1
|
Yamashita T, Street JM, Halasa BC, Naito Y, Tsuji T, Tsuji N, Hayase N, Yuen PST, Star RA. The effect of continuous intravenous norepinephrine infusion on systemic hemodynamics in a telemetrically-monitored mouse model of sepsis. PLoS One 2022; 17:e0271667. [PMID: 35951593 PMCID: PMC9371331 DOI: 10.1371/journal.pone.0271667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 07/06/2022] [Indexed: 11/19/2022] Open
Abstract
Sepsis, a life-threatening organ dysfunction, results from dysregulated host responses to infection and still has a high incidence and mortality. Although administration of vasopressors to treat septic shock is standard of care, the benefits are not well established. We evaluated the effect of continuous intravenous norepinephrine infusion in a septic cecal ligation and puncture (CLP) mouse model, evaluating systemic hemodynamics and body temperature post-hoc. CLP surgery significantly decreased mean arterial blood pressure (MAP), heart rate, and body temperature within six hours. Continuous norepinephrine infusion (NE+, n = 12) started at the time of CLP surgery significantly increased MAP at 24 and 30 hours and heart rate at 6, 18, 24, and 30 hours after CLP vs CLP alone (NE-, n = 12). However, addition of norepinephrine did not improve survival rate (NE+ n = 34, NE- n = 31). Early (6 hours or earlier, when the animal became visibly sick) MAP did not predict 7-day mortality. However, heart rates at 3 and at 6 hours after CLP/norepinephrine (NE+) were highly predictive of mortality, as also been found in one clinical study. We conclude that limited hemodynamic support can be provided in a mouse sepsis model. We propose that heart rate can be used to stratify severity of illness in rodent preclinical studies of sepsis therapeutics.
Collapse
Affiliation(s)
- Tetsushi Yamashita
- Renal Diagnostics and Therapeutics Unit, NIDDK, NIH, Bethesda, Maryland, United States of America
| | - Jonathan M. Street
- Renal Diagnostics and Therapeutics Unit, NIDDK, NIH, Bethesda, Maryland, United States of America
| | - Brianna C. Halasa
- Renal Diagnostics and Therapeutics Unit, NIDDK, NIH, Bethesda, Maryland, United States of America
| | - Yoshitaka Naito
- Renal Diagnostics and Therapeutics Unit, NIDDK, NIH, Bethesda, Maryland, United States of America
| | - Takayuki Tsuji
- Renal Diagnostics and Therapeutics Unit, NIDDK, NIH, Bethesda, Maryland, United States of America
| | - Naoko Tsuji
- Renal Diagnostics and Therapeutics Unit, NIDDK, NIH, Bethesda, Maryland, United States of America
| | - Naoki Hayase
- Renal Diagnostics and Therapeutics Unit, NIDDK, NIH, Bethesda, Maryland, United States of America
| | - Peter S. T. Yuen
- Renal Diagnostics and Therapeutics Unit, NIDDK, NIH, Bethesda, Maryland, United States of America
- * E-mail:
| | - Robert A. Star
- Renal Diagnostics and Therapeutics Unit, NIDDK, NIH, Bethesda, Maryland, United States of America
| |
Collapse
|
2
|
Couse Z, Cui X, Li Y, Moayeri M, Leppla S, Eichacker PQ. A Review of the Efficacy of FDA-Approved B. anthracis Anti-Toxin Agents When Combined with Antibiotic or Hemodynamic Support in Infection- or Toxin-Challenged Preclinical Models. Toxins (Basel) 2021; 13:53. [PMID: 33450877 PMCID: PMC7828353 DOI: 10.3390/toxins13010053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/05/2021] [Accepted: 01/09/2021] [Indexed: 12/29/2022] Open
Abstract
Anti-toxin agents for severe B. anthracis infection will only be effective if they add to the benefit of the two mainstays of septic shock management, antibiotic therapy and titrated hemodynamic support. Both of these standard therapies could negate benefits related to anti-toxin treatment. At present, three anthrax anti-toxin antibody preparations have received US Food and Drug Administration (FDA) approval: Raxibacumab, Anthrax Immune Globulin Intravenous (AIGIV) and ETI-204. Each agent is directed at the protective antigen component of lethal and edema toxin. All three agents were compared to placebo in antibiotic-treated animal models of live B. anthracis infection, and Raxibacumab and AIGIV were compared to placebo when combined with standard hemodynamic support in a 96 h canine model of anthrax toxin-associated shock. However, only AIG has actually been administered to a group of infected patients, and this experience was not controlled and offers little insight into the efficacy of the agents. To provide a broader view of the potential effectiveness of these agents, this review examines the controlled preclinical experience either in antibiotic-treated B. anthracis models or in titrated hemodynamic-supported toxin-challenged canines. The strength and weaknesses of these preclinical experiences are discussed.
Collapse
Affiliation(s)
- Zoe Couse
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA; (Z.C.); (X.C.); (Y.L.)
| | - Xizhong Cui
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA; (Z.C.); (X.C.); (Y.L.)
| | - Yan Li
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA; (Z.C.); (X.C.); (Y.L.)
| | - Mahtab Moayeri
- National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (M.M.); (S.L.)
| | - Stephen Leppla
- National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (M.M.); (S.L.)
| | - Peter Q. Eichacker
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA; (Z.C.); (X.C.); (Y.L.)
| |
Collapse
|
3
|
Wang CH, Chang WT, Huang CH, Tsai MS, Liu SH, Chen WJ. Cerebral Blood Flow-Guided Manipulation of Arterial Blood Pressure Attenuates Hippocampal Apoptosis After Asphyxia-Induced Cardiac Arrest in Rats. J Am Heart Assoc 2020; 9:e016513. [PMID: 32552439 PMCID: PMC7670514 DOI: 10.1161/jaha.120.016513] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Background In most post-cardiac arrest patients, the autoregulation mechanism of cerebral blood flow (CBF) is dysregulated. We examined whether recovery of CBF by adjusting mean arterial pressure mitigates post-cardiac arrest neuronal damage. Methods and Results Wistar rats that underwent 8-minute asphyxia-induced cardiac arrest and resuscitation were computer-randomized to norepinephrine or control groups. The CBF was measured at the dorsal hippocampal CA1 region of the left hemisphere. In the norepinephrine group, the mean arterial pressure was adjusted to recover CBF to 80% to 100% of baseline. Twenty-four hours following resuscitation, neurological outcomes were assessed, and brain tissues and blood samples were harvested for neuronal apoptosis and injury assessment. Thirty resuscitated rats were randomized into 2 groups, each containing 12 rats that completed the experiments. Norepinephrine infusion effectively prevented posthyperemia hypoperfusion and recovered CBF to pre-arrest baseline levels; a moderate positive linear correlation between mean arterial pressure and CBF during this period was also observed (P<0.001). There were no significant between-group differences in neurological recovery. In the norepinephrine group compared with the control group, upregulated cleaved caspase-3 protein expression in brain tissue determined by Western blot was reduced (P=0.02) and the densities of apoptotic cells in hippocampal CA1 and CA3 regions determined by terminal deoxynucleotidyl transferase-mediated dUTP biotin nick-end labeling were decreased (P<0.001). No significant differences in serum neuron-specific enolase or S100β levels were detected between the 2 groups. Conclusions CBF recovery demonstrated neuroprotective effects by reducing activation of cerebral apoptosis and number of apoptotic neurons. However, these effects did not significantly improve clinical neurological function, necessitating further investigation.
Collapse
Affiliation(s)
- Chih-Hung Wang
- Department of Emergency Medicine National Taiwan University Hospital Taipei Taiwan.,Department of Emergency Medicine College of Medicine National Taiwan University Taipei Taiwan
| | - Wei-Tien Chang
- Department of Emergency Medicine National Taiwan University Hospital Taipei Taiwan.,Department of Emergency Medicine College of Medicine National Taiwan University Taipei Taiwan
| | - Chien-Hua Huang
- Department of Emergency Medicine National Taiwan University Hospital Taipei Taiwan.,Department of Emergency Medicine College of Medicine National Taiwan University Taipei Taiwan
| | - Min-Shan Tsai
- Department of Emergency Medicine National Taiwan University Hospital Taipei Taiwan.,Department of Emergency Medicine College of Medicine National Taiwan University Taipei Taiwan
| | - Shing-Hwa Liu
- Institute of Toxicology College of Medicine National Taiwan University Taipei Taiwan.,Department of Medical Research China Medical University Hospital China Medical University Taichung Taiwan.,Department of Pediatrics National Taiwan University Hospital Taipei Taiwan
| | - Wen-Jone Chen
- Department of Emergency Medicine National Taiwan University Hospital Taipei Taiwan.,Department of Emergency Medicine College of Medicine National Taiwan University Taipei Taiwan.,Division of Cardiology Department of Internal Medicine National Taiwan University Hospital and National Taiwan University College of Medicine Taipei Taiwan
| |
Collapse
|
4
|
Suffredini DA, Li Y, Xu W, Moayeri M, Leppla S, Fitz Y, Cui X, Eichacker PQ. Shock and lethality with anthrax edema toxin in rats are associated with reduced arterial responsiveness to phenylephrine and are reversed with adefovir. Am J Physiol Heart Circ Physiol 2017; 313:H946-H958. [PMID: 28887331 DOI: 10.1152/ajpheart.00285.2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 08/22/2017] [Accepted: 08/24/2017] [Indexed: 12/18/2022]
Abstract
Although edema toxin (ETx) and lethal toxin (LTx) contribute to Bacillus anthracis shock and lethality, the mechanisms underlying their cardiovascular effects are unclear. We have previously shown that ETx but not LTx inhibited phenylephrine-stimulated contraction of aortic rings prepared from healthy rats and that adefovir, a selective inhibitor of ETx cAMP production, blocked this effect. Here, we examined arterial function in rats that received 24-h ETx or LTx infusions. Compared with control rats, ETx reduced mean arterial pressure (MAP) and survival over 48 h (P ≤ 0.0003) and increased plasma cAMP at 4, 24, and 48 h (P < 0.0001) and nitric oxide (NO) at 24 and 48 h (P ≤ 0.01). Compared with control animals, at 24- and 48-h phenylephrine stimulation of aortic rings from ETx animals produced decreased maximal contractile force (MCF; P = 0.05 and 0.006) and in vivo phenylephrine infusion in ETx animals produced decreased proportional increases in MAP (P < 0.0001 and P = 0.05). In ETx-treated animals, compared with placebo-treated animals, adefovir treatment prevented all lethality (P = 0.01), increased MAP (P ≤ 0.0001), decreased plasma and aortic tissue cAMP at 24 and 48 h, respectively (P ≤ 0.03), and plasma NO at both times (P ≤ 0.004), and increased phenylephrine-stimulated increases in MCF in aortic rings and MAP in vivo at 48 h (P = 0.02). LTx decreased MAP and survival also, but it did not alter the response to phenylephrine of MCF in aortic rings prepared from LTx animals or of MAP in vivo. In conclusion, in rats, hypotension and lethality are associated with reduced arterial contractile function with ETx but not LTx and adefovir improves ETx-induced hypotension and lethality.NEW & NOTEWORTHY The most important aspects of the present study are the findings that 1) in vivo challenge with anthrax edema but not lethal toxin depresses arterial contractile function measured both ex vivo and in vivo and 2) adefovir inhibits the effects of edema toxin on arterial hypotension and improves survival with lethal dose of edema toxin challenge.
Collapse
Affiliation(s)
- Dante A Suffredini
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland; and
| | - Yan Li
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland; and
| | - Wanying Xu
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland; and
| | - Mahtab Moayeri
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Stephen Leppla
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Yvonne Fitz
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland; and
| | - Xizhong Cui
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland; and
| | - Peter Q Eichacker
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland; and
| |
Collapse
|
5
|
Ogawa Y, Irukayama-Tomobe Y, Murakoshi N, Kiyama M, Ishikawa Y, Hosokawa N, Tominaga H, Uchida S, Kimura S, Kanuka M, Morita M, Hamada M, Takahashi S, Hayashi Y, Yanagisawa M. Peripherally administered orexin improves survival of mice with endotoxin shock. eLife 2016; 5. [PMID: 28035899 PMCID: PMC5245965 DOI: 10.7554/elife.21055] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 12/29/2016] [Indexed: 12/22/2022] Open
Abstract
Sepsis is a systemic inflammatory response to infection, accounting for the most common cause of death in intensive care units. Here, we report that peripheral administration of the hypothalamic neuropeptide orexin improves the survival of mice with lipopolysaccharide (LPS) induced endotoxin shock, a well-studied septic shock model. The effect is accompanied by a suppression of excessive cytokine production and an increase of catecholamines and corticosterone. We found that peripherally administered orexin penetrates the blood-brain barrier under endotoxin shock, and that central administration of orexin also suppresses the cytokine production and improves the survival, indicating orexin's direct action in the central nervous system (CNS). Orexin helps restore body temperature and potentiates cardiovascular function in LPS-injected mice. Pleiotropic modulation of inflammatory response by orexin through the CNS may constitute a novel therapeutic approach for septic shock.
Collapse
Affiliation(s)
- Yasuhiro Ogawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Yoko Irukayama-Tomobe
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Nobuyuki Murakoshi
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Maiko Kiyama
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Yui Ishikawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Naoto Hosokawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Hiromu Tominaga
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Shuntaro Uchida
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Saki Kimura
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Mika Kanuka
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Miho Morita
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Michito Hamada
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Satoru Takahashi
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yu Hayashi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan.,Department of Molecular Genetics and Howard Hughes Medical Institute, Unversity of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
6
|
Inoue K, Suzuki T, Igarashi T, Minamishima S, Seki H, Kosugi S, Katori N, Morisaki H. Deep anesthesia worsens outcome of rats with inflammatory responses. Inflamm Res 2016; 65:563-71. [PMID: 27001561 DOI: 10.1007/s00011-016-0940-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 03/10/2016] [Accepted: 03/10/2016] [Indexed: 01/21/2023] Open
Abstract
OBJECTIVE We tested the hypothesis that deep anesthesia with sevoflurane, known as a potent immunomodulator, for 4 h would worsen the 24-h outcomes of rats through modulation of the inflammatory responses. METHODS Forty-nine male Wistar rats, administered low dose of lipopolysaccharide (0.5 mg/kg) intravenously to elicit moderate inflammatory responses mimicked mild surgical stress, underwent one minimum alveolar concentration (MAC) or 2 MAC sevoflurane anesthesia for 4 h. The 24-h survival rate, arterial blood gases, plasma interleukin (IL)-6 and tumor necrosis factor (TNF)-α concentrations, and rate of T lymphocyte apoptosis in spleen were evaluated. We further examined the effects of hypotension and TNF-α discharge on the survival rate. RESULTS The survival rate in 2 MAC group was significantly lower accompanied with decreased base excess and increased level of cytokines (IL-6, TNF-α) compared to 1 MAC group. The apoptosis rate did not differ between the two groups. Neither norepinephrine infusion to restore hypotension nor administration of anti-TNF-α antibody improved the outcome in the 2 MAC group. CONCLUSIONS Deep anesthesia with sevoflurane even for a short-term period augments the release of inflammatory cytokines evoked by inflammatory insults like surgical stress, impairs the acid-base balance, and subsequently deteriorates the outcomes.
Collapse
Affiliation(s)
- Kei Inoue
- Department of Anesthesiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Takeshi Suzuki
- Department of Anesthesiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Toru Igarashi
- Department of Anesthesiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Shizuka Minamishima
- Department of Anesthesiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Hiroyuki Seki
- Department of Anesthesiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Shizuko Kosugi
- Department of Anesthesiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Nobuyuki Katori
- Department of Anesthesiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Hiroshi Morisaki
- Department of Anesthesiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| |
Collapse
|
7
|
Abstract
Anthrax is caused by the spore-forming, gram-positive bacterium Bacillus anthracis. The bacterium's major virulence factors are (a) the anthrax toxins and (b) an antiphagocytic polyglutamic capsule. These are encoded by two large plasmids, the former by pXO1 and the latter by pXO2. The expression of both is controlled by the bicarbonate-responsive transcriptional regulator, AtxA. The anthrax toxins are three polypeptides-protective antigen (PA), lethal factor (LF), and edema factor (EF)-that come together in binary combinations to form lethal toxin and edema toxin. PA binds to cellular receptors to translocate LF (a protease) and EF (an adenylate cyclase) into cells. The toxins alter cell signaling pathways in the host to interfere with innate immune responses in early stages of infection and to induce vascular collapse at late stages. This review focuses on the role of anthrax toxins in pathogenesis. Other virulence determinants, as well as vaccines and therapeutics, are briefly discussed.
Collapse
Affiliation(s)
- Mahtab Moayeri
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892; , , , ,
| | - Stephen H Leppla
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892; , , , ,
| | - Catherine Vrentas
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892; , , , ,
| | - Andrei P Pomerantsev
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892; , , , ,
| | - Shihui Liu
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892; , , , ,
| |
Collapse
|
8
|
Li Y, Abu-Asab M, Su J, Qiu P, Feng J, Ohanjanian L, Kumar HS, Fitz Y, Eichacker PQ, Cui X. Bacillus anthracis edema but not lethal toxin challenge in rats is associated with depressed myocardial function in hearts isolated and tested in a Langendorff system. Am J Physiol Heart Circ Physiol 2015; 308:H1592-602. [PMID: 25862834 DOI: 10.1152/ajpheart.00851.2014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 03/30/2015] [Indexed: 11/22/2022]
Abstract
Although direct myocardial depression has been implicated in the lethal effects of Bacillus anthracis lethal toxin (LT), in hearts isolated from healthy rats and perfused under constant pressure, neither LT or edema toxin (ET) in typically lethal concentrations depressed myocardial function. In the present study, we challenged rats with LT and ET and performed in vivo and ex vivo heart measures. Sprague-Dawley rats infused over 24 h with LT (n = 94), ET (n = 99), or diluent (controls; n = 50) were studied at 8, 24, or 48 h. Compared with control rats (all survived), survival rates with LT (56.1%) and ET (37.3%) were reduced (P < 0.0001) similarly (P = 0.66 for LT vs. ET). LT decreased mean arterial blood pressure from 12 to 20 h (P ≤ 0.05), whereas ET decreased it progressively throughout (P < 0.05). On echocardiography, LT decreased left ventricular (LV) ejection fraction at 8 and 48 h but increased it at 24 h and decreased cardiac output (P ≤ 0.05 for the time interaction or averaged over time). ET decreased systolic and diastolic volumes and increased LV ejection fraction at 24 h (P ≤ 0.05). In isolated hearts perfused for 120 min under constant pressure, LT did not significantly alter LV systolic or developed pressures at any time point, whereas ET decreased both of these at 24 h (P < 0.0001 initially). ET but not LT progressively increased plasma creatine phosphokinase and cardiac troponin levels (P < 0.05). In conclusion, despite echocardiographic changes, in vivo lethal LT challenge did not produce evidence of myocardial depression in isolated rat hearts. While lethal ET challenge did depress isolated heart function, this may have resulted from prior hypotension and ischemia.
Collapse
Affiliation(s)
- Yan Li
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Mones Abu-Asab
- National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Junwu Su
- Anzhen Hospital, Capital Medical University, Beijing, China; and
| | - Ping Qiu
- OncoImmune, Incorporated, Rockville, Maryland
| | - Jing Feng
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Lernik Ohanjanian
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Hanish Sampath Kumar
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Yvonne Fitz
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Peter Q Eichacker
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland;
| | - Xizhong Cui
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
9
|
Kaur M, Singh S, Bhatnagar R. Anthrax vaccines: present status and future prospects. Expert Rev Vaccines 2014; 12:955-70. [PMID: 23984963 DOI: 10.1586/14760584.2013.814860] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The management of anthrax remains a top priority among the biowarfare/bioterror agents. It was the Bacillus anthracis spore attack through the US mail system after the September 11, 2001, terrorist attacks in the USA that highlighted the potential of B. anthracis as a bioterrorism agent and the threat posed by its deliberate dissemination. These attacks invigorated the efforts toward understanding the anthrax pathogenesis and development of more comprehensive medical intervention strategies for its containment in case of both natural disease and manmade, accidental or deliberate infection of a non-suspecting population. Currently, efforts are directed toward the development of safe and efficacious vaccines as well as intervention tools for controlling the disease in the advanced fulminant stage when toxemia has already developed. This work presents an overview of the current understanding of anthrax pathogenesis and recent advances made, particularly after 2001, for the successful management of anthrax and outlines future perspectives.
Collapse
Affiliation(s)
- Manpreet Kaur
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, Delhi, India
| | | | | |
Collapse
|
10
|
Brojatsch J, Casadevall A, Goldman DL. Molecular determinants for a cardiovascular collapse in anthrax. Front Biosci (Elite Ed) 2014; 6:139-47. [PMID: 24389148 DOI: 10.2741/e697] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Bacillus anthracis releases two bipartite proteins, lethal toxin and edema factor, that contribute significantly to the progression of anthrax-associated shock. As blocking the anthrax toxins prevents disease, the toxins are considered the main virulence factors of the bacterium. The anthrax bacterium and the anthrax toxins trigger multi-organ failure associated with enhanced vascular permeability, hemorrhage and cardiac dysfunction in animal challenge models. A recent study using mice that either lacked the anthrax toxin receptor in specific cells and corresponding mice expressing the receptor in specific cell types demonstrated that cardiovascular cells are critical for disease mediated by anthrax lethal toxin. These studies are consistent with involvement of the cardiovascular system, and with an increase of cardiac failure markers observed in human anthrax and in animal models using B. anthracis and anthrax toxins. This review discusses the current state of knowledge regarding the pathophysiology of anthrax and tries to provide a mechanistic model and molecular determinants for the circulatory shock in anthrax.
Collapse
Affiliation(s)
- Jurgen Brojatsch
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY
| | - Arturo Casadevall
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY
| | - David L Goldman
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY
| |
Collapse
|
11
|
Russell L, Pedersen M, Jensen AV, Søes LM, Hansen ABE. Two anthrax cases with soft tissue infection, severe oedema and sepsis in Danish heroin users. BMC Infect Dis 2013; 13:408. [PMID: 24004900 PMCID: PMC3844346 DOI: 10.1186/1471-2334-13-408] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 08/27/2013] [Indexed: 01/21/2023] Open
Abstract
Background Anthrax had become extremely rare in Europe, but in 2010 an outbreak of anthrax among heroin users in Scotland increased awareness of contaminated heroin as a source of anthrax. We present the first two Danish cases of injectional anthrax and discuss the clinical presentations, which included both typical and more unusual manifestations. Case presentations The first patient, a 55-year old man with HIV and hepatitis C virus co-infection, presented with severe pain in the right thigh and lower abdomen after injecting heroin into the right groin. Computed tomography and ultrasonographic examination of the abdomen and right thigh showed oedematous thickened peritoneum, distended oedematous mesentery and subcutaneous oedema of the right thigh. At admission the patient was afebrile but within 24 hours he progressed to severe septic shock and abdominal compartment syndrome. Cultures of blood and intraperitoneal fluid grew Bacillus anthracis. The patient was treated with meropenem, clindamycin, ciprofloxacin and metronidazole. Despite maximum supportive care including mechanical ventilation, vasopressor treatment and continuous veno-venous hemodiafiltration the patient died on day four. The second patient, a 39-year old man with chronic hepatitis C virus infection, presented with fever and a swollen right arm after injecting heroin into his right arm. The arm was swollen from the axilla to the wrist with tense and discoloured skin. He was initially septic with low blood pressure but responded to crystalloids. During the first week, swelling progressed and the patient developed massive generalised oedema with a weight gain of 40 kg. When blood cultures grew Bacillus anthracis antibiotic treatment was changed to meropenem, moxifloxacin and metronidazole, and on day 7 hydroxycloroquin was added. The patient responded to treatment and was discharged after 29 days. Conclusions These two heroin-associated anthrax cases from Denmark corroborate that heroin contaminated with anthrax spores may be a continuous source of injectional anthrax across Europe. Clinicians and clinical microbiologists need to stay vigilant and suspect anthrax in patients with a history of heroin use who present with soft tissue or generalised infection. Marked swelling of affected soft tissue or unusual intra-abdominal oedema should strengthen clinical suspicion.
Collapse
Affiliation(s)
- Lene Russell
- Department of Intensive Care 4131, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
| | | | | | | | | |
Collapse
|
12
|
Artenstein AW, Opal SM. Novel approaches to the treatment of systemic anthrax. Clin Infect Dis 2012; 54:1148-61. [PMID: 22438345 DOI: 10.1093/cid/cis017] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Anthrax continues to generate concern as an agent of bioterrorism and as a natural cause of sporadic disease outbreaks. Despite the use of appropriate antimicrobial agents and advanced supportive care, the mortality associated with the systemic disease remains high. This is primarily due to the pathogenic exotoxins produced by Bacillus anthracis as well as other virulence factors of the organism. For this reason, new therapeutic strategies that target events in the pathogenesis of anthrax and may potentially augment antimicrobials are being investigated. These include anti-toxin approaches, such as passive immune-based therapies; non-antimicrobial drugs with activity against anthrax toxin components; and agents that inhibit binding, processing, or assembly of toxins. Adjunct therapies that target spore germination or downstream events in anthrax intoxication are also under investigation. In combination, these modalities may enhance the management of systemic anthrax.
Collapse
Affiliation(s)
- Andrew W Artenstein
- Center for Biodefense and Emerging Pathogens, Department of Medicine, Memorial Hospital of Rhode Island, Pawtucket, and The Warren Alpert Medical School of Brown University, Providence, RI 02860, USA
| | | |
Collapse
|
13
|
Moayeri M, Sastalla I, Leppla SH. Anthrax and the inflammasome. Microbes Infect 2012; 14:392-400. [PMID: 22207185 PMCID: PMC3322314 DOI: 10.1016/j.micinf.2011.12.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 12/07/2011] [Accepted: 12/08/2011] [Indexed: 01/07/2023]
Abstract
Anthrax lethal toxin (LT), a major virulence determinant of anthrax disease, induces vascular collapse in mice and rats. LT activates the Nlrp1 inflammasome in macrophages and dendritic cells, resulting in caspase-1 activation, IL-1β and IL-18 maturation and a rapid cell death (pyroptosis). This review presents the current understanding of LT-induced activation of Nlrp1 in cells and its consequences for toxin-mediated effects in rodent toxin and spore challenge models.
Collapse
Affiliation(s)
- Mahtab Moayeri
- Laboratory of Bacterial Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
14
|
Hicks CW, Sweeney DA, Cui X, Li Y, Eichacker PQ. An overview of anthrax infection including the recently identified form of disease in injection drug users. Intensive Care Med 2012; 38:1092-104. [PMID: 22527064 DOI: 10.1007/s00134-012-2541-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 02/14/2012] [Indexed: 02/06/2023]
Abstract
PURPOSE Bacillus anthracis infection (anthrax) can be highly lethal. Two recent outbreaks related to contaminated mail in the USA and heroin in the UK and Europe and its potential as a bioterrorist weapon have greatly increased concerns over anthrax in the developed world. METHODS This review summarizes the microbiology, pathogenesis, diagnosis, and management of anthrax. RESULTS AND CONCLUSIONS Anthrax, a gram-positive bacterium, has typically been associated with three forms of infection: cutaneous, gastrointestinal, and inhalational. However, the anthrax outbreak among injection drug users has emphasized the importance of what is now considered a fourth disease form (i.e., injectional anthrax) that is characterized by severe soft tissue infection. While cutaneous anthrax is most common, its early stages are distinct and prompt appropriate treatment commonly produces a good outcome. However, early symptoms with the other three disease forms can be nonspecific and mistaken for less lethal conditions. As a result, patients with gastrointestinal, inhalational, or injectional anthrax may have advanced infection at presentation that can be highly lethal. Once anthrax is suspected, the diagnosis can usually be made with gram stain and culture from blood or tissue followed by confirmatory testing (e.g., PCR). While antibiotics are the mainstay of anthrax treatment, use of adjunctive therapies such as anthrax toxin antagonists are a consideration. Prompt surgical therapy appears to be important for successful management of injectional anthrax.
Collapse
Affiliation(s)
- Caitlin W Hicks
- Cleveland Clinic Lerner College of Medicine, Cleveland, OH 44122, USA
| | | | | | | | | |
Collapse
|
15
|
Barochia AV, Cui X, Sun J, Li Y, Solomon SB, Migone TS, Subramanian GM, Bolmer SD, Eichacker PQ. Protective antigen antibody augments hemodynamic support in anthrax lethal toxin shock in canines. J Infect Dis 2012; 205:818-29. [PMID: 22223857 DOI: 10.1093/infdis/jir834] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Anthrax-associated shock is closely linked to lethal toxin (LT) release and is highly lethal despite conventional hemodynamic support. We investigated whether protective antigen-directed monoclonal antibody (PA-mAb) treatment further augments titrated hemodynamic support. METHODS AND RESULTS Forty sedated, mechanically ventilated, instrumented canines challenged with anthrax LT were assigned to no treatment (controls), hemodynamic support alone (protocol-titrated fluids and norepinephrine), PA-mAb alone (administered at start of LT infusion [0 hours] or 9 or 12 hours later), or both, and observed for 96 hours. Although all 8 controls died, 2 of 8 animals receiving hemodynamic support alone survived (median survival times 65 vs 85 hours, respectively; P = .03). PA-mAb alone at 0 hour improved survival (5 of 5 animals survived), but efficacy decreased progressively with delayed treatment (9 hours, 2 of 3 survived; 12 hours, 0 of 4 survived) (P = .004 comparing survival across treatment times). However, combined treatment increased survival irrespective of PA-mAb administration time (0 hours, 4 of 5 animals; 9 hours, 3 of 3 animals; and 12 hours, 4 of 5 animals survived) (P = .95 comparing treatment times). Compared to hemodynamic support alone, when combined over PA-mAb treatment times (0, 9, and 12 hours), combination therapy produced higher survival (P = .008), central venous pressures, and left ventricular ejection fractions, and lower heart rates, norepinephrine requirements and fluid retention (P ≤ .03). CONCLUSIONS PA-mAb may augment conventional hemodynamic support during anthrax LT-associated shock.
Collapse
Affiliation(s)
- Amisha V Barochia
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Bacillus anthracis infection is rare in developed countries. However, recent outbreaks in the United States and Europe and the potential use of the bacteria for bioterrorism have focused interest on it. Furthermore, although anthrax was known to typically occur as one of three syndromes related to entry site of (i.e., cutaneous, gastrointestinal, or inhalational), a fourth syndrome including severe soft tissue infection in injectional drug users is emerging. Although shock has been described with cutaneous anthrax, it appears much more common with gastrointestinal, inhalational (5 of 11 patients in the 2001 outbreak in the United States), and injectional anthrax. Based in part on case series, the estimated mortalities of cutaneous, gastrointestinal, inhalational, and injectional anthrax are 1%, 25 to 60%, 46%, and 33%, respectively. Nonspecific early symptomatology makes initial identification of anthrax cases difficult. Clues to anthrax infection include history of exposure to herbivore animal products, heroin use, or clustering of patients with similar respiratory symptoms concerning for a bioterrorist event. Once anthrax is suspected, the diagnosis can usually be made with Gram stain and culture from blood or surgical specimens followed by confirmatory testing (e.g., PCR or immunohistochemistry). Although antibiotic therapy (largely quinolone-based) is the mainstay of anthrax treatment, the use of adjunctive therapies such as anthrax toxin antagonists is a consideration.
Collapse
Affiliation(s)
- Daniel A Sweeney
- Medical Intensivist Program, Washington Hospital, Fremont, California, USA
| | | | | | | | | |
Collapse
|
17
|
Sweeney DA, Cui X, Solomon SB, Vitberg DA, Migone TS, Scher D, Danner RL, Natanson C, Subramanian GM, Eichacker PQ. Anthrax lethal and edema toxins produce different patterns of cardiovascular and renal dysfunction and synergistically decrease survival in canines. J Infect Dis 2010; 202:1885-96. [PMID: 21067373 DOI: 10.1086/657408] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND High mortality in the 2001 US and recent European anthrax outbreaks suggests that better understanding of the effects of the toxins produced by this bacterium is needed to improve treatment. METHODS AND RESULTS Here, 24-h edema (ETx) and lethal (LeTx) toxin infusions were investigated for 96 hin sedated canines receiving mechanical ventilation. The initial study compared similarly lethal doses of ETx (n=8) or LeTx (n=15) alone. ETx was 24 times less lethal than LeTx, and the median time to death in nonsurvivors (n=6 and n=9, respectively) was shorter with ETx (42 vs 67 h; P=.04). Compared with controls(n=9), both toxins decreased arterial and central venous pressures and systemic vascular resistance and increased heart rate, cardiac index, blood urea nitrogen (BUN) level, creatinine (Cr) concentration, BUN:Cr ratio, and hepatic transaminase levels (P ≤ .05 for toxin effect or time interaction). However, ETx stimulated early diuresis,reduced serum sodium levels, and had more pronounced vasodilatory effects, compared with LeTx, as reflected by greater or earlier central venous pressures, systemic vascular resistance, and changes in the BUN:Cr ratio(P ≤ .01). LeTx progressively decreased the left ventricular ejection fraction (P ≤ .002). In a subsequent study, a lethal dose of LeTx with an equimolar nonlethal ETx dose (n=8) increased mortality, compared with LeTx alone (n=8; P= .05). CONCLUSION Shock with ETx or LeTx may require differing supportive therapies, whereas toxin antagonists should likely target both toxins.
Collapse
Affiliation(s)
- Daniel A Sweeney
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Bouzianas DG. Current and future medical approaches to combat the anthrax threat. J Med Chem 2010; 53:4305-31. [PMID: 20102155 DOI: 10.1021/jm901024b] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Dimitrios G Bouzianas
- Laboratory of Molecular Endocrinology, Division of Endocrinology and Metabolism, AHEPA University Hospital, 1 S. Kyriakidi Street, P.C. 54636, Thessaloniki, Macedonia, Greece.
| |
Collapse
|
19
|
Moayeri M, Leppla SH. Cellular and systemic effects of anthrax lethal toxin and edema toxin. Mol Aspects Med 2009; 30:439-55. [PMID: 19638283 DOI: 10.1016/j.mam.2009.07.003] [Citation(s) in RCA: 175] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Accepted: 07/21/2009] [Indexed: 12/21/2022]
Abstract
Anthrax lethal toxin (LT) and edema toxin (ET) are the major virulence factors of anthrax and can replicate the lethality and symptoms associated with the disease. This review provides an overview of our current understanding of anthrax toxin effects in animal models and the cytotoxicity (necrosis and apoptosis) induced by LT in different cells. A brief reexamination of early historic findings on toxin in vivo effects in the context of our current knowledge is also presented.
Collapse
Affiliation(s)
- Mahtab Moayeri
- Bacterial Toxins and Therapeutics Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Building 33, Room 1W20B, Bethesda, MD 20892, USA.
| | | |
Collapse
|
20
|
Norepinephrine in anthrax-associated shock: Even worse than figs?*. Crit Care Med 2009; 37:1510-3. [DOI: 10.1097/ccm.0b013e31819d2c2c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|