1
|
Wu C, Tian Y, Liu T, An S, Qian Y, Gao C, Yuan J, Liu M, Nie M, Jiang W, Sha Z, Lv C, Liu Q, Wang X, Zhou S, Jiang R. Low-intensity pulsed ultrasound elevates blood pressure for shock. SCIENCE ADVANCES 2025; 11:eads6947. [PMID: 40106546 PMCID: PMC11922025 DOI: 10.1126/sciadv.ads6947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 02/11/2025] [Indexed: 03/22/2025]
Abstract
Fluid replacement is the primary treatment for life-threatening shock but is challenging in harsh environments. This study explores low-intensity pulsed ultrasound (LIPUS) as a resuscitation strategy. Cervical LIPUS stimulation effectively elevated blood pressure in shocked rats. It also improved cerebral and multiorgan perfusion. Mechanistically, LIPUS activated pathways related to sympathetic nerve excitation and vascular smooth muscle contraction, increasing plasma catecholamines and stimulating blood pressure-regulating neural nuclei. Partial sympathetic nerve transection reduced LIPUS efficacy, while complete inhibition of these nuclei abolished the response. Preliminary clinical trials demonstrated LIPUS's ability to raise blood pressure in shock patients. The findings suggest that LIPUS enhances sympathetic nerve activity and activates blood pressure-regulating nuclei, offering a noninvasive, neuromodulation-based approach to shock treatment. This method holds potential for improving blood pressure and organ perfusion in shock patients, especially in resource-limited environments.
Collapse
Affiliation(s)
- Chenrui Wu
- Department of Neurosurgery, Tianjin Neurological Institute, State Key Laboratory of Experimental Hematology, Key Laboratory of Post-Neuroinjury Neurorepair and Regeneration in Central Nervous System Tianjin & Ministry of Education, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yu Tian
- Department of Neurosurgery, Tianjin Neurological Institute, State Key Laboratory of Experimental Hematology, Key Laboratory of Post-Neuroinjury Neurorepair and Regeneration in Central Nervous System Tianjin & Ministry of Education, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Tao Liu
- Department of Neurosurgery, Tianjin Neurological Institute, State Key Laboratory of Experimental Hematology, Key Laboratory of Post-Neuroinjury Neurorepair and Regeneration in Central Nervous System Tianjin & Ministry of Education, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Shuo An
- Department of Neurosurgery, Tianjin Neurological Institute, State Key Laboratory of Experimental Hematology, Key Laboratory of Post-Neuroinjury Neurorepair and Regeneration in Central Nervous System Tianjin & Ministry of Education, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yu Qian
- Department of Neurosurgery, Tianjin Neurological Institute, State Key Laboratory of Experimental Hematology, Key Laboratory of Post-Neuroinjury Neurorepair and Regeneration in Central Nervous System Tianjin & Ministry of Education, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Chuang Gao
- Department of Neurosurgery, Tianjin Neurological Institute, State Key Laboratory of Experimental Hematology, Key Laboratory of Post-Neuroinjury Neurorepair and Regeneration in Central Nervous System Tianjin & Ministry of Education, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jiangyuan Yuan
- Department of Neurosurgery, Tianjin Neurological Institute, State Key Laboratory of Experimental Hematology, Key Laboratory of Post-Neuroinjury Neurorepair and Regeneration in Central Nervous System Tianjin & Ministry of Education, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Mingqi Liu
- Department of Neurosurgery, Tianjin Neurological Institute, State Key Laboratory of Experimental Hematology, Key Laboratory of Post-Neuroinjury Neurorepair and Regeneration in Central Nervous System Tianjin & Ministry of Education, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Meng Nie
- Department of Neurosurgery, Tianjin Neurological Institute, State Key Laboratory of Experimental Hematology, Key Laboratory of Post-Neuroinjury Neurorepair and Regeneration in Central Nervous System Tianjin & Ministry of Education, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Weiwei Jiang
- Department of Neurosurgery, Tianjin Neurological Institute, State Key Laboratory of Experimental Hematology, Key Laboratory of Post-Neuroinjury Neurorepair and Regeneration in Central Nervous System Tianjin & Ministry of Education, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Zhuang Sha
- Department of Neurosurgery, Tianjin Neurological Institute, State Key Laboratory of Experimental Hematology, Key Laboratory of Post-Neuroinjury Neurorepair and Regeneration in Central Nervous System Tianjin & Ministry of Education, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Chuanxiang Lv
- Department of Neurosurgery, Tianjin Neurological Institute, State Key Laboratory of Experimental Hematology, Key Laboratory of Post-Neuroinjury Neurorepair and Regeneration in Central Nervous System Tianjin & Ministry of Education, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Qiang Liu
- Department of Neurology, Institute of Neuroimmunology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Xiaochun Wang
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300052, China
| | - Sheng Zhou
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300052, China
| | - Rongcai Jiang
- Department of Neurosurgery, Tianjin Neurological Institute, State Key Laboratory of Experimental Hematology, Key Laboratory of Post-Neuroinjury Neurorepair and Regeneration in Central Nervous System Tianjin & Ministry of Education, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
2
|
Chen PY, Huang HH, Chan WS, Liu CM, Wu TT, Chen JH, Chao A, Tien YW, Chiu CT, Yeh YC. Comparison of dexmedetomidine versus propofol sedation on microcirculation and organ injuries in critically ill surgical patients: A randomized controlled pilot study. Clin Hemorheol Microcirc 2025; 89:43-53. [PMID: 38788060 DOI: 10.3233/ch-232093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
BACKGROUND Recent studies have shown that dexmedetomidine may improve microcirculation and prevent organ failure. However, most evidence was obtained from experimental animals and patients receiving cardiac surgery with cardiopulmonary bypass. This study aimed to investigate the effect of dexmedetomidine on microcirculation and organ injuries in critically ill general surgical patients. METHODS In this prospective randomized trial, patients admitted to the surgical intensive care unit after general surgery were enrolled and randomly allocated to the dexmedetomidine or propofol groups. Patients received continuous dexmedetomidine or propofol infusions to meet their requirement of sedation according to their grouping. At each time point, sublingual microcirculation images were obtained using the incident dark field video microscope. RESULTS Overall, 60 patients finished the trial and were analyzed. Microcirculation parameters did not differ significantly between two groups. Heart rate at 4 h after ICU admission and mean arterial pressures at 12 h and 24 h after ICU admission were lower in the dexmedetomidine group than in the propofol group. At 24 h, serum aspartate aminotransferase (41 (25-118) vs 86 (34-129) U/L, p = 0.035) and alanine aminotransferase (50 (26-160) vs 68 (35-172) U/L, p = 0.019) levels were significantly lower in the dexmedetomidine group than in the propofol group. CONCLUSION Microcirculation parameters did not differ significantly between the dexmedetomidine and propofol groups. At 24 h after ICU admission, serum liver enzyme levels were lower in patients receiving dexmedetomidine as compared to propofol.
Collapse
Affiliation(s)
- Po-Yu Chen
- Department of Anesthesiology, National Taiwan University Hospital, Taipei, Taiwan
| | - Hsing-Hao Huang
- Department of Anesthesiology, National Taiwan University Hospital, Taipei, Taiwan
| | - Wing-Sum Chan
- Department of Anesthesiology, Far Eastern Memorial Hospital, New Taipei, Taiwan
| | - Chih-Min Liu
- Department of Anesthesiology, National Taiwan University Hospital, Taipei, Taiwan
| | - Tsung-Ta Wu
- Department of Anesthesiology, National Taiwan University Hospital, Hsin-Chu Branch, Hsinchu City, Taiwan
| | - Jyun-Han Chen
- Department of Anesthesiology, National Taiwan University Hospital, Taipei, Taiwan
| | - Anne Chao
- Department of Anesthesiology, National Taiwan University Hospital, Taipei, Taiwan
| | - Yu-Wen Tien
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Ching-Tang Chiu
- Department of Anesthesiology, National Taiwan University Hospital, Taipei, Taiwan
| | - Yu-Chang Yeh
- Department of Anesthesiology, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
3
|
Sato J, Sakurai A, Ihara S, Nakagawa K, Chiba N, Saito T, Kinoshita K. Assessment of Microcirculatory Dysfunction by Measuring Subcutaneous Tissue Oxygen Saturation Using Near-Infrared Spectroscopy in Patients with Circulatory Failure. Diagnostics (Basel) 2024; 14:2428. [PMID: 39518394 PMCID: PMC11545383 DOI: 10.3390/diagnostics14212428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/06/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Patients with circulatory failure have high mortality rates and require prompt assessment of microcirculation. Despite the improvement in hemodynamic parameters, microcirculatory dysfunction persists. We measured subcutaneous regional tissue oxygen saturation (rSO2) with near-infrared spectroscopy (NIRS), which can assess microcirculation in patients with circulatory failure. METHODS A finger-worn oximeter with NIRS measured rSO2 in the forehead, thenar eminence, thumb, and knees. First, the rSO2 was measured in healthy adult volunteers (n = 10). Circulatory failure was defined as a systolic blood pressure ≤ 90 mmHg and lactate ≥ 2 mmol/L. The study included 35 patients without circulatory failure and SOFA score of 0 at ICU admission and 38 patients with circulatory failure at ICU admission. Both groups included a single-center prospective study of patients who were transported to the ICU of the Nihon University Hospital. The rSO2 was measured only on ICU admission in the non-circulatory failure group and later in the circulatory failure group. RESULTS In the volunteer group, rSO2 at each site was approximately 58%. The rSO2 was significantly lower in the circulatory failure group than in the non-circulatory failure group (knee, p < 0.01). In the circulatory failure group, knee rSO2 showed a significant negative correlation with SOFA score (Day 0, ρ = -0.37, p = 0.02; Day 1, ρ = -0.53, p < 0.01; Day 2, ρ = -0.60, p < 0.01). CONCLUSIONS Subcutaneous knee rSO2 was associated with SOFA score and was considered an indicator of microcirculatory dysfunction and organ damage.
Collapse
Affiliation(s)
| | - Atsushi Sakurai
- Department of Acute Medicine, Division of Emergency and Critical Care Medicine, Nihon University School of Medicine, 30-1 Oyaguchi Kamimachi, Itabashi-ku, Tokyo 173-8610, Japan; (J.S.); (S.I.); (K.N.); (N.C.); (T.S.); (K.K.)
| | | | | | | | | | | |
Collapse
|
4
|
Tachino J, Togami Y, Matsumoto H, Matsubara T, Seno S, Ogura H, Oda J. Plasma proteomics profile-based comparison of torso versus brain injury: A prospective cohort study. J Trauma Acute Care Surg 2024; 97:557-565. [PMID: 38595266 PMCID: PMC11446512 DOI: 10.1097/ta.0000000000004356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 04/11/2024]
Abstract
BACKGROUND Trauma-related deaths and posttraumatic sequelae are a global health concern, necessitating a deeper understanding of the pathophysiology to advance trauma therapy. Proteomics offers insights into identifying and analyzing plasma proteins associated with trauma and inflammatory conditions; however, current proteomic methods have limitations in accurately measuring low-abundance plasma proteins. This study compared plasma proteomics profiles of patients from different acute trauma subgroups to identify new therapeutic targets and devise better strategies for personalized medicine. METHODS This prospective observational single-center cohort study was conducted between August 2020 and September 2021 in the intensive care unit of Osaka University Hospital in Japan. Enrolling 59 consecutive patients with blunt trauma, we meticulously analyzed plasma proteomics profiles in participants with torso or head trauma, comparing them with those of controls (mild trauma). Using the Olink Explore 3072 instrument (Olink Proteomics AB, Uppsala, Sweden), we identified five endotypes (α-ε) via unsupervised hierarchical clustering. RESULTS The median time from injury to blood collection was 47 minutes [interquartile range, 36-64 minutes]. The torso trauma subgroup exhibited 26 unique proteins with significantly altered expression, while the head trauma subgroup showed 68 unique proteins with no overlap between the two. The identified endotypes included α (torso trauma, n = 8), β (young patients with brain injury, n = 5), γ (severe brain injury postsurgery, n = 8), δ (torso or brain trauma with mild hyperfibrinolysis, n = 18), and ε (minor trauma, n = 20). Patients with torso trauma showed changes in blood pressure, smooth muscle adaptation, hypermetabolism, and hypoxemia. Patients with traumatic brain injury had dysregulated blood coagulation and altered nerves regeneration and differentiation. CONCLUSION This study identified unique plasma protein expression patterns in patients with torso trauma and traumatic brain injury, helping categorize five distinct endotypes. Our findings may offer new insights for clinicians, highlighting potential strategies for personalized medicine and improved trauma-related care. LEVEL OF EVIDENCE Prognostic and Epidemiological; Level III.
Collapse
|
5
|
Oliveira FRMB, Sousa Soares E, Pillmann Ramos H, Lättig-Tünnemann G, Harms C, Cimarosti H, Sordi R. Renal protection after hemorrhagic shock in rats: Possible involvement of SUMOylation. Biochem Pharmacol 2024; 227:116425. [PMID: 39004233 DOI: 10.1016/j.bcp.2024.116425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
Hemorrhagic shock (HS), a leading cause of preventable death, is characterized by severe blood loss and inadequate tissue perfusion. Reoxygenation of ischemic tissues exacerbates organ damage through ischemia-reperfusion injury. SUMOylation has been shown to protect neurons after stroke and is upregulated in response to cellular stress. However, the role of SUMOylation in organ protection after HS is unknown. This study aimed to investigate SUMOylation-mediated organ protection following HS. Male Wistar rats were subjected to HS (blood pressure of 40 ± 2 mmHg, for 90 min) followed by reperfusion. Blood, kidney, and liver samples were collected at various time points after reperfusion to assess organ damage and investigate the profile of SUMO1 and SUMO2/3 conjugation. In addition, human kidney cells (HK-2), treated with the SUMOylation inhibitor TAK-981 or overexpressing SUMO proteins, were subjected to oxygen and glucose deprivation to investigate the role of SUMOylation in hypoxia/reoxygenation injury. The animals presented progressive multiorgan dysfunction, except for the renal system, which showed improvement over time. Compared to the liver, the kidneys displayed distinct patterns in terms of oxidative stress, apoptosis activation, and tissue damage. The global level of SUMO2/3 in renal tissue was also distinct, suggesting a differential role. Pharmacological inhibition of SUMOylation reduced cell viability after hypoxia-reoxygenation damage, while overexpression of SUMO1 or SUMO2 protected the cells. These findings suggest that SUMOylation might play a critical role in cellular protection during ischemia-reperfusion injury in the kidneys, a role not observed in the liver. This difference potentially explains the renal resilience observed in HS animals when compared to other systems.
Collapse
Affiliation(s)
- Filipe Rodolfo Moreira Borges Oliveira
- Department of Pharmacology, Biological Sciences Center, Universidade Federal de Santa Catarina (UFSC), SC, Brazil; Graduate Program in Pharmacology, UFSC, SC, Brazil
| | - Ericks Sousa Soares
- Department of Pharmacology, Biological Sciences Center, Universidade Federal de Santa Catarina (UFSC), SC, Brazil; Graduate Program in Pharmacology, UFSC, SC, Brazil
| | - Hanna Pillmann Ramos
- Department of Pharmacology, Biological Sciences Center, Universidade Federal de Santa Catarina (UFSC), SC, Brazil
| | - Gisela Lättig-Tünnemann
- Klinik und Hochschulambulanz für Neurologie mit Experimenteller Neurologie, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany
| | - Christoph Harms
- Klinik und Hochschulambulanz für Neurologie mit Experimenteller Neurologie, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany; Centre for Stroke Research, Berlin, Germany; Charité-Universitätsmedizin Berlin, Berlin, Germany; German Centre for Cardiovascular Research (DZHK), partner site Berlin, Germany; Einstein Centre for Neuroscience, Berlin, Germany
| | - Helena Cimarosti
- Department of Pharmacology, Biological Sciences Center, Universidade Federal de Santa Catarina (UFSC), SC, Brazil; Graduate Program in Pharmacology, UFSC, SC, Brazil; Graduate Program in Neuroscience, UFSC, SC, Brazil
| | - Regina Sordi
- Department of Pharmacology, Biological Sciences Center, Universidade Federal de Santa Catarina (UFSC), SC, Brazil; Graduate Program in Pharmacology, UFSC, SC, Brazil.
| |
Collapse
|
6
|
Greenwood JC, Talebi FM, Jang DH, Spelde AE, Gordon EK, Horak J, Acker MA, Kilbaugh TJ, Shofer FS, Augoustides JG, Brenner JS, Muzykantov VR, Bakker J, Abella BS. Anaerobic Lactate Production Is Associated With Decreased Microcirculatory Blood Flow and Decreased Mitochondrial Respiration Following Cardiovascular Surgery With Cardiopulmonary Bypass. Crit Care Med 2024; 52:1239-1250. [PMID: 38578158 PMCID: PMC11250782 DOI: 10.1097/ccm.0000000000006289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
OBJECTIVES Quantify the relationship between perioperative anaerobic lactate production, microcirculatory blood flow, and mitochondrial respiration in patients after cardiovascular surgery with cardiopulmonary bypass. DESIGN Serial measurements of lactate-pyruvate ratio (LPR), microcirculatory blood flow, plasma tricarboxylic acid cycle cycle intermediates, and mitochondrial respiration were compared between patients with a normal peak lactate (≤ 2 mmol/L) and a high peak lactate (≥ 4 mmol/L) in the first 6 hours after surgery. Regression analysis was performed to quantify the relationship between clinically relevant hemodynamic variables, lactate, LPR, and microcirculatory blood flow. SETTING This was a single-center, prospective observational study conducted in an academic cardiovascular ICU. PATIENTS One hundred thirty-two patients undergoing elective cardiovascular surgery with cardiopulmonary bypass. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS Patients with a high postoperative lactate were found to have a higher LPR compared with patients with a normal postoperative lactate (14.4 ± 2.5 vs. 11.7 ± 3.4; p = 0.005). Linear regression analysis found a significant, negative relationship between LPR and microcirculatory flow index ( r = -0.225; β = -0.037; p = 0.001 and proportion of perfused vessels: r = -0.17; β = -0.468; p = 0.009). There was not a significant relationship between absolute plasma lactate and microcirculation variables. Last, mitochondrial complex I and complex II oxidative phosphorylation were reduced in patients with high postoperative lactate levels compared with patients with normal lactate (22.6 ± 6.2 vs. 14.5 ± 7.4 pmol O 2 /s/10 6 cells; p = 0.002). CONCLUSIONS Increased anaerobic lactate production, estimated by LPR, has a negative relationship with microcirculatory blood flow after cardiovascular surgery. This relationship does not persist when measuring lactate alone. In addition, decreased mitochondrial respiration is associated with increased lactate after cardiovascular surgery. These findings suggest that high lactate levels after cardiovascular surgery, even in the setting of normal hemodynamics, are not simply a type B phenomenon as previously suggested.
Collapse
Affiliation(s)
- John C. Greenwood
- Department of Emergency Medicine, Center for Resuscitation Science, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Anesthesiology and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Fatima M. Talebi
- Department of Emergency Medicine, Center for Resuscitation Science, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - David H. Jang
- Department of Emergency Medicine, Center for Resuscitation Science, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Audrey E. Spelde
- Department of Anesthesiology and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Emily K. Gordon
- Department of Anesthesiology and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Jiri Horak
- Department of Anesthesiology and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Michael A. Acker
- Division of Cardiovascular Surgery, Department of Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Todd J. Kilbaugh
- Department of Anesthesiology and Critical Care Medicine, Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Frances S. Shofer
- Department of Epidemiology & Biostatistics, Department of Emergency Medicine Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - John G.T. Augoustides
- Department of Anesthesiology and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Jacob S. Brenner
- Division of Pulmonary, Allergy, & Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Vladimir R. Muzykantov
- Department of Pharmacology and Center for Translational Targeted Therapeutics and Nanomedicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jan Bakker
- Department of Intensive Care Adults, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Benjamin S. Abella
- Department of Emergency Medicine, Center for Resuscitation Science, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Anesthesiology and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
7
|
Hof S, Untiedt H, Hübner A, Marcus C, Kuebart A, Herminghaus A, Vollmer C, Bauer I, Picker O, Truse R. Effects of remote ischemic preconditioning on early markers of intestinal injury in experimental hemorrhage in rats. Sci Rep 2024; 14:12960. [PMID: 38839819 PMCID: PMC11153647 DOI: 10.1038/s41598-024-63293-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 05/27/2024] [Indexed: 06/07/2024] Open
Abstract
The maintenance of intestinal integrity and barrier function under conditions of restricted oxygen availability is crucial to avoid bacterial translocation and local inflammation. Both lead to secondary diseases after hemorrhagic shock and might increase morbidity and mortality after surviving the initial event. Monitoring of the intestinal integrity especially in the early course of critical illness remains challenging. Since microcirculation and mitochondrial respiration are main components of the terminal stretch of tissue oxygenation, the evaluation of microcirculatory and mitochondrial variables could identify tissues at risk during hypoxic challenges, indicate an increase of intestinal injury, and improve our understanding of regional pathophysiology during acute hemorrhage. Furthermore, improving intestinal microcirculation or mitochondrial respiration, e.g. by remote ischemic preconditioning (RIPC) that was reported to exert a sufficient tissue protection in various tissues and was linked to mediators with vasoactive properties could maintain intestinal integrity. In this study, postcapillary oxygen saturation (µHbO2), microvascular flow index (MFI) and plasmatic D-lactate concentration revealed to be early markers of intestinal injury in a rodent model of experimental hemorrhagic shock. Mitochondrial function was not impaired in this experimental model of acute hemorrhage. Remote ischemic preconditioning (RIPC) failed to improve intestinal microcirculation and intestinal damage during hemorrhagic shock.
Collapse
Affiliation(s)
- Stefan Hof
- Department of Anesthesiology, University Hospital Düsseldorf, Düsseldorf, Germany.
| | - Hendrik Untiedt
- Department of Anesthesiology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Anne Hübner
- Department of Anesthesiology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Carsten Marcus
- Department of Anesthesiology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Anne Kuebart
- Department of Anesthesiology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Anna Herminghaus
- Department of Anesthesiology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Christian Vollmer
- Department of Anesthesiology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Inge Bauer
- Department of Anesthesiology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Olaf Picker
- Department of Anesthesiology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Richard Truse
- Department of Anesthesiology, University Hospital Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
8
|
Wang H, Ding H, Wang ZY, Zhang K. Research progress on microcirculatory disorders in septic shock: A narrative review. Medicine (Baltimore) 2024; 103:e37273. [PMID: 38394485 PMCID: PMC11309632 DOI: 10.1097/md.0000000000037273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Hemodynamic coherence plays a critical role in the outcomes of septic shock. Due to the potential negative consequences of microcirculatory disorders on organ failure and clinical outcomes, the maintenance of a balance between the macrocirculation and microcirculation is a topic of significant research focus. Although physical methods and specialized imaging techniques are used in clinical practice to assess microcirculation, the use of monitoring devices is not widespread. The integration of microcirculation research tools into clinical practice poses a significant challenge for the future. Consequently, this review aims to evaluate the impact of septic shock on the microcirculation, the methods used to monitor the microcirculation and highlight the importance of microcirculation in the treatment of critically ill patients. In addition, it proposes an evaluation framework that integrates microcirculation monitoring with macrocirculatory parameters. The optimal approach should encompass dynamic, multiparametric, individualized, and continuous monitoring of both the macrocirculation and microcirculation, particularly in cases of hemodynamic separation.
Collapse
Affiliation(s)
- Hui Wang
- Department of Intensive Care, Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Hong Ding
- Department of Intensive Care, Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Zi-Yan Wang
- Department of Intensive Care, Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Kun Zhang
- Department of Intensive Care, Affiliated Hospital of Chengde Medical University, Chengde, China
| |
Collapse
|
9
|
Werdan K, Nuding S, Kühnert D, Kolthoum R, Schott A, Quitter F, Wienke A, Sedding D. Treatment of patients with multiple organ dysfunction syndrome (MODS) with an electromagnetic field coupled to biorhythmically defined impulse configuration: the MicrocircMODS study. Clin Res Cardiol 2024; 113:260-275. [PMID: 37717230 PMCID: PMC10850207 DOI: 10.1007/s00392-023-02293-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 08/21/2023] [Indexed: 09/19/2023]
Abstract
BACKGROUND To potentially improve impaired vasomotion of patients with multiple organ dysfunction syndrome (MODS), we tested whether an electromagnetic field of low flux density coupled with a biorhythmically defined impulse configuration (Physical Vascular Therapy BEMER®, PVT), in addition to standard care, is safe and feasible and might improve disturbed microcirculatory blood flow and thereby improve global haemodynamics. METHODS In a prospective, monocentric, one-arm pilot study, 10 MODS patients (APACHE II score 20-35) were included. Patients were treated, in addition to standard care, for 4 days with PVT (3 treatment periods of 8 min each day; day 1: field intensity 10.5 μT; day 2:14 μT, day 3:17.5 μT; day 4:21.0 μT). Primary endpoint was the effect of PVT on sublingual microcirculatory perfusion, documented by microvascular flow index (MFI). Patient safety, adverse events, and outcomes were documented. RESULTS An increase in MFI by approximately 25% paralleled 4-day PVT, with the increase starting immediately after the first PVT and lasting over the total 4-day treatment period. Concerning global haemodynamics (secondary endpoints), halving vasopressor use within 24 h, and haemodynamic stabilisation paralleled 4-day PVT with an increase in cardiac index, stroke volume index, and cardiac power index by 30%-50%. No adverse events (AEs) or serious adverse events (SAEs) were classified as causally related to the medical product (PVT) or study. Three patients died within 28 days and one patient between 28 and 180 days. CONCLUSION PVT treatment was feasible and safe and could be performed without obstruction of standard patient care. An increase in microcirculatory blood flow, a rapid reduction in vasopressor use, and an improvement in global haemodynamics paralleled PVT treatment. Findings of this pilot study allowed forming a concept for a randomized trial for further proof.
Collapse
Affiliation(s)
- Karl Werdan
- Department of Internal Medicine III, University Hospital Halle (Saale), Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Strasse 40, 06097, Halle (Saale), Germany.
| | - Sebastian Nuding
- Department of Internal Medicine III, University Hospital Halle (Saale), Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Strasse 40, 06097, Halle (Saale), Germany
- Hospital St. Elisabeth and St. Barbara, 06110, Halle (Saale), Germany
| | - Diethelm Kühnert
- Department of Internal Medicine III, University Hospital Halle (Saale), Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Strasse 40, 06097, Halle (Saale), Germany
- , 04838, Zschepplin, Germany
| | - Ramzi Kolthoum
- Department of Internal Medicine III, University Hospital Halle (Saale), Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Strasse 40, 06097, Halle (Saale), Germany
| | - Artjom Schott
- Department of Internal Medicine III, University Hospital Halle (Saale), Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Strasse 40, 06097, Halle (Saale), Germany
| | | | - Andreas Wienke
- Institute of Medical Epidemiology, Biometry and Computer Science, Martin-Luther-University Halle-Wittenberg, Magdeburger Strasse 8, 06112, Halle (Saale), Germany
| | - Daniel Sedding
- Department of Internal Medicine III, University Hospital Halle (Saale), Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Strasse 40, 06097, Halle (Saale), Germany
| |
Collapse
|
10
|
Bai Y, Bai J, Lu P, Jing YM, Zheng WC, Wang LY, Wang JH, Wang F. Hirudin ameliorates myocardial ischemia-reperfusion injury in a rat model of hemorrhagic shock and resuscitation: roles of NLRP3-signaling pathway. Mol Cell Biochem 2024; 479:63-72. [PMID: 36988778 DOI: 10.1007/s11010-023-04717-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023]
Abstract
Severe hemorrhage shock and resuscitation (HSR) has been reported to induce myocardial ischemia-reperfusion injury (MIRI), resulting in a poor prognosis. Hirudin, an effective thrombin inhibitor, can offer protection against MIRI. This study aimed to determine if hirudin administration ameliorates HSR-induced MIRI and the underlying mechanism. A rat model of HSR was established by bleeding rats to a mean arterial blood pressure of 30-35 mmHg for 45 min and then resuscitating them with all the shed blood through the left femoral vein. After HSR, 1 mg/kg of hirudin was administrated immediately. At 24 h after HSR, the cardiac injury was assessed using serum CK-MB, cTnT, hematoxylin-eosin (HE) staining, echocardiography, M1-polarized macrophages, and pyroptosis-associated factors, including cleaved caspase-1, Gasdermin D (GSDMD) N-terminal, IL-1β, and IL-18 were measured by immunofluorescence and western blot assays. Nigericin, a unique agonist, was utilized to evaluate the responsibilities of NLRP3 signaling. Under the HSR condition, rats exhibited a significant increase in myocardial injury score, an elevation of serum cTnT, CK-MB levels, an aggrandization of M1-polarized macrophages, an upregulation of pyroptosis-associated factors, including cleaved caspase-1, GSDMD N-terminal, IL-1β, and IL-18, but a significant decrease in left ventricular ejection fraction (EF%) and a reduction of left ventricular fractional shortening (FS%), while hirudin administration partially restored the changes. However, the NLRP3 agonist nigericin reversed the cardioprotective effects of hirudin. We determined the cardioprotective effects of hirudin against HSR-induced MIRI. The mechanism may involve the inhibition of NLRP3-induced pyroptosis.
Collapse
Affiliation(s)
- Yang Bai
- Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China
| | - Jing Bai
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, China
| | - Peng Lu
- Department of Cardiovascular Disease, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Hebei University of Chinese Medicine, Cangzhou, China
| | - Yu-Mo Jing
- Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China
| | - Wei-Chao Zheng
- Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China
| | - Lu-Ying Wang
- Department of Anesthesia and Trauma Research, Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China
| | - Jian-Hua Wang
- Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China
| | - Feng Wang
- Department of Cardiovascular Disease, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China.
| |
Collapse
|
11
|
St. John A, Wang X, Ringgold K, Lindner J, White N, Stern S, López J. ASSESSMENT OF ABNORMAL SKELETAL MUSCLE PERFUSION BY CONTRAST-ENHANCED ULTRASOUND WITH PARAMETRIC IMAGING IN RATS AFTER SEVERE INJURY, HEMORRHAGIC SHOCK, AND WHOLE BLOOD RESUSCITATION. Shock 2024; 61:150-156. [PMID: 38010084 PMCID: PMC10841438 DOI: 10.1097/shk.0000000000002267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
ABSTRACT Background: After severe injury, optical measures of microvascular blood flow (MBF) decrease and do not normalize with resuscitation to normal blood pressure. These changes are associated with organ dysfunction, coagulopathy, and death. However, the pathophysiology is not well understood. Several possible pathways could also contribute to the development of trauma-induced coagulopathy (TIC). A small-animal model of trauma-related MBF derangement that persists after resuscitation and includes TIC would facilitate further study. Parametric contrast-enhanced ultrasound (CEUS) is particularly advantageous in this setting, because it noninvasively assesses MBF in large, deep vascular beds. We sought to develop such a model, measuring MBF with CEUS. Methods: Sixteen male Sprague-Dawley rats were anesthetized, ventilated, and cannulated. Rats were subjected to either no injury (sham group) or a standardized polytrauma and pressure-targeted arterial catheter hemorrhage with subsequent whole blood resuscitation (trauma group). At prespecified time points, CEUS measurements of uninjured quadriceps muscle, viscoelastic blood clot strength, and complete blood counts were taken. Results: After resuscitation, blood pressure normalized, but MBF decreased and remained low for the rest of the protocol. This was primarily driven by a decrease in blood volume with a relative sparing of blood velocity. Viscoelastic blood clot strength and platelet count also decreased and remained low throughout the protocol. Conclusion: We present a rat model of MBF derangement in uninjured skeletal muscle and coagulopathy after polytrauma that persists after resuscitation with whole blood to normal macrohemodynamics. Parametric CEUS analysis shows that this change is primarily due to microvascular obstruction. This platform can be used to develop a deeper understanding of this important process.
Collapse
Affiliation(s)
- Alexander St. John
- Department of Emergency Medicine, University of Washington School of Medicine, Seattle, WA
| | - Xu Wang
- Department of Emergency Medicine, University of Washington School of Medicine, Seattle, WA
| | - Kristyn Ringgold
- Department of Emergency Medicine, University of Washington School of Medicine, Seattle, WA
| | - Jonathan Lindner
- Division of Cardiovascular Medicine, University of Virginia School of Medicine, Charlottesville, VA
| | - Nathan White
- Department of Emergency Medicine, University of Washington School of Medicine, Seattle, WA
| | - Susan Stern
- Department of Emergency Medicine, University of Washington School of Medicine, Seattle, WA
| | - José López
- Bloodworks Northwest Research Institute, Seattle, WA
| |
Collapse
|
12
|
Ma X, Liu M. MiR-148b Caused Liver Injury in Rats with Traumatic Hemorrhagic Shock by Inhibiting SIRT6 Expression. Curr Mol Med 2024; 24:1390-1400. [PMID: 37587827 DOI: 10.2174/1566524023666230816112629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 08/18/2023]
Abstract
BACKGROUND The purpose of this study was to investigate the role of miR- 148b in liver injury in rats with traumatic hemorrhagic shock (THS) and to elucidate its potential mechanism. METHODS The levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in the serum of rats were detected by enzyme-linked immune sorbent assay (ELISA), and the injury of rat liver was analyzed by hematoxylin-eosin (H&E) staining. Apoptosis of rat hepatocytes and normal rat liver cell line (BRL3A) was identified by terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) assay and flow cytometry, respectively. MiR-148b and sirtuin 6 (SIRT6) expression was measured by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and Western blot. Lactate dehydrogenase (LDH) content and cell viability were measured by commercial kits and cell counting kit-8 (CCK-8) assay, respectively. The binding sites of miR-148b and SIRT6 were predicted by the Starbase database and verified by dual luciferase reporter assay. RESULTS MiR-148b expression in THS rats or ischemia-reperfusion (I/R)-treated cells was higher than in the control group. Overexpression of miR-148b further promoted the effects of I/R, which enhanced the levels of ALT, AST and LDH, cell apoptosis of liver tissue or BRL3A cells and decreased the expression of SITR6. Besides, miR-148b negatively correlated with SIRT6, and upregulated the expression of SIRT6 could partly reverse the effect of miR-148b. CONCLUSION Hepatocyte injury induced by I/R was achieved by regulating miR-148b /SIRT6 axis.
Collapse
Affiliation(s)
- Xiongfei Ma
- Department of Emergency Medicine, Xiaoshan District Hospital of Traditional Chinese Medicine and Orthopedics, Hangzhou, Zhejiang, 311261, China
| | - Mingchen Liu
- Center for General Practice Medicine, Department of Infectious Diseases, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| |
Collapse
|
13
|
Chalkias A. Shear Stress and Endothelial Mechanotransduction in Trauma Patients with Hemorrhagic Shock: Hidden Coagulopathy Pathways and Novel Therapeutic Strategies. Int J Mol Sci 2023; 24:17522. [PMID: 38139351 PMCID: PMC10743945 DOI: 10.3390/ijms242417522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Massive trauma remains a leading cause of death and a global public health burden. Post-traumatic coagulopathy may be present even before the onset of resuscitation, and correlates with severity of trauma. Several mechanisms have been proposed to explain the development of abnormal coagulation processes, but the heterogeneity in injuries and patient profiles makes it difficult to define a dominant mechanism. Regardless of the pattern of death, a significant role in the pathophysiology and pathogenesis of coagulopathy may be attributed to the exposure of endothelial cells to abnormal physical forces and mechanical stimuli in their local environment. In these conditions, the cellular responses are translated into biochemical signals that induce/aggravate oxidative stress, inflammation, and coagulopathy. Microvascular shear stress-induced alterations could be treated or prevented by the development and use of innovative pharmacologic strategies that effectively target shear-mediated endothelial dysfunction, including shear-responsive drug delivery systems and novel antioxidants, and by targeting the venous side of the circulation to exploit the beneficial antithrombogenic profile of venous endothelial cells.
Collapse
Affiliation(s)
- Athanasios Chalkias
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-5158, USA;
- Outcomes Research Consortium, Cleveland, OH 44195, USA
| |
Collapse
|
14
|
Kang HS, Khoraki J, Li R, Xu H, Archambault C, Liebrecht LK, Mangino MJ. Restoring microcirculatory perfusion in a preclinical model of severe hemorrhagic shock: The role of microcirculatory function. J Trauma Acute Care Surg 2023; 95:755-761. [PMID: 37335954 DOI: 10.1097/ta.0000000000004003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
BACKGROUND No reflow in capillaries (no reflow) is the lack of tissue perfusion that occurs once central hemodynamics are restored. This prevents oxygen transfer and debt repayment to vital tissues after shock resuscitation. Since metabolic swelling of cells and tissues can cause no reflow, it is a target for study in shock. We hypothesize no reflow secondary to metabolic cell swelling causes the problem not addressed by current strategies that increase central hemodynamics alone. METHODS Anesthetized swine were bled until plasma lactate reached 7.5 mM to 9 mM. Intravenous low volume resuscitation solutions were administered (6.8 mL/kg over 5 minutes) consisting of; (1) lactated Ringer (LR), (2) autologous whole blood, (3) high-dose vitamin C (200 mg/kg), or (4) 10% PEG-20k, a polymer-based cell impermeant that corrects metabolic cell swelling. Outcomes were macrohemodynamics (MAP), plasma lactate, capillary flow in the gut and tongue mucosa using orthogonal polarization spectral imaging (OPSI), and survival to 4 hours. RESULTS All PEG-20k resuscitated swine survived 240 minutes with MAP above 60 mm Hg compared with 50% and 0% of the whole blood and LR groups, respectively. The vitamin C group died at just over 2 hours with MAPs below 40 and high lactate. The LR swine only survived 30 minutes and died with low MAP and high lactate. Capillary flow positively correlated ( p < 0.05) with survival and MAP. Sublingual OPSI correlated with intestinal OPSI and OPSI was validated with a histological technique. DISCUSSION Targeting micro-hemodynamics in resuscitation may be more important than macrohemodynamics. Fixing both is optimal. Sublingual OPSI is clinically achievable to assess micro-hemodynamic status. Targeting tissue cell swelling that occurs during ATP depletion in shock using optimized osmotically active cell impermeants in crystalloid low volume resuscitation solutions improves perfusion in shocked tissues, which leverages a primary mechanism of injury.
Collapse
Affiliation(s)
- Hae Sung Kang
- From the Departments of Surgery, Virginia Commonwealth University, School of Medicine, Richmond, VA
| | | | | | | | | | | | | |
Collapse
|
15
|
Lala R, Homes R, Pratt S, Goodwin W, Midwinter M. Comparison of sublingual microcirculatory parameters measured by sidestream darkfield videomicroscopy in anesthetized pigs and adult humans. Animal Model Exp Med 2023; 6:499-503. [PMID: 37661363 PMCID: PMC10614120 DOI: 10.1002/ame2.12348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/11/2023] [Indexed: 09/05/2023] Open
Abstract
BACKGROUND This study aimed to compare sublingual microcirculatory parameters between anesthetized pigs and conscious adult humans using sidestream darkfield videomicroscopy. The overarching aim of the work was to validate the pig as an experimental model of changes in microcirculatory function following traumatic haemorrhagic shock and resuscitation. METHODS Fourteen large white pigs and 14 humans were recruited for the study. Sublingual sidestream darkfield videomicroscopy clips were captured in anesthetized pigs and conscious humans. Clips underwent manual analysis in Automated Vascular Analysis 3.2 software. The total vessel density (TVD), perfused vessel density (PVD), proportion of perfused vessels (PPVs) and microvascular flow index (MFI) were quantified. An independent samples t test was used for between species comparison of microcirculatory parameters. RESULTS AND CONCLUSIONS Conscious humans had a significantly lower TVD, PVD and MFI than anesthetized pigs. No significant difference in PPVs was observed between the species. Perfusion of the microcirculation is a critical determinant of tissue metabolic function and viability. Whilst it may not be surprising that some interspecies differences in the sublingual microcirculatory anatomy were identified between pig and human subjects, it is interesting to report the insignificant difference in PPVs. This direct microcirculatory measure represents a relative change which should hold translatable value across species. We therefore conclude the pig is a suitable model for microcirculatory research and may be a suitable species to investigate changes in microcirculatory perfusion following perturbations in cardiovascular homeostasis, for example during traumatic haemorrhagic shock and resuscitation.
Collapse
Affiliation(s)
- Raushan Lala
- School of Biomedical SciencesThe University of QueenslandSt LuciaQldAustralia
- School of Veterinary SciencesThe University of QueenslandGattonQldAustralia
- Jamieson Trauma Institute, Royal Brisbane and Women's HospitalHerstonQldAustralia
- Traumatic Injury Sciences GroupThe University of QueenslandSt LuciaQldAustralia
| | - Ryan Homes
- School of Biomedical SciencesThe University of QueenslandSt LuciaQldAustralia
| | - Shaun Pratt
- School of Veterinary SciencesThe University of QueenslandGattonQldAustralia
- Traumatic Injury Sciences GroupThe University of QueenslandSt LuciaQldAustralia
| | - Wendy Goodwin
- School of Veterinary SciencesThe University of QueenslandGattonQldAustralia
- Traumatic Injury Sciences GroupThe University of QueenslandSt LuciaQldAustralia
| | - Mark Midwinter
- School of Biomedical SciencesThe University of QueenslandSt LuciaQldAustralia
- School of Veterinary SciencesThe University of QueenslandGattonQldAustralia
- Jamieson Trauma Institute, Royal Brisbane and Women's HospitalHerstonQldAustralia
- Traumatic Injury Sciences GroupThe University of QueenslandSt LuciaQldAustralia
| |
Collapse
|
16
|
Homes RAP, Giddens F, Francis RS, Hubbard RE, Gordon EH, Midwinter MJ. The sublingual microcirculation and frailty index in chronic kidney disease patients. Microcirculation 2023; 30:e12819. [PMID: 37285445 PMCID: PMC10909441 DOI: 10.1111/micc.12819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/18/2023] [Accepted: 05/25/2023] [Indexed: 06/09/2023]
Abstract
OBJECTIVE To examine the relationship between sublingual microcirculatory measures and frailty index in those attending a kidney transplant assessment clinic. METHODS Patients recruited had their sublingual microcirculation taken using sidestream dark field videomicroscopy (MicroScan, Micro Vision Medical, Amsterdam, the Netherlands) and their frailty index score using a validated short form via interview. RESULTS A total of 44 patients were recruited with two being excluded due to microcirculatory image quality scores exceeding 10. The frailty index score indicated significant correlations with total vessel density (p < .0001, r = -.56), microvascular flow index (p = .004, r = -.43), portion of perfused vessels (p = .0004, r = -.52), heterogeneity index (p = .015, r = .32), and perfused vessel density (p < .0001, r = -.66). No correlation was shown between the frailty index and age (p = .08, r = .27). CONCLUSIONS There is a relationship between the frailty index and microcirculatory health in those attending a kidney transplant assessment clinic, that is not confounded by age. These findings suggest that the impaired microcirculation may be an underlying cause of frailty.
Collapse
Affiliation(s)
- Ryan A. P. Homes
- School of Biomedical Science, Faculty of MedicineThe University of QueenslandBrisbaneQueenslandAustralia
| | - Fiona Giddens
- Centre for Health Services Research, Faulty of MedicineThe University of QueenslandBrisbaneQueenslandAustralia
| | - Ross S. Francis
- Department of NephrologyPrincess Alexandra HospitalBrisbaneQueenslandAustralia
- Faculty of MedicineThe University of QueenslandBrisbaneQueenslandAustralia
| | - Ruth E. Hubbard
- Centre for Health Services Research, Faulty of MedicineThe University of QueenslandBrisbaneQueenslandAustralia
| | - Emily H. Gordon
- Centre for Health Services Research, Faulty of MedicineThe University of QueenslandBrisbaneQueenslandAustralia
| | - Mark J. Midwinter
- School of Biomedical Science, Faculty of MedicineThe University of QueenslandBrisbaneQueenslandAustralia
| |
Collapse
|
17
|
Huang W, Xiang H, Hu C, Wu T, Zhang D, Ma S, Hu B, Li J. Association of Sublingual Microcirculation Parameters and Capillary Refill Time in the Early Phase of ICU Admission. Crit Care Med 2023; 51:913-923. [PMID: 36942969 PMCID: PMC10262986 DOI: 10.1097/ccm.0000000000005851] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
OBJECTIVES This observational study was conducted to investigate capillary refill time (CRT) during the early phase of ICU admission in relationship with microvascular flow alteration and outcome in critically ill patients. DESIGN Prospective, observational, pilot study. SETTING ICU in a university hospital. PATIENTS Two hundred eighty-two critically ill adult patients admitted to the ICU. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS All patients underwent simultaneous measurements by CRT and sidestream dark field imaging within 24 hours of ICU admission. Other clinical data such as demographic characteristics, hemodynamics, laboratory values, treatment, and physiologic parameters were also included simultaneously. Microcirculatory measurements were performed at 10.2 ± 5.7 hours after ICU admission. Of the 282 included patients, 106 (37.6%) were female, the median (interquartile range) age was 63 years (53-74 yr), and the median Sequential Organ Failure Assessment (SOFA) score was 5 (2-7). The primary finding was the association between CRT and simultaneous the condition of peripheral circulation (microvascular flow index [MFI]: r = -0.4430, p < 0.001; proportion of perfused vessels: r = -0.3708, p < 0.001; heterogeneity index: r = 0.4378, p < 0.001; perfused vessel density: r = -0.1835, p = 0.0020; except total vessel density: p = 0.9641; and De Backer score: p = 0.5202) in critically ill patients. In addition, this relationship was also maintained in subgroups. Microcirculatory flow abnormalities, 28-day mortality, and SOFA score appeared to be more severe for increasing CRT. In a multivariable analysis, prolonged CRT was independently associated with microvascular flow abnormalities (MFI < 2.6; odds ratio [OR], 1.608; 95% CI, 2.1-10.2; p < 0.001). Similarly, multivariable analysis identified CRT as an independent predictor of 28-day mortality (OR, 1.296; 95% CI, 1.078-1.558; p = 0.006). CONCLUSIONS In our ICU population, a single-spot prolonged CRT was independently associated with abnormal microcirculation and increased mortality.
Collapse
Affiliation(s)
- Weipeng Huang
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan Hubei, China
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan, Hubei, China
| | - Hui Xiang
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan Hubei, China
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan, Hubei, China
| | - Chang Hu
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan Hubei, China
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan, Hubei, China
| | - Tong Wu
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan Hubei, China
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan, Hubei, China
| | - Dandan Zhang
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan Hubei, China
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan, Hubei, China
| | - Siqing Ma
- Department of Critical Care Medicine, Qinghai Provincial People's Hospital, Xining, Qinghai, China
| | - Bo Hu
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan Hubei, China
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan, Hubei, China
| | - Jianguo Li
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan Hubei, China
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan, Hubei, China
| |
Collapse
|
18
|
Chen Y, Peng JM, Hu XY, Li S, Wan XX, Liu RT, Wang CY, Jiang W, Dong R, Su LX, He HW, Long Y, Weng L, Du B. Tissue oxygen saturation is predictive of lactate clearance in patients with circulatory shock. BMC Anesthesiol 2023; 23:179. [PMID: 37231341 DOI: 10.1186/s12871-023-02139-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/14/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND Tissue oxygen saturation (StO2) decrease could appear earlier than lactate alteration. However, the correlation between StO2 and lactate clearance was unknown. METHODS This was a prospective observational study. All consecutive patients with circulatory shock and lactate over 3 mmol/L were included. Based on the rule of nines, a BSA (body surface area) weighted StO2 was calculated from four sites of StO2 (masseter, deltoid, thenar and knee). The formulation was as follows: masseter StO2 × 9% + (deltoid StO2 + thenar StO2) × (18% + 27%)/ 2 + knee StO2 × 46%. Vital signs, blood lactate, arterial and central venous blood gas were measured simultaneously within 48 h of ICU admission. The predictive value of BSA-weighted StO2 on 6-hour lactate clearance > 10% since StO2 initially monitored was assessed. RESULTS A total of 34 patients were included, of whom 19 (55.9%) had a lactate clearance higher than 10%. The mean SOFA score was lower in cLac ≥ 10% group compared with cLac < 10% group (11 ± 3 vs. 15 ± 4, p = 0.007). Other baseline characteristics were comparable between groups. Compared to non-clearance group, StO2 in deltoid, thenar and knee were significantly higher in clearance group. The area under the receiver operating curves (AUROC) of BSA-weighted StO2 for prediction of lactate clearance (0.92, 95% CI [Confidence Interval] 0.82-1.00) was significantly higher than StO2 of masseter (0.65, 95% CI 0.45-0.84; p < 0.01), deltoid (0.77, 95% CI 0.60-0.94; p = 0.04), thenar (0.72, 95% CI 0.55-0.90; p = 0.01), and similar to knee (0.87, 0.73-1.00; p = 0.40), mean StO2 (0.85, 0.73-0.98; p = 0.09). Additionally, BSA-weighted StO2 model had continuous net reclassification improvement (NRI) over the knee StO2 and mean StO2 model (continuous NRI 48.1% and 90.2%, respectively). The AUROC of BSA-weighted StO2 was 0.91(95% CI 0.75-1.0) adjusted by mean arterial pressure and norepinephrine dose. CONCLUSIONS Our results suggested that BSA-weighted StO2 was a strong predictor of 6-hour lactate clearance in patients with shock.
Collapse
Affiliation(s)
- Yan Chen
- Medical Intensive Care Unit, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Jin-Min Peng
- Medical Intensive Care Unit, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xiao-Yun Hu
- Medical Intensive Care Unit, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Shan Li
- Medical Intensive Care Unit, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xi-Xi Wan
- Medical Intensive Care Unit, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Rui-Ting Liu
- Medical Intensive Care Unit, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Chun-Yao Wang
- Medical Intensive Care Unit, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Wei Jiang
- Medical Intensive Care Unit, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Run Dong
- Medical Intensive Care Unit, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Long-Xiang Su
- Department of Critical Care Medicine, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Huai-Wu He
- Department of Critical Care Medicine, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yun Long
- Department of Critical Care Medicine, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Li Weng
- Medical Intensive Care Unit, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Bin Du
- Medical Intensive Care Unit, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| |
Collapse
|
19
|
Duranteau J, De Backer D, Donadello K, Shapiro NI, Hutchings SD, Rovas A, Legrand M, Harrois A, Ince C. The future of intensive care: the study of the microcirculation will help to guide our therapies. Crit Care 2023; 27:190. [PMID: 37193993 PMCID: PMC10186296 DOI: 10.1186/s13054-023-04474-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/03/2023] [Indexed: 05/18/2023] Open
Abstract
The goal of hemodynamic resuscitation is to optimize the microcirculation of organs to meet their oxygen and metabolic needs. Clinicians are currently blind to what is happening in the microcirculation of organs, which prevents them from achieving an additional degree of individualization of the hemodynamic resuscitation at tissue level. Indeed, clinicians never know whether optimization of the microcirculation and tissue oxygenation is actually achieved after macrovascular hemodynamic optimization. The challenge for the future is to have noninvasive, easy-to-use equipment that allows reliable assessment and immediate quantitative analysis of the microcirculation at the bedside. There are different methods for assessing the microcirculation at the bedside; all have strengths and challenges. The use of automated analysis and the future possibility of introducing artificial intelligence into analysis software could eliminate observer bias and provide guidance on microvascular-targeted treatment options. In addition, to gain caregiver confidence and support for the need to monitor the microcirculation, it is necessary to demonstrate that incorporating microcirculation analysis into the reasoning guiding hemodynamic resuscitation prevents organ dysfunction and improves the outcome of critically ill patients.
Collapse
Affiliation(s)
- J Duranteau
- Department of Anesthesiology and Intensive Care, Bicêtre Hospital, Assistance Publique Hôpitaux de Paris (AP-HP), INSERM UMR-S 999, Paris-Saclay University, Le Kremlin-Bicêtre, France.
| | - D De Backer
- Department of Intensive Care, CHIREC Hospitals, Université Libre de Bruxelles, Boulevard du Triomphe 201, 1160, Brussels, Belgium
| | - K Donadello
- Anaesthesia and Intensive Care Unit B, Department of Surgery, Dentistry, Paediatrics and Gynaecology, University of Verona, University Hospital Integrated Trust of Verona, Verona, Italy
| | - N I Shapiro
- Department of Emergency Medicine, Beth Israel Deaconess Medical Center-Harvard Medical School, Boston, MA, USA
| | - S D Hutchings
- King's College Hospital NHS Foundation Trust, London, UK
- Academic Department of Military Anaesthesia and Critical Care, Royal Centre for Defence Medicine, Birmingham, UK
| | - A Rovas
- Division of General Internal and Emergency Medicine, Nephrology, and Rheumatology, Department of Medicine D, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - M Legrand
- Division of Critical Care Medicine, Department of Anesthesia and Perioperative Care, UCSF, San Francisco, USA
| | - A Harrois
- Department of Anesthesiology and Intensive Care, Bicêtre Hospital, Assistance Publique Hôpitaux de Paris (AP-HP), INSERM UMR-S 999, Paris-Saclay University, Le Kremlin-Bicêtre, France
| | - C Ince
- Department of Intensive Care, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
20
|
Lier H, Gooßen K, Trentzsch H. [The chapters "Stop the bleed-prehospital" and "Coagulation management and volume therapy (emergency departement)" in the new S3 guideline "Polytrauma/severe injury treatment"]. Notf Rett Med 2023; 26:259-268. [PMID: 37261335 PMCID: PMC10117256 DOI: 10.1007/s10049-023-01147-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2023] [Indexed: 06/02/2023]
Abstract
The S3 guideline on the treatment of patients with severe/multiple injuries by the German Association of the Scientific Medical Societies was updated between 2020 and 2022. This article describes the essence of the new chapter "Stop the bleed-prehospital" and the revised chapter "Coagulation management and volume therapy".
Collapse
Affiliation(s)
- H. Lier
- Medizinische Fakultät und Uniklinik Köln, Klinik für Anästhesiologie und Operative Intensivmedizin, Universität zu Köln, Kerpener Straße 62, 50937 Köln, Deutschland
- Sektion „Klinische Hämotherapie und Hämostasemanagement“ der Deutschen Gesellschaft für Intensiv- und Notfallmedizin (DIVI), Schumannstr. 2, 10117, Berlin, Deutschland
| | - K. Gooßen
- Institut für Forschung in der Operativen Medizin (IFOM), Universität Witten/Herdecke, Ostmerheimer Straße 200, 51109 Köln, Deutschland
| | - H. Trentzsch
- Institut für Notfallmedizin und Medizinmanagement (INM), Klinikum der Universität München, LMU München, Schillerstr. 53, 80336 München, Deutschland
| |
Collapse
|
21
|
Ferrada P, Cannon JW, Kozar RA, Bulger EM, Sugrue M, Napolitano LM, Tisherman SA, Coopersmith CM, Efron PA, Dries DJ, Dunn TB, Kaplan LJ. Surgical Science and the Evolution of Critical Care Medicine. Crit Care Med 2023; 51:182-211. [PMID: 36661448 DOI: 10.1097/ccm.0000000000005708] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Surgical science has driven innovation and inquiry across adult and pediatric disciplines that provide critical care regardless of location. Surgically originated but broadly applicable knowledge has been globally shared within the pages Critical Care Medicine over the last 50 years.
Collapse
Affiliation(s)
- Paula Ferrada
- Division of Trauma and Acute Care Surgery, Department of Surgery, Inova Fairfax Hospital, Falls Church, VA
| | - Jeremy W Cannon
- Division of Trauma, Surgical Critical Care and Emergency Surgery, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Rosemary A Kozar
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD
| | - Eileen M Bulger
- Division of Trauma, Burn and Critical Care Surgery, Department of Surgery, University of Washington at Seattle, Harborview, Seattle, WA
| | - Michael Sugrue
- Department of Surgery, Letterkenny University Hospital, County of Donegal, Ireland
| | - Lena M Napolitano
- Division of Acute Care Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI
| | - Samuel A Tisherman
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD
| | - Craig M Coopersmith
- Division of General Surgery, Department of Surgery, Emory University, Emory Critical Care Center, Atlanta, GA
| | - Phil A Efron
- Department of Surgery, Division of Critical Care, University of Florida, Gainesville, FL
| | - David J Dries
- Department of Surgery, University of Minnesota, Regions Healthcare, St. Paul, MN
| | - Ty B Dunn
- Division of Transplant Surgery, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Lewis J Kaplan
- Division of Trauma, Surgical Critical Care and Emergency Surgery, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Corporal Michael J. Crescenz VA Medical Center, Section of Surgical Critical Care, Surgical Services, Philadelphia, PA
| |
Collapse
|
22
|
Cusack R, Leone M, Rodriguez AH, Martin-Loeches I. Endothelial Damage and the Microcirculation in Critical Illness. Biomedicines 2022; 10:biomedicines10123150. [PMID: 36551905 PMCID: PMC9776078 DOI: 10.3390/biomedicines10123150] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Endothelial integrity maintains microcirculatory flow and tissue oxygen delivery. The endothelial glycocalyx is involved in cell signalling, coagulation and inflammation. Our ability to treat critically ill and septic patients effectively is determined by understanding the underpinning biological mechanisms. Many mechanisms govern the development of sepsis and many large trials for new treatments have failed to show a benefit. Endothelial dysfunction is possibly one of these biological mechanisms. Glycocalyx damage is measured biochemically. Novel microscopy techniques now mean the glycocalyx can be indirectly visualised, using sidestream dark field imaging. How the clinical visualisation of microcirculation changes relate to biochemical laboratory measurements of glycocalyx damage is not clear. This article reviews the evidence for a relationship between clinically evaluable microcirculation and biological signal of glycocalyx disruption in various diseases in ICU. Microcirculation changes relate to biochemical evidence of glycocalyx damage in some disease states, but results are highly variable. Better understanding and larger studies of this relationship could improve phenotyping and personalised medicine in the future. Damage to the glycocalyx could underpin many critical illness pathologies and having real-time information on the glycocalyx and microcirculation in the future could improve patient stratification, diagnosis and treatment.
Collapse
Affiliation(s)
- Rachael Cusack
- Department of Intensive Care Medicine, St. James’s Hospital, James’s Street, D08 NHY1 Dublin, Ireland
- School of Medicine, Trinity College Dublin, College Green, D02 R590 Dublin, Ireland
| | - Marc Leone
- Department of Anaesthesiology and Intensive Care Unit, Hospital Nord, Assistance Publique Hôpitaux de Marseille, Aix Marseille University, 13015 Marseille, France
| | - Alejandro H. Rodriguez
- Intensive Care Unit, Hospital Universitario Joan XXIII, 43005 Tarragona, Spain
- Institut d’Investigació Sanitària Pere Virgil, 43007 Tarragona, Spain
- Departament Medicina I Cirurgia, Universitat Rovira i Virgili, 43003 Tarragona, Spain
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Ignacio Martin-Loeches
- Department of Intensive Care Medicine, St. James’s Hospital, James’s Street, D08 NHY1 Dublin, Ireland
- School of Medicine, Trinity College Dublin, College Green, D02 R590 Dublin, Ireland
- Correspondence:
| |
Collapse
|
23
|
DeBot M, Mitra S, Lutz P, Schaid TR, Stafford P, Hadley JB, Hom P, Sauaia A, Silliman CC, Moore EE, Cohen MJ. SHOCK INDUCES ENDOTHELIAL PERMEABILITY AFTER TRAUMA THROUGH INCREASED ACTIVATION OF RHOA GTPASE. Shock 2022; 58:542-548. [PMID: 36548645 PMCID: PMC9793983 DOI: 10.1097/shk.0000000000002008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
ABSTRACT Introduction: Severely injured patients develop a dysregulated inflammatory state characterized by vascular endothelial permeability, which contributes to multiple organ failure. To date, however, the mediators of and mechanisms for this permeability are not well established. Endothelial permeability in other inflammatory states such as sepsis is driven primarily by overactivation of the RhoA GTPase. We hypothesized that tissue injury and shock drive endothelial permeability after trauma by increased RhoA activation leading to break down of endothelial tight and adherens junctions. Methods: Human umbilical vein endothelial cells (HUVECs) were grown to confluence, whereas continuous resistance was measured using electrical cell-substrate impedance sensing (ECIS) Z-Theta technology, 10% ex vivo plasma from severely injured trauma patients was added, and resistance measurements continued for 2 hours. Areas under the curve (AUCs) were calculated from resistance curves. For GTPase activity analysis, HUVECs were grown to confluence and incubated with 10% trauma plasma for 5 minutes before harvesting of cell lysates. Rho and Rac activity were determined using a G-LISA assay. Significance was determined using Mann-Whitney tests or Kruskal-Wallis test, and Spearman ρ was calculated for correlations. Results: Plasma from severely injured patients induces endothelial permeability with plasma from patients with both severe injury and shock contributing most to this increased permeability. Surprisingly, Injury Severity Score (ISS) does not correlate with in vitro trauma-induced permeability (-0.05, P > 0.05), whereas base excess (BE) does correlate with permeability (-0.47, P = 0.0001). The combined impact of shock and injury resulted in a significantly smaller AUC in the injury + shock group (ISS > 15, BE < -9) compared with the injury only (ISS > 15, BE > -9; P = 0.04) or minimally injured (ISS < 15, BE > -9; P = 0.005) groups. In addition, incubation with injury + shock plasma resulted in higher RhoA activation ( P = 0.002) and a trend toward decreased Rac1 activation ( P = 0.07) compared with minimally injured control. Conclusions: Over the past decade, improved early survival in patients with severe trauma and hemorrhagic shock has led to a renewed focus on the endotheliopathy of trauma. This study presents the largest study to date measuring endothelial permeability in vitro using plasma collected from patients after traumatic injury. Here, we demonstrate that plasma from patients who develop shock after severe traumatic injury induces endothelial permeability and increased RhoA activation in vitro . Our ECIS model of trauma-induced permeability using ex vivo plasma has potential as a high throughput screening tool to phenotype endothelial dysfunction, study mediators of trauma-induced permeability, and screen potential interventions.
Collapse
Affiliation(s)
- Margot DeBot
- University of Colorado Denver, School of Medicine, Department of Surgery/Trauma Research Center, Aurora, CO
| | - Sanchayita Mitra
- University of Colorado Denver, School of Medicine, Department of Surgery/Trauma Research Center, Aurora, CO
| | - Patrick Lutz
- University of Colorado Denver, School of Medicine, Department of Surgery/Trauma Research Center, Aurora, CO
| | - Terry R. Schaid
- University of Colorado Denver, School of Medicine, Department of Surgery/Trauma Research Center, Aurora, CO
| | - Preston Stafford
- University of Colorado Denver, School of Medicine, Department of Surgery/Trauma Research Center, Aurora, CO
| | - Jamie B. Hadley
- University of Colorado Denver, School of Medicine, Department of Surgery/Trauma Research Center, Aurora, CO
| | - Patrick Hom
- University of Colorado Denver, School of Medicine, Department of Surgery/Trauma Research Center, Aurora, CO
| | - Angela Sauaia
- University of Colorado Denver, School of Medicine, Department of Surgery/Trauma Research Center, Aurora, CO
- University of Colorado Denver, School of Public Health, Management and Policy, Department of Health Systems, Aurora, CO
| | - Christopher C. Silliman
- University of Colorado Denver, School of Medicine, Department of Surgery/Trauma Research Center, Aurora, CO
| | - Ernest E. Moore
- Denver Health Medical Center, Ernest E Moore Shock Trauma Center, Denver, CO
| | - Mitchell J. Cohen
- University of Colorado Denver, School of Medicine, Department of Surgery/Trauma Research Center, Aurora, CO
| |
Collapse
|
24
|
Flick M, Schreiber TH, Montomoli J, Krause L, de Boer HD, Kouz K, Scheeren TWL, Ince C, Hilty MP, Saugel B. Microcirculatory tissue perfusion during general anaesthesia and noncardiac surgery: An observational study using incident dark field imaging with automated video analysis. Eur J Anaesthesiol 2022; 39:582-590. [PMID: 35759291 DOI: 10.1097/eja.0000000000001699] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Handheld vital microscopy allows direct observation of red blood cells within the sublingual microcirculation. Automated analysis allows quantifying microcirculatory tissue perfusion variables - including tissue red blood cell perfusion (tRBCp), a functional variable integrating microcirculatory convection and diffusion capacities. OBJECTIVE We aimed to describe baseline microcirculatory tissue perfusion in patients presenting for elective noncardiac surgery and test that microcirculatory tissue perfusion is preserved during elective general anaesthesia for noncardiac surgery. DESIGN Prospective observational study. SETTING University Medical Center Hamburg-Eppendorf, Hamburg, Germany. PATIENTS 120 elective noncardiac surgery patients (major abdominal, orthopaedic or trauma and minor urologic surgery) and 40 young healthy volunteers. MAIN OUTCOME MEASURES We measured sublingual microcirculation using incident dark field imaging with automated analysis at baseline before induction of general anaesthesia, under general anaesthesia before surgical incision and every 30 min during surgery. We used incident the dark field imaging technology with a validated automated analysis software. RESULTS A total of 3687 microcirculation video sequences were analysed. Microcirculatory tissue perfusion variables varied substantially between individuals - but ranges were similar between patients and volunteers. Under general anaesthesia before surgical incision, there were no important changes in tRBCp, functional capillary density and capillary haematocrit compared with preinduction baseline. However, total vessel density was higher and red blood cell velocity and the proportion of perfused vessels were lower under general anaesthesia. There were no important changes in any microcirculatory tissue perfusion variables during surgery. CONCLUSION In patients presenting for elective noncardiac surgery, baseline microcirculatory tissue perfusion variables vary substantially between individuals - but ranges are similar to those in young healthy volunteers. Microcirculatory tissue perfusion is preserved during general anaesthesia and noncardiac surgery - when macrocirculatory haemodynamics are maintained.
Collapse
Affiliation(s)
- Moritz Flick
- From the Department of Anesthesiology, Center of Anesthesiology and Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (MF, THS, KK, BS), Department of Intensive Care, Erasmus MC, University Medical Center, Rotterdam, the Netherlands (JM, CI), Department of Anesthesia and Intensive Care, Infermi Hospital, AUSL Romagna, Rimini, Italy (JM), Institute of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (LK), Department of Anesthesiology, Pain Medicine and Procedural Sedation and Analgesia, Martini General Hospital Groningen, Groningen, the Netherlands (HDdB), Department of Anesthesiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands (TWLS), Institute of Intensive Care Medicine, University Hospital of Zurich, Zurich, Switzerland (MH) and Outcomes Research Consortium, Cleveland, Ohio, USA (BS)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Cui L, Zhang Q, Huang Y, Yang L, Zhang J, Jiang X, Jia J, Lv Y, Zhang D, Huang Y. Impaired Retrograde Transport Due to Lack of TBC1D5 Contributes to the Trafficking Defect of Lysosomal Cathepsins in Ischemic/Hypoxic Cardiomyocytes. Front Cardiovasc Med 2022; 8:796254. [PMID: 35004909 PMCID: PMC8736705 DOI: 10.3389/fcvm.2021.796254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 11/29/2021] [Indexed: 11/25/2022] Open
Abstract
Lysosomal dysfunction has been found in many pathological conditions, and methods to improve lysosomal function have been reported to be protective against infarcted hearts. However, the mechanisms underlying lysosomal dysfunction caused by ischemic injury are far less well-established. The retromer complex is implicated in the trafficking of cation-independent mannose 6-phosphate receptor (CI-MPR), which is an important protein tag for the proper transport of lysosomal contents and therefore is important for the maintenance of lysosomal function. In this study, we found that the function of retrograde transport in cardiomyocytes was impaired with ischemia/hypoxia (I/H) treatment, which resulted in a decrease in CI-MPR and an abnormal distribution of lysosomal cathepsins. I/H treatment caused a reduction in TBC1D5 and a blockade of the Rab7 membrane cycle, which impeded retromer binding to microtubules and motor proteins, resulting in an impairment of retrograde transport and a decrease in CI-MPR. We also established that TBC1D5 was an important regulator of the distribution of lysosomal cathepsins. Our findings shed light on the regulatory role of retromer in ischemic injury and uncover the regulatory mechanism of TBC1D5 over retromer.
Collapse
Affiliation(s)
- Lin Cui
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Qiong Zhang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yao Huang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Lei Yang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Junhui Zhang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China.,Department of Endocrinology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xupin Jiang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China.,Department of Plastic Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jiezhi Jia
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yanling Lv
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Dongxia Zhang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yuesheng Huang
- Department of Wound Repair and Institute of Wound Repair, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| |
Collapse
|
26
|
Noitz M, Steinkellner C, Willingshofer MP, Szasz J, Dünser M. [The role of the microcirculation in the pathogenesis of organ dysfunction]. Dtsch Med Wochenschr 2021; 147:17-25. [PMID: 34963170 DOI: 10.1055/a-1226-9091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The microcirculation includes all blood and lymph vessels with a diameter < 100 µm. Microcirculatory dysfunction is common in critically ill patients and is closely associated with both the severity of (multi-)organ dysfunction and mortality. The nature and extent of microcirculatory dysfunction differ depending on the underlying disease and are most pronounced in patients with systemic inflammation (e. g. sepsis), specific infections (e. g. malaria, dengue) or thrombocytopenia-associated multiple organ failure. This manuscript provides an overview of the pathophysiology, monitoring and therapy of microcirculatory dysfunction in the critically ill patient.
Collapse
|
27
|
Dietrich M, Özdemir B, Gruneberg D, Petersen C, Studier-Fischer A, von der Forst M, Schmitt FCF, Fiedler MO, Nickel F, Müller-Stich BP, Brenner T, Weigand MA, Uhle F, Schmidt K. Hyperspectral Imaging for the Evaluation of Microcirculatory Tissue Oxygenation and Perfusion Quality in Haemorrhagic Shock: A Porcine Study. Biomedicines 2021; 9:1829. [PMID: 34944645 PMCID: PMC8698916 DOI: 10.3390/biomedicines9121829] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/27/2021] [Accepted: 11/29/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The ultimate goal of haemodynamic therapy is to improve microcirculatory tissue and organ perfusion. Hyperspectral imaging (HSI) has the potential to enable noninvasive microcirculatory monitoring at bedside. METHODS HSI (Tivita® Tissue System) measurements of tissue oxygenation, haemoglobin, and water content in the skin (ear) and kidney were evaluated in a double-hit porcine model of major abdominal surgery and haemorrhagic shock. Animals of the control group (n = 7) did not receive any resuscitation regime. The interventional groups were treated exclusively with either crystalloid (n = 8) or continuous norepinephrine infusion (n = 7). RESULTS Haemorrhagic shock led to a drop in tissue oxygenation parameters in all groups. These correlated with established indirect markers of tissue oxygenation. Fluid therapy restored tissue oxygenation parameters. Skin and kidney measurements correlated well. High dose norepinephrine therapy deteriorated tissue oxygenation. Tissue water content increased both in the skin and the kidney in response to fluid therapy. CONCLUSIONS HSI detected dynamic changes in tissue oxygenation and perfusion quality during shock and was able to indicate resuscitation effectivity. The observed correlation between HSI skin and kidney measurements may offer an estimation of organ oxygenation impairment from skin monitoring. HSI microcirculatory monitoring could open up new opportunities for the guidance of haemodynamic management.
Collapse
Affiliation(s)
- Maximilian Dietrich
- Department of Anesthesiology, Heidelberg University Hospital, 69120 Heidelberg, Germany; (D.G.); (C.P.); (M.v.d.F.); (F.C.F.S.); (M.O.F.); (M.A.W.); (F.U.)
| | - Berkin Özdemir
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, 69120 Heidelberg, Germany; (B.Ö.); (A.S.-F.); (F.N.); (B.P.M.-S.)
| | - Daniel Gruneberg
- Department of Anesthesiology, Heidelberg University Hospital, 69120 Heidelberg, Germany; (D.G.); (C.P.); (M.v.d.F.); (F.C.F.S.); (M.O.F.); (M.A.W.); (F.U.)
| | - Clara Petersen
- Department of Anesthesiology, Heidelberg University Hospital, 69120 Heidelberg, Germany; (D.G.); (C.P.); (M.v.d.F.); (F.C.F.S.); (M.O.F.); (M.A.W.); (F.U.)
| | - Alexander Studier-Fischer
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, 69120 Heidelberg, Germany; (B.Ö.); (A.S.-F.); (F.N.); (B.P.M.-S.)
| | - Maik von der Forst
- Department of Anesthesiology, Heidelberg University Hospital, 69120 Heidelberg, Germany; (D.G.); (C.P.); (M.v.d.F.); (F.C.F.S.); (M.O.F.); (M.A.W.); (F.U.)
| | - Felix C. F. Schmitt
- Department of Anesthesiology, Heidelberg University Hospital, 69120 Heidelberg, Germany; (D.G.); (C.P.); (M.v.d.F.); (F.C.F.S.); (M.O.F.); (M.A.W.); (F.U.)
| | - Mascha O. Fiedler
- Department of Anesthesiology, Heidelberg University Hospital, 69120 Heidelberg, Germany; (D.G.); (C.P.); (M.v.d.F.); (F.C.F.S.); (M.O.F.); (M.A.W.); (F.U.)
| | - Felix Nickel
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, 69120 Heidelberg, Germany; (B.Ö.); (A.S.-F.); (F.N.); (B.P.M.-S.)
| | - Beat Peter Müller-Stich
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, 69120 Heidelberg, Germany; (B.Ö.); (A.S.-F.); (F.N.); (B.P.M.-S.)
| | - Thorsten Brenner
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; (T.B.); (K.S.)
| | - Markus A. Weigand
- Department of Anesthesiology, Heidelberg University Hospital, 69120 Heidelberg, Germany; (D.G.); (C.P.); (M.v.d.F.); (F.C.F.S.); (M.O.F.); (M.A.W.); (F.U.)
| | - Florian Uhle
- Department of Anesthesiology, Heidelberg University Hospital, 69120 Heidelberg, Germany; (D.G.); (C.P.); (M.v.d.F.); (F.C.F.S.); (M.O.F.); (M.A.W.); (F.U.)
| | - Karsten Schmidt
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; (T.B.); (K.S.)
| |
Collapse
|
28
|
van Leeuwen ALI, Borgdorff MP, Dekker NAM, van den Brom CE. Therapeutically Targeting Microvascular Leakage in Experimental Hemorrhagic SHOCK: A Systematic Review and Meta-Analysis. Shock 2021; 56:890-900. [PMID: 33927137 DOI: 10.1097/shk.0000000000001796] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
BACKGROUND Microvascular leakage is proposed as main contributor to disturbed microcirculatory perfusion following hemorrhagic shock and fluid resuscitation, leading to organ dysfunction and unfavorable outcome. Currently, no drugs are available to reduce or prevent microvascular leakage in clinical practice. We therefore aimed to provide an overview of therapeutic agents targeting microvascular leakage following experimental hemorrhagic shock and fluid resuscitation. METHODS PubMed, EMBASE.com, and Cochrane Library were searched in January 2021 for preclinical studies of hemorrhagic shock using any therapeutic agent on top of standard fluid resuscitation. Primary outcome was vascular leakage, defined as edema, macromolecule extravasation, or glycocalyx degradation. Drugs were classified by targeting pathways and subgroup analyses were performed per organ. RESULTS Forty-five studies, published between 1973 and 2020, fulfilled eligibility criteria. The included studies tested 54 different therapeutics mainly in pulmonary and intestinal vascular beds. Most studies induced trauma besides hemorrhagic shock. Forty-four therapeutics (81%) were found effective to reduce microvascular leakage, edema formation, or glycocalyx degradation in at least one organ. Targeting oxidative stress and apoptosis was the predominantly effective strategy (SMD: -2.18, CI [-3.21, -1.16], P < 0.0001). Vasoactive agents were found noneffective in reducing microvascular leakage (SMD: -0.86, CI [-3.07, 1.36], P = 0.45). CONCLUSION Pharmacological modulation of pathways involved in cell metabolism, inflammation, endothelial barrier regulation, sex hormones and especially oxidative stress and apoptosis were effective in reducing microvascular leakage in experimental hemorrhagic shock with fluid resuscitation. Future studies should investigate whether targeting these pathways can restore microcirculatory perfusion and reduce organ injury following hemorrhagic shock. SYSTEMATIC REVIEW REGISTRATION NUMBER CRD42018095432.
Collapse
Affiliation(s)
- Anoek L I van Leeuwen
- Department of Anesthesiology, Amsterdam UMC, VU University, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
- Department of Physiology, Amsterdam UMC, VU University, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Marieke P Borgdorff
- Department of Anesthesiology, Amsterdam UMC, VU University, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Nicole A M Dekker
- Department of Anesthesiology, Amsterdam UMC, VU University, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
- Department of Physiology, Amsterdam UMC, VU University, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Charissa E van den Brom
- Department of Anesthesiology, Amsterdam UMC, VU University, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
- Department of Physiology, Amsterdam UMC, VU University, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
- Department of Intensive Care, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
29
|
Greenwood JC, Jang DH, Spelde AE, Gutsche JT, Horak J, Acker MA, Kilbaugh TJ, Shofer FS, Augoustides JG, Bakker J, Abella BS. Low Microcirculatory Perfused Vessel Density and High Heterogeneity are Associated With Increased Intensity and Duration of Lactic Acidosis After Cardiac Surgery with Cardiopulmonary Bypass. Shock 2021; 56:245-254. [PMID: 33394972 PMCID: PMC9887933 DOI: 10.1097/shk.0000000000001713] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Lactic acidosis after cardiac surgery with cardiopulmonary bypass is common and associated with an increase in postoperative morbidity and mortality. A number of potential causes for an elevated lactate after cardiopulmonary bypass include cellular hypoxia, impaired tissue perfusion, ischemic-reperfusion injury, aerobic glycolysis, catecholamine infusions, and systemic inflammatory response after exposure to the artificial cardiopulmonary bypass circuit. Our goal was to examine the relationship between early abnormalities in microcirculatory convective blood flow and diffusive capacity and lactate kinetics during early resuscitation in the intensive care unit. We hypothesized that patients with impaired microcirculation after cardiac surgery would have a more severe postoperative hyperlactatemia, represented by the lactate time-integral of an arterial blood lactate concentration greater than 2.0 mmol/L. METHODS We measured sublingual microcirculation using incident darkfield video microscopy in 50 subjects on intensive care unit admission after cardiac surgery. Serial measurements of systemic hemodynamics, blood gas, lactate, and catecholamine infusions were recorded each hour for the first 6 h after surgery. Lactate area under the curve (AUC) was calculated over the first 6 h. The lactate AUC was compared between subjects with normal and low perfused vessel density (PVD < 18 mm/mm2), high microcirculatory heterogeneity index (MHI > 0.4), and low vessel-by-vessel microvascular flow index (MFIv < 2.6). RESULTS Thirteen (26%) patients had a low postoperative PVD, 20 patients (40%) had a high MHI, and 26 (52%) patients had a low MFIv. Patients with low perfused vessel density had higher lactate AUC compared with subjects with a normal PVD (22.3 [9.4-31.0] vs. 2.6 [0-8.8]; P < 0.0001). Patients with high microcirculatory heterogeneity had a higher lactate AUC compared with those with a normal MHI (2.5 [0.1-8.2] vs. 13.1 [3.7-31.1]; P < 0.001). We did not find a difference in lactate AUC when comparing high and low MFIv. CONCLUSION Low perfused vessel density and high microcirculatory heterogeneity are associated with an increased intensity and duration of lactic acidosis after cardiac surgery with cardiopulmonary bypass.
Collapse
Affiliation(s)
- John C. Greenwood
- Division of Critical Care Medicine, Department of Emergency Medicine, Department of Anesthesiology and Critical Care, Center for Resuscitation Science, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - David H. Jang
- Division of Medical Toxicology and Critical Care Medicine, Department of Emergency Medicine, Center for Resuscitation Science, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Audrey E. Spelde
- Department of Anesthesiology and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jacob T. Gutsche
- Department of Anesthesiology and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jiri Horak
- Department of Anesthesiology and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michael A. Acker
- Division of Cardiovascular Surgery, Department of Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Todd J. Kilbaugh
- Department of Anesthesiology and Critical Care Medicine, Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Frances S. Shofer
- Department of Epidemiology and Biostatistics, Department of Emergency Medicine Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - John G.T. Augoustides
- Department of Anesthesiology and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jan Bakker
- Division of Pulmonary, Allergy, and Critical Care Medicine, Columbia University Medical Center, New York, New York
- Department of Intensive Care Adults, Erasmus MC University Medical Center, Rotterdam, the Netherlands
- Department of Intensive Medicine, The Pontifical Catholic University of Chile, Santiago, Región Metropolitana, Chile
| | - Benjamin S. Abella
- Department of Emergency Medicine, Center for Resuscitation Science, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
30
|
Cohen M, Monaghan SF. Hemorrhagic shock and fluid dynamics. Physiol Rep 2021; 9:e14813. [PMID: 33769690 PMCID: PMC7995542 DOI: 10.14814/phy2.14813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 03/02/2021] [Indexed: 11/24/2022] Open
Affiliation(s)
- Maya Cohen
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Alpert Medical School of Brown University /Rhode Island Hospital, Providence, RI, USA
| | - Sean F Monaghan
- Division of Surgical Research, Department of Surgery, Alpert Medical School of Brown University/Rhode Island Hospital, Providence, RI, USA
| |
Collapse
|
31
|
Automated Algorithm Analysis of Sublingual Microcirculation in an International Multicentral Database Identifies Alterations Associated With Disease and Mechanism of Resuscitation. Crit Care Med 2021; 48:e864-e875. [PMID: 32931192 DOI: 10.1097/ccm.0000000000004491] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Reliable automated handheld vital microscopy image sequence analysis and the identification of disease states and effects of therapy are prerequisites for the routine use of quantitative sublingual microcirculation measurements at the point-of-care. The present study aimed to clinically validate the recently introduced MicroTools software in a large multicentral database of perioperative and critically ill patients and to use this automatic algorithm to data-mine and identify the sublingual microcirculatory variable changes in response to disease and therapy. DESIGN Retrospective algorithm-based image analysis and data-mining within a large international database of sublingual capillary microscopy. Algorithm-based analysis was compared with manual analysis for validation. Thereafter, MicroTools was used to identify the functional microcirculatory alterations associated with disease conditions and identify therapeutic options for recruiting functional microcirculatory variables. SETTING Ten perioperative/ICU/volunteer studies in six international teaching hospitals. PATIENTS The database encompass 267 adult and pediatric patients undergoing surgery, treatment for sepsis, and heart failure in the ICU and healthy volunteers. INTERVENTIONS Perioperative and ICU standard of care. MEASUREMENTS AND MAIN RESULTS One thousand five hundred twenty-five handheld vital microscopy image sequences containing 149,257 microscopy images were analyzed. 3.89 × 10 RBC positions were tracked by the algorithm in real time, and offline manual analysis was performed. Good correlation and trending ability were found between manual and automatic total and functional capillary density (r = 0.6-0.8; p < 0.0001). RBC tracking within the database demonstrated changes in functional capillary density and/or RBC velocity in septic shock, heart failure, hypovolemia, obstructive shock, and hemodilution and thus detected the presence of a disease condition. Therapies recruiting the microcirculatory diffusion and convection capacity associated with systemic vasodilation and an increase in cardiac output were separately identified. CONCLUSIONS Algorithm-based analysis of the sublingual microcirculation closely matched manual analysis across a broad spectrum of populations. It successfully identified a methodology to quantify microcirculatory alterations associated with disease and the success of capillary recruitment, improving point-of-care application of microcirculatory-targeted resuscitation procedures.
Collapse
|
32
|
van Leeuwen ALI, Dekker NAM, Van Slyke P, de Groot E, Vervloet MG, Roelofs JJTH, van Meurs M, van den Brom CE. The effect of targeting Tie2 on hemorrhagic shock-induced renal perfusion disturbances in rats. Intensive Care Med Exp 2021; 9:23. [PMID: 33997943 PMCID: PMC8126531 DOI: 10.1186/s40635-021-00389-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/21/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hemorrhagic shock is associated with acute kidney injury and increased mortality. Targeting the endothelial angiopoietin/Tie2 system, which regulates endothelial permeability, previously reduced hemorrhagic shock-induced vascular leakage. We hypothesized that as a consequence of vascular leakage, renal perfusion and function is impaired and that activating Tie2 restores renal perfusion and function. METHODS Rats underwent 1 h of hemorrhagic shock and were treated with either vasculotide or PBS as control, followed by fluid resuscitation for 4 h. Microcirculatory perfusion was measured in the renal cortex and cremaster muscle using contrast echography and intravital microscopy, respectively. Changes in the angiopoietin/Tie2 system and renal injury markers were measured in plasma and on protein and mRNA level in renal tissue. Renal edema formation was determined by wet/dry weight ratios and renal structure by histological analysis. RESULTS Hemorrhagic shock significantly decreased renal perfusion (240 ± 138 to 51 ± 40, p < 0.0001) and cremaster perfusion (12 ± 2 to 5 ± 2 perfused vessels, p < 0.0001) compared to baseline values. Fluid resuscitation partially restored both perfusion parameters, but both remained below baseline values (renal perfusion 120 ± 58, p = 0.08, cremaster perfusion 7 ± 2 perfused vessels, p < 0.0001 compared to baseline). Hemorrhagic shock increased circulating angiopoietin-1 (p < 0.0001), angiopoietin-2 (p < 0.0001) and soluble Tie2 (p = 0.05), of which angiopoietin-2 elevation was associated with renal edema formation (r = 0.81, p < 0.0001). Hemorrhagic shock induced renal injury, as assessed by increased levels of plasma neutrophil gelatinase-associated lipocalin (NGAL: p < 0.05), kidney injury marker-1 (KIM-1; p < 0.01) and creatinine (p < 0.05). Vasculotide did not improve renal perfusion (p > 0.9 at all time points) or reduce renal injury (NGAL p = 0.26, KIM-1 p = 0.78, creatinine p > 0.9, renal edema p = 0.08), but temporarily improved cremaster perfusion at 3 h following start of fluid resuscitation compared to untreated rats (resuscitation + 3 h: 11 ± 3 vs 8 ± 3 perfused vessels, p < 0.05). CONCLUSION Hemorrhagic shock-induced renal impairment cannot be restored by standard fluid resuscitation, nor by activation of Tie2. Future treatment strategies should focus on reducing angiopoietin-2 levels or on activating Tie2 via an alternative strategy.
Collapse
Affiliation(s)
- Anoek L I van Leeuwen
- Department of Anesthesiology, Experimental Laboratory for Vital Signs, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Vrije Universiteit, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.,Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands.,Department of Cardiothoracic Surgery, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - Nicole A M Dekker
- Department of Anesthesiology, Experimental Laboratory for Vital Signs, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Vrije Universiteit, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.,Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands.,Department of Cardiothoracic Surgery, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | | | - Esther de Groot
- Department of Anesthesiology, Experimental Laboratory for Vital Signs, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Vrije Universiteit, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Marc G Vervloet
- Department of Nephrology, Amsterdam Cardiovascular Sciences, VU University Medical Center, Amsterdam, the Netherlands
| | - Joris J T H Roelofs
- Department of Pathology, Amsterdam Cardiovascular Sciences, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Matijs van Meurs
- Department of Pathology and Medical Biology, Medical Biology Section, University Medical Center Groningen, Groningen, The Netherlands.,Department of Critical Care Medicine, University Medical Center Groningen, Groningen, The Netherlands
| | - Charissa E van den Brom
- Department of Anesthesiology, Experimental Laboratory for Vital Signs, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Vrije Universiteit, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands. .,Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands. .,Department of Intensive Care, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
33
|
The Reproducibility of the Point of Care Microcirculation (POEM) Score When Used to Assess Critically Ill Patients: A Multicenter Prospective Observational Study. Shock 2021; 54:15-20. [PMID: 31764623 DOI: 10.1097/shk.0000000000001474] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND The current standard of analyzing microcirculatory video microscopy is time-consuming and occurs away from the patient, limiting its clinical utility. Point-of-care assessment with incident dark field (IDF) microscopy, however, may offer greater clinical applicability. We aimed to determine the reproducibility of the Point of Care Microcirculation (POEM) tool when used at the bedside in critically ill patients. METHODS A multinational, multicenter, prospective observational study of adult intubated patients was undertaken during a 9-month period in Germany, the United Kingdom, and the United States. A user recorded a batch of four standardized video clips from each patient, calculated a POEM score and recorded the time for image acquisition. A second user blinded to the first repeated this process. Patients with video clips of poor quality were excluded. At a later date, the two users again blinded themselves to reassess both their own clips and those of the other user. Basic demographic information was recorded. Intrauser reliability (an individual user rescoring the same batch of videos after blinding), interuser reliability (a second user rescoring the other user's video batch after blinding), and test-retest reliability (two users individually capturing videos and recording POEM scores) were assessed using a linearly weighted kappa statistic for ordinal data. RESULTS Sixty-five patients were included in the final analysis. Observer agreement was substantial for all tests. Intrauser agreement was 0.73 (0.95 CI 0.64-0.81), interuser agreement 0.71 (0.95 CI 0.63-0.79), and test-retest agreement 0.75 (0.95 CI 0.65-0.86). Average time to record videos and assess POEM scores 7:34 ± 3:37 minutes. CONCLUSIONS Point-of-care assessment of the microcirculation using IDF video microscopy and POEM scoring appears to be both a feasible and reproducible approach to microcirculatory assessment. Testing of the score in critically ill patients showed substantial agreement within and between investigators, but further studies should validate its utility as a tool to guide shock resuscitation.
Collapse
|
34
|
Cooper ES, Silverstein DC. Fluid Therapy and the Microcirculation in Health and Critical Illness. Front Vet Sci 2021; 8:625708. [PMID: 34055944 PMCID: PMC8155248 DOI: 10.3389/fvets.2021.625708] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 04/06/2021] [Indexed: 12/15/2022] Open
Abstract
Fluid selection and administration during shock is typically guided by consideration of macrovascular abnormalities and resuscitative targets (perfusion parameters, heart rate, blood pressure, cardiac output). However, the microcirculatory unit (comprised of arterioles, true capillaries, and venules) is vital for the effective delivery of oxygen and nutrients to cells and removal of waste products from the tissue beds. Given that the microcirculation is subject to both systemic and local control, there is potential for functional changes and impacts on tissue perfusion that are not reflected by macrocirculatory parameters. This chapter will present an overview of the structure, function and regulation of the microcirculation and endothelial surface layer in health and shock states such as trauma, hemorrhage and sepsis. This will set the stage for consideration of how these microcirculatory characteristics, and the potential disconnect between micro- and macrovascular perfusion, may affect decisions related to acute fluid therapy (fluid type, amount, and rate) and monitoring of resuscitative efforts. Available evidence for the impact of various fluids and resuscitative strategies on the microcirculation will also be reviewed.
Collapse
Affiliation(s)
- Edward S Cooper
- Department of Veterinary Clinical Sciences, Ohio State University College of Veterinary Medicine, Columbus, OH, United States
| | - Deborah C Silverstein
- Department of Clinical Studies and Advanced Medicine, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, United States
| |
Collapse
|
35
|
The effect of moderate intraoperative blood loss and norepinephrine therapy on sublingual microcirculatory perfusion in patients having open radical prostatectomy: An observational study. Eur J Anaesthesiol 2021; 38:459-467. [PMID: 33443379 DOI: 10.1097/eja.0000000000001434] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND It is not clear whether moderate intraoperative blood loss and norepinephrine used to restore the macrocirculation impair the microcirculation and affect microcirculation/macrocirculation coherence. OBJECTIVE We sought to investigate the effect of moderate intraoperative blood loss and norepinephrine therapy administered to treat intraoperative hypotension on the sublingual microcirculation. DESIGN Prospective observational study. SETTING University Medical Center Hamburg-Eppendorf, Hamburg, Germany, from November 2018 to March 2019. PATIENTS Thirty patients scheduled for open radical prostatectomy and 29 healthy volunteer blood donors. INTERVENTION Simultaneous assessment of the macrocirculation using a noninvasive finger-cuff method and the sublingual microcirculation using vital microscopy. MAIN OUTCOME MEASURES The main outcome measures were changes in the sublingual microcirculation caused by moderate intraoperative blood loss and norepinephrine therapy. RESULTS General anaesthesia decreased median [IQR] mean arterial pressure from 100 [90 to 104] to 79 [69 to 87] mmHg (P < 0.001), median heart rate from 69 [63 to 79] to 53 [44 to 62] beats per minute (P < 0.001), median cardiac index from 2.67 [2.42 to 3.17] to 2.09 [1.74 to 2.49] l min-1 m-2 (P < 0.001), and median microvascular flow index from 2.75 [2.66 to 2.85] to 2.50 [2.35 to 2.63] (P = 0.001). A median blood loss of 600 [438 to 913] ml until the time of prostate removal and norepinephrine therapy to treat intraoperative hypotension had no detrimental effect on the sublingual microcirculation: There were no clinically important changes in the microvascular flow index, the proportion of perfused vessels, the total vessel density, and the perfused vessel density. Blood donation resulted in no clinically important changes in any of the macrocirculatory or microcirculatory variables. CONCLUSION Moderate intraoperative blood loss and norepinephrine therapy administered to treat intraoperative hypotension have no detrimental effect on the sublingual microcirculation and the coherence between the macrocirculation and microcirculation in patients having open radical prostatectomy.
Collapse
|
36
|
Xantus G, Allen P, Kanizsai P. Blind spot in sepsis management - Tissue level changes in microcirculation. Physiol Int 2021. [PMID: 33844643 DOI: 10.1556/2060.2021.00011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 01/20/2021] [Indexed: 11/19/2022]
Abstract
In sepsis cytokine-mediated inflammation, clotting cascade activation and glycocalyx shedding impair both function and structure of the microcirculation, compromising adequate tissue oxygenation/perfusion. Such mismatch results in "dysoxia", an imbalance in mitochondrial respiration.Microvessel injuries can be grouped into four types: cytotoxic oedema, micro-vessel heterogeneity, sluggish/absent flow, and focal anaemia. Recognition of such diversity in microcirculatory pathology, alongside with the implementation of novel biomarkers might reveal previously unobserved heterogeneity in adults diagnosed with sepsis. Early identification of distinct subtypes may help not only to better stratify disease severity but may also provide explanation to the often seen insufficient/absent response to resuscitative treatment. Experimental evidence suggests that impaired microcirculatory flow may correlate with organ dysfunction and mortality. Therefore, reliable/reproducible diagnostic tools, that provide real-time information about the dynamic state of the microcirculation, might be practice changers in managing the critically ill.The sublingual mucosa and the nailfolds provide easy access to microcirculation via hand-held, point-of-care devices. Accessing these windows, clinicians may recognise, understand and potentially correct the underlying tissue oxygenation/perfusion mismatch. This new clinical information might facilitate an individualised approach vs protocolised care aiming to administer the right balance of intravenous fluids/vasopressors, time/dose auxiliary treatment modalities and, most importantly, might also guide determining the optimal duration of resuscitation to avoid/minimise harm and maximise benefits in sepsis management. However, before every-day clinical use of such point-of-care microcameras, validation studies are needed to establish not only feasibility but reliability and reproducibility as well.
Collapse
Affiliation(s)
- G Xantus
- 1School of Medicine, Cardiff University, Cardiff CF10 3AT, UK
| | - P Allen
- 2Rural Clinical School, College of Health and Medicine, Burnie, Tasmania, 7320, Australia
| | - P Kanizsai
- 3Department of Emergency Medicine, Clinical Centre, University of Pécs, Pécs, Hungary
| |
Collapse
|
37
|
Rovas A, Sackarnd J, Rossaint J, Kampmeier S, Pavenstädt H, Vink H, Kümpers P. Identification of novel sublingual parameters to analyze and diagnose microvascular dysfunction in sepsis: the NOSTRADAMUS study. Crit Care 2021; 25:112. [PMID: 33741036 PMCID: PMC7980588 DOI: 10.1186/s13054-021-03520-w] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 03/01/2021] [Indexed: 11/28/2022] Open
Abstract
Background The availability of handheld, noninvasive sublingual video-microscopes allows for visualization of the microcirculation in critically ill patients. Recent studies demonstrate that reduced numbers of blood-perfused microvessels and increased penetration of erythrocytes into the endothelial glycocalyx are essential components of microvascular dysfunction. The aim of this study was to identify novel microvascular variables to determine the level of microvascular dysfunction in sepsis and its relationship with clinical variables. Methods This observational, prospective, cross-sectional study included 51 participants, of which 34 critically ill sepsis patients were recruited from intensive care units of a university hospital. Seventeen healthy volunteers served as controls. All participants underwent sublingual videomicroscopy by sidestream darkfield imaging. A new developed version of the Glycocheck™ software was used to quantify vascular density, perfused boundary region (PBR-an inverse variable of endothelial glycocalyx dimensions), red blood cell (RBC) velocity, RBC content, and blood flow in sublingual microvessels with diameters between 4 and 25 µm. Results A detailed analysis of adjacent diameter classes (1 µm each) of vessels between 4 and 25 µm revealed a severe reduction of vascular density in very small capillaries (5–7 µm), which correlated with markers of sepsis severity. Analysis of RBC velocity (VRBC) revealed a strong dependency between capillary and feed vessel VRBC in sepsis patients (R2 = 0.63, p < 0.0001) but not in healthy controls (R2 = 0.04, p = 0.43), indicating impaired capillary (de-)recruitment in sepsis. This finding enabled the calculation of capillary recruitment and dynamic capillary blood volume (CBVdynamic). Moreover, adjustment of PBR to feed vessel VRBC further improved discrimination between sepsis patients and controls by about 50%. By combining these dynamic microvascular and glycocalyx variables, we developed the microvascular health score (MVHSdynamic™), which decreased from 7.4 [4.6–8.7] in controls to 1.8 [1.4–2.7] in sepsis patients (p < 0.0001) and correlated with sepsis severity. Conclusion We introduce new important diameter-specific quantification and differentiated analysis of RBC kinetics, a key to understand microvascular dysfunction in sepsis. MVHSdynamic, which has a broad bandwidth to detect microvascular (dys-) function, might serve as a valuable tool to detect microvascular impairment in critically ill patients. ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13054-021-03520-w.
Collapse
Affiliation(s)
- Alexandros Rovas
- Department of Medicine D, Division of General Internal and Emergency Medicine, Nephrology, and Rheumatology, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Jan Sackarnd
- Department of Cardiology and Angiology, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Jan Rossaint
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Stefanie Kampmeier
- Institute of Hygiene, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Hermann Pavenstädt
- Department of Medicine D, Division of General Internal and Emergency Medicine, Nephrology, and Rheumatology, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Hans Vink
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Philipp Kümpers
- Department of Medicine D, Division of General Internal and Emergency Medicine, Nephrology, and Rheumatology, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany.
| |
Collapse
|
38
|
Shen C, Wei D, Wang G, Kang Y, Yang F, Xu Q, Xia L, Liu J. Swine hemorrhagic shock model and pathophysiological changes in a desert dry-heat environment. PLoS One 2021; 16:e0244727. [PMID: 33400711 PMCID: PMC7785222 DOI: 10.1371/journal.pone.0244727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 12/15/2020] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND This study aimed to establish a traumatic hemorrhagic shock (THS) model in swine and examine pathophysiological characteristics in a dry-heat environment. METHODS Forty domestic Landrace piglets were randomly assigned to four study groups: normal temperature non-shock (NS), normal temperature THS (NTHS), desert dry-heat non-shock (DS), and desert dry-hot THS (DTHS) groups. The groups were exposed to either normal temperature (25°C) or dry heat (40.5°C) for 3 h. To induce THS, anesthetized piglets in the NTHS and DTHS groups were subjected to liver trauma and hypovolemic shock until death, and piglets in the NS and DS groups were euthanized at 11 h and 4 h, respectively. Body temperature, blood gas, cytokine production, and organ function were assessed before and after environmental exposure at 0 h and at every 30 min after shock to death. Hemodynamics was measured post exposure and post-shock at 0 h and at every 30 min after shock to death. RESULTS Survival, body temperature, oxygen delivery, oxygen consumption, and cardiac output were significantly different for traumatic hemorrhagic shock in the dry-heat groups compared to those in the normal temperature groups. Lactic acid and IL-6 had a marked increase at 0.5 h, followed by a progressive and rapid increase in the DTHS group. CONCLUSIONS Our findings suggest that the combined action of a dry-heat environment and THS leads to higher oxygen metabolism, poorer hemodynamic stability, and earlier and more severe inflammatory response with higher mortality.
Collapse
Affiliation(s)
- Caifu Shen
- Key Laboratory of Special Environmental Medicine of Xinjiang, General Hospital of Xinjiang Military Command of the Chinese People’s Liberation Army, Urumqi, China
| | - Dunhong Wei
- Key Laboratory of Special Environmental Medicine of Xinjiang, General Hospital of Xinjiang Military Command of the Chinese People’s Liberation Army, Urumqi, China
| | - Guangjun Wang
- Key Laboratory of Special Environmental Medicine of Xinjiang, General Hospital of Xinjiang Military Command of the Chinese People’s Liberation Army, Urumqi, China
| | - Yan Kang
- The 69240 Army Hospital of the Chinese People’s Liberation Army, Xinjiang, Urumqi, China
| | - Fan Yang
- Key Laboratory of Special Environmental Medicine of Xinjiang, General Hospital of Xinjiang Military Command of the Chinese People’s Liberation Army, Urumqi, China
| | - Qin Xu
- Key Laboratory of Special Environmental Medicine of Xinjiang, General Hospital of Xinjiang Military Command of the Chinese People’s Liberation Army, Urumqi, China
| | - Liang Xia
- Key Laboratory of Special Environmental Medicine of Xinjiang, General Hospital of Xinjiang Military Command of the Chinese People’s Liberation Army, Urumqi, China
| | - Jiangwei Liu
- Key Laboratory of Special Environmental Medicine of Xinjiang, General Hospital of Xinjiang Military Command of the Chinese People’s Liberation Army, Urumqi, China
| |
Collapse
|
39
|
Greenwood JC, Jang DH, Hallisey SD, Gutsche JT, Horak J, Acker MA, Bermudez CA, Zhou VL, Chatterjee S, Shofer FS, Kilbaugh TJ, Augoustides JGT, Meyer NJ, Bakker J, Abella BS. Severe Impairment of Microcirculatory Perfused Vessel Density Is Associated With Postoperative Lactate and Acute Organ Injury After Cardiac Surgery. J Cardiothorac Vasc Anesth 2021; 35:106-115. [PMID: 32505603 PMCID: PMC7666105 DOI: 10.1053/j.jvca.2020.04.045] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/20/2020] [Accepted: 04/27/2020] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Resuscitation after cardiac surgery needs to address multiple pathophysiological processes that are associated with significant morbidity and mortality. Functional microcirculatory derangements despite normal systemic hemodynamics have been previously described but must be tied to clinical outcomes. The authors hypothesized that microcirculatory dysfunction after cardiac surgery would include impaired capillary blood flow and impaired diffusive capacity and that subjects with the lowest quartile of perfused vessel density would have an increased postoperative lactate level and acute organ injury scores. DESIGN Prospective, observational study. SETTING A single, tertiary university cardiovascular surgical intensive care unit. PARTICIPANTS 25 adults undergoing elective cardiac surgery requiring cardiopulmonary bypass. INTERVENTION Sublingual microcirculation was imaged using incident dark field microscopy before and 2 to 4 hours after surgery in the intensive care unit. MEASUREMENTS AND MAIN RESULTS Compared with baseline measurements, postoperative vessel-by-vessel microvascular flow index (2.9 [2.8-2.9] v 2.5 [2.4-2.7], p < 0.0001) and perfused vessel density were significantly impaired (20.7 [19.3-22.9] v 16.3 [12.8-17.9], p < 0.0001). The lowest quartile of perfused vessel density (<12.8 mm/mm2) was associated with a significantly increased postoperative lactate level (6.0 ± 2.9 v 1.8 ± 1.2, p < 0.05), peak lactate level (7.6 ± 2.8 v 2.8 ± 1.5, p = 0.03), and sequential organ failure assessment (SOFA) score at 24 and 48 hours. CONCLUSION In patients undergoing cardiac surgery, there was a significant decrease in postoperative microcirculatory convective blood flow and diffusive capacity during early postoperative resuscitation. Severely impaired perfused vessel density, represented by the lowest quartile of distribution, is significantly related to hyperlactatemia and early organ injury.
Collapse
Affiliation(s)
- John C Greenwood
- Division of Critical Care Medicine, Department of Emergency Medicine, Department of Anesthesiology and Critical Care, Center for Resuscitation Science, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA.
| | - David H Jang
- Division of Medical Toxicology and Critical Care Medicine, Department of Emergency Medicine, Center for Resuscitation Science, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Stephen D Hallisey
- Department of Emergency Medicine, Brigham and Women's Hospital, Boston, MA
| | - Jacob T Gutsche
- Department of Anesthesiology and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Jiri Horak
- Department of Anesthesiology and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Michael A Acker
- Division of Cardiovascular Surgery, Department of Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Christian A Bermudez
- Division of Cardiovascular Surgery, Department of Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Victoria L Zhou
- Department of Emergency Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Shampa Chatterjee
- Department of Physiology, Institute for Environmental Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Frances S Shofer
- Epidemiology and Biostatistics, Department of Emergency Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Todd J Kilbaugh
- Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia, Center for Mitochondrial and Epigenomic Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - John G T Augoustides
- Department of Anesthesiology and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Nuala J Meyer
- Division of Pulmonary and Critical Care Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Jan Bakker
- Division of Pulmonary, Allergy, and Critical Care Medicine, Columbia University Medical Center, New York, NY; Department of Intensive Care Adults, Erasmus MC University Medical Center, Rotterdam, the Netherlands; Department of Intensive Medicine, The Pontifical Catholic University of Chile
| | - Benjamin S Abella
- Department of Emergency Medicine, Center for Resuscitation Science, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
40
|
van Leeuwen ALI, Naumann DN, Dekker NAM, Hordijk PL, Hutchings SD, Boer C, van den Brom CE. In vitro endothelial hyperpermeability occurs early following traumatic hemorrhagic shock. Clin Hemorheol Microcirc 2020; 75:121-133. [PMID: 31929146 PMCID: PMC7504990 DOI: 10.3233/ch-190642] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Endothelial hyperpermeability is suggested to play a role in the development of microcirculatory perfusion disturbances and organ failure following hemorrhagic shock, but evidence is limited. OBJECTIVE To study the effect of plasma from traumatic hemorrhagic shock patients on in vitro endothelial barrier function. METHODS Plasma from traumatic hemorrhagic shock patients was obtained at the emergency department (ED), the intensive care unit (ICU), 24 h after ICU admission and from controls (n = 8). Sublingual microcirculatory perfusion was measured using incident dark field videomicroscopy at matching time points. Using electric cell-substrate impedance sensing, the effects of plasma exposure on in vitro endothelial barrier function of human endothelial cells were assessed. RESULTS Plasma from traumatic hemorrhagic shock patients collected at ED admission induced a 19% loss of in vitro endothelial resistance compared to plasma from controls (p < 0.001). This loss was due to reduced cell-cell contacts (p < 0.01). Plasma withdrawn at later time points did not affect endothelial barrier function (p > 0.99). Interestingly, in vitro endothelial resistance showed a positive association with in vivo microcirculatory perfusion (r = 0.56, p < 0.01). CONCLUSIONS Plasma from traumatic hemorrhagic shock patients obtained following ED admission, but not at later stages, induced in vitro endothelial hyperpermeability. This coincided with in vivo microcirculatory perfusion disturbances.
Collapse
Affiliation(s)
- Anoek L I van Leeuwen
- Department of Anesthesiology, Experimental Laboratory for VItal Signs, Amsterdam Cardiovascular Sciences, Amsterdam UMC, VU University, Amsterdam, The Netherlands.,Department of Physiology, Experimental Laboratory for VItal Signs, Amsterdam Cardiovascular Sciences, Amsterdam UMC, VU University, Amsterdam, The Netherlands
| | - David N Naumann
- Surgical Reconstruction and Microbiology Research Centre, University Hospitals Birmingham, Queen Elizabeth Hospital, Birmingham, UK.,Academic Department of Military Anesthesia and Critical Care, Royal Centre for Defense Medicine, Birmingham, UK
| | - Nicole A M Dekker
- Department of Anesthesiology, Experimental Laboratory for VItal Signs, Amsterdam Cardiovascular Sciences, Amsterdam UMC, VU University, Amsterdam, The Netherlands.,Department of Physiology, Experimental Laboratory for VItal Signs, Amsterdam Cardiovascular Sciences, Amsterdam UMC, VU University, Amsterdam, The Netherlands
| | - Peter L Hordijk
- Department of Physiology, Experimental Laboratory for VItal Signs, Amsterdam Cardiovascular Sciences, Amsterdam UMC, VU University, Amsterdam, The Netherlands
| | - Sam D Hutchings
- Academic Department of Military Anesthesia and Critical Care, Royal Centre for Defense Medicine, Birmingham, UK.,Department of Critical Care, King's College Hospital, London, UK
| | - Christa Boer
- Department of Anesthesiology, Experimental Laboratory for VItal Signs, Amsterdam Cardiovascular Sciences, Amsterdam UMC, VU University, Amsterdam, The Netherlands
| | - Charissa E van den Brom
- Department of Anesthesiology, Experimental Laboratory for VItal Signs, Amsterdam Cardiovascular Sciences, Amsterdam UMC, VU University, Amsterdam, The Netherlands.,Department of Physiology, Experimental Laboratory for VItal Signs, Amsterdam Cardiovascular Sciences, Amsterdam UMC, VU University, Amsterdam, The Netherlands
| |
Collapse
|
41
|
van Leeuwen ALI, Dekker NAM, Jansma EP, Boer C, van den Brom CE. Therapeutic interventions to restore microcirculatory perfusion following experimental hemorrhagic shock and fluid resuscitation: A systematic review. Microcirculation 2020; 27:e12650. [PMID: 32688443 PMCID: PMC7757213 DOI: 10.1111/micc.12650] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 07/07/2020] [Accepted: 07/13/2020] [Indexed: 12/11/2022]
Abstract
Objective Microcirculatory perfusion disturbances following hemorrhagic shock and fluid resuscitation contribute to multiple organ dysfunction and mortality. Standard fluid resuscitation is insufficient to restore microcirculatory perfusion; however, additional therapies are lacking. We conducted a systematic search to provide an overview of potential non‐fluid‐based therapeutic interventions to restore microcirculatory perfusion following hemorrhagic shock. Methods A structured search of PubMed, EMBASE, and Cochrane Library was performed in March 2020. Animal studies needed to report at least one parameter of microcirculatory flow (perfusion, red blood cell velocity, functional capillary density). Results The search identified 1269 records of which 48 fulfilled all eligibility criteria. In total, 62 drugs were tested of which 29 were able to restore microcirculatory perfusion. Particularly, complement inhibitors (75% of drugs tested successfully restored blood flow), endothelial barrier modulators (100% successful), antioxidants (66% successful), drugs targeting cell metabolism (83% successful), and sex hormones (75% successful) restored microcirculatory perfusion. Other drugs consisted of attenuation of inflammation (100% not successful), vasoactive agents (68% not successful), and steroid hormones (75% not successful). Conclusion Improving mitochondrial function, inhibition of complement inhibition, and reducing microvascular leakage via restoration of endothelial barrier function seem beneficial to restore microcirculatory perfusion following hemorrhagic shock and fluid resuscitation.
Collapse
Affiliation(s)
- Anoek L I van Leeuwen
- Department of Anesthesiology, Experimental Laboratory for VItal Signs, Amsterdam UMC, Vrije Universiteit, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands.,Department of Physiology, Amsterdam UMC, Vrije Universiteit, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Nicole A M Dekker
- Department of Anesthesiology, Experimental Laboratory for VItal Signs, Amsterdam UMC, Vrije Universiteit, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands.,Department of Physiology, Amsterdam UMC, Vrije Universiteit, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Elise P Jansma
- Department of Epidemiology and Biostatistics, Amsterdam UMC, Vrije Universiteit, Amsterdam Public Health research institute, Amsterdam, The Netherlands.,Medical Library, Vrije Universiteit, Amsterdam, The Netherlands
| | - Christa Boer
- Department of Anesthesiology, Experimental Laboratory for VItal Signs, Amsterdam UMC, Vrije Universiteit, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Charissa E van den Brom
- Department of Anesthesiology, Experimental Laboratory for VItal Signs, Amsterdam UMC, Vrije Universiteit, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands.,Department of Physiology, Amsterdam UMC, Vrije Universiteit, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| |
Collapse
|
42
|
Merz T, Denoix N, Huber-Lang M, Singer M, Radermacher P, McCook O. Microcirculation vs. Mitochondria-What to Target? Front Med (Lausanne) 2020; 7:416. [PMID: 32903633 PMCID: PMC7438707 DOI: 10.3389/fmed.2020.00416] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 06/29/2020] [Indexed: 01/02/2023] Open
Abstract
Circulatory shock is associated with marked disturbances of the macro- and microcirculation and flow heterogeneities. Furthermore, a lack of tissue adenosine trisphosphate (ATP) and mitochondrial dysfunction are directly associated with organ failure and poor patient outcome. While it remains unclear if microcirculation-targeted resuscitation strategies can even abolish shock-induced flow heterogeneity, mitochondrial dysfunction and subsequently diminished ATP production could still lead to organ dysfunction and failure even if microcirculatory function is restored or maintained. Preserved mitochondrial function is clearly associated with better patient outcome. This review elucidates the role of the microcirculation and mitochondria during circulatory shock and patient management and will give a viewpoint on the advantages and disadvantages of tailoring resuscitation to microvascular or mitochondrial targets.
Collapse
Affiliation(s)
- Tamara Merz
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University Medical Center, Ulm, Germany
| | - Nicole Denoix
- Clinic for Psychosomatic Medicine and Psychotherapy, Ulm University Medical Center, Ulm, Germany
| | - Markus Huber-Lang
- Institute for Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany
| | - Mervyn Singer
- Bloomsbury Institute for Intensive Care Medicine, University College London, London, United Kingdom
| | - Peter Radermacher
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University Medical Center, Ulm, Germany
| | - Oscar McCook
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
43
|
Superior Survival Outcomes of a Polyethylene Glycol-20k Based Resuscitation Solution in a Preclinical Porcine Model of Lethal Hemorrhagic Shock. Ann Surg 2020; 275:e716-e724. [PMID: 32773641 DOI: 10.1097/sla.0000000000004070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To compare early outcomes and 24-hour survival after LVR with the novel polyethylene glycol-20k-based crystalloid (PEG-20k), WB, or hextend in a preclinical model of lethal HS. BACKGROUND Posttraumatic HS is a major cause of preventable death. Current resuscitation strategies focus on restoring oxygen-carrying capacity (OCC) and coagulation with blood products. Our lab shows that PEG-20k is an effective non-sanguineous, LVR solution in acute models of HS through mechanisms targeting cell swelling-induced microcirculatory failure. METHODS Male pigs underwent splenectomy followed by controlled hemorrhage until lactate reached 7.5-8.5 mmol/L. They were randomized to receive LVR with PEG-20k, WB, or Hextend. Surviving animals were recovered 4 hours post-LVR. Outcomes included 24-hour survival rates, mean arterial pressure, lactate, hemoglobin, and estimated intravascular volume changes. RESULTS Twenty-four-hour survival rates were 100%, 16.7%, and 0% in the PEG-20k, WB, and Hextend groups, respectively (P = 0.001). PEG-20k significantly restored mean arterial press, intravascular volume, and capillary perfusion to baseline, compared to other groups. This caused complete lactate clearance despite decreased OCC. Neurological function was normal after next-day recovery in PEG-20k resuscitated pigs. CONCLUSION Superior early and 24-hour outcomes were observed with PEG-20k LVR compared to WB and Hextend in a preclinical porcine model of lethal HS, despite decreased OCC from substantial volume-expansion. These findings demonstrate the importance of enhancing microcirculatory perfusion in early resuscitation strategies.
Collapse
|
44
|
Bruno RR, Reed M, Bimpong-Buta NY, Muessig JM, Masyuk M, Binneboessel S, Franz M, Kelm M, Jung C. Sublingual microcirculation in prehospital critical care medicine: A proof-of-concept study. Microcirculation 2020; 27:e12614. [PMID: 32065682 DOI: 10.1111/micc.12614] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/11/2020] [Accepted: 02/14/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Diagnostic and risk stratification are limited in emergencies. The measurement of microcirculation might identify patients with poor perfusion but compensated macrocirculation such as in beginning shock. This proof-of-concept study examines whether sublingual prehospital sidestream dark-field microscopy is feasible. METHODS This prospective observational study included patients receiving medical aid by an emergency ambulance who had a spontaneous circulation and offered access to the sublingual mucosa. Sublingual measurement of microcirculation was performed using a sidestream dark field camera. Video quality was evaluated with microcirculation image quality score (microcirculation image quality score). AVA 4.3C software calculated microcirculatory parameters. RESULTS Thirty patients (47% male) were included. The average age was 63 years (±20 years SD), the severity of the disease (quantified by National Advisory Committee on Aeronautics) was 3.4 (±0.7 SD). Macrocirculation presented within the normal range. The most frequent cause preventing the measurement was a time-critical disease (64%). In 17 patients (57%), the videos could be analyzed immediately. The average quality of the video was 2.2 ± 0.45 points ('acceptable'). There were minor restrictions of microcirculation. Microcirculation correlated with National Advisory Committee on Aeronautics, but not with the macrocirculation. No complications occurred. CONCLUSION The prehospital sublingual measurement is safe and valid. Despite normal macrocirculation, microcirculation was impaired and correlated with National Advisory Committee on Aeronautics.
Collapse
Affiliation(s)
- Raphael Romano Bruno
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Hospital Düsseldorf, Dusseldorf, Germany
| | - Markus Reed
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Hospital Düsseldorf, Dusseldorf, Germany
| | - Nana-Yaw Bimpong-Buta
- Clinic for Cardiology, Electrophysiology and Internal Intensive Care Medicine, EVK Hagen-Haspe, Hagen, Germany
| | - Johanna M Muessig
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Hospital Düsseldorf, Dusseldorf, Germany
| | - Maryna Masyuk
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Hospital Düsseldorf, Dusseldorf, Germany
| | - Stephan Binneboessel
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Hospital Düsseldorf, Dusseldorf, Germany
| | - Marcus Franz
- Clinic for Cardiology, Internal Intensive Care Medicine, Angiology, Pneumology/Allergology, University Hospital Jena, Jena, Germany
| | - Malte Kelm
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Hospital Düsseldorf, Dusseldorf, Germany.,Cardiovascular Research Institute Düsseldorf, Düsseldorf, Germany
| | - Christian Jung
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Hospital Düsseldorf, Dusseldorf, Germany
| |
Collapse
|
45
|
Varis E, Pettilä V, Wilkman E. Near-Infrared Spectroscopy in Adult Circulatory Shock: A Systematic Review. J Intensive Care Med 2020; 35:943-962. [PMID: 32077780 DOI: 10.1177/0885066620907307] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Circulatory shock affects every third patient in intensive care units and is associated with high mortality. Near-infrared spectroscopy (NIRS) could serve as a means for monitoring tissue perfusion in circulatory shock. PURPOSE To assess the evidence of NIRS monitoring in circulatory shock, we conducted a systematic review of the literature. METHODS The study protocol was registered in International Prospective Register of Systematic Reviews (PROSPERO). We searched PubMed, Ovid MEDLINE, Scopus, and EBM Reviews databases. The reference lists of included articles, last volumes of key journals, and NIRS monitor manufacturers' webpages were searched manually. Two reviewers independently selected included studies. The quality of studies was assessed. The qualitative synthesis was guided by 3 questions: First, does NIRS monitoring improve patient-centered outcomes in adult circulatory shock patient? Second, do NIRS-derived parameters predict patient-centered outcomes, such as mortality and organ dysfunction, and third, does NIRS monitoring give additional information to guide treatment decisions? MAIN RESULTS Eighteen observational studies with 927 patients were included. Because of considerable clinical heterogeneity of the data, we were not able to perform a meta-analysis. Also, due to lack of randomized controlled trials, the first review question could not be answered. Based on the current review, baseline tissue oxygen saturation (StO2) however seems to predict mortality and identify patients with most severe forms of circulatory shock. CONCLUSIONS Near-infrared spectroscopy-derived StO2 can predict mortality in circulatory shock, but high-quality data on the impact of NIRS monitoring are lacking. Furthermore, the marked heterogeneity of the studies makes combining the results of individual studies difficult. Standardization of methodology and clinical randomized trials are needed before wider clinical use.
Collapse
Affiliation(s)
- Elina Varis
- Department of Anesthesiology, 89593Intensive Care and Pain Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Ville Pettilä
- Department of Anesthesiology, 89593Intensive Care and Pain Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Erika Wilkman
- Department of Anesthesiology, 89593Intensive Care and Pain Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
46
|
Chen Y, Xu Z, Song Q, Wang Z, Ji Z, Qiu Z, Cheng F, Jiang H. [Mechanism of ulinastatin in reducing lung inflammatory injury in rats with hemorrhagic shock]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 39:1232-1238. [PMID: 31801723 DOI: 10.12122/j.issn.1673-4254.2019.10.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate the effect of ulinastatin on the inflammatory mediators and their signaling pathways miR-146a/TLR4/NF-κB in rats with hemorrhagic shock. METHODS Seventy-two SD rats were randomly assigned into shock without resuscitation group (SR group, n=24), acetated Ringer's solution resuscitation group (AR group, n=24) and ulinastatin treatment group (n=24). In all the 3 groups hemorrhagic shock models were established by femoral artery bleeding (with the mean arterial pressure maintained at 30-40 mmHg) without resuscitation (in SR group) or with resuscitation (in AR and ulinastatin groups) using acetated Ringer's solution for 30 min at 60 min after the onset of shock. At 1, 4, and 6 h after the shock onset or immediately after shock if the rats died, the lung tissues were taken for measurement of mRNA expressions of miR-146a, tumor necrosis factor-α (TNF-α), interleukin-1 (IL-1), IL-4, IL-6 and IL-10 using real-time quantitative PCR and the protein expressions of TLR4, MyD88, IκB-α, p-IκB-α, NF-κB p65, IRAK4, p-IRAK4 (Thr345, Ser346), p-IRAK4 (Thr342) and TRAF6 using Western blotting. The lung histopathology of the rats was examined under optical microscope with HE staining. RESULTS Compared with the SR group, the rats in the AR group showed slightly alleviated inflammatory infiltration in the lung tissues with significantly increased mRNA levels of miR-146a, IL-4 and IL-10 (P < 0.05) and protein expressions of IκB-α, p-IRAK4 (Thr342) and p-IRAK4 (Thr345, ser346) (P < 0.05), and decreased mRNA levels of TNF-α, IL-1 and IL-6 (P < 0.05) and protein expressions of TLR4, MyD88, NF-κB p65, p-IκB-α, IRAK-4 and TRAF6 (P < 0.05). Compared with those in AR group, the rats in ulinastatin group showed further alleviation of inflammatory lung tissue injury, with increased mRNA levels of miR-146a, IL-4 and IL-10 (P < 0.01) and protein expressions of IκB-α, p-IRAK4 and p-IRAK4 (P < 0.01) and decreased mRNA levels of TNF-α, IL-1 and IL-6 (P < 0.01) and protein expressions of TLR4, MyD88, NF-κB p65, p-IκB-α, IRAK-4 and TRAF6 (P < 0.01). CONCLUSIONS Ulinastatin combined with acetated Ringer's solution resuscitation alleviates lung inflammations in rats with hemorrhagic shock possibly by enhancing miR-146a expression to regulate TLR4/NF-κB signaling pathway through a negative feedback mechanism and thus modulate the balance of pro-inflammatory and anti-inflammatory factors.
Collapse
Affiliation(s)
- Ying Chen
- Department of Emergency Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, China
| | - Zhipeng Xu
- Department of Emergency Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, China
| | - Qi Song
- Department of Emergency Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, China
| | - Zhenjie Wang
- Department of Emergency Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, China
| | - Zhong Ji
- Department of Emergency Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, China
| | - Zhaolei Qiu
- Department of Emergency Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, China
| | - Feng Cheng
- Department of Emergency Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, China
| | - Hai Jiang
- Department of Emergency Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, China
| |
Collapse
|