID: 33860683 PMCID: PMC8905234 DOI: 10.1089/ars.2021.0054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Significance: The immunoinflammatory responses that follow trauma contribute to clinical trajectory and patient outcomes. While remarkable advances have been made in trauma services and injury management, clarity on how the immune system in humans responds to trauma is lagging. Recent Advances: Multiplexing platforms have transformed our ability to analyze comprehensive immune mediator responses in human trauma. In parallel, with the establishment of large data sets, computational methods have been adapted to yield new insights based on mediator patterns. These efforts have added an important data layer to the emerging multiomic characterization of the human response to injury. Critical Issues: Outcome after trauma is greatly affected by the host immunoinflammatory response. Excessive or sustained responses can contribute to organ damage. Hence, understanding the pathophysiology behind traumatic injury is of vital importance. Future Directions: This review summarizes our work in the study of circulating immune mediators in trauma patients. Our foundational studies into dynamic patterns of inflammatory mediators represent an important contribution to the concepts and computational challenges that these large data sets present. We hope to see further integration and understanding of multiomics strategies in the field of trauma that can aid in patient endotyping and in potentially identifiying certain therapeutic targets in the future. Antioxid. Redox Signal. 35, 1393-1406.
Collapse
Affiliation(s)
- Jillian Bonaroti
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Pittsburgh Trauma Research Center, Division of Trauma and Acute Care Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Sultan Abdelhamid
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Pittsburgh Trauma Research Center, Division of Trauma and Acute Care Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Upendra Kar
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Pittsburgh Trauma Research Center, Division of Trauma and Acute Care Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jason Sperry
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Pittsburgh Trauma Research Center, Division of Trauma and Acute Care Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ruben Zamora
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Center for Inflammation and Regeneration Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Rami Ahmd Namas
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Center for Inflammation and Regeneration Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Todd McKinley
- Department of Orthopedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Yoram Vodovotz
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Pittsburgh Trauma Research Center, Division of Trauma and Acute Care Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Timothy Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Pittsburgh Trauma Research Center, Division of Trauma and Acute Care Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
13
|
Zamora R, Chavan S, Zanos T, Simmons RL, Billiar TR, Vodovotz Y. Spatiotemporally specific roles of TLR4, TNF, and IL-17A in murine endotoxin-induced inflammation inferred from analysis of dynamic networks. Mol Med 2021; 27:65. [PMID: 34167455 PMCID: PMC8223370 DOI: 10.1186/s10020-021-00333-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/19/2021] [Indexed: 12/14/2022] Open
Abstract
Background Bacterial lipopolysaccharide (LPS) induces a multi-organ, Toll-like receptor 4 (TLR4)-dependent acute inflammatory response. Methods Using network analysis, we defined the spatiotemporal dynamics of 20, LPS-induced, protein-level inflammatory mediators over 0–48 h in the heart, gut, lung, liver, spleen, kidney, and systemic circulation, in both C57BL/6 (wild-type) and TLR4-null mice. Results Dynamic Network Analysis suggested that inflammation in the heart is most dependent on TLR4, followed by the liver, kidney, plasma, gut, lung, and spleen, and raises the possibility of non-TLR4 LPS signaling pathways at defined time points in the gut, lung, and spleen. Insights from computational analyses suggest an early role for TLR4-dependent tumor necrosis factor in coordinating multiple signaling pathways in the heart, giving way to later interleukin-17A—possibly derived from pathogenic Th17 cells and effector/memory T cells—in the spleen and blood. Conclusions We have derived novel, systems-level insights regarding the spatiotemporal evolution acute inflammation.
Collapse
Affiliation(s)
- Ruben Zamora
- Department of Surgery, University of Pittsburgh, Starzl Biomedical Sciences Tower, 200 Lothrop St., Pittsburgh, PA, 15213, USA.,Center for Inflammation and Regeneration Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, USA.,Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Sangeeta Chavan
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Theodoros Zanos
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Richard L Simmons
- Department of Surgery, University of Pittsburgh, Starzl Biomedical Sciences Tower, 200 Lothrop St., Pittsburgh, PA, 15213, USA
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh, Starzl Biomedical Sciences Tower, 200 Lothrop St., Pittsburgh, PA, 15213, USA.,Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Yoram Vodovotz
- Department of Surgery, University of Pittsburgh, Starzl Biomedical Sciences Tower, 200 Lothrop St., Pittsburgh, PA, 15213, USA. .,Center for Inflammation and Regeneration Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, USA. .,Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, 15261, USA. .,Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
14
|
Haupt J, Krysiak N, Unger M, Bogner-Flatz V, Biberthaler P, Hanschen M, van Griensven M, Haug AT. The potential of adipokines in identifying multiple trauma patients at risk of developing multiple organ dysfunction syndrome. Eur J Med Res 2021; 26:38. [PMID: 33931112 PMCID: PMC8086117 DOI: 10.1186/s40001-021-00511-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 04/22/2021] [Indexed: 01/06/2023] Open
Abstract
Background Multiple organ dysfunction syndrome (MODS) and the consecutive multiple organ failure (MOF) are severe and dreaded complications with a high mortality in multiple trauma patients. The aim of this study was to investigate the potential of the adipokines leptin, resistin, interleukin-17A and interleukin-33 as possible biomarkers in the early posttraumatic inflammatory response and for identifying severely traumatized patients at risk of developing MODS. Methods In total, 14 multiple trauma patients with an injury severity score (ISS) ≥ 16 as well as a control group of 14 non-multiple trauma patients were included in this study and blood samples were taken at the time points 0, 6, 24, 48 and 72 h after admission. For the trauma patients, the SIRS and Denver MOF score were determined daily. The quantitative measurement of the plasma concentrations of the adipokines was performed using ELISA. Results In the statistical analysis, the multiple trauma patients showed statistically significant higher plasma concentrations of leptin, resistin, IL-17A and IL-33 compared to the control group. In addition, there was a statistically significant positive correlation between the concentrations of resistin, IL-17A and IL-33 and the corresponding SIRS scores and between the concentrations of resistin, IL-17A and IL-33 and the corresponding Denver MOF scores. Finally, ROC curve analysis revealed that the adipokines leptin and IL-17A are suitable diagnostic markers for the discrimination between multiple trauma patients with and without MOF. Conclusions Leptin and IL-17A could be suitable diagnostic markers to identify severely injured patients with a developing SIRS and MOF earlier, to adjust surgical therapy planning and intensive care.
Collapse
Affiliation(s)
- Julian Haupt
- Experimental Trauma Surgery, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Strasse 22, 81675, Munich, Germany. .,Bundeswehr Institute of Radiobiology affiliated to the University Ulm, Neuherbergstrasse 11, 80937, Munich, Germany.
| | - Niels Krysiak
- Experimental Trauma Surgery, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Strasse 22, 81675, Munich, Germany
| | - Marina Unger
- Experimental Trauma Surgery, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Strasse 22, 81675, Munich, Germany
| | - Viktoria Bogner-Flatz
- Department of Trauma Surgery, University Hospital Munich, Ludwig-Maximilians-University, Nussbaumstrasse 20, 80336, Munich, Germany
| | - Peter Biberthaler
- Department of Trauma Surgery, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Strasse 22, 81675, Munich, Germany
| | - Marc Hanschen
- Experimental Trauma Surgery, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Strasse 22, 81675, Munich, Germany.,Department of Trauma Surgery, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Strasse 22, 81675, Munich, Germany
| | - Martijn van Griensven
- Experimental Trauma Surgery, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Strasse 22, 81675, Munich, Germany.,Department of Cell Biology-Inspired Tissue Engineering (cBITE), MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, The Netherlands
| | - Alexander T Haug
- Experimental Trauma Surgery, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Strasse 22, 81675, Munich, Germany.,Department of Trauma Surgery, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Strasse 22, 81675, Munich, Germany.,Department of Orthopedics and Sports Orthopedics, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Strasse 22, 81675, Munich, Germany
| |
Collapse
|
15
|
McKinley TO, Gaski GE, Zamora R, Shen L, Sun Q, Namas RA, Billiar TR, Vodovotz Y. Early dynamic orchestration of immunologic mediators identifies multiply injured patients who are tolerant or sensitive to hemorrhage. J Trauma Acute Care Surg 2021; 90:441-450. [PMID: 33093290 DOI: 10.1097/ta.0000000000002998] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Multiply injured patients (MIPs) are at risk of complications including infections, and acute and prolonged organ dysfunction. The immunologic response to injury has been shown to affect outcomes. Recent advances in computational capabilities have shown that early dynamic coordination of the immunologic response is associated with improved outcomes after trauma. We hypothesized that patients who were sensitive or tolerant of hemorrhage would demonstrate differences in dynamic immunologic orchestration within hours of injury. METHODS We identified two groups of MIPs who demonstrated distinct clinical tolerance to hemorrhage (n = 10) or distinct clinical sensitivity to hemorrhage (n = 9) from a consecutive cohort of 100 MIPs. Hemorrhage was quantified by integrating elevated shock index values for 24 hours after injury (shock volume). Clinical outcomes were quantified by average Marshall Organ Dysfunction Scores from days 2 to 5 after injury. Shock-sensitive patients had high cumulative organ dysfunction after lower magnitude hemorrhage. Shock-tolerant (ST) patients had low cumulative organ dysfunction after higher magnitude hemorrhage. Computational methods were used to analyze a panel of 20 immunologic mediators collected serially over the initial 72 hours after injury. RESULTS Dynamic network analysis demonstrated the ST patients had increased orchestration of cytokines that are reparative and protective including interleukins 9, 17E/25, 21, 22, 23, and 33 during the initial 0- to 8-hour and 8- to 24-hour intervals after injury. Shock-sensitive patients had delayed immunologic orchestration of a network of largely proinflammatory and anti-inflammatory mediators. Elastic net linear regression demonstrated that a group of five mediators could discriminate between shock-sensitive and ST patients. CONCLUSIONS Preliminary evidence from this study suggests that early immunologic orchestration discriminates between patients who are notably tolerant or sensitive to hemorrhage. Early orchestration of a group of reparative/protective mediators was amplified in shock-tolerant patients. LEVEL OF EVIDENCE Prospective clinical outcomes study, level III.
Collapse
Affiliation(s)
- Todd O McKinley
- From the Department of Orthopaedic Surgery, (T.O.M.), Indiana University School of Medicine, Indianapolis, Indiana; Department of Orthopaedic Surgery, INOVA Health System (G.E.G.), Fairfax, Virginia; Department of Surgery, (R.Z., R.A.N., T.R.B., Y.V.), University of Pittsburgh School of Medicine, Pittsburgh; Department of Biostatistics, Epidemiology and Informatics, School of Medicine (L.S.), University of Pennsylvania, Philadelphia, Pennsylvania; and Department of Preventive Medicine, Keck School of Medicine, (Q.S.), University of Southern California, Los Angeles, California
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Cyr A, Zhong Y, Reis SE, Namas RA, Amoscato A, Zuckerbraun B, Sperry J, Zamora R, Vodovotz Y, Billiar TR. Analysis of the Plasma Metabolome after Trauma, Novel Circulating Sphingolipid Signatures, and In-Hospital Outcomes. J Am Coll Surg 2021; 232:276-287.e1. [PMID: 33453380 PMCID: PMC11875205 DOI: 10.1016/j.jamcollsurg.2020.12.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Trauma is the leading cause of death and disability for individuals under age 55. Many severely injured trauma patients experience complicated clinical courses despite appropriate initial therapy. We sought to identify novel circulating metabolomic signatures associated with clinical outcomes following trauma. STUDY DESIGN Untargeted metabolomics and circulating plasma immune mediator analysis was performed on plasma collected during 3 post-injury time periods (<6 hours [h], 6 h-24h, day 2-day 5) in critically ill trauma patients enrolled between April 2004 and May 2013 at UPMC Presbyterian Hospital in Pittsburgh, PA. Inclusion criteria were age ≥ 18 years, blunt mechanism, ICU admission, and expected survival ≥ 24 h. Exclusion criteria were isolated head injury, spinal cord injury, and pregnancy. Exploratory endpoints included length of stay (overall and ICU), ventilator requirements, nosocomial infection, and Marshall organ dysfunction (MOD) score. The top 50 metabolites were isolated using repeated measures ANOVA and multivariate empirical Bayesian analysis for further study. RESULTS Eighty-six patients were included for analysis. Sphingolipids were enriched significantly (chi-square, p < 10-6) among the top 50 metabolites. Clustering of sphingolipid patterns identified 3 patient subclasses: nonresponders (no time-dependent change in sphingolipids, n = 41), sphingosine/sphinganine-enhanced (n = 24), and glycosphingolipid-enhanced (n = 21). Compared with the sphingolipid-enhanced subclasses, nonresponders had longer mean length of stay, more ventilator days, higher MOD scores, and higher circulating levels of proinflammatory immune mediators IL-6, IL-8, IL-10, MCP1/CCL2, IP10/CXCL10, and MIG/CXCL9 (all p < 0.05), despite similar Injury Severity Scores (p = 0.12). CONCLUSIONS Metabolomic analysis identified broad alterations in circulating plasma sphingolipids after blunt trauma. Circulating sphingolipid signatures and their association with both clinical outcomes and circulating inflammatory mediators suggest a possible link between sphingolipid metabolism and the immune response to trauma.
Collapse
Affiliation(s)
- Anthony Cyr
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA
| | - Yanjun Zhong
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA; Critical Care, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Steven E Reis
- Clinical and Translational Science Institute and Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Rami A Namas
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA
| | - Andrew Amoscato
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA
| | | | - Jason Sperry
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA
| | - Ruben Zamora
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA; Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Yoram Vodovotz
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA; Clinical and Translational Science Institute and Department of Medicine, University of Pittsburgh, Pittsburgh, PA; Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA; Clinical and Translational Science Institute and Department of Medicine, University of Pittsburgh, Pittsburgh, PA.
| |
Collapse
|
17
|
Reitz KM, Gruen DS, Guyette F, Brown JB, Yazer MH, Vodovotz Y, Johanssen PI, Stensballe J, Daley B, Miller RS, Harbrecht BG, Claridge J, Phelan HA, Neal MD, Zuckerbraun BS, Sperry JL. Age of thawed plasma does not affect clinical outcomes or biomarker expression in patients receiving prehospital thawed plasma: a PAMPer secondary analysis. Trauma Surg Acute Care Open 2021; 6:e000648. [PMID: 33634214 PMCID: PMC7880105 DOI: 10.1136/tsaco-2020-000648] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/13/2021] [Accepted: 01/25/2021] [Indexed: 12/26/2022] Open
Abstract
Background Prehospital plasma administration during air medical transport reduces the endotheliopathy of trauma, circulating pro-inflammatory cytokines, and 30-day mortality among traumatically injured patients at risk of hemorrhagic shock. No clinical data currently exists evaluating the age of thawed plasma and its association with clinical outcomes and biomarker expression post-injury. Methods We performed a secondary analysis from the prehospital plasma administration randomized controlled trial, PAMPer. We dichotomized the age of thawed plasma creating three groups: standard-care, YOUNG (day 0-1) plasma, and OLD (day 2-5) plasma. We generated HRs and 95% CIs for mortality. Among all patients randomized to plasma, we compared predicted biomarker values at hospital admission (T0) and 24 hours later (T24) controlling for key difference between groups with a multivariable linear regression. Analyses were repeated in a severely injured subgroup. Results Two hundred and seventy-one patients were randomized to standard-care and 230 to plasma (40% YOUNG, 60% OLD). There were no clinically or statistically significant differences in demographics, injury, admission vital signs, or laboratory values including thromboelastography between YOUNG and OLD. Compared with standard-care, YOUNG (HR 0.66 (95% CI 0.41 to 1.07), p=0.09) and OLD (HR 0.64 (95% CI 0.42 to 0.96), p=0.03) plasma demonstrated reduced 30-day mortality. Among those randomized to plasma, plasma age did not affect mortality (HR 1.04 (95% CI 0.60 to 1.82), p=0.90) and/or adjusted serum markers by plasma age at T0 or T24 (p>0.05). However, among the severely injured subgroup, OLD plasma was significantly associated with increased adjusted inflammatory and decreased adjusted endothelial biomarkers at T0. Discussion Age of thawed plasma does not result in clinical outcome or biomarker expression differences in the overall PAMPer study cohort. There were biomarker expression differences in those patients with severe injury. Definitive investigation is needed to determine if the age of thawed plasma is associated with biomarker expression and outcome differences following traumatic injury. Level of evidence II.
Collapse
Affiliation(s)
- Katherine M Reitz
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Danielle S Gruen
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Frances Guyette
- Emergency Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Joshua B Brown
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Mark H Yazer
- Department of Pathology, University of Pittsburgh and the Institute for Transfusion Medicine, Pittsburgh, Pennsylvania, USA
| | - Yoram Vodovotz
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Pär I Johanssen
- Capital Region Blood Bank, Section for Transfusion Medicine, University of Copenhagen, Kobenhavn, Denmark
| | - Jakob Stensballe
- Capital Region Blood Bank, Section for Transfusion Medicine, University of Copenhagen, Kobenhavn, Denmark
| | - Brian Daley
- The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Richard S Miller
- Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | | | - Herb A Phelan
- Surgery, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Matthew D Neal
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Brian S Zuckerbraun
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Jason L Sperry
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
18
|
Schimunek L, Lindberg H, Cohen M, Namas RA, Mi Q, Yin J, Barclay D, El-Dehaibi F, Abboud A, Zamora R, Billiar TR, Vodovotz Y. Computational Derivation of Core, Dynamic Human Blunt Trauma Inflammatory Endotypes. Front Immunol 2021; 11:589304. [PMID: 33537029 PMCID: PMC7848165 DOI: 10.3389/fimmu.2020.589304] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/30/2020] [Indexed: 02/03/2023] Open
Abstract
Systemic inflammation ensues following traumatic injury, driving immune dysregulation and multiple organ dysfunction (MOD). While a balanced immune/inflammatory response is ideal for promoting tissue regeneration, most trauma patients exhibit variable and either overly exuberant or overly damped responses that likely drive adverse clinical outcomes. We hypothesized that these inflammatory phenotypes occur in the context of severe injury, and therefore sought to define clinically distinct endotypes of trauma patients based on their systemic inflammatory responses. Using Patient-Specific Principal Component Analysis followed by unsupervised hierarchical clustering of circulating inflammatory mediators obtained in the first 24 h after injury, we segregated a cohort of 227 blunt trauma survivors into three core endotypes exhibiting significant differences in requirement for mechanical ventilation, duration of ventilation, and MOD over 7 days. Nine non-survivors co-segregated with survivors. Dynamic network inference, Fisher Score analysis, and correlations of IL-17A with GM-CSF, IL-10, and IL-22 in the three survivor sub-groups suggested a role for type 3 immunity, in part regulated by Th17 and γδ 17 cells, and related tissue-protective cytokines as a key feature of systemic inflammation following injury. These endotypes may represent archetypal adaptive, over-exuberant, and overly damped inflammatory responses.
Collapse
Affiliation(s)
- Lukas Schimunek
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Haley Lindberg
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Maria Cohen
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Rami A Namas
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Qi Mi
- Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, PA, United States.,Center for Inflammation and Regenerative Modeling, McGowan Institute for Regeneration Medicine, University of Pittsburgh, Pittsburgh, PA, United State
| | - Jinling Yin
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Derek Barclay
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Fayten El-Dehaibi
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Andrew Abboud
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ruben Zamora
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States.,Center for Inflammation and Regenerative Modeling, McGowan Institute for Regeneration Medicine, University of Pittsburgh, Pittsburgh, PA, United State
| | - Timothy Robert Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States.,Center for Inflammation and Regenerative Modeling, McGowan Institute for Regeneration Medicine, University of Pittsburgh, Pittsburgh, PA, United State
| | - Yoram Vodovotz
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States.,Center for Inflammation and Regenerative Modeling, McGowan Institute for Regeneration Medicine, University of Pittsburgh, Pittsburgh, PA, United State
| |
Collapse
|
19
|
Savage SA, Zarzaur BL, Gaski GE, McCarroll T, Zamora R, Namas RA, Vodovotz Y, Callcut RA, Billiar TR, McKinley TO. Insights into the association between coagulopathy and inflammation: abnormal clot mechanics are a warning of immunologic dysregulation following major injury. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1576. [PMID: 33437775 PMCID: PMC7791215 DOI: 10.21037/atm-20-3651] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Background Severe injury initiates a complex physiologic response encompassing multiple systems and varies phenotypically between patients. Trauma-induced coagulopathy may be an early warning of a poorly coordinated response at the molecular level, including a deleterious immunologic response and worsening of shock states. The onset of trauma-induced coagulopathy (TIC) may be subtle however. In previous work, we identified an early warning sign of coagulopathy from the admission thromboelastogram, called the MAR ratio. We hypothesized that a low MAR ratio would be associated with specific derangements in the inflammatory response. Methods In this prospective, observational study, 88 blunt trauma patients admitted to the intensive care unit (ICU) were identified. Concentrations of inflammatory mediators were recorded serially over the course of a week and the MAR ratio was calculated from the admission thromboelastogram. Correlation analysis was used to assess the relationship between MAR and inflammatory mediators. Dynamic network analysis was used to assess coordination of immunologic response. Results Seventy-nine percent of patients were male and mean age was 37 years (SD 12). The mean ISS was 30.2 (SD 12) and mortality was 7.2%. CRITICAL patients (MAR ratio ≤14.2) had statistically higher shock volumes at three time points in the first day compared to NORMAL patients (MAR ratio >14.2). CRITICAL patients had significant differences in IL-6 (P=0.0065), IL-8 (P=0.0115), IL-10 (P=0.0316) and MCP-1 (P=0.0039) concentrations compared to NORMAL. Differences in degree of expression and discoordination of immune response continued in CRITICAL patients throughout the first day. Conclusions The admission MAR ratio may be the earliest warning signal of a pathologic inflammatory response associated with hypoperfusion and TIC. A low MAR ratio is an early indication of complicated dysfunction of multiple molecular processes following trauma.
Collapse
Affiliation(s)
- Stephanie A Savage
- Department of Surgery, University of Wisconsin School of Medicine & Public Health, Madison, Wisconsin, USA
| | - Ben L Zarzaur
- Department of Surgery, University of Wisconsin School of Medicine & Public Health, Madison, Wisconsin, USA
| | - Greg E Gaski
- Department of Orthopedics, Inova Fairfax Medical Campus, Fairfax, Virginia, USA
| | - Tyler McCarroll
- Department of Orthopedics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Ruben Zamora
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Rami A Namas
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yoram Vodovotz
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Rachael A Callcut
- Department of Surgery, University of California Davis School of Medicine, Davis, California, USA
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Todd O McKinley
- Department of Orthopedics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
20
|
Li S, Qin Q, Luo D, Pan W, Wei Y, Xu Y, Wang J, Ye X, Zhu J, Shang L. IL-17 is a potential biomarker for predicting the severity and outcomes of pulmonary contusion in trauma patients. Biomed Rep 2020; 14:5. [PMID: 33235720 PMCID: PMC7678624 DOI: 10.3892/br.2020.1381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/16/2020] [Indexed: 12/18/2022] Open
Abstract
Pulmonary contusion (PC) is very common in blunt chest trauma, and always results in negative pulmonary outcomes, such as pneumonia, acute respiratory distress syndrome (ARDS), respiratory failure or even death. However, there are no effective biomarkers which can be used to predict the outcomes in these patients. The present study aimed to determine the value of interleukin (IL)-17 and IL-22 in predicting the severity and outcomes of PC in trauma patients. All trauma patients admitted to The First Affiliated Hospital of Guangxi Medical University between January 2015 and December 2017, were studied. Patients aged >14 years old with a diagnosis of PC upon their admission to the emergency department were included. Patients with PC were enrolled as the PC group, patients without PC were enrolled as the non-PC group, and healthy individuals were selected as the control group. Clinical information, including sociodemographic parameters, clinical data, biological findings and therapeutic interventions were recorded for all patients who were enrolled. Blood samples were collected and stored according to the established protocols. PC volume was measured by computed tomography and plasma cytokine levels were assayed by ELISA. A total of 151 patients with PC (PC group) and 159 patients without PC (non-PC group) were included in the present study. In addition, 50 healthy individuals were used as the control group. The primary cause of PC was motor vehicle crashes. PC patients had more rib fractures, but similar injury severity scores compared with other patients. More patients received Pleurocan drainage treatment and had pneumonia complications in the PC group compared with the other two groups. PC patients had a high incidence of ARDS and admission to the intensive care unit (ICU). PC patients also experienced longer periods on mechanical ventilation and had longer stays in the ICU and hospital. PC volume was effective in predicting the outcomes of PC patients. IL-22 levels were similar in the PC group and non-PC group. However, IL-17 could be used as a biomarker to predict the severity of PC, and was strongly associated with PC volume. IL-17 was significantly associated with pro-inflammatory complications in PC patients and could be used as a biomarker for predicting in-patient outcomes of patients with PC. In conclusion, IL-17 is a potential biomarker for predicting the severity and outcomes of PC in trauma patients.
Collapse
Affiliation(s)
- Shilai Li
- Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Quanlin Qin
- Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Daqing Luo
- Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Wenhui Pan
- Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yuqing Wei
- Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yansong Xu
- Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Junxuan Wang
- Department of Medical Records, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Xinping Ye
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jijin Zhu
- Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Liming Shang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
21
|
Inhibition of the activation of γδT17 cells through PPARγ-PTEN/Akt/GSK3β/NFAT pathway contributes to the anti-colitis effect of madecassic acid. Cell Death Dis 2020; 11:752. [PMID: 32929062 PMCID: PMC7490397 DOI: 10.1038/s41419-020-02969-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/20/2020] [Accepted: 08/27/2020] [Indexed: 12/15/2022]
Abstract
Type-17 immune response, mediated mainly by IL-17, plays a critical role in ulcerative colitis. Previously, we showed that madecassic acid (MA), the main active ingredient of Centella asiatica herbs for anti-colitis effect, ameliorated dextran sulfate sodium (DSS)-induced mouse colitis through reducing the level of IL-17. Here, we explore the effect of MA on the activation of γδT17 cells, an alternative source of IL-17 in colitis. In DSS-induced colitis mice, oral administration of MA decreased the number of γδT17 cells and attenuated the inflammation in the colon, and the anti-colitis effect of MA was significantly counteracted by redundant γδT17 cells, suggesting that the decrease in γδT17 cells is important for the anti-colitis effect of MA. In vitro, MA could inhibit the activation but not the proliferation of γδT17 cells at concentrations without evident cytotoxicity. Antibody microarray profiling showed that the inhibition of MA on the activation of γδT17 cells involved PPARγ–PTEN/Akt/GSK3β/NFAT signals. In γδT17 cells, MA could reduce the nuclear localization of NFATc1 through inhibiting Akt phosphorylation to promote GSK3β activation. Moreover, it was confirmed that MA inhibited the Akt/GSK3β/NFATc1 pathway and the activation of γδT17 cells through activating PPARγ to increase PTEN expression and phosphorylation. The correlation between activation of PPARγ, decrease in γδT17 cell number, and amelioration of colitis by MA was validated in mice with DSS-induced colitis. In summary, these findings reveal that MA inhibits the activation of γδT17 cells through PPARγ–PTEN/Akt/GSK3β/NFAT pathway, which contributes to the amelioration of colitis.
Collapse
|
22
|
Wang Y, Che M, Xin J, Zheng Z, Li J, Zhang S. The role of IL-1β and TNF-α in intervertebral disc degeneration. Biomed Pharmacother 2020; 131:110660. [PMID: 32853910 DOI: 10.1016/j.biopha.2020.110660] [Citation(s) in RCA: 343] [Impact Index Per Article: 68.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/10/2020] [Accepted: 08/17/2020] [Indexed: 12/20/2022] Open
Abstract
Low back pain (LBP), a prevalent and costly disease around the world, is predominantly caused by intervertebral disc (IVD) degeneration (IDD). LBP also presents a substantial burden to public health and the economy. IDD is mainly caused by aging, trauma, genetic susceptibility, and other factors. It is closely associated with changes in tissue structure and function, including progressive destruction of the extracellular matrix (ECM), enhanced senescence, disc cell death, and impairment of tissue biomechanical function. The inflammatory process, exacerbated by cytokines interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α), are considered to be the key mediators of IDD and LBP. IL-1β and TNF-α are the most important proinflammatory cytokines, as they have powerful proinflammatory activities and can promote the secretion of a variety of proinflammatory mediators. They are also upregulated in the degenerative IVDs, and they are closely related to various pathological IDD processes, including inflammatory response, matrix destruction, cellular senescence, autophagy, apoptosis, pyroptosis, and proliferation. Therefore, anti-IL-1β and anti-TNF-α therapies may have the potential to alleviate disc degeneration and LBP. In this paper, we reviewed the expression pattern and signal transduction pathways of IL-1β and TNF-α, and we primarily focused on their similar and different roles in IDD. Because IL-1β and TNF-α inhibition have the potential to alleviate IDD, an in-depth understanding of the role of IL-1β and TNF-α in IDD will benefit the development of new treatment methods for disc degeneration with IL-1β and TNF-α at the core.
Collapse
Affiliation(s)
- Yongjie Wang
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, 130021, China
| | - Mingxue Che
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, 130021, China
| | - Jingguo Xin
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, 130021, China
| | - Zhi Zheng
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, 130021, China
| | - Jiangbi Li
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, 130021, China
| | - Shaokun Zhang
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
23
|
Braun BJ, Grimm B, Hanflik AM, Marmor MT, Richter PH, Sands AK, Sivananthan S. Finding NEEMO: towards organizing smart digital solutions in orthopaedic trauma surgery. EFORT Open Rev 2020; 5:408-420. [PMID: 32818068 PMCID: PMC7407868 DOI: 10.1302/2058-5241.5.200021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
There are many digital solutions which assist the orthopaedic trauma surgeon. This already broad field is rapidly expanding, making a complete overview of the existing solutions difficult.The AO Foundation has established a task force to address the need for an overview of digital solutions in the field of orthopaedic trauma surgery.Areas of new technology which will help the surgeon gain a greater understanding of these possible solutions are reviewed.We propose a categorization of the current needs in orthopaedic trauma surgery matched with available or potential digital solutions, and provide a narrative overview of this broad topic, including the needs, solutions and basic rules to ensure adequate use in orthopaedic trauma surgery. We seek to make this field more accessible, allowing for technological solutions to be clearly matched to trauma surgeons' needs. Cite this article: EFORT Open Rev 2020;5:408-420. DOI: 10.1302/2058-5241.5.200021.
Collapse
Affiliation(s)
- Benedikt J Braun
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University Hospital, Germany
| | | | | | - Meir T Marmor
- Department of Orthopaedic Surgery, University of California, San Francisco, California, USA
| | - Peter H Richter
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University Hospital, Germany
| | - Andrew K Sands
- Weill Cornell Medical College, Foot and Ankle Surgery, Downtown Orthopedic Associates, New York Presbyterian Lower Manhattan Hospital, New York, USA
| | | |
Collapse
|
24
|
Steel JL, Antoni M, Pathak R, Butterfield LH, Vodovotz Y, Savkova A, Wallis M, Wang Y, Jing H, Grammer E, Burke R, Brady M, Geller DA. Adverse childhood experiences (ACEs), cell-mediated immunity, and survival in the context of cancer. Brain Behav Immun 2020; 88:566-572. [PMID: 32339603 PMCID: PMC7415584 DOI: 10.1016/j.bbi.2020.04.050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 04/17/2020] [Accepted: 04/18/2020] [Indexed: 01/06/2023] Open
Abstract
PURPOSE Adverse childhood experiences (ACEs) have been shown to be associated with increased risk of mortality. The biobehavioral mechanisms linking adverse events and survival in cancer patients remain unclear. The aims of the study were to: (1) examine the rates and types of early adverse events in patients diagnosed with cancer; (2) investigate the association of adverse events with circulating cytokines, representing immune status of the patient; and (3) test whether immune markers mediated the association between early adverse events and survival while adjusting for other factors that are associated with immunity (e.g., fatigue) and survival (e.g., depression). PATIENTS AND METHODS The patients were recruited from an outpatient oncology clinic. Patients were administered a battery of questionnaires including the Traumatic Events Survey and the Center for Epidemiological Studies-Depression scale. Blood was collected and serum levels of cytokines were assessed to characterize immune status. Descriptive statistics, Mann-Whitney U tests and Cox regression were performed to address study aims. RESULTS Of the 408 patients, 66% reported at least one ACE. After adjusting for demographic, disease-specific factors, and psychological/behavioral factors; having had a major upheaval between parents during childhood or adolescence was associated with poorer survival [β = -0.702, HR = 0.496, p = 0.034]. Lower levels of interleukin-2 (IL-2) explained, in part, the link between this early adverse event and poorer survival as when IL-2 was entered into the model, a major upheaval between one's parents and survival was no longer significant [β = -0.612, HR = 0.542, p = 0.104]. CONCLUSION Having experienced an ACE was associated with lower IL-2 levels-a growth factor for anti-inflammatory T-regulatory lymphocytes-central in contemporary immunotherapy, as well as poorer survival in those diagnosed with cancer. Since lower IL-2 levels also explained, in part, the link between the ACE involving parental upheaval and survival, there is support for a psychoneuroimmunological model of disease course in this vulnerable population.
Collapse
Affiliation(s)
- Jennifer L Steel
- University of Pittsburgh, Department of Surgery, Psychiatry, and Psychology, United States.
| | - Michael Antoni
- University of Miami, Department of Psychology, United States
| | | | | | - Yoram Vodovotz
- University of Pittsburgh, Department of Surgery, United States
| | | | - Marsh Wallis
- University of Pittsburgh, Department of Surgery, United States
| | - Yisi Wang
- University of Pittsburgh, Department of Surgery, United States
| | - Hui Jing
- University of Pittsburgh, Department of Surgery, United States
| | | | - Robin Burke
- University of Pittsburgh, Department of Surgery, United States
| | - Mya Brady
- University of Pittsburgh, Department of Surgery, United States
| | - David A Geller
- University of Pittsburgh, Department of Surgery, United States
| |
Collapse
|
25
|
Association Between Inflammatory Pathways and Phenotypes of Pulmonary Dysfunction Using Cluster Analysis in Persons Living With HIV and HIV-Uninfected Individuals. J Acquir Immune Defic Syndr 2020; 83:189-196. [PMID: 31929407 DOI: 10.1097/qai.0000000000002234] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Persons living with HIV (PLWH) are at risk of developing different phenotypes of chronic lung disease, including chronic obstructive pulmonary disease. Mechanisms underlying these phenotypes are unclear. OBJECTIVE To identify clusters of peripheral inflammatory mediators associated with pulmonary function to determine inflammatory pathways and phenotypes of chronic obstructive pulmonary disease in PLWH and HIV-uninfected individuals. METHODS Study participants were PLWH and HIV-uninfected individuals enrolled in the Pittsburgh HIV Lung Cohort. Pulmonary function tests were performed for all participants. Chest computed tomographic scans were performed in a subset of PLWH. Plasma levels of 19 inflammatory mediators were measured by Luminex or ELISA. Clusters were identified based on the expression pattern of inflammatory mediators in PLWH and HIV-uninfected individuals, and the relationships among clinical parameters were evaluated within clusters by using cluster and network analyses. RESULTS In PLWH, we identified a distinct cluster with higher levels of Th1, Th2, and Th17 inflammatory mediators with increased complexity of these mediators and inferred presence of pathogenic Th17 cell types. Individuals in this cluster had worse airway obstruction and more radiographic emphysema. In HIV-uninfected individuals, a cluster with high-grade systemic inflammation also had worse diffusing capacity for carbon monoxide. CONCLUSIONS Inflammatory pathways associated with pulmonary dysfunction in PLWH suggest multifaceted immune dysregulation involved in different phenotypes of pulmonary dysfunction with a potential specific contribution of the Th17 pathway to airway obstruction in PLWH. Identification of these associations may help in development of treatments that could alter the course of the disease.
Collapse
|
26
|
Gruen DS, Brown JB, Guyette FX, Vodovotz Y, Johansson PI, Stensballe J, Barclay DA, Yin J, Daley BJ, Miller RS, Harbrecht BG, Claridge JA, Phelan HA, Neal MD, Zuckerbraun BS, Billiar TR, Sperry JL. Prehospital plasma is associated with distinct biomarker expression following injury. JCI Insight 2020; 5:135350. [PMID: 32229722 DOI: 10.1172/jci.insight.135350] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/25/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUNDPrehospital plasma improves survival in severely injured patients transported by air ambulance. We hypothesized that prehospital plasma would be associated with a reduction in immune imbalance and endothelial damage.METHODSWe sampled blood from 405 trauma patients enrolled in the Prehospital Air Medical Plasma (PAMPer) trial upon hospital admission (0 hours) and 24 hours post admission across 6 U.S. sites. We assayed samples for 21 inflammatory mediators and 7 markers associated with endothelial function and damage. We performed hierarchical clustering analysis (HCA) of these biomarkers of the immune response and endothelial injury. Regression analysis was used to control for differences across study and to assess any association with prehospital plasma resuscitation.RESULTSHCA distinguished two patient clusters with different injury patterns and outcomes. Patients in cluster A had greater injury severity and incidence of blunt trauma, traumatic brain injury, and mortality. Cluster A patients that received prehospital plasma showed improved 30-day survival. Prehospital plasma did not improve survival in cluster B patients. In an adjusted analysis of the most seriously injured patients, prehospital plasma was associated with an increase in adiponectin, IL-1β, IL-17A, IL-23, and IL-17E upon admission, and a reduction in syndecan-1, TM, VEGF, IL-6, IP-10, MCP-1, and TNF-α, and an increase in IL-33, IL-21, IL-23, and IL-17E 24 hours later.CONCLUSIONPrehospital plasma may ameliorate immune dysfunction and the endotheliopathy of trauma. These effects of plasma may contribute to improved survival in injured patients.TRIAL REGISTRATIONNCT01818427.FUNDINGDepartment of Defense; National Institutes of Health, U.S. Army.
Collapse
Affiliation(s)
- Danielle S Gruen
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Pittsburgh Trauma Research Center, Division of Trauma and Acute Care Surgery, Pittsburgh, Pennsylvania, USA
| | - Joshua B Brown
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Pittsburgh Trauma Research Center, Division of Trauma and Acute Care Surgery, Pittsburgh, Pennsylvania, USA
| | | | - Yoram Vodovotz
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Pittsburgh Trauma Research Center, Division of Trauma and Acute Care Surgery, Pittsburgh, Pennsylvania, USA.,Department of Computational and Systems Biology, and.,Center for Inflammation and Regeneration Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - Jakob Stensballe
- Section for Transfusion Medicine, Capital Region Blood Bank, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Anesthesia and Trauma Center, Centre of Head and Orthopaedics, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,Emergency Medical Services, The Capital Region of Denmark, Denmark
| | - Derek A Barclay
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Pittsburgh Trauma Research Center, Division of Trauma and Acute Care Surgery, Pittsburgh, Pennsylvania, USA
| | - Jinling Yin
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Pittsburgh Trauma Research Center, Division of Trauma and Acute Care Surgery, Pittsburgh, Pennsylvania, USA
| | - Brian J Daley
- Department of Surgery, University of Tennessee Health Science Center, Knoxville, Tennessee, USA
| | - Richard S Miller
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Brian G Harbrecht
- Department of Surgery, University of Louisville, Louisville, Kentucky, USA
| | - Jeffrey A Claridge
- MetroHealth Medical Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Herb A Phelan
- Department of Surgery, University of Texas Southwestern, Dallas, Texas, USA
| | - Matthew D Neal
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Pittsburgh Trauma Research Center, Division of Trauma and Acute Care Surgery, Pittsburgh, Pennsylvania, USA
| | - Brian S Zuckerbraun
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Pittsburgh Trauma Research Center, Division of Trauma and Acute Care Surgery, Pittsburgh, Pennsylvania, USA
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Pittsburgh Trauma Research Center, Division of Trauma and Acute Care Surgery, Pittsburgh, Pennsylvania, USA
| | - Jason L Sperry
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Pittsburgh Trauma Research Center, Division of Trauma and Acute Care Surgery, Pittsburgh, Pennsylvania, USA.,Department of Critical Care, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | |
Collapse
|
27
|
Liu D, Namas RA, Vodovotz Y, Peitzman AB, Simmons RL, Yuan H, Mi Q, Billiar TR. Unsupervised Clustering Analysis Based on MODS Severity Identifies Four Distinct Organ Dysfunction Patterns in Severely Injured Blunt Trauma Patients. Front Med (Lausanne) 2020; 7:46. [PMID: 32161760 PMCID: PMC7053419 DOI: 10.3389/fmed.2020.00046] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/30/2020] [Indexed: 12/11/2022] Open
Abstract
Purpose: We sought to identify a MODS score parameter that highly correlates with adverse outcomes and then use this parameter to test the hypothesis that multiple severity-based MODS clusters could be identified after blunt trauma. Methods: MOD score across days (D) 2-5 was subjected to Fuzzy C-means Clustering Analysis (FCM) followed by eight Clustering Validity Indices (CVI) to derive organ dysfunction patterns among 376 blunt trauma patients admitted to the intensive care unit (ICU) who survived to discharge. Thirty-one inflammation biomarkers were assayed (Luminex™) in serial blood samples (3 samples within the first 24 h and then daily up to D 5) and were analyzed using Two-Way ANOVA and Dynamic Network analysis (DyNA). Results: The FCM followed by CVI suggested four distinct clusters based on MOD score magnitude between D2 and D5. Distinct patterns of organ dysfunction emerged in each of the four clusters and exhibited statistically significant differences with regards to in-hospital outcomes. Interleukin (IL)-6, MCP-1, IL-10, IL-8, IP-10, sST2, and MIG were elevated differentially over time across the four clusters. DyNA identified remarkable differences in inflammatory network interconnectivity. Conclusion: These results suggest the existence of four distinct organ failure patterns based on MOD score magnitude in blunt trauma patients admitted to the ICU who survive to discharge.
Collapse
Affiliation(s)
- Dongmei Liu
- Department of Cardiology, Third Xiangya Hospital of Central South University, Changsha, China
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Rami A. Namas
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
- Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yoram Vodovotz
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
- Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Andrew B. Peitzman
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Richard L. Simmons
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Hong Yuan
- Department of Cardiology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Qi Mi
- Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, PA, United States
| | - Timothy R. Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
- Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
28
|
Khurana S, Bhardwaj N, Kumar S, Sagar S, Pal R, Soni KD, Aggarwal R, Malhotra R, Mathur P. Crosstalk between T Helper Cell Subsets and Their Roles in Immunopathogenesis and Outcome of Polytrauma Patients. Indian J Crit Care Med 2020; 24:1037-1044. [PMID: 33384508 PMCID: PMC7751033 DOI: 10.5005/jp-journals-10071-23577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Purpose One of the leading causes of morbidity and early-age mortality across the globe is trauma. It disrupts immune system homeostasis and intensely affects the innate and adaptive immune responses, predisposing patients to posttrauma complications and poor outcomes. Most of the studies on posttrauma cellular immune response have been centered on the T helper-1-T helper-2 imbalances after trauma. This study was conducted to understand the role of circulating novel T helper cells in the acute posttraumatic period and clinical outcome of trauma patients. Materials and methods Signature cytokines and transcription factors of circulating Th (T helper)-9, Th-17, Th-22, and regulatory T helper cells were studied using flowcytometry along with serum biomarkers in 49 patients with polytraumatic injuries admitted to a tertiary care hospital. The patients were followed up until their outcome. The results were correlated with their clinical outcomes. Results In patients who died, higher nTreg, iTreg, Tr1 (early-phase), and higher IRF4+Th-9, IL17+ Th-17, and RORγT+ Th-17 (mid-phase) were seen. However, by the late phase, only RORγT+ Th-17 remained higher. Serum IL-6 and PCT were found to be consistently higher. In survivors, higher Th-3 (early phase), Th-22 (mid-phase), and IRF4+Th-9, IL17+ Th-17, nTreg, Th-3 (late phase) were observed to have played a protective role. Serum IL-2, IL-4, IL-17A and IL-22 were significantly higher in survivors. Conclusion Different T helper subsets were observed to be playing pathogenic and protective roles in different phases of trauma and could be used for early prognostication and make way for noninvasive management of critically injured trauma patients by immunomodulation. How to cite this article Khurana S, Bhardwaj N, Kumar S, Sagar S, Pal R, Soni KD, et al. Crosstalk between T Helper Cell Subsets and Their Roles in Immunopathogenesis and Outcome of Polytrauma Patients. Indian J Crit Care Med 2020;24(11):1037–1044.
Collapse
Affiliation(s)
- Surbhi Khurana
- Department of Laboratory Medicine, JPNA Trauma Center, All India Institute of Medical Sciences, New Delhi, India
| | - Nidhi Bhardwaj
- Department of Laboratory Medicine, JPNA Trauma Center, All India Institute of Medical Sciences, New Delhi, India
| | - Subodh Kumar
- Department of Trauma Surgery and Critical Care, JPNA Trauma Center, All India Institute of Medical Sciences, New Delhi, India
| | - Sushma Sagar
- Department of Trauma Surgery and Critical Care, JPNA Trauma Center, All India Institute of Medical Sciences, New Delhi, India
| | - Rahul Pal
- Immunoendocrinology Lab, National Institute of Immunology, New Delhi, India
| | - Kapil Dev Soni
- Department of Anesthesia and Critical Care, JPNA Trauma Center, All India Institute of Medical Sciences, New Delhi, India
| | - Richa Aggarwal
- Department of Anesthesia and Critical Care, JPNA Trauma Center, All India Institute of Medical Sciences, New Delhi, India
| | - Rajesh Malhotra
- Department of Orthopedics, JPNA Trauma Center, All India Institute of Medical Sciences, New Delhi, India
| | - Purva Mathur
- Department of Laboratory Medicine, JPNA Trauma Center, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
29
|
Zaaqoq AM, Namas RA, Abdul-Malak O, Almahmoud K, Barclay D, Yin J, Zamora R, Rosengart MR, Billiar TR, Vodovotz Y. Diurnal Variation in Systemic Acute Inflammation and Clinical Outcomes Following Severe Blunt Trauma. Front Immunol 2019; 10:2699. [PMID: 31824494 PMCID: PMC6879654 DOI: 10.3389/fimmu.2019.02699] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 11/04/2019] [Indexed: 12/26/2022] Open
Abstract
Animal studies suggest that the time of day is a determinant of the immunological response to both injury and infection. We hypothesized that due to this diurnal variation, time of injury could affect the systemic inflammatory response and outcomes post-trauma and tested this hypothesis by examining the dynamics of circulating inflammatory mediators in blunt trauma patients injured during daytime vs. nighttime. From a cohort of 472 blunt trauma survivors, two stringently matched sub-cohorts of moderately/severely injured patients [injury severity score (ISS) >20] were identified. Fifteen propensity-matched, daytime-inured (“mDay”) patients (age 43.6 ± 5.2, M/F 11/4, ISS 22.9 ± 0.7) presented during the shortest local annual period (8:00 am−5:00 pm), and 15 propensity-matched “mNight” patients (age 43 ± 4.3, M/F 11/4, ISS 24.5 ± 2.5) presented during the shortest night period (10:00 pm−5:00 am). Serial blood samples were obtained (3 samples within the first 24 h and daily from days 1–7) from all patients. Thirty-two plasma inflammatory mediators were assayed. Two-way Analysis of Variance (ANOVA) was used to compare groups. Dynamic Network Analysis (DyNA) and Dynamic Bayesian Network (DyBN) inference were utilized to infer dynamic interrelationships among inflammatory mediators. Both total hospital and intensive care unit length of stay were significantly prolonged in the mNight group. Circulating IL-17A was elevated significantly in the mNight group from 24 h to 7 days post-injury. Circulating MIP-1α, IL-7, IL-15, GM-CSF, and sST2 were elevated in the mDay group. DyNA demonstrated elevated network complexity in the mNight vs. the mDay group. DyBN suggested that cortisol and sST2 were central nodes upstream of TGF-β1, chemokines, and Th17/protective mediators in both groups, with IL-6 being an additional downstream node in the mNight group only. Our results suggest that time of injury affects clinical outcomes in severely injured patients in a manner associated with an altered systemic inflammation program, possibly implying a role for diurnal or circadian variation in the response to traumatic injury.
Collapse
Affiliation(s)
- Akram M Zaaqoq
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Critical Care Medicine, MedStar Washington Hospital Center, Washington, DC, United States
| | - Rami A Namas
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States.,Center for Inflammation and Regeneration Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Othman Abdul-Malak
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Khalid Almahmoud
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Derek Barclay
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jinling Yin
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ruben Zamora
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States.,Center for Inflammation and Regeneration Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Matthew R Rosengart
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Critical Care Medicine, MedStar Washington Hospital Center, Washington, DC, United States
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States.,Center for Inflammation and Regeneration Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yoram Vodovotz
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States.,Center for Inflammation and Regeneration Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
30
|
Blood purification by nonselective hemoadsorption prevents death after traumatic brain injury and hemorrhagic shock in rats. J Trauma Acute Care Surg 2019; 85:1063-1071. [PMID: 30211852 DOI: 10.1097/ta.0000000000002069] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Patients who sustain traumatic brain injury (TBI) and concomitant hemorrhagic shock (HS) are at high risk of high-magnitude inflammation which can lead to poor outcomes and death. Blood purification by hemoadsorption (HA) offers an alternative intervention to reduce inflammation after injury. We tested the hypothesis that HA would reduce mortality in a rat model of TBI and HS. METHODS Male Sprague Dawley rats were subjected to a combined injury of a controlled cortical impact to their brain and pressure-controlled HS. Animals were subsequently instrumented with an extracorporeal blood circuit that passed through a cartridge for sham or experimental treatment. In experimental animals, the treatment cartridge was filled with proprietary beads (Cytosorbents, Monmouth Junction, NJ) that removed circulating molecules between 5 kDa and 60 kDa. Sham rats had equivalent circulation but no blood purification. Serial blood samples were analyzed with multiplex technology to quantify changes in a trauma-relevant panel of immunologic mediators. The primary outcome was survival to 96 hours postinjury. RESULTS Hemoadsorption improved survival from 47% in sham-treated rats to 86% in HA-treated rats. There were no treatment-related changes in histologic appearance. Hemoadsorption affected biomarker concentrations both during the treatment and over the ensuing 4 days after injury. Distinct changes in biomarker concentrations were also measured in survivor and nonsurvivor rats from the entire cohort of rats indicating biomarker patterns associated with survival and death after injury. CONCLUSION Blood purification by nonselective HA is an effective intervention to prevent death in a combined TBI/HS rat model. Hemoadsorption changed circulating concentrations of multiple inmmunologically active mediators during the treatment time frame and after treatment. Hemoadsorption has been safely implemented in human patients with sepsis and may be a treatment option after injury.
Collapse
|
31
|
Elevations in Circulating sST2 Levels Are Associated With In-Hospital Mortality and Adverse Clinical Outcomes After Blunt Trauma. J Surg Res 2019; 244:23-33. [PMID: 31279260 DOI: 10.1016/j.jss.2019.05.057] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 04/09/2019] [Accepted: 05/30/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Soluble suppression of tumorigenicity 2 (sST2), a decoy receptor for interleukin (IL)-33, has emerged as a novel biomarker in various disease processes. Recent studies have elucidated the role of the sST2/IL-33 complex in modulating the balance of Th1/Th2 immune responses after tissue stress. However, the role of sST2 as a biomarker after traumatic injury remains unclear. To address this, we evaluated serum sST2 correlations with mortality and in-hospital adverse outcomes as endpoints in blunt trauma patients. METHODS We retrospectively analyzed clinical and biobank data of 493 blunt trauma victims 472 survivors (mean age: 48.4 ± 0.87; injury severity score [ISS]: 19.6 ± 0.48) and 19 nonsurvivors (mean age: 58.8 ± 4.5; ISS: 23.3 ± 2.1) admitted to the intensive care unit. Given the confounding impact of age on the inflammatory response, we derived a propensity-matched survivor subgroup (n = 19; mean age: 59 ± 3; ISS: 23.4 ± 2) using an IBM SPSS case-control matching algorithm. Serial blood samples were obtained from all patients (3 samples within the first 24 h and then once daily from day [D] 1 to D5 after injury). sST2 and twenty-nine inflammatory biomarkers were assayed using enzyme-linked immunosorbent assay and Luminex, respectively. Two-way analysis of variance on ranks was used to compare groups (P < 0.05). Spearman rank correlation was performed to determine the association of circulating sST2 levels with biomarker levels and in-hospital clinical outcomes. RESULTS Circulating sST2 levels of the nonsurvivor cohort were statistically significantly elevated at 12 h after injury and remained elevated up to D5 when compared either to the overall 472 survivor cohort or a matched 19 survivor subcohort. Admission sST2 levels obtained from the first blood draw after injury in the survivor cohort correlated positively with admission base deficit (correlation coefficient [CC] = 0.1; P = 0.02), international normalized ratio (CC = 0.1, P = 0.03), ISS (CC = 0.1, P = 0.008), and the average Marshall multiple organ dysfunction score between D2 and D5 (CC = 0.1, P = 0.04). Correlations with ISS revealed a positive correlation of ISS with plasma sST2 levels across the mild ISS (CC = 0.47, P < 0.001), moderate ISS (CC = 0.58, P < 0.001), and severe ISS groups (CC = 0.63, P < 0.001). Analysis of biomarker correlations in the matched survivor group over the initial 24 h after injury showed that sST2 correlates strongly and positively with IL-4 (CC = 0.65, P = 0.002), IL-5 (CC = 0.57, P = 0.01), IL-21 (CC = 0.52, P = 0.02), IL-2 (CC = 0.51, P = 0.02), soluble IL-2 receptor-α (CC = 0.5, P = 0.02), IL-13 (CC = 0.49, P = 0.02), and IL-17A (CC = 0.48, P = 0.03). This was not seen in the matched nonsurvivor group. sST2/IL-33 ratios were significantly elevated in nonsurvivors and patients with severe injury based on ISS ≥ 25. CONCLUSIONS Elevations in serum sST2 levels are associated with poor clinical trajectories and mortality after blunt trauma. High sST2 coupled with low IL-33 associates with severe injury, mortality, and worse clinical outcomes. These findings suggest that sST2 could serve as an early prognostic biomarker in trauma patients and that sustained elevations of sST2 could contribute to a detrimental suppression of IL-33 bioavailability in patients with high injury severity.
Collapse
|
32
|
Lamparello AJ, Namas RA, Constantine G, McKinley TO, Elster E, Vodovotz Y, Billiar TR. A conceptual time window-based model for the early stratification of trauma patients. J Intern Med 2019; 286:2-15. [PMID: 30623510 DOI: 10.1111/joim.12874] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Progress in the testing of therapies targeting the immune response following trauma, a leading cause of morbidity and mortality worldwide, has been slow. We propose that the design of interventional trials in trauma would benefit from a scheme or platform that could support the identification and implementation of prognostic strategies for patient stratification. Here, we propose a stratification scheme based on defined time periods or windows following the traumatic event. This 'time-window' model allows for the incorporation of prognostic variables ranging from circulating biomarkers and clinical data to patient-specific information such as gene variants to predict adverse short- or long-term outcomes. A number of circulating biomarkers, including cell injury markers and damage-associated molecular patterns (DAMPs), and inflammatory mediators have been shown to correlate with adverse outcomes after trauma. Likewise, several single nucleotide polymorphisms (SNPs) associate with complications or death in trauma patients. This review summarizes the status of our understanding of the prognostic value of these classes of variables in predicting outcomes in trauma patients. Strategies for the incorporation of these prognostic variables into schemes designed to stratify trauma patients, such as our time-window model, are also discussed.
Collapse
Affiliation(s)
- A J Lamparello
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - R A Namas
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA.,Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - G Constantine
- Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Mathematics, University of Pittsburgh, Pittsburgh, PA, USA
| | - T O McKinley
- Department of Orthopaedic Surgery, Indiana University School of Medicine, IU Health Methodist Hospital, Indianapolis, IN, USA
| | - E Elster
- Department of Surgery, University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Y Vodovotz
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA.,Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - T R Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
33
|
Almahmoud K, Abboud A, Namas RA, Zamora R, Sperry J, Peitzman AB, Truitt MS, Gaski GE, McKinley TO, Billiar TR, Vodovotz Y. Computational evidence for an early, amplified systemic inflammation program in polytrauma patients with severe extremity injuries. PLoS One 2019; 14:e0217577. [PMID: 31163056 PMCID: PMC6548366 DOI: 10.1371/journal.pone.0217577] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 05/14/2019] [Indexed: 12/21/2022] Open
Abstract
Extremity and soft tissue injuries contribute significantly to inflammation and adverse in-hospital outcomes for trauma survivors; accordingly, we examined the complex association between clinical outcomes inflammatory responses in this setting using in silico tools. Two stringently propensity-matched, moderately/severely injured (Injury Severity Score > 16) patient sub-cohorts of ~30 patients each were derived retrospectively from a cohort of 472 blunt trauma survivors and segregated based on their degree of extremity injury severity (above or below 3 on the Abbreviated Injury Scale). Serial blood samples were analyzed for 31 plasma inflammatory mediators. In addition to standard statistical analyses, Dynamic Network Analysis (DyNA) and Principal Component Analysis (PCA) were used to model systemic inflammation following trauma. Patients in the severe extremity injury sub-cohort experienced longer intensive care unit length of stay (LOS), total LOS, and days on a mechanical ventilator, with higher Marshall Multiple Organ Dysfunction (MOD) Scores over the first 7 days post-injury as compared to the mild/moderate extremity injury sub-cohort. The higher severity cohort had statistically significant elevated lactate, base deficit, and creatine phosphokinase on first blood draw, along with significant changes in multiple circulating inflammatory mediators. DyNA pointed to a sustained role for type 17 immunity in both sub-cohorts, along with IFN-γ in the severe extremity injury group. DyNA network complexity increased over 7 days post-injury in the severe injury group, while generally decreasing over this same time period in the mild/moderate injury group. PCA suggested a more robust activation of multiple pathways in the severe extremity injury group as compared to the mild/moderate injury group. These studies thus point to the possibility of self-sustaining inflammation following severe extremity injury vs. resolving inflammation following less severe extremity injury.
Collapse
Affiliation(s)
- Khalid Almahmoud
- Department of Surgery, Division of Trauma & Critical Care Surgery, University of Pittsburgh, Pittsburgh, PA, United States of America
- Department of Graduate Medical Education, Department of Surgery, Methodist Dallas Health System, Dallas, TX, United States of America
| | - Andrew Abboud
- Department of Surgery, Division of Trauma & Critical Care Surgery, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Rami A. Namas
- Department of Surgery, Division of Trauma & Critical Care Surgery, University of Pittsburgh, Pittsburgh, PA, United States of America
- Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Ruben Zamora
- Department of Surgery, Division of Trauma & Critical Care Surgery, University of Pittsburgh, Pittsburgh, PA, United States of America
- Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Jason Sperry
- Department of Surgery, Division of Trauma & Critical Care Surgery, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Andrew B. Peitzman
- Department of Surgery, Division of Trauma & Critical Care Surgery, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Michael S. Truitt
- Department of Graduate Medical Education, Department of Surgery, Methodist Dallas Health System, Dallas, TX, United States of America
| | - Greg E. Gaski
- Department of Orthopedic Surgery, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Todd O. McKinley
- Department of Orthopedic Surgery, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Timothy R. Billiar
- Department of Surgery, Division of Trauma & Critical Care Surgery, University of Pittsburgh, Pittsburgh, PA, United States of America
- Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Yoram Vodovotz
- Department of Surgery, Division of Trauma & Critical Care Surgery, University of Pittsburgh, Pittsburgh, PA, United States of America
- Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| |
Collapse
|
34
|
Tominello TR, Oliveira ERA, Hussain SS, Elfert A, Wells J, Golden B, Ismail N. Emerging Roles of Autophagy and Inflammasome in Ehrlichiosis. Front Immunol 2019; 10:1011. [PMID: 31134081 PMCID: PMC6517498 DOI: 10.3389/fimmu.2019.01011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 04/23/2019] [Indexed: 12/16/2022] Open
Abstract
Human monocytic ehrlichiosis (HME) is a potentially life-threatening tick-borne rickettsial disease (TBRD) caused by the obligate intracellular Gram-negative bacteria, Ehrlichia. Fatal HME presents with acute ailments of sepsis and toxic shock-like symptoms that can evolve to multi-organ failure and death. Early clinical and laboratory diagnosis of HME are problematic due to non-specific flu-like symptoms and limitations in the current diagnostic testing. Several studies in murine models showed that cell-mediated immunity acts as a “double-edged sword” in fatal ehrlichiosis. Protective components are mainly formed by CD4 Th1 and NKT cells, in contrast to deleterious effects originated from neutrophils and TNF-α-producing CD8 T cells. Recent research has highlighted the central role of the inflammasome and autophagy as part of innate immune responses also leading to protective or pathogenic scenarios. Recognition of pathogen-associated molecular patterns (PAMPS) or damage-associated molecular patterns (DAMPS) triggers the assembly of the inflammasome complex that leads to multiple outcomes. Recognition of PAMPs or DAMPs by such complexes can result in activation of caspase-1 and -11, secretion of the pro-inflammatory cytokines IL-1β and IL-18 culminating into dysregulated inflammation, and inflammatory cell death known as pyroptosis. The precise functions of inflammasomes and autophagy remain unexplored in infections with obligate intracellular rickettsial pathogens, such as Ehrlichia. In this review, we discuss the intracellular innate immune surveillance in ehrlichiosis involving the regulation of inflammasome and autophagy, and how this response influences the innate and adaptive immune responses against Ehrlichia. Understanding such mechanisms would pave the way in research for novel diagnostic, preventative and therapeutic approaches against Ehrlichia and other rickettsial diseases.
Collapse
Affiliation(s)
- Tyler R Tominello
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Edson R A Oliveira
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Shah S Hussain
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Amr Elfert
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Jakob Wells
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Brandon Golden
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Nahed Ismail
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
35
|
Early Immunologic Response in Multiply Injured Patients With Orthopaedic Injuries Is Associated With Organ Dysfunction. J Orthop Trauma 2019; 33:220-228. [PMID: 31008819 DOI: 10.1097/bot.0000000000001437] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVES To quantify the acute immunologic biomarker response in multiply injured patients with axial and lower extremity fractures and to explore associations with adverse short-term outcomes including organ dysfunction and nosocomial infection (NI). DESIGN Prospective cohort study. SETTING Level 1 academic trauma center. PATIENTS Consecutive multiply injured patients, 18-55 years of age, with major pelvic and lower extremity orthopaedic injuries (all pelvic/acetabular fractures, operative femur and tibia fractures) that presented as a trauma activation and admitted to the intensive care unit from April 2015 through October 2016. Sixty-one patients met inclusion criteria. INTERVENTION Blood was collected upon presentation to the hospital and at the following time points: 8, 24, 48 hours, and daily during intensive care unit admission. Blood was processed by centrifugation, separation into 1.0-mL plasma aliquots, and cryopreserved within 2 hours of collection. MAIN OUTCOME MEASUREMENTS Plasma analyses of protein levels of cytokines/chemokines were performed using a Luminex panel Bioassay of 20 immunologic mediators. Organ dysfunction was measured by the Marshall Multiple Organ Dysfunction score (MODScore) and nosocomial infection (NI) was recorded. Patients were stratified into low (MODS ≤ 4; n = 34) and high (MODS > 4; n = 27) organ dysfunction groups. RESULTS The MODS >4 group had higher circulating levels of interleukin (IL)-6, IL-8, IL-10, monocyte chemoattractant protein-1 (MCP-1), IL-1 receptor antagonist (IL-1RA), and monokine induced by interferon gamma (MIG) compared with the MODS ≤4 group at nearly all time points. MODS >4 exhibited lower levels of IL-21 and IL-22 compared with MODS ≤4. Patients who developed NI (n = 24) had higher circulating concentrations of IL-10, MIG, and high mobility group box 1 (HMGB1) compared with patients who did not develop NI (n = 37). CONCLUSIONS Temporal quantification of immune mediators identified 8 biomarkers associated with greater levels of organ dysfunction in polytrauma patients with major orthopaedic injuries. LEVEL OF EVIDENCE Prognostic Level II. See Instructions for Authors for a complete description of levels of evidence.
Collapse
|
36
|
HMGB1 is a Central Driver of Dynamic Pro-inflammatory Networks in Pediatric Acute Liver Failure induced by Acetaminophen. Sci Rep 2019; 9:5971. [PMID: 30979951 PMCID: PMC6461628 DOI: 10.1038/s41598-019-42564-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 03/27/2019] [Indexed: 12/12/2022] Open
Abstract
Acetaminophen (APAP) overdose (APAPo) is predominant in the NIH Pediatric Acute Liver Failure (PALF) Study. We assayed multiple inflammatory mediators in serial serum samples from 13 PALF survivors with APAPo + N-acetylcysteine (NAC, the frontline therapy for APAPo), 8 non-APAPo + NAC, 40 non-APAPo non-NAC, and 12 non-survivors. High Mobility Group Box 1 (HMGB1) was a dominant mediator in dynamic inflammation networks in all sub-groups, associated with a threshold network complexity event at d1–2 following enrollment that was exceeded in non-survivors vs. survivors. We thus hypothesized that differential HMGB1 network connectivity after day 2 is related to the putative threshold event in non-survivors. DyNA showed that HMGB1 is most connected in non-survivors on day 2–3, while no connections were observed in APAPo + NAC and non-APAPo + NAC survivors. Inflammatory dynamic networks, and in particular HMGB1 connectivity, were associated with the use of NAC in the context of APAPo. To recapitulate hepatocyte (HC) damage in vitro, primary C57BL/6 HC and HC-specific HMGB1-null HC were treated with APAP + NAC. Network phenotypes of survivors were recapitulated in C57BL/6 mouse HC and were greatly altered in HMGB1-null HC. HC HMGB1 may thus coordinate a pro-inflammatory program in PALF non-survivors (which is antagonized by NAC), while driving an anti-inflammatory/repair program in survivors.
Collapse
|
37
|
An Enrichment Strategy Yields Seven Novel Single Nucleotide Polymorphisms Associated With Mortality and Altered Th17 Responses Following Blunt Trauma. Shock 2019; 49:259-268. [PMID: 28930911 DOI: 10.1097/shk.0000000000000987] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Trauma is the leading cause of death worldwide for individuals under the age of 55. Interpatient genomic differences, in the form of candidate single-nucleotide polymorphisms (SNPs), have been associated previously with adverse outcomes after trauma. However, the utility of these SNPs to predict outcomes based on a meaningful endpoint such as survival is as yet undefined. We hypothesized that specific SNP haplotypes could segregate trauma survivors from non-survivors. Genomic DNA samples were obtained from 453 blunt trauma patients, for whom complete daily clinical and biomarker data were available for 397. Of these, 13 patients were non-survivors and the remaining 384 were survivors. All 397 DNA samples were amplified, fragmented, and examined for 551,839 SNPs using the Illumina Infinium CoreExome-24 v1.1 BeadChip (Illumina). To enrich for likely important SNPs, we initially compared SNPs of the 13 non-survivors versus 13 matched survivors, who were matched algorithmically for injury severity score (ISS), age, and gender ratio. This initial enrichment yielded 126 SNPs; a further comparison to the haplotypes of the remaining 371 survivors yielded a final total of 7 SNPs that distinguished survivors from non-survivors. Furthermore, severely injured survivors with the same seven SNPs as non-survivor exhibited distinct inflammatory responses from similarly injured survivors without those SNPs, and specifically had evidence of altered Th17 cell phenotypes based on computational modeling. These studies suggest an interaction among genetic polymorphism, injury severity, and initial inflammatory responses in driving trauma outcomes.
Collapse
|
38
|
Day JD, Cockrell C, Namas R, Zamora R, An G, Vodovotz Y. Inflammation and Disease: Modelling and Modulation of the Inflammatory Response to Alleviate Critical Illness. CURRENT OPINION IN SYSTEMS BIOLOGY 2018; 12:22-29. [PMID: 30886940 PMCID: PMC6420220 DOI: 10.1016/j.coisb.2018.08.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Critical illness, a constellation of interrelated inflammatory and physiological derangements occurring subsequent to severe infection or injury, affects a large number of individuals in both developed and developing countries. The prototypical complex system embodied in critical illness has largely defied therapy beyond supportive care. We have focused on the utility of data-driven and mechanistic computational modelling to help address the complexity of critical illness and provide pathways towards discovering potential therapeutic options and combinations. Herein, we review recent progress in this field, with a focus on both animal and computational models of critical illness. We suggest that therapy for critical illness can be posed as a model-based dynamic control problem, and discuss novel theoretical and experimental approaches involving biohybrid devices aimed at reprogramming inflammation dynamically. Together, these advances offer the potential for Model-based Precision Medicine for critical illness.
Collapse
Affiliation(s)
- Judy D. Day
- Departments of Mathematics and Electrical Engineering & Computer Science, University of Tennessee, USA
- National Institute for Mathematical and Biological Synthesis, University of Tennessee, USA
| | | | - Rami Namas
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, USA
- Department of Surgery, University of Pittsburgh, USA
| | - Ruben Zamora
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, USA
- Department of Surgery, University of Pittsburgh, USA
| | - Gary An
- Department of Surgery, University of Chicago, USA
| | - Yoram Vodovotz
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, USA
- Department of Surgery, University of Pittsburgh, USA
| |
Collapse
|
39
|
Tohme S, Yazdani HO, Sud V, Loughran P, Huang H, Zamora R, Simmons RL, Vodovotz Y, Tsung A. Computational Analysis Supports IL-17A as a Central Driver of Neutrophil Extracellular Trap-Mediated Injury in Liver Ischemia Reperfusion. THE JOURNAL OF IMMUNOLOGY 2018; 202:268-277. [PMID: 30504418 DOI: 10.4049/jimmunol.1800454] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 10/23/2018] [Indexed: 12/19/2022]
Abstract
Hepatic ischemia reperfusion (I/R) is a clinically relevant model of acute sterile inflammation leading to a reverberating, self-sustaining inflammatory response with resultant necrosis. We hypothesized that computerized dynamic network analysis (DyNA) of 20 inflammatory mediators could help dissect the sequence of post-I/R mediator interactions that induce injury. Although the majority of measured inflammatory mediators become elevated in the first 24 h, we predicted that only a few would be secreted early in the process and serve as organizational centers of downstream intermediator complexity. In support of this hypothesis, DyNA inferred a central organizing role for IL-17A during the first 3 h of reperfusion. After that, DyNA revealed connections among almost all the inflammatory mediators, representing an ongoing cytokine storm. Blocking IL-17A immediately after reperfusion disassembled the inflammatory networks and protected the liver from injury. Disassembly of the networks was not achieved if IL-17A blockage was delayed two or more hours postreperfusion. Network disassembly was accompanied by decrease in neutrophil infiltration and neutrophil extracellular trap (NET) formation. By contrast, administration of recombinant IL-17A increased neutrophil infiltration, NET formation, and liver necrosis. The administration of DNase, a NET inhibitor, significantly reduced hepatic damage despite prior administration of IL-17A, and DNase also disassembled the inflammatory networks. In vitro, IL-17A was a potent promoter of NET formation. Therefore, computational analysis identified IL-17A's early, central organizing role in the rapid evolution of a network of inflammatory mediators that induce neutrophil infiltration and NET formation responsible for hepatic damage after liver I/R.
Collapse
Affiliation(s)
- Samer Tohme
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213;
| | - Hamza O Yazdani
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213
| | - Vikas Sud
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213
| | - Patricia Loughran
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213.,Center for Biologic Imaging, Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA 15213; and
| | - Hai Huang
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213
| | - Ruben Zamora
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213.,Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine, Pittsburgh, PA 15219
| | - Richard L Simmons
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213
| | - Yoram Vodovotz
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213.,Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine, Pittsburgh, PA 15219
| | - Allan Tsung
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213
| |
Collapse
|
40
|
Lamparello AJ, Namas RA, Abdul-Malak O, Vodovotz Y, Billiar TR. Young and Aged Blunt Trauma Patients Display Major Differences in Circulating Inflammatory Mediator Profiles after Severe Injury. J Am Coll Surg 2018; 228:148-160.e7. [PMID: 30448299 DOI: 10.1016/j.jamcollsurg.2018.10.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 01/27/2023]
Abstract
BACKGROUND Aging is accompanied by alterations in immune functions. How these changes translate into levels of circulating inflammatory mediators and network expression after severe trauma is not well characterized. To address this, we compared time-dependent changes in the levels of an extensive biomarker panel in cohorts of severely injured young and aged adults. STUDY DESIGN Cohorts of young (18 to 30 years old, n = 115) and aged (65 to 90 years old, n = 101) blunt trauma patients admitted to the ICU with plasma sampled 3 times within the first 24 hours and daily from day 1 to day 7 were assayed for 30 inflammatory biomarkers using Luminex analyzer. Stringently matched groups controlling for sex ratio and Injury Severity Score (n = 56 young vs n = 56 aged) were generated. Data were analyzed using 2-way ANOVA, area under the curve analysis, Dynamic Bayesian Network inference, and Dynamic Network Analysis. RESULTS In the overall cohorts, the young group had a significantly higher Injury Severity Score, which was associated with higher circulating levels of 18 inflammatory mediators from admission to day 7. The aged group had higher levels of C-X-C motif chemokine ligand 10/interferon gamma-induced protein 10 and C-X-C motif chemokine ligand 9/monokine induced by gamma interferon. In groups that were matched for Injury Severity Score, the significantly higher levels of interferon gamma-induced protein 10 and monokine induced by gamma interferon persisted in the aged. Dynamic Bayesian Network revealed interferon gamma-induced protein 10 and monokine induced by gamma interferon as key mediators in the aged, and Dynamic Network Analysis revealed higher network complexity in the aged. CONCLUSIONS These findings indicate that differences in the early inflammatory networks between young and aged trauma patients are not simply a suppression of pro-inflammatory responses in the aged, but are characterized by a major shift in the mediator profile patterns with high levels of CXC chemokines in the aged.
Collapse
Affiliation(s)
| | - Rami A Namas
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA; Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA
| | | | - Yoram Vodovotz
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA; Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA; Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA.
| |
Collapse
|
41
|
A computational analysis of dynamic, multi-organ inflammatory crosstalk induced by endotoxin in mice. PLoS Comput Biol 2018; 14:e1006582. [PMID: 30399158 PMCID: PMC6239343 DOI: 10.1371/journal.pcbi.1006582] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 11/16/2018] [Accepted: 10/15/2018] [Indexed: 12/13/2022] Open
Abstract
Bacterial lipopolysaccharide (LPS) induces an acute inflammatory response across multiple organs, primarily via Toll-like receptor 4 (TLR4). We sought to define novel aspects of the complex spatiotemporal dynamics of LPS-induced inflammation using computational modeling, with a special focus on the timing of pathological systemic spillover. An analysis of principal drivers of LPS-induced inflammation in the heart, gut, lung, liver, spleen, and kidney to assess organ-specific dynamics, as well as in the plasma (as an assessment of systemic spillover), was carried out using data on 20 protein-level inflammatory mediators measured over 0-48h in both C57BL/6 and TLR4-null mice. Using a suite of computational techniques, including a time-interval variant of Principal Component Analysis, we confirm key roles for cytokines such as tumor necrosis factor-α and interleukin-17A, define a temporal hierarchy of organ-localized inflammation, and infer the point at which organ-localized inflammation spills over systemically. Thus, by employing a systems biology approach, we obtain a novel perspective on the time- and organ-specific components in the propagation of acute systemic inflammation. Gram-negative bacterial lipopolysaccharide (LPS) is both a central mediator of sepsis and a canonical inducer of acute inflammation via Toll-like receptor 4 (TLR4). Sepsis involves the systemic spillover of inflammation that normally remains localized in individual organs. The goal of this study was to gain insights into 1) early vs. later drivers of LPS-induced inflammation in various compartments, and 2) the systemic spillover from affected organs vs. local production of inflammatory mediators in the blood. This study involved a large number of data points on the dynamics of inflammatory mediators at the protein level, data-driven computational modeling of principal characteristics and cross-correlations, and validation of key hypotheses. In addition to verifying key mechanisms in LPS/TLR4-driven acute inflammation, this approach yielded key insights into the progression of inflammation across tissues, and also suggested the presence of TLR4-independent pathways (especially in the gut). This is, to our knowledge, the first study examining the dynamic evolution of some key inflammatory mediators and their interactions with each other in both the systemic circulation and within a number of targeted parenchymal organs in mice.
Collapse
|
42
|
Chakraborty S, Karasu E, Huber-Lang M. Complement After Trauma: Suturing Innate and Adaptive Immunity. Front Immunol 2018; 9:2050. [PMID: 30319602 PMCID: PMC6165897 DOI: 10.3389/fimmu.2018.02050] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/20/2018] [Indexed: 12/21/2022] Open
Abstract
The overpowering effect of trauma on the immune system is undisputed. Severe trauma is characterized by systemic cytokine generation, activation and dysregulation of systemic inflammatory response complementopathy and coagulopathy, has been immensely instrumental in understanding the underlying mechanisms of the innate immune system during systemic inflammation. The compartmentalized functions of the innate and adaptive immune systems are being gradually recognized as an overlapping, interactive and dynamic system of responsive elements. Nonetheless the current knowledge of the complement cascade and its interaction with adaptive immune response mediators and cells, including T- and B-cells, is limited. In this review, we discuss what is known about the bridging effects of the complement system on the adaptive immune system and which unexplored areas could be crucial in understanding how the complement and adaptive immune systems interact following trauma.
Collapse
Affiliation(s)
- Shinjini Chakraborty
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany
| | - Ebru Karasu
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany
| |
Collapse
|
43
|
|
44
|
Sud V, Abboud A, Tohme S, Vodovotz Y, Simmons RL, Tsung A. IL-17A - A regulator in acute inflammation: Insights from in vitro, in vivo and in silico studies. Cytokine 2018; 139:154344. [PMID: 29954675 DOI: 10.1016/j.cyto.2018.03.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/18/2018] [Accepted: 03/19/2018] [Indexed: 12/23/2022]
Abstract
Acute inflammation following sterile injury is both inevitable and necessary to restore homeostasis and promote tissue repair. However, when excessive, inflammation can jeopardize the viability of organs and cause detrimental systemic effects. Identifying key-regulators of the immune cascade induced by surgery is vital to attenuating excessive inflammation and its subsequent effects. In this review, we describe the emerging role of IL-17A as a key-regulator in acute inflammation. The role of IL-17A in chronic disease states, such as rheumatoid arthritis, psoriasis and cancer has been well documented, but its significance in acute inflammation following surgery, sepsis, or traumatic injury has not been well studied. We aim to highlight the role of IL-17A in acute inflammation caused by trauma, liver ischemia, and organ transplantation, as well as in post-operative surgical infections. Further investigation of the roles of this cytokine in acute inflammation may stimulate novel therapies or diagnostic modalities.
Collapse
Affiliation(s)
- Vikas Sud
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Andrew Abboud
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Samer Tohme
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yoram Vodovotz
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States; Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine, Pittsburgh, PA, United States
| | - Richard L Simmons
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Allan Tsung
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
45
|
Abstract
Multiply injured patients with severe extremity trauma are at risk of acute systemic complications and are at high risk of developing longer term orthopaedic complications including soft-tissue infection, osteomyelitis, posttraumatic osteoarthritis, and nonunion. It is becoming increasingly recognized that injury magnitude and response to injury have major jurisdiction pertaining to patient outcomes and complications. The complexities of injury and injury response that affect outcomes present opportunities to apply precision approaches to understand and quantify injury magnitude and injury response on a patient-specific basis. Here, we present novel approaches to measure injury magnitude by adopting methods that quantify both mechanical and ischemic tissue injury specific to each patient. We also present evolving computational approaches that have provided new insight into the complexities of inflammation and immunologic response to injury specific to each patient. These precision approaches are on the forefront of understanding how to stratify individualized injury and injury response in an effort to optimize titrated orthopaedic surgical interventions, which invariably involve most of the multiply injured patients. Finally, we present novel methods directed at mangled limbs with severe soft-tissue injury that comprise severely injured patients. Specifically, methods being developed to treat mangled limbs with volumetric muscle loss have the potential to improve limb outcomes and also mitigate uncompensated inflammation that occurs in these patients.
Collapse
|
46
|
Sachdev U, Vodovotz L, Bitner J, Barclay D, Zamora R, Yin J, Simmons RL, Vodovotz Y. Suppressed networks of inflammatory mediators characterize chronic venous insufficiency. J Vasc Surg Venous Lymphat Disord 2018; 6:358-366. [PMID: 29439934 DOI: 10.1016/j.jvsv.2017.11.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 11/05/2017] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Chronic venous insufficiency (CVI) affects 25 million adults in the United States. Little emphasis has been placed on inflammatory changes associated with CVI. We hypothesize that in patients with early to mid-stage benign varicose vein disease, differences in circulating inflammatory mediators will be manifested in blood draining the involved area vs circulating blood in control subjects. METHODS Patients undergoing either endovenous ablation or sclerotherapy for Clinical, Etiology, Anatomy, and Pathophysiology clinical class 3 to 5 disease underwent phlebotomy from regional veins at the time of the procedure. The patient's age, gender, clinical class, duration of symptoms, presence of superficial truncal reflux by duplex ultrasound, and treatment modality were recorded. Plasma from patients and banked blood samples from healthy volunteers (HVs) were subjected to Luminex (EMD Millipore, Billerica, Mass) to evaluate the expression of an established panel of 20 inflammatory mediators. Mediator concentrations were compared between patients and HVs using Mann-Whitney U tests. Importantly, computational analysis allowed us to compare not only the panel of inflammatory mediators but also the inflammatory networks connecting these mediators to one another. Principal components were analyzed to assess network robustness in each group. RESULTS CVI venous blood revealed significantly lower levels of monokine induced by γ interferon, soluble interleukin (IL) 2 receptor α chain, IL-4, IL-6, IL-7, tumor necrosis factor α, eotaxin, and granulocyte-macrophage colony-stimulating factor than blood from controls. Inflammatory networks were significantly less complex and less robust in the CVI patients compared with HVs. Based on principal component analysis, responses among HVs were more varied than those of CVI patients. CONCLUSIONS We demonstrate that patients with CVI have significant differences not only in blood-borne inflammatory mediators but also in the interconnectedness of these mediators with one another and in their principal inflammatory characteristics. Results suggest hypoinflammation in chronic nonhealing changes in CVI. These novel findings, if validated in larger cohorts, may help predict the risk of disease progression or response to therapy in the future and may guide mechanistic studies on tissue responses to CVI.
Collapse
Affiliation(s)
- Ulka Sachdev
- Division of Vascular Surgery, University of Pittsburgh, Pittsburgh, Pa; Department of Surgery, University of Pittsburgh, Pittsburgh, Pa.
| | - Lena Vodovotz
- School of Medicine, University of Pittsburgh, Pittsburgh, Pa
| | - Julie Bitner
- Division of Vascular Surgery, University of Pittsburgh, Pittsburgh, Pa
| | - Derek Barclay
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pa
| | - Ruben Zamora
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pa
| | - Jinling Yin
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pa
| | | | - Yoram Vodovotz
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pa
| |
Collapse
|
47
|
Vodovotz Y, Simmons RL, Gandhi CR, Barclay D, Jefferson BS, Huang C, Namas R, El-Dehaibi F, Mi Q, Billiar TR, Zamora R. "Thinking" vs. "Talking": Differential Autocrine Inflammatory Networks in Isolated Primary Hepatic Stellate Cells and Hepatocytes under Hypoxic Stress. Front Physiol 2017; 8:1104. [PMID: 29312006 PMCID: PMC5743931 DOI: 10.3389/fphys.2017.01104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 12/14/2017] [Indexed: 12/23/2022] Open
Abstract
We hypothesized that isolated primary mouse hepatic stellate cells (HSC) and hepatocytes (HC) would elaborate different inflammatory responses to hypoxia with or without reoxygenation. We further hypothesized that intracellular information processing (“thinking”) differs from extracellular information transfer (“talking”) in each of these two liver cell types. Finally, we hypothesized that the complexity of these autocrine responses might only be defined in the absence of other non-parenchymal cells or trafficking leukocytes. Accordingly, we assayed 19 inflammatory mediators in the cell culture media (CCM) and whole cell lysates (WCLs) of HSC and HC during hypoxia with and without reoxygenation. We applied a unique set of statistical and data-driven modeling techniques including Two-Way ANOVA, hierarchical clustering, Principal Component Analysis (PCA) and Network Analysis to define the inflammatory responses of these isolated cells to stress. HSC, under hypoxic and reoxygenation stresses, both expressed and secreted larger quantities of nearly all inflammatory mediators as compared to HC. These differential responses allowed for segregation of HSC from HC by hierarchical clustering. PCA suggested, and network analysis supported, the hypothesis that above a certain threshold of cellular stress, the inflammatory response becomes focused on a limited number of functions in both HSC and HC, but with distinct characteristics in each cell type. Network analysis of separate extracellular and intracellular inflammatory responses, as well as analysis of the combined data, also suggested the presence of more complex inflammatory “talking” (but not “thinking”) networks in HSC than in HC. This combined network analysis also suggested an interplay between intracellular and extracellular mediators in HSC under more conditions than that observed in HC, though both cell types exhibited a qualitatively similar phenotype under hypoxia/reoxygenation. Our results thus suggest that a stepwise series of computational and statistical analyses may help decipher how cells respond to environmental stresses, both within the cell and in its secretory products, even in the absence of cooperation from other cells in the liver.
Collapse
Affiliation(s)
- Yoram Vodovotz
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States.,Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, United States
| | - Richard L Simmons
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | | | - Derek Barclay
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | | | - Chao Huang
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Rami Namas
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Fayten El-Dehaibi
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Qi Mi
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States.,Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ruben Zamora
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States.,Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
48
|
Haller JM, Marchand L, Rothberg DL, Kubiak EN, Higgins TF. Inflammatory cytokine response is greater in acute tibial plafond fractures than acute tibial plateau fractures. J Orthop Res 2017; 35:2613-2619. [PMID: 28370304 DOI: 10.1002/jor.23567] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 03/28/2017] [Indexed: 02/04/2023]
Abstract
The purpose of the study was to compare the inflammatory cytokine and matrix metalloproteinase (MMP) concentrations in synovial fluid after acute plafond fracture with acute tibial plateau fracture. Between December 2011 and August 2014, we prospectively enrolled patients with acute tibial plateau and plafond fractures. Synovial fluid aspirations were obtained from injured and uninjured joints. The concentrations of IL-1β, IL-1RA, IL-6, IL-8, IL-10, MCP-1, TNF-α, MMP-1, -3, -9, -10, -12, and -13 were quantified using multiplex assays. A Bonferroni correction was used so that the adjusted alpha level for significance was p < 0.004. We enrolled 45 tibial plateau fractures and 19 plafond fractures. Mean patient age was 42 years (range, 20-60) and 64% were male patients. There were 24 low-energy (OTA 41B) plateau fractures and eight low-energy (OTA 43B) plafond fractures. There were 21 high-energy (6 OTA 41B3 and 15 OTA 41C) plateau fractures and 11 high-energy (OTA43C) plafond fractures. All cytokines and MMPs except MMP-13 were significantly elevated in plafond fractures compared to uninjured ankles. When comparing acutely injured joints, IL-8 (p < 0.001), IL-1β (p = 0.002), and MMP-12 (p = 0.001) were significantly higher in plafond fractures compared to plateau fractures. Concentrations of IL-1RA (p = 0.008) and MCP-1 (p = 0.005) were higher in plafond fractures, and MMP-10 (p = 0.01) was higher in plateau fractures, but these differences did not reach significance. In conclusion, several cytokines and MMPs were significantly elevated in acute plafond fractures as compared to acute tibial plateau fractures. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2613-2619, 2017.
Collapse
Affiliation(s)
- Justin M Haller
- Department of Orthopaedics, University of Utah School of Medicine, 590 Wakara Way, Salt Lake City, Utah 84108
| | - Lucas Marchand
- Department of Orthopaedics, University of Utah School of Medicine, 590 Wakara Way, Salt Lake City, Utah 84108
| | - David L Rothberg
- Department of Orthopaedics, University of Utah School of Medicine, 590 Wakara Way, Salt Lake City, Utah 84108
| | - Erik N Kubiak
- Department of Orthopedic Surgery, University of Nevada Las Vegas, Las Vegas, Nevada
| | - Thomas F Higgins
- Department of Orthopaedics, University of Utah School of Medicine, 590 Wakara Way, Salt Lake City, Utah 84108
| |
Collapse
|
49
|
Zettel K, Korff S, Zamora R, Morelli AE, Darwiche S, Loughran PA, Elson G, Shang L, Salgado-Pires S, Scott MJ, Vodovotz Y, Billiar TR. Toll-Like Receptor 4 on both Myeloid Cells and Dendritic Cells Is Required for Systemic Inflammation and Organ Damage after Hemorrhagic Shock with Tissue Trauma in Mice. Front Immunol 2017; 8:1672. [PMID: 29234326 PMCID: PMC5712321 DOI: 10.3389/fimmu.2017.01672] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 11/14/2017] [Indexed: 12/24/2022] Open
Abstract
Trauma combined with hemorrhagic shock (HS/T) leads to systemic inflammation, which results in organ injury. Toll-like Receptor 4 (TLR4)-signaling activation contributes to the initiation of inflammatory pathways following HS/T but its cell-specific roles in this setting are not known. We assessed the importance of TLR4 on leukocytes of myeloid lineage and dendritic cells (DCs) to the early systemic inflammatory response following HS/T. Mice were subjected to HS/T and 20 inflammatory mediators were measured in plasma followed by Dynamic Bayesian Network (DBN) Analysis. Organ damage was assessed by histology and plasma ALT levels. The role of TLR4 was determined using TLR4−/−, MyD88−/−, and Trif−/− C57BL/6 (B6) mice, and by in vivo administration of a TLR4-specific neutralizing monoclonal antibody (mAb). The contribution of TLR4 expressed by myeloid leukocytes and DC was determined by generating cell-specific TLR4−/− B6 mice, including Lyz-Cre × TLR4loxP/loxP, and CD11c-Cre × TLR4loxP/loxP B6 mice. Adoptive transfer of bone marrow-derived TLR4+/+ or TLR4−/− DC into TLR4−/− mice confirmed the contribution of TLR4 on DC to the systemic inflammatory response after HS/T. Using both global knockout mice and the TLR4-blocking mAb 1A6 we established a central role for TLR4 in driving systemic inflammation. Using cell-selective TLR4−/− B6 mice, we found that TLR4 expression on both myeloid cells and CD11chigh DC is required for increases in systemic cytokine levels and organ damage after HS/T. We confirmed the capacity of TLR4 on CD11chigh DC to promote inflammation and liver damage using adoptive transfer of TLR4+/+ conventional (CD11chigh) DC into TLR4−/− mice. DBN inference identified CXC chemokines as proximal drivers of dynamic changes in the circulating levels of cytokines/chemokines after HS/T. TLR4 on DC was found to contribute selectively to the elevations in these proximal drivers. TLR4 on both myeloid cells and conventional DC is required for the initial systemic inflammation and organ damage in a mouse model of HS/T. This includes a role for TLR4 on DC in promoting increases in the early inflammatory networks identified in HS/T. These data establish DC along with macrophages as essential to the recognition of tissue damage and stress following tissue trauma with HS.
Collapse
Affiliation(s)
- Kent Zettel
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Sebastian Korff
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Trauma Surgery, University of Heidelberg, Heidelberg, Germany
| | - Ruben Zamora
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Adrian E Morelli
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Sophie Darwiche
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Patricia A Loughran
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Greg Elson
- Novimmune SA, Geneva, Switzerland.,Glenmark Pharmaceuticals SA, La-Chaux-de-Fonds, Switzerland
| | | | | | - Melanie J Scott
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yoram Vodovotz
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
50
|
Seshadri A, Brat GA, Yorkgitis BK, Keegan J, Dolan J, Salim A, Askari R, Lederer JA. Phenotyping the Immune Response to Trauma: A Multiparametric Systems Immunology Approach. Crit Care Med 2017; 45:1523-1530. [PMID: 28671900 PMCID: PMC10114604 DOI: 10.1097/ccm.0000000000002577] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Trauma induces a complex immune response that requires a systems biology research approach. Here, we used a novel technology, mass cytometry by time-of-flight, to comprehensively characterize the multicellular response to trauma. DESIGN Peripheral blood mononuclear cells samples were stained with a 38-marker immunophenotyping cytometry by time-of-flight panel. Separately, matched peripheral blood mononuclear cells were stimulated in vitro with heat-killed Streptococcus pneumoniae or CD3/CD28 antibodies and stained with a 38-marker cytokine panel. Monocytes were studied for phagocytosis and oxidative burst. SETTING Single-institution level 1 trauma center. PATIENTS OR SUBJECTS Trauma patients with injury severity scores greater than 20 (n = 10) at days 1, 3, and 5 after injury, and age- and gender-matched controls. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS Trauma-induced expansion of Th17-type CD4 T cells was seen with increased expression of interleukin-17 and interleukin-22 by day 5 after injury. Natural killer cells showed reduced T-bet expression at day 1 with an associated decrease in tumor necrosis factor-β, interferon-γ, and monocyte chemoattractant protein-1. Monocytes showed robust expansion following trauma but displayed decreased stimulated proinflammatory cytokine production and significantly reduced human leukocyte antigen - antigen D related expression. Further analysis of trauma-induced monocytes indicated that phagocytosis was no different from controls. However, monocyte oxidative burst after stimulation increased significantly after injury. CONCLUSIONS Using cytometry by time-of-flight, we were able to identify several major time-dependent phenotypic changes in blood immune cell subsets that occur following trauma, including induction of Th17-type CD4 T cells, reduced T-bet expression by natural killer cells, and expansion of blood monocytes with less proinflammatory cytokine response to bacterial stimulation and less human leukocyte antigen - antigen D related. We hypothesized that monocyte function might be suppressed after injury. However, monocyte phagocytosis was normal and oxidative burst was augmented, suggesting that their innate antimicrobial functions were preserved. Future studies will better characterize the cell subsets identified as being significantly altered by trauma using cytometry by time-of-flight, RNAseq technology, and functional studies.
Collapse
Affiliation(s)
- Anupamaa Seshadri
- All authors: Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | | | | | | | | | | | | | | |
Collapse
|