1
|
Cai Y, Zhang X, Zhang Q, Zhou L, Huang Y, Qian H, Zhang L, Xu C, Xia L, Chen L, Ren P, Huang X. Ferulic Acid Alleviates Traumatic Brain Injury and Gastrointestinal Disorders by Promoting Ghrelin to Regulate the Microbiota-Brain-Gut Axis Inflammation and Pyroptosis. Phytother Res 2025; 39:2291-2311. [PMID: 40132996 DOI: 10.1002/ptr.8450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/30/2024] [Accepted: 01/26/2025] [Indexed: 03/27/2025]
Abstract
Traumatic brain injury (TBI) is a severe condition with a high mortality rate, affecting multiple organs, including the gastrointestinal (GI) tract. Ghrelin is a brain-gut peptide that regulates the microbiota-brain-gut axis, facilitating communication between the GI tract and the central nervous system. This study aimed to investigate the role of ferulic acid (FA) in regulating Ghrelin to improve TBI and GI disorders (GID) induced by controlled cortical impact (CCI). This study used CCI as the in vivo TBI model and scratch-induced injury of primary astrocytes as the in vitro TBI model. The role and mechanism of FA modulation of Ghrelin in ameliorating TBI and GID were explored using multi-omics and network pharmacology analyses. In vivo, results revealed that FA is the main active component of the Guanxin II compound and mimics its function. Significant improvement in GI hypomotility and brain injury was observed in the FA group compared to the CCI group. Concurrently, FA ameliorated intestinal barrier impairment triggered by CCI-induced reduction in the expression of Ghrelin and reduces the inflammatory response. Furthermore, 16S rRNA results indicated that CCI-induced TBI worsened gut microflora imbalance via the brain-gut axis, while gut dysbiosis aggravated brain injury. FA improved the dysbiosis of Bacteroidetes and Odoribacter mainly by targeting the Ghrelin-mediated inflammatory response. RNA-seq and network pharmacology analyses revealed that FA mainly affects inflammation-mediated pyroptosis pathways in the brain-gut axis. Additionally, experimental evidence demonstrated that FA reversed CCI-induced pyroptosis in rats and scratch injury-induced pyroptosis in astrocytes by promoting the binding of Ghrelin to GHSR, which suppressed the TLR4/NF-κB/NLRP3 pathway. Conclusively, FA could alleviate TBI and GID by promoting Ghrelin to regulate the microbiota-brain-gut axis inflammation via the Ghrelin/TLR4/NLRP3 pathway.
Collapse
Affiliation(s)
- Yawen Cai
- Institute of TCM-Related Comorbid Depression, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaohang Zhang
- Institute of TCM-Related Comorbid Depression, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qiantao Zhang
- Institute of TCM-Related Comorbid Depression, Nanjing University of Chinese Medicine, Nanjing, China
| | - Li Zhou
- Institute of TCM-Related Comorbid Depression, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yunke Huang
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haotian Qian
- Institute of TCM-Related Comorbid Depression, Nanjing University of Chinese Medicine, Nanjing, China
| | - Le Zhang
- Institute of TCM-Related Comorbid Depression, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chendong Xu
- Institute of TCM-Related Comorbid Depression, Nanjing University of Chinese Medicine, Nanjing, China
| | - Liang Xia
- Taizhou Hospital of Traditional Chinese Medicine, Taizhou, Jiangsu, China
| | - Li Chen
- Institute of TCM-Related Comorbid Depression, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ping Ren
- Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing, China
| | - Xi Huang
- Institute of TCM-Related Comorbid Depression, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
2
|
Liu L, Qi W, Zhang N, Zhang J, Liu S, Wang H, Jiang L, Sun Y. Nutraceuticals for Gut-Brain Axis Health: A Novel Approach to Combat Malnutrition and Future Personalised Nutraceutical Interventions. Nutrients 2025; 17:1551. [PMID: 40362863 PMCID: PMC12073618 DOI: 10.3390/nu17091551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 04/22/2025] [Accepted: 04/26/2025] [Indexed: 05/15/2025] Open
Abstract
The gut-brain axis (GBA) is a bidirectional communication network between the gastrointestinal tract and the brain, modulated by gut microbiota and related biomarkers. Malnutrition disrupts GBA homeostasis, exacerbating GBA dysfunction through gut dysbiosis, impaired neuroactive metabolite production, and systemic inflammation. Nutraceuticals, including probiotics, prebiotics, synbiotics, postbiotics, and paraprobiotics, offer a promising approach to improving GBA homeostasis by modulating the gut microbiota composition and related neuroactive metabolites. This review aims to elucidate the interplay between gut microbiota-derived biomarkers and GBA dysfunction in malnutrition and evaluate the potential of nutraceuticals in combating malnutrition. Furthermore, it explores the future of personalised nutraceutical interventions tailored to individual genetic and microbiome profiles, providing a targeted approach to optimise health outcomes. The integration of nutraceuticals into GBA health management could transform malnutrition treatment and improve cognitive and metabolic health.
Collapse
Affiliation(s)
- Litai Liu
- Tourism & Cuisine College, Harbin University of Commerce, Harbin 150028, China; (L.L.); (W.Q.); (N.Z.); (S.L.)
- Department of Food and Nutritional Sciences, University of Reading, Reading RG6 6UR, UK
| | - Wen Qi
- Tourism & Cuisine College, Harbin University of Commerce, Harbin 150028, China; (L.L.); (W.Q.); (N.Z.); (S.L.)
| | - Na Zhang
- Tourism & Cuisine College, Harbin University of Commerce, Harbin 150028, China; (L.L.); (W.Q.); (N.Z.); (S.L.)
| | - Jinhao Zhang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (J.Z.); (H.W.); (L.J.)
| | - Shen Liu
- Tourism & Cuisine College, Harbin University of Commerce, Harbin 150028, China; (L.L.); (W.Q.); (N.Z.); (S.L.)
| | - Huan Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (J.Z.); (H.W.); (L.J.)
| | - Lianzhou Jiang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (J.Z.); (H.W.); (L.J.)
| | - Ying Sun
- Tourism & Cuisine College, Harbin University of Commerce, Harbin 150028, China; (L.L.); (W.Q.); (N.Z.); (S.L.)
| |
Collapse
|
3
|
Hou Q, Dou Z, Zhu L, Li B. Shielding the Gut: Ghrelin and Ferrostatin-1's Protective Role Against Sepsis-Induced Intestinal Ferroptosis. Biomedicines 2024; 13:77. [PMID: 39857660 PMCID: PMC11761253 DOI: 10.3390/biomedicines13010077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/23/2024] [Accepted: 12/28/2024] [Indexed: 01/27/2025] Open
Abstract
Objective: This study investigates the therapeutic efficacy of ghrelin in alleviating sepsis-induced intestinal damage, focusing on its potential to inhibit ferroptosis and protect intestinal barrier integrity. Methods: This study evaluates the therapeutic efficacy of intraperitoneal ghrelin (80 μg/kg) and Ferrostatin-1 (5 mg/kg) using a cecal ligation and puncture (CLP) model in C57BL/6 mice to determine their potential in alleviating sepsis-induced intestinal damage. The investigation focuses on the impacts of ghrelin and Ferrostatin-1 on bacterial load, intestinal morphology, systemic inflammation, oxidative stress, and ferroptosis markers. Our comprehensive methodology encompasses histopathological evaluations, cytokine profiling, oxidative stress assays, and detailed analyses of ferroptosis indicators to thoroughly assess the interventions' efficacy. Results: Treatment with ghrelin significantly reduced bacterial proliferation, mitigated intestinal damage, and decreased systemic inflammation. Comparable outcomes were observed with Fer-1 treatment. Both interventions restored intestinal barrier functions, modulated inflammatory responses, and attenuated oxidative stress, indicating a suppression of the ferroptosis pathway. Conclusion: Ghrelin exhibits a protective role in sepsis-induced intestinal injury, likely through the inhibition of ferroptosis. This mechanism underscores ghrelin's therapeutic potential in sepsis management, suggesting avenues for further clinical exploration.
Collapse
Affiliation(s)
- Qiliang Hou
- Department of Critical Care Medicine, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Department of Critical Care Medicine, The First Clinical Medical School, Lanzhou University, Lanzhou 730000, China
- National Key Laboratory of Critical Care Medicine, Lanzhou 730000, China
| | - Zhimin Dou
- Department of Critical Care Medicine, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Department of Critical Care Medicine, The First Clinical Medical School, Lanzhou University, Lanzhou 730000, China
| | - Lei Zhu
- Department of Critical Care Medicine, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Department of Critical Care Medicine, The First Clinical Medical School, Lanzhou University, Lanzhou 730000, China
| | - Bin Li
- Department of Critical Care Medicine, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Department of Critical Care Medicine, The First Clinical Medical School, Lanzhou University, Lanzhou 730000, China
- National Key Laboratory of Critical Care Medicine, Lanzhou 730000, China
| |
Collapse
|
4
|
Wu W, Zhu L, Dou Z, Hou Q, Wang S, Yuan Z, Li B. Ghrelin in Focus: Dissecting Its Critical Roles in Gastrointestinal Pathologies and Therapies. Curr Issues Mol Biol 2024; 46:948-964. [PMID: 38275675 PMCID: PMC10813987 DOI: 10.3390/cimb46010061] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
This review elucidates the critical role of ghrelin, a peptide hormone mainly synthesized in the stomach in various gastrointestinal (GI) diseases. Ghrelin participates in diverse biological functions ranging from appetite regulation to impacting autophagy and apoptosis. In sepsis, it reduces intestinal barrier damage by inhibiting inflammatory responses, enhancing GI blood flow, and modulating cellular processes like autophagy and apoptosis. Notably, in inflammatory bowel disease (IBD), serum ghrelin levels serve as markers for distinguishing between active and remission phases, underscoring its potential in IBD treatment. In gastric cancer, ghrelin acts as an early risk marker, and due to its significant role in increasing the proliferation and migration of gastric cancer cells, the ghrelin-GHS-R axis is poised to become a target for gastric cancer treatment. The role of ghrelin in colorectal cancer (CRC) remains controversial; however, ghrelin analogs have demonstrated substantial benefits in treating cachexia associated with CRC, highlighting the therapeutic potential of ghrelin. Nonetheless, the complex interplay between ghrelin's protective and potential tumorigenic effects necessitates a cautious approach to its therapeutic application. In post-GI surgery scenarios, ghrelin and its analogs could be instrumental in enhancing recovery and reducing complications. This article accentuates ghrelin's multifunctionality, shedding light on its influence on disease mechanisms, including inflammatory responses and cancer progression, and examines its therapeutic potential in GI surgeries and disorders, advocating for continued research in this evolving field.
Collapse
Affiliation(s)
- Wei Wu
- Department of Intensive Care Medicine, The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China; (W.W.); (Q.H.); (S.W.); (Z.Y.)
| | - Lei Zhu
- Department of Intensive Care Medicine, The First Hospital of Lanzhou University, Lanzhou 730000, China; (L.Z.); (Z.D.)
| | - Zhimin Dou
- Department of Intensive Care Medicine, The First Hospital of Lanzhou University, Lanzhou 730000, China; (L.Z.); (Z.D.)
| | - Qiliang Hou
- Department of Intensive Care Medicine, The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China; (W.W.); (Q.H.); (S.W.); (Z.Y.)
| | - Sen Wang
- Department of Intensive Care Medicine, The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China; (W.W.); (Q.H.); (S.W.); (Z.Y.)
| | - Ziqian Yuan
- Department of Intensive Care Medicine, The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China; (W.W.); (Q.H.); (S.W.); (Z.Y.)
| | - Bin Li
- Department of Intensive Care Medicine, The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China; (W.W.); (Q.H.); (S.W.); (Z.Y.)
- Department of Intensive Care Medicine, The First Hospital of Lanzhou University, Lanzhou 730000, China; (L.Z.); (Z.D.)
| |
Collapse
|
5
|
Liu Y, Wang W, Song N, Jiao L, Jia F, Du X, Chen X, Yan C, Jiao J, Jiao Q, Jiang H. Ghrelin Bridges DMV Neuropathology and GI Dysfunction in the Early Stages of Parkinson's Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203020. [PMID: 36050877 PMCID: PMC9596842 DOI: 10.1002/advs.202203020] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 08/04/2022] [Indexed: 06/15/2023]
Abstract
Ghrelin contributes to the communication between the brain and gastrointestinal (GI) tract. Both decreased ghrelin levels and functional GI disorders are early events in Parkinson's disease (PD) patients and animal models. However, the reason is not clear. Here it is found that choline acetyltransferase (ChAT)-positive neurons in the dorsal motor nucleus of the vagus nerve (DMV), are lost in PD transgenic mice. In response to the selective damaging of DMV neurons with mu p75-SAP, a rapid reduction both in plasma total and active ghrelin levels is observed. While by contrast, chemogenetic activation of DMV cholinergic neurons can increase the plasma ghrelin levels. Impairment of cholinergic neurons is accompanied by GI disorders, including decreased stool wet weight, stool dry weight, small intestine advancing rate, and gastric emptying rate, while exogenous ghrelin treatment can partially ameliorate GI dysfunction of A53T α-synuclein transgenic mice. Using pseudorabies virus retrograde trace method, the existence of a direct pathway from the stomach fundus to the DMV is shown. Taken together, the findings suggest that the reduction in plasma ghrelin levels in the early stages of PD may be the result of the lesion of cholinergic neurons in the DMV, thus linking neurodegeneration and GI dysfunction in PD.
Collapse
Affiliation(s)
- Yizhen Liu
- Department of PhysiologyShandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic MedicineQingdao UniversityQingdaoShandong710061China
| | - Weiwei Wang
- Department of PhysiologyShandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic MedicineQingdao UniversityQingdaoShandong710061China
| | - Ning Song
- Department of PhysiologyShandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic MedicineQingdao UniversityQingdaoShandong710061China
| | - Lingling Jiao
- Department of PhysiologyShandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic MedicineQingdao UniversityQingdaoShandong710061China
| | - Fengju Jia
- Department of PhysiologyShandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic MedicineQingdao UniversityQingdaoShandong710061China
| | - Xixun Du
- Department of PhysiologyShandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic MedicineQingdao UniversityQingdaoShandong710061China
| | - Xi Chen
- Department of PhysiologyShandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic MedicineQingdao UniversityQingdaoShandong710061China
| | - Chunling Yan
- Department of PhysiologyShandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic MedicineQingdao UniversityQingdaoShandong710061China
| | - Jianwei Jiao
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
| | - Qian Jiao
- Department of PhysiologyShandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic MedicineQingdao UniversityQingdaoShandong710061China
| | - Hong Jiang
- Department of PhysiologyShandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic MedicineQingdao UniversityQingdaoShandong710061China
| |
Collapse
|
6
|
Tuchaai E, Endres V, Jones B, Shankar S, Klemashevich C, Sun Y, Wu CS. Deletion of ghrelin alters tryptophan metabolism and exacerbates experimental ulcerative colitis in aged mice. Exp Biol Med (Maywood) 2022; 247:1558-1569. [PMID: 35833540 PMCID: PMC9554169 DOI: 10.1177/15353702221110647] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A major component of aging is chronic, low-grade inflammation, attributable in part by impaired gut barrier function. We previously reported that deletion of ghrelin, a peptidergic hormone released mainly from the gut, exacerbates experimental muscle atrophy in aged mice. In addition, ghrelin has been shown to ameliorate colitis in experimental models of inflammatory bowel disease (IBD), although the role of endogenous ghrelin in host-microbe interactions is less clear. Here, we showed that 22-month-old global ghrelin knockout (Ghrl-/-) mice exhibited significantly increased depressive-like behaviors, while anxiety levels and working memory were similar to littermate wild-type (WT) mice. Furthermore, old Ghrl-/- mice showed significantly increased intestinal permeability to fluorescein isothiocyanate (FITC)-dextran, significantly higher colonic interleukin (IL-1β) levels, and trends for higher colonic IL-6 and tumor necrosis factor-α (TNF-α) compared to WT mice. Interestingly, young Ghrl-/- and WT mice showed comparable depressive-like behavior and gut permeability, suggesting age-dependent exacerbation in gut barrier dysfunction in Ghrl-/- mice. While fecal short-chain fatty acids levels were comparable between old Ghrl-/- and WT mice, serum metabolome revealed alterations in metabolic cascades including tryptophan metabolism. Specifically, tryptophan and its microbial derivatives indole-3-acetic acid and indole-3-lactic acid were significantly reduced in old Ghrl-/-mice. Furthermore, in an experimental model of dextran sulfate sodium (DSS)-induced colitis, Ghrl-/- mice showed exacerbated disease symptoms, and higher levels of chemoattractant and pro-inflammatory cytokines in the colon. Overall, these data demonstrated that ghrelin deficiency is associated with gut barrier dysfunction, alterations in microbially derived tryptophan metabolites, and increased susceptibility to colitis. These data suggested that endogenous ghrelin contributes to maintaining a healthy host-microbe environment, ultimately impacting on brain function.
Collapse
Affiliation(s)
- Ellie Tuchaai
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA
| | - Valerie Endres
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA
| | - Brock Jones
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA
| | - Smriti Shankar
- Integrated Metabolomics Analysis Core, Texas A&M University, College Station, TX 77843, USA
| | - Cory Klemashevich
- Integrated Metabolomics Analysis Core, Texas A&M University, College Station, TX 77843, USA
| | - Yuxiang Sun
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA
| | - Chia-Shan Wu
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA,Chia-Shan Wu.
| |
Collapse
|
7
|
Zhu CS, Wang W, Qiang X, Chen W, Lan X, Li J, Wang H. Endogenous Regulation and Pharmacological Modulation of Sepsis-Induced HMGB1 Release and Action: An Updated Review. Cells 2021; 10:2220. [PMID: 34571869 PMCID: PMC8469563 DOI: 10.3390/cells10092220] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/13/2021] [Accepted: 08/24/2021] [Indexed: 12/12/2022] Open
Abstract
Sepsis remains a common cause of death in intensive care units, accounting for approximately 20% of total deaths worldwide. Its pathogenesis is partly attributable to dysregulated inflammatory responses to bacterial endotoxins (such as lipopolysaccharide, LPS), which stimulate innate immune cells to sequentially release early cytokines (such as tumor necrosis factor (TNF) and interferons (IFNs)) and late mediators (such as high-mobility group box 1, HMGB1). Despite difficulties in translating mechanistic insights into effective therapies, an improved understanding of the complex mechanisms underlying the pathogenesis of sepsis is still urgently needed. Here, we review recent progress in elucidating the intricate mechanisms underlying the regulation of HMGB1 release and action, and propose a few potential therapeutic candidates for future clinical investigations.
Collapse
Affiliation(s)
- Cassie Shu Zhu
- The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030, USA; (C.S.Z.); (X.Q.); (W.C.); (X.L.); (J.L.)
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd, Hempstead, NY 11549, USA
| | - Wei Wang
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA;
| | - Xiaoling Qiang
- The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030, USA; (C.S.Z.); (X.Q.); (W.C.); (X.L.); (J.L.)
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd, Hempstead, NY 11549, USA
| | - Weiqiang Chen
- The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030, USA; (C.S.Z.); (X.Q.); (W.C.); (X.L.); (J.L.)
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd, Hempstead, NY 11549, USA
| | - Xiqian Lan
- The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030, USA; (C.S.Z.); (X.Q.); (W.C.); (X.L.); (J.L.)
| | - Jianhua Li
- The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030, USA; (C.S.Z.); (X.Q.); (W.C.); (X.L.); (J.L.)
| | - Haichao Wang
- The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030, USA; (C.S.Z.); (X.Q.); (W.C.); (X.L.); (J.L.)
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd, Hempstead, NY 11549, USA
| |
Collapse
|
8
|
Li B, Zhang L, Zhu L, Cao Y, Dou Z, Yu Q. HDAC5 promotes intestinal sepsis via the Ghrelin/E2F1/NF-κB axis. FASEB J 2021; 35:e21368. [PMID: 34125448 DOI: 10.1096/fj.202001584r] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 12/20/2020] [Accepted: 12/28/2020] [Indexed: 01/24/2023]
Abstract
In the current study, we sought to determine the roles of histone deacetylase 5 (HDAC5) on the promotion of intestinal sepsis in a mouse model. Dual luciferase reporter gene assay was used to determine the binding relationship between HDAC5 and Ghrelin. Cecal ligation and puncture (CLP) was used as an animal model of intestinal sepsis. The roles of HDAC5 on intestinal sepsis were determined by HDAC5 knockdown, overexpression, and inhibitor (LMK-235) in vivo. Mice intestinal permeability and intestinal epithelial damage were evaluated, and HE staining was used to evaluate the intestinal mucosal injury index. Lipopolysaccharide (LPS)-treated intestinal-derived macrophages served as a cell model of sepsis, followed by the loss-of-function and gain-of-function assays. ELISA was used to determine the levels of inflammatory factors, and TUNEL staining was used to detect intestinal cell apoptosis. HDAC5 was upregulated in the intestine of sepsis patients. This increased HDAC5 expression was positively correlated with the expression of inflammatory factors TNF-α, IL-1β, IL-6, and HMGB1, as well as the intestinal dysfunction-related factors IFABP. In sepsis mice, the expression of inflammatory factors was reduced by HDAC5 knockdown. HDAC5 knockdown also improved survival, morphology of intestinal tissue, intestinal permeability, and epithelial damage. Ghrelin was bound and inhibited by HDAC5, but E2F1 expression was increased by Ghrelin overexpression, leading to inhibition of the NF-κB pathway. Ghrelin and E2F1 expression were increased by the treatment with HDAC5 inhibitor LMK-235, which inhibited the NF-κB pathway to improve intestinal dysfunction in the sepsis model. In conclusion, HDAC5 inhibits Ghrelin to reduce E2F1 and thus activate the NF-κB pathway, thereby promoting intestinal sepsis.
Collapse
Affiliation(s)
- Bin Li
- Department of Critical Medicine, the First Hospital of Lanzhou University, Lanzhou, P.R. China
| | - Lei Zhang
- Department of Critical Medicine, the First Hospital of Lanzhou University, Lanzhou, P.R. China
| | - Lei Zhu
- Department of Critical Medicine, the First Hospital of Lanzhou University, Lanzhou, P.R. China
| | - Yongqiang Cao
- Department of Critical Medicine, the First Hospital of Lanzhou University, Lanzhou, P.R. China
| | - Zhimin Dou
- Department of Critical Medicine, the First Hospital of Lanzhou University, Lanzhou, P.R. China
| | - Qin Yu
- Department of Respiratory, the First Hospital of Lanzhou University (the First School of Clinical Medicine), Lanzhou, P.R. China
| |
Collapse
|
9
|
Li B, Dou Z, Zhang L, Zhu L, Cao Y, Yu Q. Ghrelin Alleviates Intestinal Dysfunction in Sepsis Through the KLF4/MMP2 Regulatory Axis by Activating SIRT1. Front Immunol 2021; 12:646775. [PMID: 33968038 PMCID: PMC8102724 DOI: 10.3389/fimmu.2021.646775] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/23/2021] [Indexed: 12/14/2022] Open
Abstract
Intestinal barrier dysfunction is an important contributor to morbidity caused by sepsis. This study investigates the molecular mechanism by which Ghrelin affects intestinal dysfunction in rat model of sepsis. A rat model of sepsis was established by cecal ligation and puncture (CLP), revealing that Ghrelin was downregulated when sepsis occurs. Increases in the levels of inflammatory factors tumor necrosis factor α (TNF-α), interleukin-1 (IL-1β), IL-6, gastrin, γ-H2AX and 8-OHdG was also detected in this model system, as was an overall increase in oxidative stress. Introduction of exogenous Ghrelin inhibited these increases in inflammatory response and oxidative stress, leading to a reduction of overall sepsis-induced intestinal dysfunction. Ghrelin was then shown to activate SIRT1 expression in vitro, while SIRT1 was found to co-express with KLF4, which in turn was predicted to bind to matrix metalloproteinase 2 (MMP2) promoter. Finally, gain- and loss-of-function experiment demonstrated that SIRT1 upregulated the expression of KLF4 to downregulate MMP2. Collectively, Ghrelin inhibits the oxidative stress and intestinal dysfunction to attenuate sepsis by activating SIRT1 and regulating a KLF4/MMP2 regulatory axis.
Collapse
Affiliation(s)
- Bin Li
- Department of Critical Medicine, The First Hospital of Lanzhou University, Lanzhou, China
| | - Zhimin Dou
- Department of Critical Medicine, The First Hospital of Lanzhou University, Lanzhou, China
| | - Lei Zhang
- Department of Critical Medicine, The First Hospital of Lanzhou University, Lanzhou, China
| | - Lei Zhu
- Department of Critical Medicine, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yongqiang Cao
- Department of Critical Medicine, The First Hospital of Lanzhou University, Lanzhou, China
| | - Qin Yu
- Department of Respiratory, The First Hospital of Lanzhou University (The First School of Clinical Medicine), Lanzhou, China
| |
Collapse
|
10
|
Mathur N, Mehdi SF, Anipindi M, Aziz M, Khan SA, Kondakindi H, Lowell B, Wang P, Roth J. Ghrelin as an Anti-Sepsis Peptide: Review. Front Immunol 2021; 11:610363. [PMID: 33584688 PMCID: PMC7876230 DOI: 10.3389/fimmu.2020.610363] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/09/2020] [Indexed: 12/15/2022] Open
Abstract
Sepsis continues to produce widespread inflammation, illness, and death, prompting intensive research aimed at uncovering causes and therapies. In this article, we focus on ghrelin, an endogenous peptide with promise as a potent anti-inflammatory agent. Ghrelin was discovered, tracked, and isolated from stomach cells based on its ability to stimulate release of growth hormone. It also stimulates appetite and is shown to be anti-inflammatory in a wide range of tissues. The anti-inflammatory effects mediated by ghrelin are a result of both the stimulation of anti-inflammatory processes and an inhibition of pro-inflammatory forces. Anti-inflammatory processes are promoted in a broad range of tissues including the hypothalamus and vagus nerve as well as in a broad range of immune cells. Aged rodents have reduced levels of growth hormone (GH) and diminished immune responses; ghrelin administration boosts GH levels and immune response. The anti-inflammatory functions of ghrelin, well displayed in preclinical animal models of sepsis, are just being charted in patients, with expectations that ghrelin and growth hormone might improve outcomes in patients with sepsis.
Collapse
Affiliation(s)
- Nimisha Mathur
- Laboratory of Diabetes, Obesity, and Other Metabolic Disorders, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Syed F. Mehdi
- Laboratory of Diabetes, Obesity, and Other Metabolic Disorders, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Manasa Anipindi
- Laboratory of Diabetes, Obesity, and Other Metabolic Disorders, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Monowar Aziz
- Laboratory of Diabetes, Obesity, and Other Metabolic Disorders, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Sawleha A. Khan
- Laboratory of Diabetes, Obesity, and Other Metabolic Disorders, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Hema Kondakindi
- Laboratory of Diabetes, Obesity, and Other Metabolic Disorders, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Barbara Lowell
- Laboratory of Diabetes, Obesity, and Other Metabolic Disorders, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Ping Wang
- Laboratory of Diabetes, Obesity, and Other Metabolic Disorders, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Jesse Roth
- Laboratory of Diabetes, Obesity, and Other Metabolic Disorders, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| |
Collapse
|
11
|
Yuan X, Li S, Zhou L, Tang T, Cheng Y, Ao X, Tan L. Diagnostic Accuracy of Plasma Ghrelin Concentrations in Pediatric Sepsis-Associated Acute Respiratory Distress Syndrome: A Single-Center Cohort Study. Front Pediatr 2021; 9:664052. [PMID: 34095029 PMCID: PMC8175974 DOI: 10.3389/fped.2021.664052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/19/2021] [Indexed: 12/16/2022] Open
Abstract
Background: Ghrelin is the endogenous ligand of growth hormone secretagogue receptor 1a, which plays a role in regulating immunity and inflammation. The aim of this study is to assess the diagnostic value of plasma ghrelin in sepsis-associated pediatric acute respiratory distress syndrome (PARDS). Methods: We recruited patients who were admitted to the pediatric ICU (PICU) of the Children's Hospital of Chongqing Medical University between January 2019 and January 2020 and met the diagnostic criteria for sepsis. Data on clinical variables, laboratory indicators, plasma ghrelin concentrations, and inflammatory factors were collected and evaluated, and patients were followed up for 28 days. The area under the receiver-operating characteristic curves (AUROC) were determined using logistic regression to calculate and test cut-off values for ghrelin as a diagnostic indicator of sepsis-associated PARDS. The log-rank test was used to compare survival according to ghrelin levels. Main results: Sixty-six PICU patients (30 with ARDS and 36 without ARDS) who met the diagnostic criteria of sepsis were recruited. The ghrelin level was significantly higher in the ARDS group than in the non-ARDS group. The AUROC of ghrelin was 0.708 (95% confidence interval: 0.584-0.833) and the positivity cutoff value was 445 pg/mL. Sensitivity, specificity, positive predictive value, negative predictive value, positive likelihood ratio, and negative likelihood ratio of plasma ghrelin for the diagnosis of PARDS-associated sepsis were 86.7, 50.0, 59.1, 81.8, 1.734, and 0.266%, respectively. The survival rate of sepsis patients were significantly improved when the ghrelin level was >445 pg/mL. Conclusions: Ghrelin plasma levels were higher in sepsis-associated PARDS, and accompanied by increased levels of inflammatory factors. High ghrelin levels are a positive predictor of ICU survival in sepsis patients. Yet, there is no evidence to prove that elevated ghrelin is a promising diagnostic indicator of sepsis-associated PARDS. Trial registration: Clinicaltrials, ChiCTR1900023254. Registered 1 December 2018 - Retrospectively registered, http://www.clinicaltrials.gov/ChiCTR1900023254.
Collapse
Affiliation(s)
- Xiu Yuan
- Department of Emergency, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Shaojun Li
- Department of Emergency, Children's Hospital of Chongqing Medical University, Chongqing, China.,National Clinical Research Center for Child Health and Disorders (Chongqing), Chongqing, China
| | - Liang Zhou
- Department of Emergency, Children's Hospital of Chongqing Medical University, Chongqing, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
| | - Tian Tang
- Department of Emergency, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yuwei Cheng
- Department of Emergency, Children's Hospital of Chongqing Medical University, Chongqing, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
| | - Xiaoxiao Ao
- Department of Emergency, Children's Hospital of Chongqing Medical University, Chongqing, China.,Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Liping Tan
- Department of Emergency, Children's Hospital of Chongqing Medical University, Chongqing, China.,National Clinical Research Center for Child Health and Disorders (Chongqing), Chongqing, China
| |
Collapse
|
12
|
Reich N, Hölscher C. Acylated Ghrelin as a Multi-Targeted Therapy for Alzheimer's and Parkinson's Disease. Front Neurosci 2020; 14:614828. [PMID: 33381011 PMCID: PMC7767977 DOI: 10.3389/fnins.2020.614828] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/27/2020] [Indexed: 12/13/2022] Open
Abstract
Much thought has been given to the impact of Amyloid Beta, Tau and Alpha-Synuclein in the development of Alzheimer's disease (AD) and Parkinson's disease (PD), yet the clinical failures of the recent decades indicate that there are further pathological mechanisms at work. Indeed, besides amyloids, AD and PD are characterized by the culminative interplay of oxidative stress, mitochondrial dysfunction and hyperfission, defective autophagy and mitophagy, systemic inflammation, BBB and vascular damage, demyelination, cerebral insulin resistance, the loss of dopamine production in PD, impaired neurogenesis and, of course, widespread axonal, synaptic and neuronal degeneration that leads to cognitive and motor impediments. Interestingly, the acylated form of the hormone ghrelin has shown the potential to ameliorate the latter pathologic changes, although some studies indicate a few complications that need to be considered in the long-term administration of the hormone. As such, this review will illustrate the wide-ranging neuroprotective properties of acylated ghrelin and critically evaluate the hormone's therapeutic benefits for the treatment of AD and PD.
Collapse
Affiliation(s)
- Niklas Reich
- Biomedical & Life Sciences Division, Lancaster University, Lancaster, United Kingdom
| | - Christian Hölscher
- Neurology Department, A Second Hospital, Shanxi Medical University, Taiyuan, China.,Research and Experimental Center, Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
13
|
Supinski GS, Wang L, Schroder EA, Callahan LAP. MitoTEMPOL, a mitochondrial targeted antioxidant, prevents sepsis-induced diaphragm dysfunction. Am J Physiol Lung Cell Mol Physiol 2020; 319:L228-L238. [PMID: 32460519 DOI: 10.1152/ajplung.00473.2019] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Clinical studies indicate that sepsis-induced diaphragm dysfunction is a major contributor to respiratory failure in mechanically ventilated patients. Currently there is no drug to treat this form of diaphragm weakness. Sepsis-induced muscle dysfunction is thought to be triggered by excessive mitochondrial free radical generation; we therefore hypothesized that therapies that target mitochondrial free radical production may prevent sepsis-induced diaphragm weakness. The present study determined whether MitoTEMPOL, a mitochondrially targeted free radical scavenger, could reduce sepsis-induced diaphragm dysfunction. Using an animal model of sepsis, we compared four groups of mice: 1) sham-operated controls, 2) animals with sepsis induced by cecal ligation puncture (CLP), 3) sham controls given MitoTEMPOL (10 mg·kg-1·day-1 ip), and 4) CLP animals given MitoTEMPOL. At 48 h after surgery, we measured diaphragm force generation, mitochondrial function, proteolytic enzyme activities, and myosin heavy chain (MHC) content. We also examined the effects of delayed administration of MitoTEMPOL (by 6 h) on CLP-induced diaphragm weakness. The effects of MitoTEMPOL on cytokine-mediated alterations on muscle cell superoxide generation and cell size in vitro were also assessed. Sepsis markedly reduced diaphragm force generation. Both immediate and delayed MitoTEMPOL administration prevented sepsis-induced diaphragm weakness. MitoTEMPOL reversed sepsis-mediated reductions in mitochondrial function, activation of proteolytic pathways, and decreases in MHC content. Cytokines increased muscle cell superoxide generation and decreased cell size, effects that were ablated by MitoTEMPOL. MitoTEMPOL and other compounds that target mitochondrial free radical generation may be useful therapies for sepsis-induced diaphragm weakness.
Collapse
Affiliation(s)
- Gerald S Supinski
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kentucky, Lexington, Kentucky
| | - Lin Wang
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kentucky, Lexington, Kentucky
| | - Elizabeth A Schroder
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kentucky, Lexington, Kentucky
| | - Leigh Ann P Callahan
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
14
|
Ishioh M, Nozu T, Igarashi S, Tanabe H, Kumei S, Ohhira M, Okumura T. Ghrelin acts in the brain to block colonic hyperpermeability in response to lipopolysaccharide through the vagus nerve. Neuropharmacology 2020; 173:108116. [PMID: 32442542 DOI: 10.1016/j.neuropharm.2020.108116] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/23/2020] [Accepted: 04/26/2020] [Indexed: 12/31/2022]
Abstract
Brain ghrelin plays a role in gastrointestinal functions. Among them, ghrelin acts centrally to stimulate gastrointestinal motility and induce visceral antinociception. Intestinal barrier function, one of important gastrointestinal functions, is also controlled by the central nervous system. Little is, however, known about a role of central ghrelin in regulation of intestinal permeability. The present study was performed to clarify whether brain ghrelin is also involved in regulation of intestinal barrier function and its mechanism. Colonic permeability was estimated in vivo by quantifying the absorbed Evans blue in colonic tissue in rats. Intracisternal injection of ghrelin dose-dependently abolished increased colonic permeability in response to LPS while intraperitoneal injection of ghrelin at the same dose or intracisternal injection of des-acyl-ghrelin failed to block it. Carbachol potently attenuated LPS-induced intestinal hyperpermeability, and atropine or bilateral subdiaphragmatic vagotomy prevented the improvement of intestinal hyperpermeability by central ghrelin. Intracisternal (D-Lys3)-GHRP-6, a selective ghrelin receptor antagonist, significantly blocked improvement of intestinal barrier function by intravenously administered 2-deoxy-d-glucose, central vagal stimulant. Intracisternal injection of orexin 1 receptor antagonist, SB-334867 blocked intracisternal ghrelin-induced improvement of colonic hyperpermeability. These results suggest that exogenously administered or endogenously released ghrelin acts centrally to improve a disturbed intestinal barrier function through orexinergic signaling and the vagal cholinergic pathway. Central ghrelin may be involved in the pathophysiology and be a novel therapeutic option in not only gastrointestinal diseases such as irritable bowel syndrome but also non-gastrointestinal diseases associated with the altered intestinal permeability.
Collapse
Affiliation(s)
- Masatomo Ishioh
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Japan; Department of General Medicine, Asahikawa Medical University, Japan
| | - Tsukasa Nozu
- Department of Regional Medicine and Education, Asahikawa Medical University, Japan
| | - Sho Igarashi
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Japan
| | - Hiroki Tanabe
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Japan
| | - Shima Kumei
- Department of General Medicine, Asahikawa Medical University, Japan
| | - Masumi Ohhira
- Department of General Medicine, Asahikawa Medical University, Japan
| | - Toshikatsu Okumura
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Japan; Department of General Medicine, Asahikawa Medical University, Japan.
| |
Collapse
|
15
|
Upregulation of proBDNF in the Mesenteric Lymph Nodes in Septic Mice. Neurotox Res 2019; 36:540-550. [PMID: 31278527 DOI: 10.1007/s12640-019-00081-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/12/2019] [Accepted: 06/19/2019] [Indexed: 01/27/2023]
Abstract
The immune status in the lymphatic system, especially mesenteric lymph nodes (MLNs), is critical to regulate the septic shock. Brain-derived neurotrophic factor (BDNF) in the enteric system has been reported to regulate enteric immunity. However, the role of its precursor, proBDNF, in the immune status of MLNs under sepsis condition is still unclear. This study aimed to characterize the expression pattern of proBDNF in MLNs after lipopolysaccharide (LPS) stimulation, and to investigate the association of pathogenesis of sepsis. LPS (20 mg/kg) was intraperitoneally injected to induce sepsis in mice. Survival curve analysis, routine blood tests, and liver and kidney function tests were performed to evaluate the severity of sepsis. QPCR and histological staining were performed to assess the mRNA levels of proinflammatory cytokines and degree of immune-inflammatory response in the MLNs. Furthermore, Western blotting, flow cytometry, and immunofluorescence were performed to examine the key molecules expression of proBDNF signaling. Intraperitoneal LPS injection significantly decreased the number of lymphocytes in blood but increased the number of T lymphocytes in MLNs. Serum alanine transaminase, aspartate transaminase, and blood urea nitrogen levels were increased in LPS-challenged mice compared to control mice. LPS administration upregulated proinflammatory cytokine gene expression and induced histological changes in the MLNs. LPS injection increased BDNF, proBDNF, and its receptor pan neutrophin receptor 75 (p75NTR) expression in MLNs. The increased proBDNF was mainly localized on CD3+ and CD4+ T cells in the medulla of MLNs. LPS-induced sepsis upregulated proBDNF expression in medulla T cells of MLNs. ProBDNF upregulation may be involved in the pathogenesis of septic shock.
Collapse
|
16
|
Deng M, Scott MJ, Fan J, Billiar TR. Location is the key to function: HMGB1 in sepsis and trauma-induced inflammation. J Leukoc Biol 2019; 106:161-169. [PMID: 30946496 DOI: 10.1002/jlb.3mir1218-497r] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/18/2019] [Accepted: 03/04/2019] [Indexed: 12/16/2022] Open
Abstract
High mobility group box 1 (HMGB1) is a multifunctional nuclear protein, probably known best as a prototypical alarmin or damage-associated molecular pattern (DAMP) molecule when released from cells. However, HMGB1 has multiple functions that depend on its location in the nucleus, in the cytosol, or extracellularly after either active release from cells, or passive release upon lytic cell death. Movement of HMGB1 between cellular compartments is a dynamic process induced by a variety of cell stresses and disease processes, including sepsis, trauma, and hemorrhagic shock. Location of HMGB1 is intricately linked with its function and is regulated by a series of posttranslational modifications. HMGB1 function is also regulated by the redox status of critical cysteine residues within the protein, and is cell-type dependent. This review highlights some of the mechanisms that contribute to location and functions of HMGB1, and focuses on some recent insights on important intracellular effects of HMGB1 during sepsis and trauma.
Collapse
Affiliation(s)
- Meihong Deng
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Pittsburgh Trauma Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Melanie J Scott
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Pittsburgh Trauma Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jie Fan
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Pittsburgh Trauma Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Research and Development, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Pittsburgh Trauma Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
17
|
Propofol Does Not Reduce Pyroptosis of Enterocytes and Intestinal Epithelial Injury After Lipopolysaccharide Challenge. Dig Dis Sci 2018; 63:81-91. [PMID: 29063417 DOI: 10.1007/s10620-017-4801-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 10/10/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND To date, mechanisms of sepsis-induced intestinal epithelial injury are not well known. P2X7 receptor (P2X7R) regulates pyroptosis of lymphocytes, and propofol is usually used for sedation in septic patients. AIMS We aimed to determine the occurrence of enterocyte pyroptosis mediated by P2X7R and to explore the effects of propofol on pyroptosis and intestinal epithelial injury after lipopolysaccharide (LPS) challenge. METHODS A novel regimen of LPS challenge was applied in vitro and in vivo. Inhibitors of P2X7R (A438079) and NLRP3 inflammasome (MCC950), and different doses of propofol were administered. The caspase-1 expression, caspase-3 expression, caspase-11 expression, P2X7R expression and NLRP3 expression, extracellular ATP concentration and YO-PRO-1 uptake, and cytotoxicity and HMGB1 concentration were detected to evaluate enterocyte pyroptosis in cultured cells and intestinal epithelial tissues. Chiu's score, diamine oxidase and villus length were used to evaluate intestinal epithelial injury. Moreover, survival analysis was performed. RESULTS LPS challenge activated caspase-11 expression and P2X7R expression, enhanced ATP concentration and YO-PRO-1 uptake, and led to increased cytotoxicity and HMGB1 concentration. Subsequently, LPS resulted in intestinal epithelial damage, as evidenced by increased levels of Chiu's score and diamine oxidase, and shorter villus length and high mortality of animals. A438079, but not MCC950, significantly relieved LPS-induced enterocyte pyroptosis and intestinal epithelial injury. Importantly, propofol did not confer the protective effects on enterocyte pyroptosis and intestinal epithelia although it markedly decreased P2X7R expression. CONCLUSION LPS attack leads to activation of caspase-11/P2X7R and pyroptosis of enterocytes. Propofol does not reduce LPS-induced pyroptosis and intestinal epithelial injury, although it inhibits P2X7R upregulation.
Collapse
|
18
|
Guan XF, Duan ZJ. Protective effects of brain-gut peptides against intestinal barrier injury and mechanisms involved. Shijie Huaren Xiaohua Zazhi 2017; 25:2805-2812. [DOI: 10.11569/wcjd.v25.i31.2805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Brain-gut peptides, a group of small molecule polypeptides, have been found to distribute widely in the brain and the gastrointestinal system and act as both neurotransmitters and hormones. Intestinal barrier injury has a serious impact on the prognosis of critical diseases. Brain-gut peptides can modulate tight junction proteins, promote epithelial cell proliferation, and inhibit apoptosis and inflammatory cytokines, thus playing an important role in the maintenance of intestinal barrier and mucosal immunity. In this review, we discuss the protective effects of brain-gut peptides against intestinal barrier injury and the underlying mechanisms.
Collapse
Affiliation(s)
- Xing-Fang Guan
- Department of Gastroenterology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning Province, China
| | - Zhi-Jun Duan
- Department of Gastroenterology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning Province, China
| |
Collapse
|
19
|
Evaluation of gut-blood barrier dysfunction in various models of trauma, hemorrhagic shock, and burn injury. J Trauma Acute Care Surg 2017; 83:944-953. [DOI: 10.1097/ta.0000000000001654] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
20
|
Sundman MH, Chen NK, Subbian V, Chou YH. The bidirectional gut-brain-microbiota axis as a potential nexus between traumatic brain injury, inflammation, and disease. Brain Behav Immun 2017; 66:31-44. [PMID: 28526435 DOI: 10.1016/j.bbi.2017.05.009] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 04/25/2017] [Accepted: 05/10/2017] [Indexed: 02/06/2023] Open
Abstract
As head injuries and their sequelae have become an increasingly salient matter of public health, experts in the field have made great progress elucidating the biological processes occurring within the brain at the moment of injury and throughout the recovery thereafter. Given the extraordinary rate at which our collective knowledge of neurotrauma has grown, new insights may be revealed by examining the existing literature across disciplines with a new perspective. This article will aim to expand the scope of this rapidly evolving field of research beyond the confines of the central nervous system (CNS). Specifically, we will examine the extent to which the bidirectional influence of the gut-brain axis modulates the complex biological processes occurring at the time of traumatic brain injury (TBI) and over the days, months, and years that follow. In addition to local enteric signals originating in the gut, it is well accepted that gastrointestinal (GI) physiology is highly regulated by innervation from the CNS. Conversely, emerging data suggests that the function and health of the CNS is modulated by the interaction between 1) neurotransmitters, immune signaling, hormones, and neuropeptides produced in the gut, 2) the composition of the gut microbiota, and 3) integrity of the intestinal wall serving as a barrier to the external environment. Specific to TBI, existing pre-clinical data indicates that head injuries can cause structural and functional damage to the GI tract, but research directly investigating the neuronal consequences of this intestinal damage is lacking. Despite this void, the proposed mechanisms emanating from a damaged gut are closely implicated in the inflammatory processes known to promote neuropathology in the brain following TBI, which suggests the gut-brain axis may be a therapeutic target to reduce the risk of Chronic Traumatic Encephalopathy and other neurodegenerative diseases following TBI. To better appreciate how various peripheral influences are implicated in the health of the CNS following TBI, this paper will also review the secondary biological injury mechanisms and the dynamic pathophysiological response to neurotrauma. Together, this review article will attempt to connect the dots to reveal novel insights into the bidirectional influence of the gut-brain axis and propose a conceptual model relevant to the recovery from TBI and subsequent risk for future neurological conditions.
Collapse
Affiliation(s)
- Mark H Sundman
- Department of Psychology, University of Arizona, Tucson, AZ, USA.
| | - Nan-Kuei Chen
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, USA
| | - Vignesh Subbian
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, USA; Department of Systems and Industrial Engineering, University of Arizona, Tucson, AZ, USA
| | - Ying-Hui Chou
- Department of Psychology, University of Arizona, Tucson, AZ, USA; Cognitive Science Program, University of Arizona, Tucson, AZ, USA; Arizona Center on Aging, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
21
|
Wu J, Lyu B, Gan T, Wang L, Zhu M. Electroacupuncture improves acute bowel injury recovery in rat models. Exp Ther Med 2017; 14:4655-4662. [PMID: 29201164 PMCID: PMC5704319 DOI: 10.3892/etm.2017.5159] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 02/24/2017] [Indexed: 01/24/2023] Open
Abstract
Electroacupuncture (EA) accelerates intestinal functional recovery in sepsis. The present study investigated ghrelin and ghrelin receptor (GSH-R) levels during EA in rats with acute bowel injury (ABI). Rats were grouped into four groups: Sham, ABI, ABI+EA and ABI+GHRA+EA (n=12 per group). ABI was induced by cecal ligation and puncture (CLP). EA on bilateral Zusanli acupoints was performed following CLP. GSH-R blocker (GHRA) was used following CLP but prior to EA for ABI+GHRA+EA rats. Rats were sacrificed 12 h following CLP. Serum ghrelin, tumor necrosis factor-α (TNF-α) and high mobility group box 1 (HMGB1) levels, as well as ghrelin and GSH-R protein expression, water content, pathological changes and myeloperoxidase (MPO) and diamine oxidase (DAO) activities in the bowel tissues, were measured. ABI rats, compared with the sham rats, had significantly lower levels of ghrelin and GSH-R in the serum and bowel tissue, and higher Chiu's score (all P<0.05). The ABI+EA rats, compared with the ABI rats, had significantly reduced serum TNF-α and HMGB1 levels, bowel water content, MPO activity and Chiu's score (all P<0.05), and significantly higher serum ghrelin (121.2±10.7 vs. 86.7±6.4 pg/ml), bowel ghrelin (0.12±0.02 vs. 0.08±0.01), GSH-R (0.05±0.04 vs. 0.03±0.01) and DAO activity (18.74±4.18 vs. 13.52±2.33 U/ml; all P<0.05), indicating an improvement of the intestinal mucosal barrier. GHRA reversed the protective effects of EA. Therefore, EA improved ABI recovery by promoting ghrelin secretion and upregulating GSH-R expression.
Collapse
Affiliation(s)
- Jiannong Wu
- Department of Critical Care, The First Affiliated Hospital, Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang 310053, P.R. China
| | - Bin Lyu
- Division of Gastroenterology, The First Affiliated Hospital, Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang 310053, P.R. China
| | - Tie'er Gan
- Department of Infectious Diseases, The First Affiliated Hospital, Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang 310053, P.R. China
| | - Lingcong Wang
- Department of Critical Care, The First Affiliated Hospital, Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang 310053, P.R. China
| | - Meifei Zhu
- Department of Critical Care, The First Affiliated Hospital, Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang 310053, P.R. China
| |
Collapse
|
22
|
Das UN. Is There a Role for Bioactive Lipids in the Pathobiology of Diabetes Mellitus? Front Endocrinol (Lausanne) 2017; 8:182. [PMID: 28824543 PMCID: PMC5539435 DOI: 10.3389/fendo.2017.00182] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 07/10/2017] [Indexed: 12/12/2022] Open
Abstract
Inflammation, decreased levels of circulating endothelial nitric oxide (eNO) and brain-derived neurotrophic factor (BDNF), altered activity of hypothalamic neurotransmitters (including serotonin and vagal tone) and gut hormones, increased concentrations of free radicals, and imbalance in the levels of bioactive lipids and their pro- and anti-inflammatory metabolites have been suggested to play a role in diabetes mellitus (DM). Type 1 diabetes mellitus (type 1 DM) is due to autoimmune destruction of pancreatic β cells because of enhanced production of IL-6 and tumor necrosis factor-α (TNF-α) and other pro-inflammatory cytokines released by immunocytes infiltrating the pancreas in response to unknown exogenous and endogenous toxin(s). On the other hand, type 2 DM is due to increased peripheral insulin resistance secondary to enhanced production of IL-6 and TNF-α in response to high-fat and/or calorie-rich diet (rich in saturated and trans fats). Type 2 DM is also associated with significant alterations in the production and action of hypothalamic neurotransmitters, eNO, BDNF, free radicals, gut hormones, and vagus nerve activity. Thus, type 1 DM is because of excess production of pro-inflammatory cytokines close to β cells, whereas type 2 DM is due to excess of pro-inflammatory cytokines in the systemic circulation. Hence, methods designed to suppress excess production of pro-inflammatory cytokines may form a new approach to prevent both type 1 and type 2 DM. Roux-en-Y gastric bypass and similar surgeries ameliorate type 2 DM, partly by restoring to normal: gut hormones, hypothalamic neurotransmitters, eNO, vagal activity, gut microbiota, bioactive lipids, BDNF production in the gut and hypothalamus, concentrations of cytokines and free radicals that results in resetting glucose-stimulated insulin production by pancreatic β cells. Our recent studies suggested that bioactive lipids, such as arachidonic acid, eicosapentaneoic acid, and docosahexaenoic acid (which are unsaturated fatty acids) and their anti-inflammatory metabolites: lipoxin A4, resolvins, protectins, and maresins, may have antidiabetic actions. These bioactive lipids have anti-inflammatory actions, enhance eNO, BDNF production, restore hypothalamic dysfunction, enhance vagal tone, modulate production and action of ghrelin, leptin and adiponectin, and influence gut microbiota that may explain their antidiabetic action. These pieces of evidence suggest that methods designed to selectively deliver bioactive lipids to pancreatic β cells, gut, liver, and muscle may prevent type 1 and type 2 DM.
Collapse
Affiliation(s)
- Undurti N. Das
- BioScience Research Centre, Department of Medicine, Gayatri Vidya Parishad Hospital, GVP College of Engineering Campus, Visakhapatnam, India
- UND Life Sciences, Battle Ground, WA, United States
| |
Collapse
|
23
|
Abstract
Neuroimmune communications are facilitated by the production of neurotransmitters by immune cells and the generation of immune mediators by immune cells, which form a functional entity called the "neuroimmune synapse." There are several mechanisms that further facilitate neuroimmune interactions including the anatomic proximity between immune cells and nerves, the expression of receptors for neurotransmitters on immune cells and for immune mediators on nerves, and the receptor-mediated activation of intracellular signaling pathways that modulate nerve and immune phenotype and function. The bidirectional communication between nerves and immune cells is implicated in allostasis, a process that describes the continuous adaptation to an ever-changing environment. Neuroimmune interactions are amplified during inflammation by the influx of activated immune cells that significantly alter the microenvironment. In this context, the types of neurotransmitters released by activated neurons or immune cells can exert pro- or anti-inflammatory effects. Dysregulation of the enteric nervous system control of gastrointestinal functions, such as epithelial permeability and secretion as well as smooth muscle contractility, also contribute to the chronicity of inflammation. Persistent active inflammation in the gut leads to neuroimmune plasticity, which is a structural and functional remodeling in both the neural and immune systems. The importance of neuroimmune interactions has made them an emerging target in the development of novel therapies for GI pathologies.
Collapse
Affiliation(s)
- Terez Shea-Donohue
- Department of Radiation Oncology, University of Maryland School of Medicine, DTRS, MSTF Rm 700C, 10 Pine Street, Baltimore, MD, 21201, USA.
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| | - Joseph F Urban
- U.S. Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Research Center, Diet, Genomics, and Immunology Laboratory, Beltsville, MD, 20705, USA
| |
Collapse
|
24
|
Liu J, Shi B, Shi K, Ma G, Zhang H, Lou X, Liu H, Wan S, Liang D. Ghrelin upregulates PepT1 activity in the small intestine epithelium of rats with sepsis. Biomed Pharmacother 2016; 86:669-676. [PMID: 28038428 DOI: 10.1016/j.biopha.2016.12.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 11/30/2016] [Accepted: 12/05/2016] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Sepsis causes nutritional substrate malabsorption; hence, preventing gut barrier problems and improving the nutritional status in sepsis is a compelling issue. AIMS We tested whether ghrelin administration affects peptide transporter 1 (PepT1) activity in the intestinal epithelium of rats with sepsis. METHODS Sixty male Sprague-Dawley rats were randomly divided into sham-operated, sepsis, and ghrelin-treated groups. The cecum of sham-operated rats was separated after laparotomy without ligation and perforation. Sepsis group rats underwent cecal ligation and puncture (CLP). Mucosal specimens were used for immunohistochemstry, real-time PCR, and western blotting to detect PepT1 distribution, and mRNA and protein expression levels, respectively. TNF-α, IL-1β, and ghrelin levels were estimated in serum and intestinal mucosal tissue by ELISA. High-performance liquid chromatography was used to measure PepT1 uptake by the epithelial cells. Moreover, survival, body weight, and food intake of the rats were recorded during the 7-day treatment period. RESULTS All rats in the sham-operated group survived, and 80% of rats in the sepsis group died within 7d of CLP. Treatment with ghrelin attenuated the CLP-induced body weight loss, intestine mucosa damage, and the survival rate was better. In addition, ghrelin attenuated increases in TNF-α and IL-1β production. The expressions of PepT1 mRNA and protein were higher in ghrelin-treated group rats than in sepsis rats. Moreover, the uptake function of PepT1 was better in ghrelin-treated group rats. CONCLUSION Ghrelin treatment can reduce the inflammatory response and greatly upregulate the physiological function of PepT1 in intestinal epithelial cells of rats with sepsis.
Collapse
Affiliation(s)
- Jingquan Liu
- Intensive Care Unit, Zhejiang Provincial People's Hospital, NO. 158, Shangtang Road, Hangzhou 310014, China.
| | - Bin Shi
- Intensive Care Unit, Yanpu Hospital, Tongji University, NO. 450, Tengyue Road, Shanghai 200090, China.
| | - Kai Shi
- Department of Respiratory Medicine, The Affiliated Hospital of Hangzhou Normal University, The 2nd People's Hospital of Hangzhou, Hangzhou 310014, China
| | - Guoguang Ma
- Department of General Intensive Care Unit, Songjiang Hospital Affiliated First People's Hospital, Shanghai Jiao Tong University, NO. 746, Zhongshan Road, Shanghai 201600, China
| | - Hongze Zhang
- Department of General Intensive Care Unit, Songjiang Hospital Affiliated First People's Hospital, Shanghai Jiao Tong University, NO. 746, Zhongshan Road, Shanghai 201600, China
| | - Xiaoli Lou
- Department of Central Laboratory, Songjiang Hospital Affiliated First People's Hospital, Shanghai Jiao Tong University, NO. 746, Zhongshan Road, Shanghai 201600, China
| | - Hongxiang Liu
- Department of General Intensive Care Unit, Songjiang Hospital Affiliated First People's Hospital, Shanghai Jiao Tong University, NO. 746, Zhongshan Road, Shanghai 201600, China
| | - Shengxia Wan
- Department of General Intensive Care Unit, Songjiang Hospital Affiliated First People's Hospital, Shanghai Jiao Tong University, NO. 746, Zhongshan Road, Shanghai 201600, China
| | - Dongyu Liang
- Department of Central Laboratory, Songjiang Hospital Affiliated First People's Hospital, Shanghai Jiao Tong University, NO. 746, Zhongshan Road, Shanghai 201600, China
| |
Collapse
|
25
|
Cheng Y, Wei Y, Yang W, Cai Y, Chen B, Yang G, Shang H, Zhao W. Ghrelin Attenuates Intestinal Barrier Dysfunction Following Intracerebral Hemorrhage in Mice. Int J Mol Sci 2016; 17:ijms17122032. [PMID: 27929421 PMCID: PMC5187832 DOI: 10.3390/ijms17122032] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 11/10/2016] [Accepted: 11/28/2016] [Indexed: 02/07/2023] Open
Abstract
Intestinal barrier dysfunction remains a critical problem in patients with intracerebral hemorrhage (ICH) and is associated with poor prognosis. Ghrelin, a brain-gut peptide, has been shown to exert protection in animal models of gastrointestinal injury. However, the effect of ghrelin on intestinal barrier dysfunction post-ICH and its possible underlying mechanisms are still unknown. This study was designed to investigate whether ghrelin administration attenuates intestinal barrier dysfunction in experimental ICH using an intrastriatal autologous blood infusion mouse model. Our data showed that treatment with ghrelin markedly attenuated intestinal mucosal injury at both histomorphometric and ultrastructural levels post-ICH. Ghrelin reduced ICH-induced intestinal permeability according to fluorescein isothiocyanate conjugated-dextran (FITC-D) and Evans blue extravasation assays. Concomitantly, the intestinal tight junction-related protein markers, Zonula occludens-1 (ZO-1) and claudin-5 were upregulated by ghrelin post-ICH. Additionally, ghrelin reduced intestinal intercellular adhesion molecule-1 (ICAM-1) expression at the mRNA and protein levels following ICH. Furthermore, ghrelin suppressed the translocation of intestinal endotoxin post-ICH. These changes were accompanied by improved survival rates and an attenuation of body weight loss post-ICH. In conclusion, our results suggest that ghrelin reduced intestinal barrier dysfunction, thereby reducing mortality and weight loss, indicating that ghrelin is a potential therapeutic agent in ICH-induced intestinal barrier dysfunction therapy.
Collapse
Affiliation(s)
- Yijun Cheng
- Department of Neurosurgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Yongxu Wei
- Department of Neurosurgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Wenlei Yang
- Department of Neurosurgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Yu Cai
- Department of Neurosurgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Bin Chen
- Department of Neurosurgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Guoyuan Yang
- Department of Neurology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China.
| | - Hanbing Shang
- Department of Neurosurgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Weiguo Zhao
- Department of Neurosurgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
26
|
Wu Y, Chung CS, Chen Y, Monaghan SF, Patel S, Huang X, Heffernan DS, Ayala A. A Novel Role for Programmed Cell Death Receptor Ligand-1 (PD-L1) in Sepsis-Induced Intestinal Dysfunction. Mol Med 2016; 22:830-840. [PMID: 27782294 DOI: 10.2119/molmed.2016.00150] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 10/14/2016] [Indexed: 12/24/2022] Open
Abstract
Studies imply that intestinal barrier dysfunction is a key contributor to morbid events associated with sepsis. Recently, co-inhibitory molecule, programmed death-ligand1 (PD-L1) has been shown to be involved in the regulation of intestinal immune tolerance and/or inflammation. Our previous studies showed that PD-L1 gene deficiency reduced sepsis-induced intestinal injury morphologically. However, it isn't known how PD-L1 expression impacts intestinal barrier dysfunction during sepsis. Here we tested the hypothesis that PD-L1 expressed on intestinal epithelial cells (IECs) has a role in sepsis-induced intestinal barrier dysfunction. To address this, C57BL/6 or PD-L1 gene knockout mice were subjected to experimental sepsis and PD-L1 expression, intestinal permeability, tissue cytokine levels were assessed. Subsequently, septic or non-septic patient colonic samples (assigned by pathology report) were immunohistochemically stained for PD-L1 I a blinded fashion. Finally, human Caco2 cells were used for in vitro studies. The results demonstrated that PD-L1 was constitutively expressed and sepsis significantly up-regulates PD-L1 in IECs from C57BL/6 mice. Concurrently, we observed an increased PD-L1 expression in colon tissue samples from septic patients. PD-L1 gene deficiency reduced ileal permeability, tissue levels of IL-6, TNF-α and MCP-1, and prevented ileal tight junction protein loss compared to WT after sepsis. Comparatively, while Caco2 cell monolayers responded to inflammatory cytokine stimulation also with elevated PD-L1 expression, increased monolayer permeability and altering/decreasing monolayer tight junction protein morphology/expression; these changes were reversed by PD-L1 blocking antibody. Together these data indicate that ligation of ICE PD-L1 plays a novel role in mediating the pathophysiology of sepsis-induced intestinal barrier dysfunction.
Collapse
Affiliation(s)
- Youping Wu
- Department of Anesthesiology, Changhai Hospital, Second Military Medical University, Shanghai, 200433, PR China
| | - Chun-Shiang Chung
- Department of Surgery, Division of Surgical Research, the Alpert School of Medicine at Brown University/Rhode Island Hospital, Providence, RI 02903, USA
| | - Yaping Chen
- Department of Surgery, Division of Surgical Research, the Alpert School of Medicine at Brown University/Rhode Island Hospital, Providence, RI 02903, USA
| | - Sean Farrell Monaghan
- Department of Surgery, Division of Surgical Research, the Alpert School of Medicine at Brown University/Rhode Island Hospital, Providence, RI 02903, USA
| | - Sima Patel
- Department of Biochemistry and Molecular Biology, Brown University, Providence, RI 02912, USA
| | - Xin Huang
- Department of Surgery, Division of Surgical Research, the Alpert School of Medicine at Brown University/Rhode Island Hospital, Providence, RI 02903, USA
| | - Daithi Seamus Heffernan
- Department of Surgery, Division of Surgical Research, the Alpert School of Medicine at Brown University/Rhode Island Hospital, Providence, RI 02903, USA
| | - Alfred Ayala
- Department of Surgery, Division of Surgical Research, the Alpert School of Medicine at Brown University/Rhode Island Hospital, Providence, RI 02903, USA
| |
Collapse
|
27
|
Wan SX, Shi B, Lou XL, Liu JQ, Ma GG, Liang DY, Ma S. Ghrelin protects small intestinal epithelium against sepsis-induced injury by enhancing the autophagy of intestinal epithelial cells. Biomed Pharmacother 2016; 83:1315-1320. [PMID: 27571874 DOI: 10.1016/j.biopha.2016.08.048] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 08/18/2016] [Accepted: 08/18/2016] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Ghrelin is a hormone that protects against hypoxic injury of cardiac cells by inducing autophagy, but the role of autophagy in sepsis remains unclear. This study aimed to evaluate whether ghrelin could enhance autophagy in rats with intestinal sepsis. METHODS The cecal ligation and perforation (CLP) method was used to induce sepsis in Sprague-Dawley rats. The rats were assigned to four groups: normal group, sham-operated group, sepsis group, and Ghrelin-treated group. Sera and small intestinal tissues were collected from all groups. The sepsis was evaluated by histological analysis, and autophagy of small intestinal epithelial cells was assessed by electron microscopy, immunofluorescence, and biochemical methods. RESULTS The expression of autophagy-associated proteins such as LC3, Atg 7 and Beclin 1 increased by 8h post-CLP and declined to basal levels by 12h post-CLP. The expression of LC3, Atg 7 and Beclin 1 in Ghrelin-treated rats was higher than that in rats with sepsis. Furthermore, compared to rats with sepsis, Ghrelin-treated rats showed significantly reduced intestinal mucosa injury at 20h post-CLP. CONCLUSION Autophagy is induced in the early stages of sepsis. Ghrelin could enhance the autophagy of intestinal epithelial cells in rats with sepsis and protect the small intestinal epithelium against sepsis-induced injury.
Collapse
Affiliation(s)
- Sheng-Xia Wan
- The No. 4 Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Bin Shi
- Songjiang Hospital, Affiliated with First People's Hospital, Shanghai Jiaotong University, Critical Care Unit, Shanghai, China.
| | - Xiao-Li Lou
- Songjiang Hospital, Affiliated with First People's Hospital, Shanghai Jiaotong University, Central Laboratory, Shanghai, China
| | - Jing-Quan Liu
- Zhejiang Provincial People's Hospital, Critical Care Unit, Hanzhou, China
| | - Guo-Guang Ma
- Zhongshan Hospital Affiliated with FuDan University, Critical Care Unit, Shanghai, China
| | - Dong-Yu Liang
- Songjiang Hospital, Affiliated with First People's Hospital, Shanghai Jiaotong University, Central Laboratory, Shanghai, China
| | - Shuang Ma
- Songjiang Hospital, Affiliated with First People's Hospital, Shanghai Jiaotong University, Critical Care Unit, Shanghai, China
| |
Collapse
|
28
|
Balivada S, Pawar HN, Montgomery S, Kenney MJ. Effect of ghrelin on regulation of splenic sympathetic nerve discharge. Auton Neurosci 2016; 201:68-71. [PMID: 27554768 DOI: 10.1016/j.autneu.2016.08.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 07/22/2016] [Accepted: 08/18/2016] [Indexed: 10/21/2022]
Abstract
Ghrelin influences immune system function and modulates the sympathetic nervous system; however, the contribution of ghrelin to neural-immune interactions is not well-established because the effect of ghrelin on splenic sympathetic nerve discharge (SND) is not known. This study tested the hypothesis that central ghrelin administration would inhibit splenic SND in anesthetized rats. Rats received intracerebroventricular (ICV) injections of ghrelin (1nmol/kg) or aCSF. Lumbar SND recordings provided a non-visceral nerve control. The ICV ghrelin administration significantly increased splenic and lumbar SND, whereas mean arterial pressure (MAP) was not altered. These findings provide fundamental information regarding the nature of sympathetic-immune interactions.
Collapse
Affiliation(s)
- Sivasai Balivada
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS 66506, United States; Department of Biological Sciences, College of Science, University of Texas at El Paso, El Paso, TX 79968, United States
| | - Hitesh N Pawar
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS 66506, United States; Department of Biological Sciences, College of Science, University of Texas at El Paso, El Paso, TX 79968, United States.
| | - Shawnee Montgomery
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS 66506, United States
| | - Michael J Kenney
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS 66506, United States; Department of Biological Sciences, College of Science, University of Texas at El Paso, El Paso, TX 79968, United States
| |
Collapse
|
29
|
Abstract
The vagus nerve can sense peripheral inflammation and transmit action potentials from the periphery to the brainstem. Vagal afferent signaling is integrated in the brainstem, and efferent vagus nerves carry outbound signals that terminate in spleen and other organs. Stimulation of efferent vagus nerve leads to the release of acetylcholine in these organs. In turn, acetylcholine interacts with members of the nicotinic acetylcholine receptor (nAChR) family, particularly with the alpha7 nicotinic acetylcholine receptor (α7nAChR), which is expressed by macrophages and other cytokine-producing cells. Ultimately, the production of proinflammatory cytokines is markedly inhibited. This neuroimmune communication is termed "the inflammatory reflex". The uncontrolled inflammation as a result from sepsis can lead to multiple organ failure, and even death. Experimental data show that regulation of the inflammatory reflex appears to be a useful interventional strategy for septic response. Herein, we review recent advances in the understanding of the inflammatory reflex and discuss potential therapeutics that vagal modulation of the immune system for the treatment of severe sepsis and septic shock.
Collapse
Affiliation(s)
- Da-Wei Wang
- a Trauma Research Center, First Hospital Affiliated to the Chinese PLA General Hospital , Beijing , China.,b Department of ICU , Weihai Municipal Hospital , Weihai , China
| | - Yi-Mei Yin
- b Department of ICU , Weihai Municipal Hospital , Weihai , China
| | - Yong-Ming Yao
- a Trauma Research Center, First Hospital Affiliated to the Chinese PLA General Hospital , Beijing , China
| |
Collapse
|
30
|
Enteral ecoimmunonutrition reduced enteral permeability and serum ghrelin activity in severe cerebral stroke patients with lung infection. Cell Biochem Biophys 2015; 71:195-8. [PMID: 25142270 DOI: 10.1007/s12013-014-0184-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The study analyzed how enteral ecoimmunonutrition, which comprises probiotics, glutamine, fish oil, and Enteral Nutritional Suspension (TPF), can impact on the enteral permeability and serum Ghrelin activity in severe cerebral stroke patients with lung infection. Among 190 severe cerebral stroke patients with tolerance to TPF, they were randomized into control and treatment groups after antibiotics treatment due to lung infections. There were 92 patients in the control group and 98 patients in treatment group. The control group was treated with TPF and the treatment group was treated with enteral ecoimmunonutrition, which comprises probiotics, glutamine, fish oil, and Enteral Nutritional Suspension. All patients received continuous treatments through nasoenteral or nasogastric tubes. 7, 14, and 21 days after the treatments, the enteral tolerance to nutrition was observed in both groups. The tests included abdominal pain, bloating, diarrhea, and lactulose/mannitol (L/M) ratio. Serum Ghrelin levels were determined by ELISA. The incidence of abdominal pain, bloating, diarrhea was lower in the treatment group and enteral tolerance to nutrition was also superior to the control group. No difference in serum Ghrelin level was observed between the control and treatment groups with enteral intolerance to nutrition. However, in patients with enteral tolerance to nutrition, the treatment group showed lower enteral nutrition and lower enteral permeability compared to the control group. In severe cerebral stroke patients with lung infection, enteral ecoimmunonutrition after antibiotics treatment improved enteral tolerance to nutrition and reduced enteral permeability; meanwhile, it lowered the serum Ghrelin activity, which implied the high serum Ghrelin reduces enteral permeability.
Collapse
|
31
|
Bleau C, Karelis AD, St-Pierre DH, Lamontagne L. Crosstalk between intestinal microbiota, adipose tissue and skeletal muscle as an early event in systemic low-grade inflammation and the development of obesity and diabetes. Diabetes Metab Res Rev 2015; 31:545-61. [PMID: 25352002 DOI: 10.1002/dmrr.2617] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 10/01/2014] [Accepted: 10/13/2014] [Indexed: 02/06/2023]
Abstract
Obesity is associated with a systemic chronic low-grade inflammation that contributes to the development of metabolic disorders such as cardiovascular diseases and type 2 diabetes. However, the etiology of this obesity-related pro-inflammatory process remains unclear. Most studies have focused on adipose tissue dysfunctions and/or insulin resistance in skeletal muscle cells as well as changes in adipokine profile and macrophage recruitment as potential sources of inflammation. However, low-grade systemic inflammation probably involves a complex network of signals interconnecting several organs. Recent evidences have suggested that disturbances in the composition of the gut microbial flora and alterations in levels of gut peptides following the ingestion of a high-fat diet may be a cause of low-grade systemic inflammation that may even precede and predispose to obesity, metabolic disorders or type 2 diabetes. This hypothesis is appealing because the gastrointestinal system is first exposed to nutrients and may thereby represent the first link in the chain of events leading to the development of obesity-associated systemic inflammation. Therefore, the present review will summarize the latest advances interconnecting intestinal mucosal bacteria-mediated inflammation, adipose tissue and skeletal muscle in a coordinated circuitry favouring the onset of a high-fat diet-related systemic low-grade inflammation preceding obesity and predisposing to metabolic disorders and/or type 2 diabetes. A particular emphasis will be given to high-fat diet-induced alterations of gut homeostasis as an early initiator event of mucosal inflammation and adverse consequences contributing to the promotion of extended systemic inflammation, especially in adipose and muscular tissues.
Collapse
MESH Headings
- Adipose Tissue, White/immunology
- Adipose Tissue, White/metabolism
- Animals
- Diabetes Mellitus, Type 2/etiology
- Diabetes Mellitus, Type 2/immunology
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/microbiology
- Diet, High-Fat/adverse effects
- Enteritis/etiology
- Enteritis/immunology
- Enteritis/microbiology
- Enteritis/physiopathology
- Gastrointestinal Hormones/metabolism
- Gastrointestinal Microbiome
- Humans
- Immunity, Mucosal
- Intestinal Mucosa/immunology
- Intestinal Mucosa/metabolism
- Intestinal Mucosa/microbiology
- Models, Biological
- Muscle, Skeletal/immunology
- Muscle, Skeletal/metabolism
- Myositis/etiology
- Myositis/immunology
- Myositis/microbiology
- Myositis/physiopathology
- Obesity/etiology
- Obesity/immunology
- Obesity/metabolism
- Obesity/microbiology
- Panniculitis/etiology
- Panniculitis/immunology
- Panniculitis/microbiology
- Panniculitis/physiopathology
- Systemic Vasculitis/etiology
- Systemic Vasculitis/immunology
- Systemic Vasculitis/microbiology
- Systemic Vasculitis/physiopathology
Collapse
Affiliation(s)
- Christian Bleau
- Department of Biological Sciences, Université du Québec à Montréal, Montreal, Canada, H3C 3P8
| | - Antony D Karelis
- Department of Kinanthropology, Université du Québec à Montréal, Montreal, Canada, H3C 3P8
| | - David H St-Pierre
- Department of Kinanthropology, Université du Québec à Montréal, Montreal, Canada, H3C 3P8
| | - Lucie Lamontagne
- Department of Biological Sciences, Université du Québec à Montréal, Montreal, Canada, H3C 3P8
| |
Collapse
|
32
|
Ghrelin inhibits proinflammatory responses and prevents cognitive impairment in septic rats. Crit Care Med 2015; 43:e143-50. [PMID: 25756415 DOI: 10.1097/ccm.0000000000000930] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
OBJECTIVES A novel stomach-derived peptide, ghrelin, is down-regulated in sepsis and its IV administration decreases proinflammatory cytokines and mitigates organ injury. In this study, we wanted to investigate the effects of ghrelin on proinflammatory responses and cognitive impairment in septic rats. DESIGN Prospective, randomized, controlled experiment. SETTING Animal basic science laboratory. SUBJECTS Sprague-Dawley rats, weighing 250-300 g. INTERVENTIONS Sepsis was induced by cecal ligation and puncture. Animals were randomly divided into four groups: sham, sham + ghrelin, cecal ligation and puncture, and cecal ligation and puncture + ghrelin. Saline was given subcutaneously (30 mL/kg) at 4 and 16 hours after surgery for all rats. Septic rats were treated with ceftriaxone (30 mg/kg) and clindamycin (25 mg/kg) subcutaneously at 4 and 16 hours after surgery. Ghrelin (80 μg/kg) was administrated intraperitoneally 4 and 16 hours after surgery in sham + ghrelin group and cecal ligation and puncture + ghrelin group. MEASUREMENTS AND MAIN RESULTS The levels of proinflammatory cytokines in hippocampus were measured by enzyme-linked immunosorbent assay, and cleaved caspase-3 was detected by Western blot 24 hours after surgery. Neuronal apoptosis was determined by terminal deoxynucleotidyl transferase dUTP nick-end labeling staining 48 hours after surgery. Additional animals were monitored to record survival and body weight changes for 10 days after surgery. Survival animals underwent behavioral tasks 10 days after surgery: open-field, novel object recognition, and continuous multiple-trial step-down inhibitory avoidance task. Ghrelin significantly decreased the levels of proinflammatory cytokines and inhibited the activation of caspase-3 in the hippocampus after cecal ligation and puncture. The density of terminal deoxynucleotidyl transferase dUTP nick-end labeling-positive apoptotic neurons was significantly lowered by ghrelin. In addition, ghrelin improved the survival rates after cecal ligation and puncture. There were no differences in the distance and move time between groups in open-field task. However, the survivors after cecal ligation and puncture were unable to recognize the novel object and required more training trials to reach the acquisition criterion. All these long-term impairments were prevented by ghrelin. CONCLUSIONS Ghrelin inhibited proinflammatory responses, improved the survival rate, and prevented cognitive impairment in septic rats.
Collapse
|
33
|
Yorulmaz H, Ozkok E, Erguven M, Ates G, Aydın I, Tamer S. Effect of simvastatin on mitochondrial enzyme activities, ghrelin, hypoxia-inducible factor 1α in hepatic tissue during early phase of sepsis. Int J Clin Exp Med 2015; 8:3640-50. [PMID: 26064259 PMCID: PMC4443093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 02/05/2015] [Indexed: 06/04/2023]
Abstract
We aimed to investigate the effects of prior treatment of simvastatin on mitochondrial enzyme, ghrelin, and hypoxia-inducible factor 1 α (HIF-1 α) on hepatic tissue in rats treated with Lipopolysaccharides (LPS) during the early phase of sepsis. Rats were divided into four groups: control, LPS (20 mg/kg, i.p.), Simvastatin (20 mg/kg, p.o.), and LPS + Simvastatin group. We measured citrate synthase, complex I, II, I-III, II-III enzymes activities, serum and tissue levels of TNF-α, IL-10 using ELISA. Liver sections underwent histopathologic examination and TNF-α, IL-10, HIF-1α and ghrelin immunoreactivity were examined using immunohistochemistry methods. There were no differences in all groups for mitochondrial enzyme activities. In terms of both ELISA and immunohistochemistry findings; the levels of serum and tissue TNF-α and IL-10 were higher in the experimental groups than controls (P < 0.05). In the LPS group, the hepatocyte cell membrane and sinusoid structure were damaged. In the Simvastatin +LPS group, hepatocytes and sinusoidal cord structure were partially improved. For HIF-1α, in all experimental groups immunoreactivity was increased (P < 0.05). In the Simvastatin group, Ghrelin levels were increased in comparison with the other groups (P < 0.01). Ghrelin levels were greatly decreased in LPS (P < 0.05). We observed that the degree of hepatocellular degeneration was partially reduced depending on the dosage and duration of prior simvastatin treatment with LPS, probably due to alterations of Ghrelin and HIF-1α levels.
Collapse
Affiliation(s)
- Hatice Yorulmaz
- Department of Physiology, Medical Faculty, Halic UniversityIstanbul, Turkey
| | - Elif Ozkok
- Department of Neuroscience, The Institue for Experimental Medicine, Istanbul UniversityIstanbul, Turkey
| | - Mine Erguven
- Faculty of Health Sciences, Istanbul Aydin UniversityIstanbul, Turkey
| | - Gulten Ates
- Department of Basic Medical Sciences, Physiology, Istanbul Medical Faculty, Istanbul UniversityIstanbul, Turkey
| | - Irfan Aydın
- Department of Basic Medical Sciences, Histology and Embriology, Istanbul Medical Faculty, Istanbul UniversityIstanbul, Turkey
| | - Sule Tamer
- Department of Basic Medical Sciences, Physiology, Istanbul Medical Faculty, Istanbul UniversityIstanbul, Turkey
| |
Collapse
|
34
|
Nikoukar L, Nabavizadeh F, Mohamadi S, Moslehi A, Hassanzadeh G, Nahrevanian H, Agah S. Protective effect of ghrelin in a rat model of celiac disease. ACTA ACUST UNITED AC 2014; 101:438-47. [DOI: 10.1556/aphysiol.101.2014.4.5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
35
|
Kang R, Chen R, Zhang Q, Hou W, Wu S, Cao L, Huang J, Yu Y, Fan XG, Yan Z, Sun X, Wang H, Wang Q, Tsung A, Billiar TR, Zeh HJ, Lotze MT, Tang D. HMGB1 in health and disease. Mol Aspects Med 2014; 40:1-116. [PMID: 25010388 PMCID: PMC4254084 DOI: 10.1016/j.mam.2014.05.001] [Citation(s) in RCA: 740] [Impact Index Per Article: 67.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 05/05/2014] [Indexed: 12/22/2022]
Abstract
Complex genetic and physiological variations as well as environmental factors that drive emergence of chromosomal instability, development of unscheduled cell death, skewed differentiation, and altered metabolism are central to the pathogenesis of human diseases and disorders. Understanding the molecular bases for these processes is important for the development of new diagnostic biomarkers, and for identifying new therapeutic targets. In 1973, a group of non-histone nuclear proteins with high electrophoretic mobility was discovered and termed high-mobility group (HMG) proteins. The HMG proteins include three superfamilies termed HMGB, HMGN, and HMGA. High-mobility group box 1 (HMGB1), the most abundant and well-studied HMG protein, senses and coordinates the cellular stress response and plays a critical role not only inside of the cell as a DNA chaperone, chromosome guardian, autophagy sustainer, and protector from apoptotic cell death, but also outside the cell as the prototypic damage associated molecular pattern molecule (DAMP). This DAMP, in conjunction with other factors, thus has cytokine, chemokine, and growth factor activity, orchestrating the inflammatory and immune response. All of these characteristics make HMGB1 a critical molecular target in multiple human diseases including infectious diseases, ischemia, immune disorders, neurodegenerative diseases, metabolic disorders, and cancer. Indeed, a number of emergent strategies have been used to inhibit HMGB1 expression, release, and activity in vitro and in vivo. These include antibodies, peptide inhibitors, RNAi, anti-coagulants, endogenous hormones, various chemical compounds, HMGB1-receptor and signaling pathway inhibition, artificial DNAs, physical strategies including vagus nerve stimulation and other surgical approaches. Future work further investigating the details of HMGB1 localization, structure, post-translational modification, and identification of additional partners will undoubtedly uncover additional secrets regarding HMGB1's multiple functions.
Collapse
Affiliation(s)
- Rui Kang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.
| | - Ruochan Chen
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Qiuhong Zhang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Wen Hou
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Sha Wu
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Lizhi Cao
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jin Huang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yan Yu
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xue-Gong Fan
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhengwen Yan
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA; Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Xiaofang Sun
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Experimental Department of Institute of Gynecology and Obstetrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510510, China
| | - Haichao Wang
- Laboratory of Emergency Medicine, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| | - Qingde Wang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Allan Tsung
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Herbert J Zeh
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Michael T Lotze
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Daolin Tang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.
| |
Collapse
|
36
|
Effects of ghrelin administration on the early postoperative inflammatory response after esophagectomy. Surg Today 2014; 45:1025-31. [DOI: 10.1007/s00595-014-1076-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Accepted: 10/06/2014] [Indexed: 12/20/2022]
|
37
|
Genton L, Cani PD, Schrenzel J. Alterations of gut barrier and gut microbiota in food restriction, food deprivation and protein-energy wasting. Clin Nutr 2014; 34:341-9. [PMID: 25459400 DOI: 10.1016/j.clnu.2014.10.003] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 07/01/2014] [Accepted: 10/06/2014] [Indexed: 12/21/2022]
Abstract
Increasing evidence shows that gut microbiota composition is related to changes of gut barrier function including gut permeability and immune function. Gut microbiota is different in obese compared to lean subjects, suggesting that gut microbes are also involved in energy metabolism and subsequent nutritional state. While research on gut microbiota and gut barrier has presently mostly focused on intestinal inflammatory bowel diseases and more recently on obesity and type 2 diabetes, this review aims at summarizing the present knowledge regarding the impact, in vivo, of depleted nutritional states on structure and function of the gut epithelium, the gut-associated lymphoid tissue (GALT), the gut microbiota and the enteric nervous system. It highlights the complex interactions between the components of gut barrier in depleted states due to food deprivation, food restriction and protein energy wasting and shows that these interactions are multidirectional, implying the existence of feedbacks.
Collapse
Affiliation(s)
- L Genton
- Clinical Nutrition, University Hospital, Geneva, Switzerland.
| | - P D Cani
- Université catholique de Louvain, Louvain Drug Research Institute, WELBIO (Walloon Excellence in Life Sciences and BIOtechnology), Metabolism and Nutrition Research Group, Brussels, Belgium
| | - J Schrenzel
- Service of Infectious Diseases, University Hospital, Geneva, Switzerland
| |
Collapse
|
38
|
Abstract
Sepsis, a clinical syndrome occurring in patients following infection or injury, is a leading cause of morbidity and mortality worldwide. Current immunological mechanisms do not explain the basis of cellular dysfunction and organ failure, the ultimate cause of death. Here we review current dogma and argue that it is time to delineate novel immunometabolic and neurophysiological mechanisms underlying the altered cellular bioenergetics and failure of epithelial and endothelial barriers that produce organ dysfunction and death. These mechanisms might hold the key to future therapeutic strategies.
Collapse
Affiliation(s)
- Clifford S Deutschman
- Department of Anesthesiology and Critical Care and Surgery and Sepsis Research Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Kevin J Tracey
- Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY 11030, USA.
| |
Collapse
|
39
|
Prodam F, Filigheddu N. Ghrelin gene products in acute and chronic inflammation. Arch Immunol Ther Exp (Warsz) 2014; 62:369-84. [PMID: 24728531 DOI: 10.1007/s00005-014-0287-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 03/21/2014] [Indexed: 12/27/2022]
Abstract
Ghrelin gene products--the peptides ghrelin, unacylated ghrelin, and obestatin--have several actions on the immune system, opening new perspectives within neuroendocrinology, metabolism and inflammation. The aim of this review is to summarize the available evidence regarding the less known role of these peptides in the machinery of inflammation and autoimmunity, outlining some of their most promising therapeutic applications.
Collapse
Affiliation(s)
- Flavia Prodam
- Departmant of Health Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Novara, Italy
| | | |
Collapse
|
40
|
Matsuda A, Jacob A, Wu R, Aziz M, Yang WL, Matsutani T, Suzuki H, Furukawa K, Uchida E, Wang P. Novel therapeutic targets for sepsis: regulation of exaggerated inflammatory responses. J NIPPON MED SCH 2013; 79:4-18. [PMID: 22398786 DOI: 10.1272/jnms.79.4] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Sepsis is a devastating and complex syndrome and continues to be a major cause of morbidity and mortality among critically ill patients at the surgical intensive care unit setting in the United States. The occurrence of sepsis and septic shock has increased significantly over the past two decades. Despite of highly dedicated basic research and numerous clinical trials, remarkable progress has not been made in the development of novel and effective therapeutics. The sepsis-induced physiologic derangements are due largely to the host responses to the invading microorganism in contrast to the direct effects of the microorganism itself. Sepsis, the systemic inflammatory response to infection, is marked by dysregulated production of pro-inflammatory cytokines. Although pro-inflammatory cytokine production is normally indispensable to protect against pathogens and promote tissue repair, the dysregulated and prolonged production of these cytokines can trigger a systemic inflammatory cascade mediated by chemokines, vasoactive amines, the complement and coagulation system, and reactive oxygen species (ROS), amongst others. These mediators collectively lead to multiple organ failure, and ultimately to death. In this regard, the role of inflammation in the pathophysiology of sepsis, although still incompletely understood, is clearly critical. Recent findings resulting from vigorous investigations have contributed to delineate various novel directions of sepsis therapeutics. Among these, this review article is focused on new promising mechanisms and concepts that could have a key role in anti-inflammatory strategies against sepsis, including 1) "inflammasome": a multiprotein complex that activates caspase-1; 2) "the cholinergic anti-inflammatory pathway": the efferent arm of the vagus nerve-mediated, brain-to-immune reflex; 3) "stem cells": unspecialized and undifferentiated precursor cells with the capacity for self-renewal and potential to change into cells of multiple lineages; 4) "milk fat globule-EGF factor VIII (MFG-E8)": a bridging molecule between apoptotic cells and phagocytes, which promotes phagocytosis of apoptotic cells.
Collapse
Affiliation(s)
- Akihisa Matsuda
- Department of Surgery, North Shore University Hospital and Long Island Jewish Medical Center, Manhasset and Laboratory of Surgical Research, the Feinstein Institute for Medical Research, Manhasset, NY 11303, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Barsnick RJIM, Hurcombe SDA, Dembek K, Frazer ML, Slovis NM, Saville WJA, Toribio RE. Somatotropic axis resistance and ghrelin in critically ill foals. Equine Vet J 2013; 46:45-9. [PMID: 23663031 DOI: 10.1111/evj.12086] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Accepted: 03/14/2013] [Indexed: 12/27/2022]
Abstract
REASONS FOR PERFORMING STUDY Resistance to the somatotropic axis and increases in ghrelin concentrations have been documented in critically ill human patients, but limited information exists in healthy or sick foals. OBJECTIVES To investigate components of the somatotropic axis (ghrelin, growth hormone and insulin-like growth factor-1 [IGF-1]) with regard to energy metabolism (glucose and triglycerides), severity of disease and survival in critically ill equine neonates. It was hypothesised that ghrelin and growth hormone would increase and IGF-1 would decrease in proportion to severity of disease, supporting somatotropic axis resistance, which would be associated with severity of disease and mortality in sick foals. STUDY DESIGN Prospective multicentre cross-sectional study. METHODS Blood samples were collected at admission from 44 septic, 62 sick nonseptic (SNS) and 19 healthy foals, all aged <7 days. Foals with positive blood cultures or sepsis scores ≥12 were considered septic, foals with sepsis scores of 5-11 were classified as SNS. Data were analysed by nonparametric methods and multivariate logistic regression. RESULTS Septic foals had higher ghrelin, growth hormone and triglyceride and lower IGF-1 and glucose concentrations than healthy foals (P<0.01). Sick nonseptic foals had higher growth hormone and triglycerides and lower IGF-1 concentrations than healthy foals (P<0.05). Growth hormone:IGF-1 ratio was higher in septic and SNS foals than healthy foals (P<0.05). Hormone concentrations were not different between septic nonsurvivors (n = 14) and survivors (n = 30), but the growth hormone:IGF-1 ratio was lower in nonsurvivors (P = 0.043). CONCLUSIONS Somatotropic axis resistance, characterised by a high growth hormone:IGF-1 ratio, was frequent in sick foals, associated with the energy status (hypoglycaemia, hypertriglyceridaemia) and with mortality in septic foals. POTENTIAL RELEVANCE A functional somatotropic axis appears to be important for foal survival during sepsis. Somatotropic resistance is likely to contribute to severity of disease, a catabolic state and likelihood of recovery.
Collapse
Affiliation(s)
- R J I M Barsnick
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Souza-Moreira L, Delgado-Maroto V, Morell M, O'Valle F, Del Moral RG, Gonzalez-Rey E. Therapeutic effect of ghrelin in experimental autoimmune encephalomyelitis by inhibiting antigen-specific Th1/Th17 responses and inducing regulatory T cells. Brain Behav Immun 2013; 30:54-60. [PMID: 23376169 DOI: 10.1016/j.bbi.2013.01.080] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 01/10/2013] [Accepted: 01/20/2013] [Indexed: 12/28/2022] Open
Abstract
Ghrelin is an important gastrointestinal hormone that regulates feeding and metabolism. Moreover, ghrelin is produced by immune cells and shows potent anti-inflammatory activities. Here, we investigated its effect in two models of experimental autoimmune encephalomyelitis (EAE) that mirror chronic and relapsing-remitting multiple sclerosis. A short systemic treatment with ghrelin after the disease onset reduced clinical severity and incidence of both forms of EAE, which was associated with a decrease in inflammatory infiltrates in spinal cord and in the subsequent demyelination. This therapeutic effect was exerted through the reduction of the autoimmune and inflammatory components of the disease. Ghrelin decreased the presence/activation of encephalitogenic Th1 and Th17 cells in periphery and nervous system, down-regulated various inflammatory mediators, and induced regulatory T cells. In summary, our findings provide a powerful rationale for the assessment of the efficacy of ghrelin as a novel therapeutic approach for treating multiple sclerosis through distinct immunomodulatory mechanisms and further support the concept that the neuroendocrine and immune systems crosstalk to finely tune the final immune response of our body.
Collapse
|
43
|
Yu H, Xu G, Fan X. The effect of ghrelin on cell proliferation in small intestinal IEC-6 cells. Biomed Pharmacother 2013; 67:235-9. [DOI: 10.1016/j.biopha.2013.01.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 01/24/2013] [Indexed: 11/16/2022] Open
|
44
|
Hossienzadeh F, Babri S, Alipour MR, Ebrahimi H, Mohaddes G. Effect of ghrelin on brain edema induced by acute and chronic systemic hypoxia. Neurosci Lett 2013; 534:47-51. [PMID: 23295905 DOI: 10.1016/j.neulet.2012.11.062] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2012] [Revised: 10/16/2012] [Accepted: 11/20/2012] [Indexed: 02/04/2023]
Abstract
Hypoxia is an important pathogenic factor for the induction of vascular leakage and brain edema formation. Recent studies suggest a role for TNF-α in the induction of brain edema. Ghrelin attenuates the synthesis of TNF-α following subarachnoid hemorrhage and traumatic brain injury (TBI). Therefore, we examined the effects of ghrelin on the brain edema, serum TNF-α levels and body weight in a systemic hypoxia model. Adult male Wistar rats were divided into acute and chronic controls, acute or chronic hypoxia and ghrelin-treated (80μg/kg/ip/daily) acute or chronic hypoxia groups. Systemic hypoxia was induced in rats by a normobaric hypoxic chamber (O(2) 11%) for two days (acute) or ten days (chronic). Effect of ghrelin on brain edema and serum TNF-α levels was assessed by dry-wet and ELISA method, respectively. The results showed that acute (P<0.001) and chronic (P<0.05) hypoxia caused an increase of brain water content. Administration of ghrelin only in the acute hypoxia group significantly (P<0.001) reduced brain water content. Acute hypoxia caused an increase of serum TNF-α level (P<0.001) and ghrelin significantly (P<0.001) reduced it. TNF-α level in chronic hypoxia did not change significantly. Both acute and chronic hypoxia decreased body weight significantly (P<0.001) and administration of ghrelin only could prevent further weight loss in chronic hypoxia group (P<0.001). Our findings show that administration of ghrelin may be useful in reducing brain edema induced by acute systemic hypoxia and at least part of the anti-edematous effects of ghrelin is due to decrease of serum TNF-α levels.
Collapse
Affiliation(s)
- Fezzeh Hossienzadeh
- Neuroscience Research Center of Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | | | | |
Collapse
|
45
|
Guillory B, Splenser A, Garcia J. The Role of Ghrelin in Anorexia–Cachexia Syndromes. ANOREXIA 2013; 92:61-106. [DOI: 10.1016/b978-0-12-410473-0.00003-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
46
|
van Bree SHW, Nemethova A, Cailotto C, Gomez-Pinilla PJ, Matteoli G, Boeckxstaens GE. New therapeutic strategies for postoperative ileus. Nat Rev Gastroenterol Hepatol 2012; 9:675-83. [PMID: 22801725 DOI: 10.1038/nrgastro.2012.134] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Patients undergoing an abdominal surgical procedure develop a transient episode of impaired gastrointestinal motility or postoperative ileus. Importantly, postoperative ileus is a major determinant of recovery after intestinal surgery and leads to increased morbidity and prolonged hospitalization, which is a great economic burden to health-care systems. Although a variety of strategies reduce postoperative ileus, including multimodal postoperative rehabilitation (fast-track care) and minimally invasive surgery, none of these methods have been completely successful in shortening the duration of postoperative ileus. The aetiology of postoperative ileus is multifactorial, but insights into the pathogenesis of postoperative ileus have identified intestinal inflammation, triggered by surgical handling, as the main mechanism. The importance of this inflammatory response in postoperative ileus is underscored by the beneficial effect of pharmacological interventions that block the influx of leukocytes. New insights into the pathophysiology of postoperative ileus and the involvement of the innate and the adaptive (T-helper type 1 cell-mediated immune response) immune system offer interesting and important new approaches to prevent postoperative ileus. In this Review, we discuss the latest insights into the mechanisms behind postoperative ileus and highlight new strategies to intervene in the postoperative inflammatory cascade.
Collapse
Affiliation(s)
- Sjoerd H W van Bree
- Tytgat Institute of Liver and Intestinal Research, Department of Gastroenterology & Hepatology, Academic Medical Center, Meibergdreef 69-71, 1105 BK Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
47
|
Savalle M, Gillaizeau F, Maruani G, Puymirat E, Bellenfant F, Houillier P, Fagon JY, Faisy C. Assessment of body cell mass at bedside in critically ill patients. Am J Physiol Endocrinol Metab 2012; 303:E389-96. [PMID: 22649067 DOI: 10.1152/ajpendo.00502.2011] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Critical illness affects body composition profoundly, especially body cell mass (BCM). BCM loss reflects lean tissue wasting and could be a nutritional marker in critically ill patients. However, BCM assessment with usual isotopic or tracer methods is impractical in intensive care units (ICUs). We aimed to modelize the BCM of critically ill patients using variables available at bedside. Fat-free mass (FFM), bone mineral (Mo), and extracellular water (ECW) of 49 critically ill patients were measured prospectively by dual-energy X-ray absorptiometry and multifrequency bioimpedance. BCM was estimated according to the four-compartment cellular level: BCM = FFM - (ECW/0.98) - (0.73 × Mo). Variables that might influence the BCM were assessed, and multivariable analysis using fractional polynomials was conducted to determine the relations between BCM and these data. Bootstrap resampling was then used to estimate the most stable model predicting BCM. BCM was 22.7 ± 5.4 kg. The most frequent model included height (cm), leg circumference (cm), weight shift (Δ) between ICU admission and body composition assessment (kg), and trunk length (cm) as a linear function: BCM (kg) = 0.266 × height + 0.287 × leg circumference + 0.305 × Δweight - 0.406 × trunk length - 13.52. The fraction of variance explained by this model (adjusted r(2)) was 46%. Including bioelectrical impedance analysis variables in the model did not improve BCM prediction. In summary, our results suggest that BCM can be estimated at bedside, with an error lower than ±20% in 90% subjects, on the basis of static (height, trunk length), less stable (leg circumference), and dynamic biometric variables (Δweight) for critically ill patients.
Collapse
|
48
|
Abstract
Sepsis, a systemic inflammatory response to infection, continues to carry a high mortality despite advances in critical care medicine. Elevated sympathetic nerve activity in sepsis has been shown to contribute to early hepatocellular dysfunction and subsequently multiple organ failure, resulting in a poor prognosis, especially in the elderly. Thus, suppression of sympathetic nerve activity represents a novel therapeutic option for sepsis. Ghrelin is a 28-amino acid peptide shown to inhibit sympathetic nerve activity and inflammation in animal models of tissue injury. Age-related ghrelin hyporesponsiveness has also been shown to exacerbate sepsis. However, the mechanistic relationship between ghrelin-mediated sympathoinhibition and suppression of inflammation remains poorly understood. This review assesses the therapeutic potential of ghrelin in sepsis in the context of the neuroanatomical and molecular basis of ghrelin-mediated suppression of inflammation through inhibition of central sympathetic outflow.
Collapse
Affiliation(s)
- Cletus Cheyuo
- Elmezzi Graduate School of Molecular Medicine, Hofstra North Shore-LIJ Medical School, Manhasset, New York, USA
| | | | | |
Collapse
|
49
|
Bansal V, Ryu SY, Lopez N, Allexan S, Krzyzaniak M, Eliceiri B, Baird A, Coimbra R. Vagal stimulation modulates inflammation through a ghrelin mediated mechanism in traumatic brain injury. Inflammation 2012; 35:214-20. [PMID: 21360048 PMCID: PMC3282000 DOI: 10.1007/s10753-011-9307-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Traumatic brain injury (TBI) releases a cascade of inflammatory cytokines. Vagal nerve stimulation (VNS) and ghrelin have known anti-inflammatory effects; furthermore, ghrelin release is stimulated by acetylcholine. We hypothesized VNS decreases post-TBI inflammation through a ghrelin-mediated mechanism. TBI was created in five groups of mice: sham, TBI, TBI/ghrelin, TBI/VNS, and TBI/VNS/ghrelin receptor antagonist (GRa). Serum and tissue ghrelin, and serum TNF-α were measured. Ghrelin increased following VNS 2 h post-TBI compared to sham or TBI. At 6 h, TBI and TBI/VNS/GRa had increased TNF-α compared to sham while TBI/VNS and TBI/ghrelin had TNF-α level comparable to sham. The highest ghrelin was measured in stomach where TBI decreased ghrelin in contrast to an increase by VNS. In conclusion, VNS increased serum ghrelin and decreased TNF-α following TBI. This was abrogated with GRa. Our data suggests that ghrelin plays an important role in the anti-inflammatory effects of VNS following TBI.
Collapse
Affiliation(s)
- Vishal Bansal
- Department of Surgery, Division of Trauma, Surgical Critical Care and Burns, University of California San Diego, 200 W. Arbor Drive #8896, San Diego, CA 92103 USA
| | - Seok Yong Ryu
- Department of Surgery, Division of Trauma, Surgical Critical Care and Burns, University of California San Diego, 200 W. Arbor Drive #8896, San Diego, CA 92103 USA
- Department of Emergency Medicine, Inje University, Sanggye Paik Hospital, Seoul, South Korea
| | - Nicole Lopez
- Department of Surgery, Division of Trauma, Surgical Critical Care and Burns, University of California San Diego, 200 W. Arbor Drive #8896, San Diego, CA 92103 USA
| | - Sarah Allexan
- Department of Surgery, Division of Trauma, Surgical Critical Care and Burns, University of California San Diego, 200 W. Arbor Drive #8896, San Diego, CA 92103 USA
| | - Michael Krzyzaniak
- Department of Surgery, Division of Trauma, Surgical Critical Care and Burns, University of California San Diego, 200 W. Arbor Drive #8896, San Diego, CA 92103 USA
| | - Brian Eliceiri
- Department of Surgery, Division of Trauma, Surgical Critical Care and Burns, University of California San Diego, 200 W. Arbor Drive #8896, San Diego, CA 92103 USA
| | - Andrew Baird
- Department of Surgery, Division of Trauma, Surgical Critical Care and Burns, University of California San Diego, 200 W. Arbor Drive #8896, San Diego, CA 92103 USA
| | - Raul Coimbra
- Department of Surgery, Division of Trauma, Surgical Critical Care and Burns, University of California San Diego, 200 W. Arbor Drive #8896, San Diego, CA 92103 USA
| |
Collapse
|
50
|
Sharawy N, Pavlovic D, Wendt M, Cerny V, Lehmann C. Evaluation of the effects of gender and estradiol treatment on the intestinal microcirculation during experimental sepsis. Microvasc Res 2011; 82:397-403. [DOI: 10.1016/j.mvr.2011.06.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2011] [Revised: 05/18/2011] [Accepted: 06/21/2011] [Indexed: 11/28/2022]
|