1
|
Novak P, Marciano SP, Witte A. Role of Central Sensitization Syndrome in Patients With Autonomic Symptoms. Neurol Clin Pract 2025; 15:e200463. [PMID: 40190589 PMCID: PMC11970932 DOI: 10.1212/cpj.0000000000200463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 02/18/2025] [Indexed: 04/09/2025]
Abstract
Background and Objectives Idiosyncratic autonomic-like symptomatology, e.g., when objective autonomic tests cannot fully explain autonomic concerns, is poorly understood. We hypothesize that central sensitization plays a role in the autonomic symptoms-sings dichotomy. Methods This retrospective case-control study was conducted at Brigham and Women's Faulkner Hospital Autonomic Laboratory between 2022 and 2023 and analyzed patients who completed autonomic testing that included surveys (Central Sensitization Inventory [assessing central sensitization syndrome {CSS}], Compass-31 [assessing autonomic symptoms], Neuropathy Total Symptom Score-6 [assessing sensory symptoms]) and autonomic (Valsalva maneuver, deep breathing, sudomotor evaluation, and head-up tilt), cerebrovascular (cerebral blood flow velocity [CBFv]), respiratory (capnography), and neuropathic (skin biopsies for assessment of small fiber neuropathy) testing. Results In total, 555 patients were enrolled and 455 (78%) satisfied criteria for CSS. Patients with CSS were younger and more frequently female and had longer duration of symptoms, more comorbidities, and higher Compass-31 scores and NTSS-6 compared with non-CSS patients. Autonomic testing showed lower orthostatic end-tidal CO2 (p = 0.002) and larger orthostatic decline in CBFv (p < 0.001) in the CSS group. There was no difference in the peripheral nervous system markers (sudomotor tests and skin biopsies). The frequency of moderate autonomic failure (AF) (91.4% vs 95%, p = 0.321) was similar between the groups, but the CSS group had lower AF score (4.21 ± 3.34 vs 5.23 ± 4.08, p < 0.021). Discussion CSS is present in most patients with chronic autonomic concerns. Central sensitization amplifies autonomic symptoms presumably through perturbed interoceptive processing and can be an underlying mechanism driving idiosyncratic autonomic-like symptomatology. Patients with CSS had objective evidence of autonomic impairment; however, it was less severe than in non-CSS patients. Our study shows that CSS and AF coexist and both conditions need to be treated.
Collapse
Affiliation(s)
- Peter Novak
- Department of Neurology, Brigham and Women's Hospital, Boston, MA; and
| | - Sadie P Marciano
- Department of Neurology, Brigham and Women's Faulkner Hospital, Boston, MA
| | - Aleandra Witte
- Department of Neurology, Brigham and Women's Faulkner Hospital, Boston, MA
| |
Collapse
|
2
|
Lin V, Hutchinson PJ, Kolias A, Robba C, Wahlster S. Timing of neurosurgical interventions for intracranial hypertension: the intensivists' and neurosurgeons' view. Curr Opin Crit Care 2025; 31:137-148. [PMID: 39991845 DOI: 10.1097/mcc.0000000000001243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
PURPOSE OF REVIEW The aim of this study was to highlight clinical considerations regarding medical versus surgical management of elevated intracranial pressure (ICP), describe limitations of medical management, and summarize evidence regarding timing of neurosurgical interventions. RECENT FINDINGS The optimal ICP management strategy remains elusive, and substantial practice variations exist. Common risks of medical treatments include hypotension/shock, cardiac arrhythmias and heart failure, acute renal failure, volume overload, hypoxemia, and prolonged mechanical ventilation.In traumatic brain injury (TBI), recent randomized controlled trials (RCT) did not demonstrate outcome benefits for early, prophylactic decompressive craniectomy, but indicate a role for secondary decompressive craniectomy in patients with refractory elevated ICP. A recent meta-analysis suggested that when an extraventricular drain is required, insertion 24 h or less post-TBI may result in better outcomes.In large ischemic middle cerebral artery strokes, pooled analyses of three RCTs showed functional outcome benefits in patients less than 60 years who underwent prophylactic DC within less than 48 h. In intracranial hemorrhage, a recent RCT suggested outcome benefits for minimally invasive hematoma evacuation within less than 24 h. SUMMARY More data are needed to guide ICP targets, treatment modalities, predictors of herniation, and surgical triggers; clinical decisions should consider individual patient characteristics, and account for risks of medical and surgical treatments.
Collapse
Affiliation(s)
- Victor Lin
- University of Washington, Department of Neurology, Seattle, Washington, USA
| | - Peter John Hutchinson
- Department of Clinical Neurosciences, University of Cambridge & Addenbrooke's Hospital, Cambridge, UK
| | - Angelos Kolias
- Department of Clinical Neurosciences, University of Cambridge & Addenbrooke's Hospital, Cambridge, UK
| | - Chiara Robba
- IRCCS Policlinico San Martino
- Dipartimento di Scienze Chirurgiche Diagnostiche e Integrate, University of Genoa, Genova, Italy
| | - Sarah Wahlster
- University of Washington, Department of Neurology, Seattle, Washington, USA
- University of Washington, Department of Anesthesiology
- University of Washington, Department of Neurosurgery, Seattle, Washington, USA
| |
Collapse
|
3
|
Silva PL, Chiumello D, Pozzi T, Rocco PRM. Beyond the Lungs: Extrapulmonary Effects of Non-Invasive and Invasive Ventilation Strategies. J Clin Med 2025; 14:1242. [PMID: 40004773 PMCID: PMC11856178 DOI: 10.3390/jcm14041242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/03/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: Non-invasive respiratory support and invasive mechanical ventilation are critical interventions that can induce significant changes not only in the lungs but also in extra-pulmonary organs, which are often overlooked. Understanding the extra-pulmonary effects of non-invasive respiratory support and invasive mechanical ventilation is crucial since it can help prevent or mitigate complications and improve outcomes. This narrative review explores these consequences in detail and highlights areas that require further research. Main Text: Non-invasive respiratory support and invasive mechanical ventilation can significantly impact various extrapulmonary organs. For instance, some ventilation strategies can affect venous return from the brain, which may lead to neurological sequelae. In the heart, regardless of the chosen ventilation method, increased intrathoracic pressure (ITP) can also reduce venous return to the heart. This reduction in turn can decrease cardiac output, resulting in hypotension and diminished perfusion of vital organs. Conversely, in certain situations, both ventilation strategies may enhance cardiac function by decreasing the work of breathing and lowering oxygen consumption. In the kidneys, these ventilation methods can impair renal perfusion and function through various mechanisms, including hemodynamic changes and the release of stress hormones. Such alterations can lead to acute kidney injury or exacerbate pre-existing renal conditions. Conclusions: This review emphasizes the critical importance of understanding the extensive mechanisms by which non-invasive respiratory support and invasive mechanical ventilation affect extrapulmonary organs, including neurological, cardiovascular, and renal systems. Such knowledge is essential for optimizing patient care and improving outcomes in critical care settings.
Collapse
Affiliation(s)
- Pedro Leme Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941, Brazil; (P.L.S.); (P.R.M.R.)
| | - Davide Chiumello
- Department of Anesthesia and Intensive Care, ASST Santi Paolo e Carlo, San Paolo University Hospital Milan, 20142 Milan, Italy
| | - Tommaso Pozzi
- Department of Anesthesia and Intensive Care, ASST Santi Paolo e Carlo, San Paolo University Hospital Milan, 20142 Milan, Italy
| | - Patricia Rieken Macedo Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941, Brazil; (P.L.S.); (P.R.M.R.)
| |
Collapse
|
4
|
Ferrell BE, Thomas J, Skendelas JP, Uehara M, Sugiura T. Extracorporeal Cardiopulmonary Resuscitation-Where Do We Currently Stand? Biomedicines 2025; 13:204. [PMID: 39857787 PMCID: PMC11759854 DOI: 10.3390/biomedicines13010204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/07/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
Extracorporeal cardiopulmonary resuscitation (eCPR) is a method of acute resuscitation for patients who have suffered a cardiac arrest through the utilization of an extracorporeal membrane oxygenation (ECMO) pump. The use and efficacy of eCPR is an active area of investigation with ongoing clinical investigation across the world. Since its inception, ECMO has been utilized for several conditions, but more recently, its efficacy in maintaining cerebrovascular perfusion in eCPR has generated interest in more widespread utilization, particularly in cases of out-of-hospital cardiac arrest. However, successful implementation of eCPR can be technically challenging and resource intensive and has been countered with ethical challenges beyond the scope of conventional in-hospital ECMO care. The aim of this review is to summarize the status of eCPR in the current era.
Collapse
Affiliation(s)
- Brandon E. Ferrell
- Montefiore Medical Center, Department of Cardiothoracic and Vascular Surgery, Bronx, NY 10467, USA; (B.E.F.); (J.P.S.); (M.U.)
| | - Jason Thomas
- Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - John P. Skendelas
- Montefiore Medical Center, Department of Cardiothoracic and Vascular Surgery, Bronx, NY 10467, USA; (B.E.F.); (J.P.S.); (M.U.)
| | - Mayuko Uehara
- Montefiore Medical Center, Department of Cardiothoracic and Vascular Surgery, Bronx, NY 10467, USA; (B.E.F.); (J.P.S.); (M.U.)
| | - Tadahisa Sugiura
- Montefiore Medical Center, Department of Cardiothoracic and Vascular Surgery, Bronx, NY 10467, USA; (B.E.F.); (J.P.S.); (M.U.)
| |
Collapse
|
5
|
Carr JMJR, Ainslie PN, Day T. Confined spaces in space: Cerebral implications of chronic elevations of inspired carbon dioxide and implications for long-duration space travel. Exp Physiol 2025. [PMID: 39776002 DOI: 10.1113/ep091659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025]
Abstract
Cerebrovascular regulation is critically dependent upon the arterial partial pressure of carbon dioxide (P aC O 2 ${P_{{\mathrm{aC}}{{\mathrm{O}}_{\mathrm{2}}}}}$ ), owing to its effect on cerebral blood flow, tissueP C O 2 ${P_{{\mathrm{C}}{{\mathrm{O}}_{\mathrm{2}}}}}$ , tissue proton concentration, cerebral metabolism and cognitive and neuronal function. In normal environments and in the absence of pathology, at least over acute time frames, hypercapnia is usually managed readily via the respiratory chemoreflex arcs and/or acid-base buffering capacity, such that there is minimal impact on cerebrovascular and neurological function. However, in non-normal environments, such as enclosed spaces, or with pathology, extended exposures to elevations inP aC O 2 ${P_{{\mathrm{aC}}{{\mathrm{O}}_{\mathrm{2}}}}}$ can be detrimental to cerebral health. Given the direct effect of protons on cellular function, even if pH is normalized, it is feasible that higher proton concentrations could still produce detrimental effects. Although it seems that humans can work safely in mildly hypercapnic environments for extended periods, chronic respiratory acidosis can cause bone demineralization, renal calcification, perinatal developmental abnormalities, systemic inflammation and impairments in cognitive function and visuomotor skills and can produce cerebral acidosis, potentially inducing sustained alterations in cerebral function. With the advancement of new initiatives in spaceflight, including proposed long-duration missions to Mars, the study of the effects of chronic inspired CO2 on human health is relevant. In this review, we draw on evidence from preclinical, physiological and clinical research in humans to summarize the cerebral ramifications of prolonged and chronic exposures to elevated partial pressures of inspired CO2 and respiratory acidosis.
Collapse
Affiliation(s)
- Jay M J R Carr
- Centre for Heart, Lung and Vascular Health, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Trevor Day
- Department of Biology, Mount Royal University, Calgary, AB, Canada
| |
Collapse
|
6
|
Dunn R, Stepanek J, Eboka R, Pradhan GN. Effects of Acute Hypocapnia on Postural Standing Balance Measured by Sharpened Romberg Testing (SRT) in Healthy Subjects. Wilderness Environ Med 2024; 35:417-421. [PMID: 39279341 DOI: 10.1177/10806032241282320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
INTRODUCTION The sharpened Romberg test (SRT) is a physical maneuver that has been used to identify ataxia in individuals in resource-limited settings. Previous research has suggested that performance on balance testing may be affected by hypocapnia. In this study, we sought to determine whether acute hyperventilation-induced hypocapnia affects performance on the SRT at 501 meters above sea level. METHODS We recruited 22 healthy subjects. Each subject performed a baseline SRT. Subjects were then asked to hyperventilate to the point of hypocapnia, confirmed by measurement with a capnometer. Subjects were then asked to re-perform SRT. The primary endpoint was time to loss of balance, measured as time-to-stepout. RESULTS Time-to-stepout (TTS) on SRT at baseline had a mean ± standard deviation of 101 ± 117 s. In the hypocapnic condition, TTS was reduced to 48 ± 68 s. TTS normalized to 121 ± 132 s after recovery to normal capnic levels. Time-to-stepout was found to be significantly shorter in the hypocapnic measurement compared to the baseline measurement (P = .0128). Statistical analysis was conducted using one-tailed, paired sample T-tests using a P-value of < .05. CONCLUSIONS Our study found a statistically and clinically significant reduction in performance on a balance test (SRT) when exposed to acute hyperventilation-induced hypocapnia compared to a eucapnic control. Our results suggest that acute hypocapnia may contribute to neurological dysfunction independently of hypobaric hypoxia.
Collapse
Affiliation(s)
- Ryan Dunn
- Department of Internal Medicine, Mayo Clinic, Scottsdale, AZ, USA
| | - Jan Stepanek
- Aerospace Medicine Program, Aerospace Medicine and Vestibular Research Laboratory, Mayo Clinic, Scottsdale, AZ, USA
| | - Richard Eboka
- Mayo Clinic Alix School of Medicine, Scottsdale, AZ, USA
| | - Gaurav N Pradhan
- Aerospace Medicine Program, Aerospace Medicine and Vestibular Research Laboratory, Mayo Clinic, Scottsdale, AZ, USA
| |
Collapse
|
7
|
Su R, Li HL, Wang YM, Zhang L, Zhou JX. Association of dynamic changes in arterial partial pressure of carbon dioxide with neurological outcomes in aneurysmal subarachnoid hemorrhage. Heliyon 2024; 10:e39197. [PMID: 39640813 PMCID: PMC11620248 DOI: 10.1016/j.heliyon.2024.e39197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/06/2024] [Accepted: 10/09/2024] [Indexed: 12/07/2024] Open
Abstract
Background Cerebral blood flow (CBF) is closely regulated by carbon dioxide (CO2). In patients with aneurysmal subarachnoid hemorrhage (aSAH), abnormal arterial partial pressure of CO2 (PaCO2) might deteriorate brain injuries. Nevertheless, the impact of dynamic PaCO2 fluctuations on neurological outcomes in aSAH patients has not been extensively studied. Our study aimed to investigate the association between dynamic PaCO2 levels and unfavorable neurological outcomes in aSAH patients. Methods In this retrospective observational study, we consecutively enrolled 159 aSAH patients from December 2019 to July 2021. Arterial blood gas measurements within 10 days after intensive care unit (ICU) admission for each patient were recorded to calculate the time-weighted average (TWA)-PaCO2, an indicator representing the dynamic changes in PaCO2 levels. For the association between TWA-PaCO2 levels and unfavorable neurological outcomes in aSAH patients, multivariable logistic analysis was used to explore TWA-PaCO2 levels as categorical variables, and restricted cubic spline (RCS) was used to explore TWA-PaCO2 levels as continuous variables. Results In multivariable logistic analysis, after adjusting confounders, when TWA-PaCO2 35-45 mmHg was as a reference, TWA-PaCO2 < 35 mmHg (odds ratio [OR] 2.15, 95 % confidence interval [CI] 0.83-5.55, P = 0.113) and TWA-PaCO2 > 45 mmHg (OR 8.31, 95 % CI 0.72-96.14, P = 0.090) were not independently associated with unfavorable neurological outcomes (modified Rankin score of 3-6). The RCS shows a "U" shape curve between TWA-PaCO2 levels and unfavorable neurological outcomes, with a nonlinear P-value of 0.023. The lowest ORs of unfavorable neurological outcomes were within PaCO2 32.8-38.1 mmHg. Conclusions Both lower and higher PaCO2 levels are harmful to aSAH patients. PaCO2 in the range of 32.8-38.1 mmHg is associated with lowest unfavorable neurological outcomes.
Collapse
Affiliation(s)
- Rui Su
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hong-Liang Li
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yu-Mei Wang
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Linlin Zhang
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jian-Xin Zhou
- Department of Critical Care Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Clinical and Research Center on Acute Lung Injury, Emergency and Critical Care Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
8
|
Kolb LM, Peters GA, Cash RE, Ordoobadi AJ, Castellanos MJ, Goldberg SA. Prehospital care for traumatic brain injuries: A review of U.S. state emergency medical services protocols. Am J Emerg Med 2024; 84:158-161. [PMID: 39128170 DOI: 10.1016/j.ajem.2024.07.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/14/2024] [Accepted: 07/30/2024] [Indexed: 08/13/2024] Open
Abstract
Traumatic brain injury (TBIs) necessitates a rapid and comprehensive medical response to minimize secondary brain injury and reduce mortality. Emergency medical services (EMS) clinicians serve a critical role in the management of prehospital TBI, responding during an initial phase of care with significant impact on patient outcomes. We used versions two and three of the Brain Trauma Foundation (BTF) Prehospital Guidelines for the Management of Traumatic Brain Injury and the NASEMSO National Model Clinical Guidelines to determine key elements for a TBI prehospital protocol and included common factors across sources such as recommendations concerning patient monitoring, hypoxia, hypotension, hyperventilation, cerebral herniation, airway management, hyperosmolar therapy, and transport destination. We then conducted a cross-sectional evaluation of publicly available statewide EMS clinical protocols in the US to determine the degree of alignment with national guidelines. We calculated descriptive statistics for each factor in the state protocols. Despite adoption of some evidence-based recommendations for a standard approach to the prehospital management of patients with TBI, we found significant variability in statewide EMS treatment protocols for management of severe TBI, especially in the recommended frequency of patient reassessment and for the management of suspected herniation. Most statewide protocols provided guidance regarding oxygenation, ventilation, and blood pressure management that aligned with evidence-based guidelines. While most protocols did address management of oxygenation and ventilation, one in four protocols had no specific guidance for managing hypoxia and only 31% of protocols recommended avoiding hyperventilation. For the management of suspected cerebral herniation, over half of statewide protocols recommended hyperventilation, whereas only 31% explicitly advised against hyperventilation regardless of TBI severity. Interestingly, 94% of protocols do not mention the use of hyperosmolar therapy for TBI patients, neither recommending use or avoidance of hyperosmolar therapy. In conclusion, we found inconsistent adoption of national recommendations in available statewide protocols for prehospital TBI management. We identified significant gaps and variation in statewide protocols regarding patient monitoring and reassessment, as well as in several key areas of severe TBI management.
Collapse
Affiliation(s)
- Lily M Kolb
- The Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd., Hempstead, NY 11549, United States of America.
| | - Gregory A Peters
- Harvard Medical School, 25 Shattuck St, Boston, MA 02115, United States of America; Department of Emergency Medicine, Massachusetts General Hospital, 125 Nashua Street, Suite 920, Boston, MA 02114, United States of America; Department of Emergency Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, United States of America
| | - Rebecca E Cash
- Harvard Medical School, 25 Shattuck St, Boston, MA 02115, United States of America; Department of Emergency Medicine, Massachusetts General Hospital, 125 Nashua Street, Suite 920, Boston, MA 02114, United States of America
| | - Alexander J Ordoobadi
- Harvard Medical School, 25 Shattuck St, Boston, MA 02115, United States of America; Department of Surgery, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, United States of America
| | - Mario J Castellanos
- Harvard Medical School, 25 Shattuck St, Boston, MA 02115, United States of America; Department of Emergency Medicine, Massachusetts General Hospital, 125 Nashua Street, Suite 920, Boston, MA 02114, United States of America; Department of Emergency Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, United States of America
| | - Scott A Goldberg
- Harvard Medical School, 25 Shattuck St, Boston, MA 02115, United States of America; Department of Emergency Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, United States of America
| |
Collapse
|
9
|
Pisano DV, Ortoleva JP, Wieruszewski PM. Short-Term Neurologic Complications in Patients Undergoing Extracorporeal Membrane Oxygenation Support: A Review on Pathophysiology, Incidence, Risk Factors, and Outcomes. Pulm Ther 2024; 10:267-278. [PMID: 38937418 PMCID: PMC11339018 DOI: 10.1007/s41030-024-00265-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/04/2024] [Indexed: 06/29/2024] Open
Abstract
Regardless of the type, extracorporeal membrane oxygenation (ECMO) requires the use of large intravascular cannulas and results in multiple abnormalities including non-physiologic blood flow, hemodynamic perturbation, rapid changes in blood oxygen and carbon dioxide levels, coagulation abnormalities, and a significant systemic inflammatory response. Among other sequelae, neurologic complications are an important source of mortality and long-term morbidity. The frequency of neurologic complications varies and is likely underreported due to the high mortality rate. Neurologic complications in patients supported by ECMO include ischemic and hemorrhagic stroke, hypoxic brain injury, intracranial hemorrhage, and brain death. In addition to the disease process that necessitates ECMO, cannulation strategies and physiologic disturbances influence neurologic outcomes in this high-risk population. For example, the overall documented rate of neurologic complications in the venovenous ECMO population is lower, but a higher rate of intracranial hemorrhage exists. Meanwhile, in the venoarterial ECMO population, ischemia and global hypoperfusion seem to compose a higher percentage of neurologic complications. In what follows, the literature is reviewed to discuss the pathophysiology, incidence, risk factors, and outcomes related to short-term neurologic complications in patients supported by ECMO.
Collapse
Affiliation(s)
- Dominic V Pisano
- Department of Anesthesiology, Boston Medical Center, Boston, MA, USA
| | - Jamel P Ortoleva
- Department of Anesthesiology, Boston Medical Center, Boston, MA, USA
| | - Patrick M Wieruszewski
- Department of Anesthesiology, Department of Pharmacy, Mayo Clinic, 200 First Street SW, Rochester, MN, 55906, USA.
| |
Collapse
|
10
|
Davies A, Gurung D, Ladthavorlaphatt K, Mankoo A, Panerai RB, Robinson TG, Minhas JS, Beishon LC. The effect of CO 2 on the age dependence of neurovascular coupling. J Appl Physiol (1985) 2024; 137:445-459. [PMID: 38961823 DOI: 10.1152/japplphysiol.00695.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024] Open
Abstract
Prior studies have identified variable effects of aging on neurovascular coupling (NVC). Carbon dioxide (CO2) affects both cerebral blood velocity (CBv) and NVC, but the effects of age on NVC under different CO2 conditions are unknown. Therefore, we investigated the effects of aging on NVC in different CO2 states during cognitive paradigms. Seventy-eight participants (18-78 yr), with well-controlled comorbidities, underwent continuous recordings of CBv by bilateral insonation of middle (MCA) and posterior (PCA) cerebral arteries (transcranial Doppler), blood pressure, end-tidal CO2, and heart rate during poikilocapnia, hypercapnia (5% CO2 inhalation), and hypocapnia (paced hyperventilation). Neuroactivation via visuospatial (VS) and attention tasks (AT) was used to stimulate NVC. Peak percentage and absolute change in MCAv/PCAv, were compared between CO2 conditions and age groups (≤30, 31-60, and >60 yr). For the VS task, in poikilocapnia, younger adults had a lower NVC response compared with older adults [mean difference (MD): -7.92% (standard deviation (SD): 2.37), P = 0.004], but comparable between younger and middle-aged groups. In hypercapnia, both younger [MD: -4.75% (SD: 1.56), P = 0.009] and middle [MD: -4.58% (SD: 1.69), P = 0.023] age groups had lower NVC responses compared with older adults. Finally, in hypocapnia, both older [MD: 5.92% (SD: 2.21), P = 0.025] and middle [MD: 5.44% (SD: 2.27), P = 0.049] age groups had greater NVC responses, compared with younger adults. In conclusion, the magnitude of NVC response suppression from baseline during hyper- and hypocapnia, did not differ significantly between age groups. However, the middle age group demonstrated a different NVC response while under hypercapnic conditions, compared with hypocapnia.NEW & NOTEWORTHY This study describes the effects of age on neurovascular coupling under altered CO2 conditions. We demonstrated that both hypercapnia and hypocapnia suppress neurovascular coupling (NVC) responses. Furthermore, that middle age exhibits an NVC response comparable with younger adults under hypercapnia, and older adults under hypocapnia.
Collapse
Affiliation(s)
- Aaron Davies
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM) Research Group, Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
| | - Dewarkar Gurung
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM) Research Group, Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
| | - Kannaphob Ladthavorlaphatt
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM) Research Group, Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
| | - Alex Mankoo
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM) Research Group, Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
| | - Ronney B Panerai
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM) Research Group, Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- NIHR Leicester Biomedical Research Centre, Glenfield Research Centre, British Heart Foundation Cardiovascular Centre, Leicester, United Kingdom
| | - Thompson G Robinson
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM) Research Group, Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- NIHR Leicester Biomedical Research Centre, Glenfield Research Centre, British Heart Foundation Cardiovascular Centre, Leicester, United Kingdom
| | - Jatinder S Minhas
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM) Research Group, Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- NIHR Leicester Biomedical Research Centre, Glenfield Research Centre, British Heart Foundation Cardiovascular Centre, Leicester, United Kingdom
| | - Lucy C Beishon
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM) Research Group, Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- NIHR Leicester Biomedical Research Centre, Glenfield Research Centre, British Heart Foundation Cardiovascular Centre, Leicester, United Kingdom
| |
Collapse
|
11
|
Zhang L, Sun Y, Sui X, Zhang J, Zhao J, Zhou R, Xu W, Yin C, He Z, Sun Y, Liu C, Song A, Han F. Hypocapnia is associated with increased in-hospital mortality and 1 year mortality in acute heart failure patients. ESC Heart Fail 2024; 11:2138-2147. [PMID: 38600875 PMCID: PMC11287307 DOI: 10.1002/ehf2.14763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 02/29/2024] [Accepted: 03/06/2024] [Indexed: 04/12/2024] Open
Abstract
AIMS Both hypercapnia and hypocapnia are common in patients with acute heart failure (AHF), but the association between partial pressure of arterial carbon dioxide (PaCO2) and AHF prognosis remains unclear. The objective of this study was to investigate the connection between PaCO2 within 24 h after admission to the intensive care unit (ICU) and mortality during hospitalization and at 1 year in AHF patients. METHODS AND RESULTS AHF patients were enrolled from the Medical Information Mart for Intensive Care IV database. The patients were divided into three groups by PaCO2 values of <35, 35-45, and >45 mmHg. The primary outcome was to investigate the connection between PaCO2 and in-hospital mortality and 1 year mortality in AHF patients. The secondary outcome was to assess the prediction value of PaCO2 in predicting in-hospital mortality and 1 year mortality in AHF patients. A total of 2374 patients were included in this study, including 457 patients in the PaCO2 < 35 mmHg group, 1072 patients in the PaCO2 = 35-45 mmHg group, and 845 patients in the PaCO2 > 45 mmHg group. The in-hospital mortality was 19.5%, and the 1 year mortality was 23.9% in the PaCO2 < 35 mmHg group. Multivariate logistic regression analysis showed that the PaCO2 < 35 mmHg group was associated with an increased risk of in-hospital mortality [hazard ratio (HR) 1.398, 95% confidence interval (CI) 1.039-1.882, P = 0.027] and 1 year mortality (HR 1.327, 95% CI 1.020-1.728, P = 0.035) than the PaCO2 = 35-45 mmHg group. The PaCO2 > 45 mmHg group was associated with an increased risk of in-hospital mortality (HR 1.387, 95% CI 1.050-1.832, P = 0.021); the 1 year mortality showed no significant difference (HR 1.286, 95% CI 0.995-1.662, P = 0.055) compared with the PaCO2 = 35-45 mmHg group. The Kaplan-Meier survival curves showed that the PaCO2 < 35 mmHg group had a significantly lower 1 year survival rate. The area under the receiver operating characteristic curve for predicting in-hospital mortality was 0.591 (95% CI 0.526-0.656), and the 1 year mortality was 0.566 (95% CI 0.505-0.627) in the PaCO2 < 35 mmHg group. CONCLUSIONS In AHF patients, hypocapnia within 24 h after admission to the ICU was associated with increased in-hospital mortality and 1 year mortality. However, the increase in 1 year mortality may be influenced by hospitalization mortality. Hypercapnia was associated with increased in-hospital mortality.
Collapse
Affiliation(s)
- Lei Zhang
- Department of AnesthesiologyHarbin Medical University Cancer HospitalHarbinChina
| | - Yiwu Sun
- Department of AnesthesiologyDazhou Central HospitalDazhouChina
| | - Xin Sui
- Department of AnesthesiologyHarbin Medical University Cancer HospitalHarbinChina
| | - Jian Zhang
- Department of AnesthesiologyHarbin Medical University Cancer HospitalHarbinChina
| | - Jingshun Zhao
- Department of AnesthesiologyHarbin Medical University Cancer HospitalHarbinChina
| | - Runfeng Zhou
- Department of AnesthesiologyHarbin Medical University Cancer HospitalHarbinChina
| | - Wenjia Xu
- Department of AnesthesiologyHarbin Medical University Cancer HospitalHarbinChina
| | - Chengke Yin
- Department of AnesthesiologyHarbin Medical University Cancer HospitalHarbinChina
| | - Zhaoyi He
- Department of AnesthesiologyHarbin Medical University Cancer HospitalHarbinChina
| | - Yufei Sun
- Department of AnesthesiologyHarbin Medical University Cancer HospitalHarbinChina
| | - Chang Liu
- Department of AnesthesiologyHarbin Medical University Cancer HospitalHarbinChina
| | - Ailing Song
- Department of AnesthesiologyShanghai Jiao Tong University First People's Hospital (Shanghai General Hospital)ShanghaiChina
| | - Fei Han
- Department of AnesthesiologyHarbin Medical University Cancer HospitalHarbinChina
| |
Collapse
|
12
|
Frazier AH, Topjian AA, Reeder RW, Morgan RW, Fink EL, Franzon D, Graham K, Harding ML, Mourani PM, Nadkarni VM, Wolfe HA, Ahmed T, Bell MJ, Burns C, Carcillo JA, Carpenter TC, Diddle JW, Federman M, Friess SH, Hall M, Hehir DA, Horvat CM, Huard LL, Maa T, Meert KL, Naim MY, Notterman D, Pollack MM, Schneiter C, Sharron MP, Srivastava N, Viteri S, Wessel D, Yates AR, Sutton RM, Berg RA. Association of Pediatric Postcardiac Arrest Ventilation and Oxygenation with Survival Outcomes. Ann Am Thorac Soc 2024; 21:895-906. [PMID: 38507645 PMCID: PMC11160133 DOI: 10.1513/annalsats.202311-948oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/18/2024] [Indexed: 03/22/2024] Open
Abstract
Rationale: Adult and pediatric studies provide conflicting data regarding whether post-cardiac arrest hypoxemia, hyperoxemia, hypercapnia, and/or hypocapnia are associated with worse outcomes. Objectives: We sought to determine whether postarrest hypoxemia or postarrest hyperoxemia is associated with lower rates of survival to hospital discharge, compared with postarrest normoxemia, and whether postarrest hypocapnia or hypercapnia is associated with lower rates of survival, compared with postarrest normocapnia. Methods: An embedded prospective observational study during a multicenter interventional cardiopulmonary resuscitation trial was conducted from 2016 to 2021. Patients ⩽18 years old and with a corrected gestational age of ≥37 weeks who received chest compressions for cardiac arrest in one of the 18 intensive care units were included. Exposures during the first 24 hours postarrest were hypoxemia, hyperoxemia, or normoxemia-defined as lowest arterial oxygen tension/pressure (PaO2) <60 mm Hg, highest PaO2 ⩾200 mm Hg, or every PaO2 60-199 mm Hg, respectively-and hypocapnia, hypercapnia, or normocapnia, defined as lowest arterial carbon dioxide tension/pressure (PaCO2) <30 mm Hg, highest PaCO2 ⩾50 mm Hg, or every PaCO2 30-49 mm Hg, respectively. Associations of oxygenation and carbon dioxide group with survival to hospital discharge were assessed using Poisson regression with robust error estimates. Results: The hypoxemia group was less likely to survive to hospital discharge, compared with the normoxemia group (adjusted relative risk [aRR] = 0.71; 95% confidence interval [CI] = 0.58-0.87), whereas survival in the hyperoxemia group did not differ from that in the normoxemia group (aRR = 1.0; 95% CI = 0.87-1.15). The hypercapnia group was less likely to survive to hospital discharge, compared with the normocapnia group (aRR = 0.74; 95% CI = 0.64-0.84), whereas survival in the hypocapnia group did not differ from that in the normocapnia group (aRR = 0.91; 95% CI = 0.74-1.12). Conclusions: Postarrest hypoxemia and hypercapnia were each associated with lower rates of survival to hospital discharge.
Collapse
Affiliation(s)
- Aisha H. Frazier
- Nemours Cardiac Center, and
- Department of Pediatrics, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Alexis A. Topjian
- Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ron W. Reeder
- Department of Pediatrics, University of Utah, Salt Lake City, Utah
| | - Ryan W. Morgan
- Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ericka L. Fink
- Department of Critical Care Medicine, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Deborah Franzon
- Department of Pediatrics, Benioff Children’s Hospital, University of California, San Francisco, San Francisco, California
| | - Kathryn Graham
- Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Peter M. Mourani
- Department of Pediatrics, University of Colorado School of Medicine and Children’s Hospital Colorado, Aurora, Colorado
| | - Vinay M. Nadkarni
- Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Heather A. Wolfe
- Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Tageldin Ahmed
- Department of Pediatrics, Children’s Hospital of Michigan, Central Michigan University, Detroit, Michigan
| | - Michael J. Bell
- Department of Pediatrics, Children’s National Hospital, George Washington University School of Medicine, Washington, DC
| | - Candice Burns
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - Joseph A. Carcillo
- Department of Critical Care Medicine, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Todd C. Carpenter
- Department of Pediatrics, University of Colorado School of Medicine and Children’s Hospital Colorado, Aurora, Colorado
| | - J. Wesley Diddle
- Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Myke Federman
- Department of Pediatrics, Mattel Children’s Hospital, University of California Los Angeles, Los Angeles, California
| | - Stuart H. Friess
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - Mark Hall
- Department of Pediatrics, Nationwide Children’s Hospital, The Ohio State University, Columbus, Ohio; and
| | - David A. Hehir
- Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Christopher M. Horvat
- Department of Critical Care Medicine, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Leanna L. Huard
- Department of Pediatrics, Mattel Children’s Hospital, University of California Los Angeles, Los Angeles, California
| | - Tensing Maa
- Department of Pediatrics, Nationwide Children’s Hospital, The Ohio State University, Columbus, Ohio; and
| | - Kathleen L. Meert
- Department of Pediatrics, Children’s Hospital of Michigan, Central Michigan University, Detroit, Michigan
| | - Maryam Y. Naim
- Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Daniel Notterman
- Department of Molecular Biology, Princeton University, Princeton, New Jersey
| | - Murray M. Pollack
- Department of Pediatrics, Children’s National Hospital, George Washington University School of Medicine, Washington, DC
| | - Carleen Schneiter
- Department of Pediatrics, University of Colorado School of Medicine and Children’s Hospital Colorado, Aurora, Colorado
| | - Matthew P. Sharron
- Department of Pediatrics, Children’s National Hospital, George Washington University School of Medicine, Washington, DC
| | - Neeraj Srivastava
- Department of Pediatrics, Mattel Children’s Hospital, University of California Los Angeles, Los Angeles, California
| | - Shirley Viteri
- Department of Pediatrics, Nemours Children’s Health, Wilmington, Delaware
- Department of Pediatrics, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - David Wessel
- Department of Pediatrics, Children’s National Hospital, George Washington University School of Medicine, Washington, DC
| | - Andrew R. Yates
- Department of Pediatrics, Nationwide Children’s Hospital, The Ohio State University, Columbus, Ohio; and
| | - Robert M. Sutton
- Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Robert A. Berg
- Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
13
|
Okeke C, Zhang J, Bashford T, Seah M. Perioperative management of adults with traumatic brain injury. J Perioper Pract 2024; 34:122-128. [PMID: 37650502 PMCID: PMC10996293 DOI: 10.1177/17504589231187798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Despite advances in management strategy, traumatic brain injury remains strongly associated with neurological impairment and mortality. Management of traumatic brain injury requires careful and targeted management of the physiological consequences which extend beyond the scope of the primary impact to the cranium. Here, we present a review of the principles of its acute management in adults. We outline the procedure which patients are assessed and the critical physiological variables which must be monitored to prevent further neurological damage. We describe current interventional strategies from the context of the underlying physiological mechanisms and recent clinical data and identify persisting challenges in traumatic brain injury management and potential avenues of future progress.
Collapse
Affiliation(s)
- Chinazo Okeke
- Department of Surgery, University of Cambridge, Cambridge, UK
| | - Jenny Zhang
- Department of Surgery, University of Cambridge, Cambridge, UK
| | - Tom Bashford
- Division of Anaesthesia, University of Cambridge, Cambridge, UK
| | - Matthew Seah
- Department of Surgery, University of Cambridge, Cambridge, UK
| |
Collapse
|
14
|
Stendall C, Bowes L, Carver E. Anaesthesia for paediatric neurosurgery. Part 2: common neurosurgical procedures in children. BJA Educ 2024; 24:39-45. [PMID: 38304070 PMCID: PMC10829086 DOI: 10.1016/j.bjae.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2023] [Indexed: 02/03/2024] Open
Affiliation(s)
- C. Stendall
- Birmingham Children's Hospital, Birmingham, UK
| | - L. Bowes
- Birmingham Children's Hospital, Birmingham, UK
| | - E. Carver
- Birmingham Children's Hospital, Birmingham, UK
| |
Collapse
|
15
|
Fincham GW, Kartar A, Uthaug MV, Anderson B, Hall L, Nagai Y, Critchley H, Colasanti A. High ventilation breathwork practices: An overview of their effects, mechanisms, and considerations for clinical applications. Neurosci Biobehav Rev 2023; 155:105453. [PMID: 37923236 DOI: 10.1016/j.neubiorev.2023.105453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/19/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023]
Abstract
High Ventilation Breathwork (HVB) refers to practices employing specific volitional manipulation of breathing, with a long history of use to relieve various forms of psychological distress. This paper seeks to offer a consolidative insight into potential clinical application of HVB as a treatment of psychiatric disorders. We thus review the characteristic phenomenological and neurophysiological effects of these practices to inform their mechanism of therapeutic action, safety profiles and future clinical applications. Clinical observations and data from neurophysiological studies indicate that HVB is associated with extraordinary changes in subjective experience, as well as with profound effects on central and autonomic nervous systems functions through modulation of neurometabolic parameters and interoceptive sensory systems. This growing evidence base may guide how the phenomenological effects of HVB can be understood, and potentially harnessed in the context of such volitional perturbation of psychophysiological state. Reports of putative beneficial effects for trauma-related, affective, and somatic disorders invite further research to obtain detailed mechanistic knowledge, and rigorous clinical testing of these potential therapeutic uses.
Collapse
Affiliation(s)
- Guy W Fincham
- Brighton & Sussex Medical School, Department of Neuroscience, University of Sussex, UK; University of Sussex, School of Psychology, Brighton, UK.
| | - Amy Kartar
- Brighton & Sussex Medical School, Department of Neuroscience, University of Sussex, UK
| | - Malin V Uthaug
- The Centre for Psychedelic Research, Division of Psychiatry, Imperial College London, UK; Department of Neuropsychology & Psychopharmacology, Faculty of Psychology & Neuroscience, Maastricht University, The Netherlands
| | - Brittany Anderson
- University of Wisconsin School of Medicine & Public Health, Department of Psychiatry, University of Wisconsin-Madison, USA
| | - Lottie Hall
- Brighton & Sussex Medical School, Department of Neuroscience, University of Sussex, UK
| | - Yoko Nagai
- Brighton & Sussex Medical School, Department of Neuroscience, University of Sussex, UK
| | - Hugo Critchley
- Brighton & Sussex Medical School, Department of Neuroscience, University of Sussex, UK
| | - Alessandro Colasanti
- Brighton & Sussex Medical School, Department of Neuroscience, University of Sussex, UK; Sussex Partnership NHS Foundation Trust.
| |
Collapse
|
16
|
Shukla G, Parks K, Smith DW, Hartings JA. Impact of Hypo- and Hyper-capnia on Spreading Depolarizations in Rat Cerebral Cortex. Neuroscience 2023; 530:46-55. [PMID: 37640133 DOI: 10.1016/j.neuroscience.2023.08.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023]
Abstract
Patients with traumatic brain injury are typically maintained at low-normal levels of arterial partial pressure of carbon dioxide (PaCO2) to counteract the risk of elevated intracranial pressure during intensive care. However, several studies suggest that management at hypercarbic levels may have therapeutic benefit. Here we examined the impact of CO2 levels on spreading depolarizations (SD), a mechanism and marker of acute lesion development in stroke and brain trauma. In an acute preparation of mechanically ventilated (30/70 O2/N2) female rats, SDs were evoked by cortical KCl application and monitored by electrophysiology and laser doppler flowmetry; CO2 levels were adjusted by ventilator settings and supplemental CO2. During 90 min of KCl application, rats were maintained at hypocapnia (end-tidal CO2 22 ± 2 mmHg) or hypercapnia (57 ± 4 mmHg) but did not differ significantly in arterial pH (7.31 ± 0.10 vs. 7.22 ± 0.08, p = 0.31) or other variables. Surprisingly, there was no difference between groups in the number of SDs recorded (10.7 ± 4.2 vs. 11.7 ± 3.1; n = 3 rats/group; p = 0.75) nor in SD durations (64 ± 27 vs. 69 ± 37 sec, p = 0.54). In separate experiments (n = 3), hypoxia was induced by decreasing inhaled O2 to 10% and single SDs were induced under interleaved conditions of hypo-, normo-, and hypercapnia. No differences in SD duration were observed. In both normoxia and hypoxia experiments, however, mean arterial pressures were negatively correlated with SD durations (normoxia R2 = -0.29; hypoxia R2 = -0.61, p's < 0.001). Our results suggest that any therapeutic benefit of elevated CO2 therapy may be dependent on an acidic shift in pH or may only be observed in conditions of focal brain injury.
Collapse
Affiliation(s)
- Geet Shukla
- University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Ken Parks
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | | | - Jed A Hartings
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
| |
Collapse
|
17
|
Tincu (Iurciuc) CE, Andrițoiu CV, Popa M, Ochiuz L. Recent Advancements and Strategies for Overcoming the Blood-Brain Barrier Using Albumin-Based Drug Delivery Systems to Treat Brain Cancer, with a Focus on Glioblastoma. Polymers (Basel) 2023; 15:3969. [PMID: 37836018 PMCID: PMC10575401 DOI: 10.3390/polym15193969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a highly aggressive malignant tumor, and the most prevalent primary malignant tumor affecting the brain and central nervous system. Recent research indicates that the genetic profile of GBM makes it resistant to drugs and radiation. However, the main obstacle in treating GBM is transporting drugs through the blood-brain barrier (BBB). Albumin is a versatile biomaterial for the synthesis of nanoparticles. The efficiency of albumin-based delivery systems is determined by their ability to improve tumor targeting and accumulation. In this review, we will discuss the prevalence of human glioblastoma and the currently adopted treatment, as well as the structure and some essential functions of the BBB, to transport drugs through this barrier. We will also mention some aspects related to the blood-tumor brain barrier (BTBB) that lead to poor treatment efficacy. The properties and structure of serum albumin were highlighted, such as its role in targeting brain tumors, as well as the progress made until now regarding the techniques for obtaining albumin nanoparticles and their functionalization, in order to overcome the BBB and treat cancer, especially human glioblastoma. The albumin drug delivery nanosystems mentioned in this paper have improved properties and can overcome the BBB to target brain tumors.
Collapse
Affiliation(s)
- Camelia-Elena Tincu (Iurciuc)
- Department of Natural and Synthetic Polymers, “Cristofor Simionescu” Faculty of Chemical Engineering and Protection of the Environment, “Gheorghe Asachi” Technical University, 73, Prof. Dimitrie Mangeron Street, 700050 Iasi, Romania;
- Department of Pharmaceutical Technology, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16, University Street, 700115 Iasi, Romania;
| | - Călin Vasile Andrițoiu
- Apitherapy Medical Center, Balanesti, Nr. 336-337, 217036 Gorj, Romania;
- Specialization of Nutrition and Dietetics, Faculty of Pharmacy, Vasile Goldis Western University of Arad, Liviu Rebreanu Street, 86, 310045 Arad, Romania
| | - Marcel Popa
- Department of Natural and Synthetic Polymers, “Cristofor Simionescu” Faculty of Chemical Engineering and Protection of the Environment, “Gheorghe Asachi” Technical University, 73, Prof. Dimitrie Mangeron Street, 700050 Iasi, Romania;
- Faculty of Dental Medicine, “Apollonia” University of Iasi, 11, Pacurari Street, 700511 Iasi, Romania
- Academy of Romanian Scientists, 3 Ilfov Street, 050045 Bucharest, Romania
| | - Lăcrămioara Ochiuz
- Department of Pharmaceutical Technology, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16, University Street, 700115 Iasi, Romania;
| |
Collapse
|
18
|
Tagliabue S, Kacprzak M, Serra I, Maruccia F, Fischer JB, Riveiro-Vilaboa M, Rey-Perez A, Expósito L, Lindner C, Báguena M, Durduran T, Poca MA. Transcranial, Non-Invasive Evaluation of Potential Misery Perfusion During Hyperventilation Therapy of Traumatic Brain Injury Patients. J Neurotrauma 2023; 40:2073-2086. [PMID: 37125452 PMCID: PMC10541939 DOI: 10.1089/neu.2022.0419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
Hyperventilation (HV) therapy uses vasoconstriction to reduce intracranial pressure (ICP) by reducing cerebral blood volume. However, as HV also lowers cerebral blood flow (CBF), it may provoke misery perfusion (MP), in which the decrease in CBF is coupled with increased oxygen extraction fraction (OEF). MP may rapidly lead to the exhaustion of brain energy metabolites, making the brain vulnerable to ischemia. MP is difficult to detect at the bedside, which is where transcranial hybrid, near-infrared spectroscopies are promising because they non-invasively measure OEF and CBF. We have tested this technology during HV (∼30 min) with bilateral, frontal lobe monitoring to assess MP in 27 sessions in 18 patients with traumatic brain injury. In this study, HV did not lead to MP at a group level (p > 0.05). However, a statistical approach yielded 89 events with a high probability of MP in 19 sessions. We have characterized each statistically significant event in detail and its possible relationship to clinical and radiological status (decompressive craniectomy and presence of a cerebral lesion), without detecting any statistically significant difference (p > 0.05). However, MP detection stresses the need for personalized, real-time assessment in future clinical trials with HV, in order to provide an optimal evaluation of the risk-benefit balance of HV. Our study provides pilot data demonstrating that bedside transcranial hybrid near-infrared spectroscopies could be utilized to assess potential MP.
Collapse
Affiliation(s)
- Susanna Tagliabue
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain
| | - Michał Kacprzak
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - Isabel Serra
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain
- Centre de Recerca Matemàtica (CRM), Bellaterra, Spain
| | - Federica Maruccia
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain
- Neurotraumatology and Neurosurgery Research Unit (UNINN), Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Jonas B. Fischer
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain
- HemoPhotonics S.L., Castelldefels (Barcelona), Spain
| | | | - Anna Rey-Perez
- Neurotrauma Intensive Care Unit, and Vall d'Hebron University Hospital, Barcelona, Spain
| | - Lourdes Expósito
- Neurotrauma Intensive Care Unit, and Vall d'Hebron University Hospital, Barcelona, Spain
| | - Claus Lindner
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain
| | - Marcelino Báguena
- Neurotrauma Intensive Care Unit, and Vall d'Hebron University Hospital, Barcelona, Spain
| | - Turgut Durduran
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - María Antonia Poca
- Centre de Recerca Matemàtica (CRM), Bellaterra, Spain
- Department of Neurosurgery, Vall d'Hebron University Hospital, Barcelona, Spain
- Department of Surgery, Universidad Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
19
|
Scudellari A, Dudek P, Marino L, Badenes R, Bilotta F. Ventilation Targets for Patients Undergoing Mechanical Thrombectomy for Acute Ischemic Stroke: A Systematic Review. J Clin Med 2023; 12:4925. [PMID: 37568327 PMCID: PMC10420130 DOI: 10.3390/jcm12154925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 06/30/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Mechanical thrombectomy (MT) has become a standard treatment for acute ischemic stroke (AIS) caused by large vessel occlusion (LVO). Recent evidence suggests that general anesthesia (GA) and mechanical ventilation do not lead to inferior neurologic outcomes if compared to non-GA. However, the guidelines lack specific recommendations for ventilation targets during MT under GA. This systematic review aims to identify ventilation strategies correlating with better neurological outcomes in AIS patients undergoing MT, particularly focusing on oxygenation and carbon dioxide (CO2) targets. A systematic search of multiple databases was conducted to identify human studies reporting the correlation between ventilation strategies and neurological outcomes in MT for AIS. Eligible studies included clinical trials, observational studies, and case-control studies. Out of 157 studies assessed, 11 met the inclusion criteria. Five studies investigated oxygenation targets, while six studies explored CO2 targets. The published studies highlighted the controversial role of supplemental normobaric oxygen therapy and its potential association with worse outcomes. Regarding CO2 targets, the studies identified a potential association between end tidal CO2 levels and functional outcomes, with hypocapnia being unfavorable. This systematic review demonstrates that the current available evidence still lacks strength to suggest specific ventilation targets, but it highlights the potential risks of hyperoxia and hypocapnia in this specific cohort of patients.
Collapse
Affiliation(s)
| | - Paula Dudek
- 2nd Department of Anesthesiology and Intensive Care, Medical University of Warsaw, 02-097 Warsaw, Poland;
| | - Luca Marino
- Department of Mechanical and Aerospace Engineering, “Sapienza” University of Rome, 00184 Rome, Italy
| | - Rafael Badenes
- Department of Anesthesiology and Surgical-Trauma Intensive Care, Hospital Clínic Universitari de Valencia, University of Valencia, 46010 Valencia, Spain
| | - Federico Bilotta
- Department of Anesthesiology, Critical Care and Pain Medicine, Policlinico Umberto I, “Sapienza” University of Rome, 00185 Rome, Italy;
| |
Collapse
|
20
|
Shah N, Li X, Shanmugham P, Fan E, Thiagarajan RR, Venkataraman R, Raman L. Early Changes in Arterial Partial Pressure of Carbon Dioxide and Blood Pressure After Starting Extracorporeal Membrane Oxygenation in Children: Extracorporeal Life Support Organization Database Study of Neurologic Complications. Pediatr Crit Care Med 2023; 24:541-550. [PMID: 36877009 DOI: 10.1097/pcc.0000000000003216] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
OBJECTIVE Neurologic complications in pediatric patients supported by extracorporeal membrane oxygenation (ECMO) are common and lead to morbidity and mortality; however, few modifiable factors are known. DESIGN Retrospective study of the Extracorporeal Life Support Organization registry (2010-2019). SETTING Multicenter international database. PATIENTS Pediatric patients receiving ECMO (2010-2019) for all indications and any mode of support. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS We investigated if early relative change in Pa co2 or mean arterial blood pressure (MAP) soon after starting ECMO was associated with neurologic complications. The primary outcome of neurologic complications was defined as a report of seizures, central nervous system infarction or hemorrhage, or brain death. All-cause mortality (including brain death) was used as a secondary outcome.Out of 7,270 patients, 15.6% had neurologic complications. Neurologic complications increased when the relative Pa co2 decreased by greater than 50% (18.4%) or 30-50% (16.5%) versus those who had a minimal change (13.9%, p < 0.01 and p = 0.046). When the relative MAP increased greater than 50%, the rate of neurologic complications was 16.9% versus 13.1% those with minimal change ( p = 0.007). In a multivariable model adjusting for confounders, a relative decrease in Pa co2 greater than 30% was independently associated with greater odds of neurologic complication (odds ratio [OR], 1.25; 95% CI, 1.07-1.46; p = 0.005). Within this group, with a relative decrease in Pa co2 greater than 30%, the effects of increased relative MAP increased neurologic complications (0.05% per BP Percentile; 95% CI, 0.001-0.11; p = 0.05). CONCLUSIONS In pediatric patients, a large decrease in Pa co2 and increase in MAP following ECMO initiation are both associated with neurologic complications. Future research focusing on managing these issues carefully soon after ECMO deployment can potentially help to reduce neurologic complications.
Collapse
Affiliation(s)
- Neel Shah
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO
| | - Xilong Li
- Department of Population and Data Science, University of Texas Southwestern Medical Center, Dallas, TX
| | - Prashanth Shanmugham
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Eddy Fan
- Interdepartmental Division of Critical Care Medicine, Toronto General Hospital, Toronto, ON, Canada
| | | | | | - Lakshmi Raman
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
21
|
Kareemi H, Pratte M, English S, Hendin A. Initial Diagnosis and Management of Acutely Elevated Intracranial Pressure. J Intensive Care Med 2023; 38:643-650. [PMID: 36802976 PMCID: PMC10302390 DOI: 10.1177/08850666231156589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 02/22/2023]
Abstract
Acutely elevated intracranial pressure (ICP) may have devastating effects on patient mortality and neurologic outcomes, yet its initial detection remains difficult because of the variety of manifestations that it can cause disease states it is associated with. Several treatment guidelines exist for specific disease processes such as trauma or ischemic stroke, but their recommendations may not apply to other causes. In the acute setting, management decisions must often be made before the underlying cause is known. In this review, we present an organized, evidence-based approach to the recognition and management of patients with suspected or confirmed elevated ICP in the first minutes to hours of resuscitation. We explore the utility of invasive and noninvasive methods of diagnosis, including history, physical examination, imaging, and ICP monitors. We synthesize various guidelines and expert recommendations and identify core management principles including noninvasive maneuvers, neuroprotective intubation and ventilation strategies, and pharmacologic therapies such as ketamine, lidocaine, corticosteroids, and the hyperosmolar agents mannitol and hypertonic saline. Although an in-depth discussion of the definitive management of each etiology is beyond the scope of this review, our goal is to provide an empirical approach to these time-sensitive, critical presentations in their initial stages.
Collapse
Affiliation(s)
- Hashim Kareemi
- Department of Emergency Medicine, The Ottawa Hospital, University of Ottawa, Ottawa, Ontario, Canada
| | - Michael Pratte
- Department of Internal Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Shane English
- Department of Medicine (Critical Care), University of Ottawa, Ottawa, Ontario, Canada
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Ariel Hendin
- Department of Emergency Medicine, The Ottawa Hospital, University of Ottawa, Ottawa, Ontario, Canada
- Department of Medicine (Critical Care), University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
22
|
Zhang R, Chen H, Teng R, Li Z, Yang Y, Qiu H, Liu L. Association between the time-varying arterial carbon dioxide pressure and 28-day mortality in mechanically ventilated patients with acute respiratory distress syndrome. BMC Pulm Med 2023; 23:129. [PMID: 37076846 PMCID: PMC10113995 DOI: 10.1186/s12890-023-02431-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 04/13/2023] [Indexed: 04/21/2023] Open
Abstract
BACKGROUND Recent studies have shown an association between baseline arterial carbon dioxide pressure (PaCO2) and outcomes in patients with acute respiratory distress syndrome (ARDS). However, PaCO2 probably varies throughout the disease, and few studies have assessed the effect of longitudinal PaCO2 on prognosis. We thus aimed to investigate the association between time-varying PaCO2 and 28-day mortality in mechanically ventilated ARDS patients. METHODS In this retrospective study, we included all adult (≥ 18 years) patients diagnosed with ARDS who received mechanical ventilation for at least 24 h at a tertiary teaching hospital between January 2014 and March 2021. Patients were excluded if they received extracorporeal membrane oxygenation (ECMO). Demographic data, respiratory variables, and daily PaCO2 were extracted. The primary outcome was 28-day mortality. Time-varying Cox models were used to estimate the association between longitudinal PaCO2 measurements and 28-day mortality. RESULTS A total of 709 patients were eligible for inclusion in the final cohort, with an average age of 65 years, of whom 70.7% were male, and the overall 28-day mortality was 35.5%. After adjustment for baseline confounders, including age and severity of disease, a significant increase in the hazard of death was found to be associated with both time-varying PaCO2 (HR 1.07, 95% CI 1.03-1.11, p<0.001) and the time-varying coefficient of variation for PaCO2 (HR 1.24 per 10% increase, 95% CI 1.10-1.40, p<0.001) during the first five days of invasive mechanical ventilation. The cumulative proportion of exposure to normal PaCO2 (HR 0.72 per 10% increase, 95% CI 0.58-0.89, p = 0.002) was associated with 28-day mortality. CONCLUSION PaCO2 should be closely monitored in mechanically ventilated ARDS patients. The association between PaCO2 and 28-day mortality persisted over time. Increased cumulative exposure to normal PaCO2 was associated with a decreased risk of death.
Collapse
Affiliation(s)
- Rui Zhang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Hui Chen
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, 210009, China
- Department of Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215000, China
| | - Ran Teng
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Zuxian Li
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Yi Yang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Haibo Qiu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Ling Liu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, 210009, China.
| |
Collapse
|
23
|
Denchev K, Gomez J, Chen P, Rosenblatt K. Traumatic Brain Injury: Intraoperative Management and Intensive Care Unit Multimodality Monitoring. Anesthesiol Clin 2023; 41:39-78. [PMID: 36872007 DOI: 10.1016/j.anclin.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Traumatic brain injury is a devastating event associated with substantial morbidity. Pathophysiology involves the initial trauma, subsequent inflammatory response, and secondary insults, which worsen brain injury severity. Management entails cardiopulmonary stabilization and diagnostic imaging with targeted interventions, such as decompressive hemicraniectomy, intracranial monitors or drains, and pharmacological agents to reduce intracranial pressure. Anesthesia and intensive care requires control of multiple physiologic variables and evidence-based practices to reduce secondary brain injury. Advances in biomedical engineering have enhanced assessments of cerebral oxygenation, pressure, metabolism, blood flow, and autoregulation. Many centers employ multimodality neuromonitoring for targeted therapies with the hope to improve recovery.
Collapse
Affiliation(s)
- Krassimir Denchev
- Department of Anesthesiology, Wayne State University, 44555 Woodward Avenue, SJMO Medical Office Building, Suite 308, Pontiac, MI 48341, USA
| | - Jonathan Gomez
- Department of Anesthesiology & Critical Care Medicine, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Phipps 455, Baltimore, MD 21287, USA
| | - Pinxia Chen
- Department of Anesthesiology and Critical Care Medicine, St. Luke's University Health Network, 801 Ostrum Street, Bethlehem, PA 18015, USA
| | - Kathryn Rosenblatt
- Department of Anesthesiology & Critical Care Medicine, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Phipps 455, Baltimore, MD 21287, USA; Department of Neurology, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Phipps 455, Baltimore, MD 21287, USA.
| |
Collapse
|
24
|
Mechanical Ventilation in Patients with Traumatic Brain Injury: Is it so Different? Neurocrit Care 2023; 38:178-191. [PMID: 36071333 DOI: 10.1007/s12028-022-01593-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/16/2022] [Indexed: 10/14/2022]
Abstract
Patients with traumatic brain injury (TBI) frequently require invasive mechanical ventilation and admission to an intensive care unit. Ventilation of patients with TBI poses unique clinical challenges, and careful attention is required to ensure that the ventilatory strategy (including selection of appropriate tidal volume, plateau pressure, and positive end-expiratory pressure) does not cause significant additional injury to the brain and lungs. Selection of ventilatory targets may be guided by principles of lung protection but with careful attention to relevant intracranial effects. In patients with TBI and concomitant acute respiratory distress syndrome (ARDS), adjunctive strategies include sedation optimization, neuromuscular blockade, recruitment maneuvers, prone positioning, and extracorporeal life support. However, these approaches have been largely extrapolated from studies in patients with ARDS and without brain injury, with limited data in patients with TBI. This narrative review will summarize the existing evidence for mechanical ventilation in patients with TBI. Relevant literature in patients with ARDS will be summarized, and where available, direct data in the TBI population will be reviewed. Next, practical strategies to optimize the delivery of mechanical ventilation and determine readiness for extubation will be reviewed. Finally, future directions for research in this evolving clinical domain will be presented, with considerations for the design of studies to address relevant knowledge gaps.
Collapse
|
25
|
Neurotrauma and Intracranial Pressure Management. Crit Care Clin 2023; 39:103-121. [DOI: 10.1016/j.ccc.2022.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
26
|
Su R, Zhou J, Zhu N, Chen X, Zhou JX, Li HL. Efficacy and safety of remifentanil dose titration to correct the spontaneous hyperventilation in aneurysmal subarachnoid haemorrhage: protocol and statistical analysis for a prospective physiological study. BMJ Open 2022; 12:e064064. [PMID: 36351728 PMCID: PMC9664281 DOI: 10.1136/bmjopen-2022-064064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
INTRODUCTION Spontaneous hyperventilation (SHV) is common in aneurysmal subarachnoid haemorrhage (aSAH). The reduction in arterial partial pressure of carbon dioxide (PaCO2) may change the brain physiology, such as haemodynamics, oxygenation, metabolism and may lead to secondary brain injury. However, how to correct SHV safely and effectively in patients with aSAH has not been well investigated. The aim of this study is to investigate the efficacy and safety of remifentanil dose titration to correct hyperventilation in aSAH, as well as the effect of changes in PaCO2 on cerebral blood flow (CBF). METHODS AND ANALYSIS This study is a prospective, single-centre, physiological study in patients with aSAH. The patients who were mechanically ventilated and who meet with SHV (tachypnoea combined with PaCO2 <35 mm Hg and pH >7.45) will be enrolled. The remifentanil will be titrated to correct the SHV. The predetermined initial dose of remifentanil is 0.02 μg/kg/min and will be maintained for 30 min, and PaCO2 and CBF will be measured. After that, the dose of remifentanil will be sequentially increased to 0.04, 0.06, and 0.08 μg/kg/min, and the measurements for PaCO2 and CBF will be repeated 30 min after each dose adjustment and will be compared with their baseline values. ETHICS AND DISSEMINATION This study has been approved by the Institutional Review Board of Beijing Tiantan Hospital, Capital Medical University (KY 2021-006-02) and has been registered at ClinicalTrials.gov. The results of this study will be disseminated through peer-reviewed publications and conference presentations. TRIAL REGISTRATION NUMBER NCT04940273.
Collapse
Affiliation(s)
- Rui Su
- Capital Medical University, Department of Critical Care Medicine, Beijing Tiantan Hospital, Beijing, Beijing, China
| | - Jianfang Zhou
- Capital Medical University, Department of Critical Care Medicine, Beijing Tiantan Hospital, Beijing, Beijing, China
| | - Ning Zhu
- Capital Medical University, Department of Critical Care Medicine, Beijing Tiantan Hospital, Beijing, Beijing, China
| | - Xiaolin Chen
- Capital Medical University, Department of Neurosurgery, Beijing Tiantan Hospital, Beijing, Beijing, China
| | - Jian-Xin Zhou
- Capital Medical University, Department of Critical Care Medicine, Beijing Tiantan Hospital, Beijing, Beijing, China
- Capital Medical University, Department of Critical Care Medicine, Beijing Shijitan Hospital, Beijing, Beijing, China
| | - Hong-Liang Li
- Capital Medical University, Department of Critical Care Medicine, Beijing Tiantan Hospital, Beijing, Beijing, China
| |
Collapse
|
27
|
Miao Z, Wang H, Cai Z, Lei J, Wan X, Li Y, Wang J, Zhao K, Niu H, Lei T. Spontaneous Hyperventilation Is Common in Patients with Spontaneous Cerebellar Hemorrhage, and Its Severity Is Associated with Outcome. J Clin Med 2022; 11:5564. [PMID: 36233445 PMCID: PMC9572038 DOI: 10.3390/jcm11195564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The spontaneous hyperventilation (SHV) accompanying spontaneous cerebellar hemorrhage has yet to attract a sufficient amount of attention. This study aimed to analyze the incidence of SHV in spontaneous cerebellar hemorrhage patients and its risk factors as well as its association with the outcome. METHODS We retrospectively reviewed the medical records of all spontaneous cerebellar hemorrhage patients who underwent surgical treatment at Tongji Hospital from July 2018 to December 2020. Arterial blood gas (ABG) test results and clinical characteristics, including demographics, comorbidities, imaging features, laboratory tests, and therapy choices, were collected. The Glasgow Outcome Scale was used to assess the outcome at two weeks and six months after admission. RESULTS A total of 147 patients were included, and of these patients 44.9% had spontaneous hyperventilation. Hypertension (OR, 3.175; CI, 1.332-7.569), usage of sedation drugs (OR, 3.693; CI, 1.0563-8.724), and hypernatremia (OR, 2.803; CI, 1.070-7.340) seemed to positively correlate to SHV occurrence. Hematoma removal had an inverse association with SHV (OR, 0.176; CI, 0.068-0.460). Patients with poor and good outcomes had significant differences in pH, PaCO2, and HCO3- values, and the severity of SHV was associated with the PaCO2 level. CONCLUSIONS Spontaneous hyperventilation is common in patients with spontaneous cerebellar hemorrhage, and its severity is associated with the outcome.
Collapse
Affiliation(s)
- Zhuangzhuang Miao
- Department of Neurosurgery, Tongji Hospital Affiliated to Tongji Medical College of Huazhong University of Science & Technology, Wuhan 430030, China
| | - Huajian Wang
- Department of Neurosurgery, Wuhan Fourth Hospital, Puai Hospital, Wuhan 430030, China
| | - Zhi Cai
- Department of Neurosurgery, Tongji Hospital Affiliated to Tongji Medical College of Huazhong University of Science & Technology, Wuhan 430030, China
| | - Jin Lei
- Department of Neurosurgery, Tongji Hospital Affiliated to Tongji Medical College of Huazhong University of Science & Technology, Wuhan 430030, China
| | - Xueyan Wan
- Department of Neurosurgery, Tongji Hospital Affiliated to Tongji Medical College of Huazhong University of Science & Technology, Wuhan 430030, China
| | - Yu Li
- Department of Neurosurgery, Tongji Hospital Affiliated to Tongji Medical College of Huazhong University of Science & Technology, Wuhan 430030, China
| | - Junwen Wang
- Department of Neurosurgery, Tongji Hospital Affiliated to Tongji Medical College of Huazhong University of Science & Technology, Wuhan 430030, China
| | - Kai Zhao
- Department of Neurosurgery, Tongji Hospital Affiliated to Tongji Medical College of Huazhong University of Science & Technology, Wuhan 430030, China
| | - Hongquan Niu
- Department of Neurosurgery, Tongji Hospital Affiliated to Tongji Medical College of Huazhong University of Science & Technology, Wuhan 430030, China
| | - Ting Lei
- Department of Neurosurgery, Tongji Hospital Affiliated to Tongji Medical College of Huazhong University of Science & Technology, Wuhan 430030, China
| |
Collapse
|
28
|
Chau L, Davis HT, Jones T, Greene-Chandos D, Torbey M, Shuttleworth CW, Carlson AP. Spreading Depolarization as a Therapeutic Target in Severe Ischemic Stroke: Physiological and Pharmacological Strategies. J Pers Med 2022; 12:1447. [PMID: 36143232 PMCID: PMC9502975 DOI: 10.3390/jpm12091447] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/26/2022] [Accepted: 08/31/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Spreading depolarization (SD) occurs nearly ubiquitously in malignant hemispheric stroke (MHS) and is strongly implicated in edema progression and lesion expansion. Due to this high burden of SD after infarct, it is of great interest whether SD in MHS patients can be mitigated by physiologic or pharmacologic means and whether this intervention improves clinical outcomes. Here we describe the association between physiological variables and risk of SD in MHS patients who had undergone decompressive craniectomy and present an initial case of using ketamine to target SD in MHS. METHODS We recorded SD using subdural electrodes and time-linked with continuous physiological recordings in five subjects. We assessed physiologic variables in time bins preceding SD compared to those with no SD. RESULTS Using multivariable logistic regression, we found that increased ETCO2 (OR 0.772, 95% CI 0.655-0.910) and DBP (OR 0.958, 95% CI 0.941-0.991) were protective against SD, while elevated temperature (OR 2.048, 95% CI 1.442-2.909) and WBC (OR 1.113, 95% CI 1.081-1.922) were associated with increased risk of SD. In a subject with recurrent SD, ketamine at a dose of 2 mg/kg/h was found to completely inhibit SD. CONCLUSION Fluctuations in physiological variables can be associated with risk of SD after MHS. Ketamine was also found to completely inhibit SD in one subject. These data suggest that use of physiological optimization strategies and/or pharmacologic therapy could inhibit SD in MHS patients, and thereby limit edema and infarct progression. Clinical trials using individualized approaches to target this novel mechanism are warranted.
Collapse
Affiliation(s)
- Lily Chau
- Department of Neurology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Herbert T. Davis
- Department of Internal Medicine, University of New Mexico, Albuquerque, NM 87131, USA
| | - Thomas Jones
- Department of Psychiatry, University of New Mexico, Albuquerque, NM 87131, USA
| | | | - Michel Torbey
- Department of Neurology, University of New Mexico, Albuquerque, NM 87131, USA
| | | | - Andrew P. Carlson
- Department of Neurology, University of New Mexico, Albuquerque, NM 87131, USA
- Department of Neuroscience, University of New Mexico, Albuquerque, NM 87131, USA
- Department of Neurosurgery, University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
29
|
Differential regional cerebrovascular reactivity to end-tidal gas combinations commonly seen during anaesthesia: A blood oxygenation level-dependent MRI observational study in awake adult subjects. Ugeskr Laeger 2022; 39:774-784. [PMID: 35852545 DOI: 10.1097/eja.0000000000001716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Regional cerebrovascular reactivity (rCVR) is highly variable in the human brain as measured by blood oxygenation level-dependent (BOLD) MRI to changes in both end-tidal CO 2 and O 2 . OBJECTIVES We examined awake participants under carefully controlled end-tidal gas concentrations to assess how regional CVR changes may present with end-tidal gas changes seen commonly with anaesthesia. DESIGN Observational study. SETTING Tertiary care centre, Winnipeg, Canada. The imaging for the study occurred in 2019. SUBJECTS Twelve healthy adult subjects. INTERVENTIONS Cerebral BOLD response was studied under two end-tidal gas paradigms. First end-tidal oxygen (ETO 2 ) maintained stable whereas ETCO 2 increased incrementally from hypocapnia to hypercapnia (CO 2 ramp); second ETCO 2 maintained stable whereas ETO 2 increased from normoxia to hyperoxia (O 2 ramp). BOLD images were modeled with end-tidal gas sequences split into two equal segments to examine regional CVR. MAIN OUTCOME MEASURES The voxel distribution comparing hypocapnia to mild hypercapnia and mild hyperoxia (mean F I O 2 = 0.3) to marked hyperoxia (mean F I O 2 = 0.7) were compared in a paired fashion ( P < 0.005 to reach threshold for voxel display). Additionally, type analysis was conducted on CO 2 ramp data. This stratifies the BOLD response to the CO 2 ramp into four categories of CVR slope based on segmentation (type A; +/+slope: normal response, type B +/-, type C -/-: intracranial steal, type D -/+.) Types B to D represent altered responses to the CO 2 stimulus. RESULTS Differential regional responsiveness was seen for both end-tidal gases. Hypocapnic regional CVR was more marked than hypercapnic CVR in 0.3% of voxels examined ( P < 0.005, paired comparison); the converse occurred in 2.3% of voxels. For O 2 , mild hyperoxia had more marked CVR in 0.2% of voxels compared with greater hyperoxia; the converse occurred in 0.5% of voxels. All subjects had altered regional CO 2 response based on Type Analysis ranging from 4 ± 2 to 7 ± 3% of voxels. CONCLUSION In awake subjects, regional differences and abnormalities in CVR were observed with changes in end-tidal gases common during the conduct of anaesthesia. On the basis of these findings, consideration could be given to minimising regional CVR fluctuations in patients-at-risk of neurological complications by tighter control of end-tidal gases near the individual's resting values.
Collapse
|
30
|
Pan Z, Zhong Q, Wang C, Wang J, Chen X, Li X, Zhang X, Zhang Y. Association Between Partial Pressure of Carbon Dioxide and Immediate Seizures in Patients With Primary Intracerebral Hemorrhage: A Propensity-Matched Analysis. Front Neurol 2022; 13:865207. [PMID: 35528742 PMCID: PMC9069159 DOI: 10.3389/fneur.2022.865207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/08/2022] [Indexed: 11/25/2022] Open
Abstract
Purpose To explore the value of partial pressure of carbon dioxide (PaCO2) levels in arterial blood for predicting immediate seizures (ISs) in patients with primary intracerebral hemorrhage (ICH). Methods Demographic information and clinical data from patients with primary ICH were prospectively collected, including arterial blood gas analysis. Immediate seizures (ISs) were determined as seizures in the first 24 h after admission. Univariate and multivariate analyses were performed to assess the association of PaCO2 levels with ISs. Propensity-score matching (PSM) analyses were adopted to reduce the baseline difference between ISs and non-ISs groups. Results A total of 596 patients with primary ICH were initially screened in this clinical study, 368 of whom fulfilled all the inclusion criteria [mean age, (60.46 ±12.78) years; 57.9% female patients]. ISs occurred in 30 of the 368 (8.15%) patients with primary ICH of this cohort. Patients with ISs had significantly lower PaCO2 levels [34.35(32.38–37.53) vs. 39.45(35.90–43.43), mmHg, p < 0.001] and were younger than those without ISs [(54.57±12.15 vs. 60.99 ±12.72) years, p = 0.008]. Multivariate analysis showed that lower initial PaCO2 (≤37.2 mmHg) level was a significant independent predictor of ISs [odds ratios (OR) 0.141, 95% confidence interval (CI) 0.057–0.351, p < 0.001], as well as younger age (OR 0.961, 95% CI 0.928–0.995, p = 0.023) and hematoma expansion (OR 0.340, 95% CI 0.134–0.863, p = 0.023). Receiver operating characteristic curve (ROC) analysis demonstrated that the optimal cutoff value of PaCO2 level for predicting ISs was 37.20 mmHg in patients with primary ICH (the area under the curve (AUC) was 0.760 with a corresponding sensitivity of 76.67% and specificity of 67.46%, 95%CI = 0.713–0.802, p < 0.001). After PSM, the matched ISs group had significantly lower PaCO2 levels compared with the matched non-ISs group [34.45(32.43–38.18) vs. 41.75(35.85–43.98) mmHg, p < 0.05] in the univariate analysis. The lower initial PaCO2 level was still independent of ISs following primary ICH. Conclusions The lower initial PaCO2 level was associated with an increased risk of ISs in patients with primary ICH.
Collapse
Affiliation(s)
- Zhiming Pan
- Department of Neurosurgery, Dehua County Hospital, Quanzhou, China
| | - Qiuli Zhong
- Department of Internal Medicine, Dehua County Hospital, Quanzhou, China
| | - Chaoying Wang
- Department of Neurosurgery, Dehua County Hospital, Quanzhou, China
| | - Jianqun Wang
- Department of Neurosurgery, Dehua County Hospital, Quanzhou, China
| | - Xiaoyan Chen
- Department of Neurosurgery, Dehua County Hospital, Quanzhou, China
| | - Xiaoyan Li
- Department of Neurosurgery, Dehua County Hospital, Quanzhou, China
| | - Xintong Zhang
- Department of Neurosurgery, Yuebei People's Hospital, Shaoguan, China
| | - Yibin Zhang
- Department of Neurosurgery, Dehua County Hospital, Quanzhou, China.,Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| |
Collapse
|
31
|
Honeybul S, Ho KM, Rosenfeld JV. The role of tranexamic acid in traumatic brain injury. J Clin Neurosci 2022; 99:1-4. [PMID: 35220154 DOI: 10.1016/j.jocn.2022.02.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/12/2022] [Accepted: 02/17/2022] [Indexed: 12/29/2022]
Abstract
Evidence from recent trials evaluating efficacy of antifibrinolytic agents in the context of traumatic brain injury may lead to changes in the management of patients with traumatic brain injury. Tranexamic acid (TXA) reduces the proteolytic action of plasmin on fibrin clots, resulting in an inhibition of fibrinolysis and stabilisation of established blood clots. There has been significant interest in use of the drug as a therapeutic agent in the context of severe haemorrhage; however, considerable controversies regarding its efficacy remain. A number of trials have demonstrated a small but significant decrease in mortality following its administration, but the results have been somewhat inconsistent and may not be generalisable. The results of the CRASH-3 trial were that there was no statistical difference in the number of traumatic brain injury related deaths (18.5% with TXA and 19.8% with placebo; relative risk [RR] 0·94; 95% confidence interval [CI] 0·86-1·02). Nonetheless, there was a subgroup of patients for whom TXA appeared to provide benefit, and this was in patients with mild and moderate injury (with a Glasgow Coma Score > 8). This is potentially a very important finding that may have huge potential implications; however, we believe it does not currently provide indisputable evidence to support the administration of TXA to all patients with TBI. Further work is required to better define the subset of patients who may benefit as well as to evaluate the long-term functional benefit in order to determine which types of severe traumatic brain injury patients would derive more benefits than harms from TXA.
Collapse
Affiliation(s)
- Stephen Honeybul
- Department of Neurosurgery, Sir Charles Gairdner Hospital, Nedlands, Western Australia 6009, Australia; Royal Perth Hospital, Wellington Street, Perth, Australia.
| | - Kwok M Ho
- Department of Intensive Care Medicine and School of Population Health, University of Western Australia, Australia
| | - Jeffrey V Rosenfeld
- Department of Neurosurgery, The Alfred Hospital, Emeritus Professor of Surgery Monash University, Melbourne, Australia; Surgery, F.Edward Hebert School of Medicine, Uniformed, Services University of the Health Sciences, Bethesda, MD, USA
| |
Collapse
|
32
|
Almanza-Hurtado A, Polanco Guerra C, Martínez-Ávila MC, Borré-Naranjo D, Rodríguez-Yanez T, Dueñas-Castell C. Hypercapnia from Physiology to Practice. Int J Clin Pract 2022; 2022:2635616. [PMID: 36225533 PMCID: PMC9525762 DOI: 10.1155/2022/2635616] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/28/2022] [Accepted: 09/15/2022] [Indexed: 11/18/2022] Open
Abstract
Acute hypercapnic ventilatory failure is becoming more frequent in critically ill patients. Hypercapnia is the elevation in the partial pressure of carbon dioxide (PaCO2) above 45 mmHg in the bloodstream. The pathophysiological mechanisms of hypercapnia include the decrease in minute volume, an increase in dead space, or an increase in carbon dioxide (CO2) production per sec. They generate a compromise at the cardiovascular, cerebral, metabolic, and respiratory levels with a high burden of morbidity and mortality. It is essential to know the triggers to provide therapy directed at the primary cause and avoid possible complications.
Collapse
|
33
|
Neurosurgery. Perioper Med (Lond) 2022. [DOI: 10.1016/b978-0-323-56724-4.00037-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
34
|
Taran S, McCredie VA, Goligher EC. Noninvasive and invasive mechanical ventilation for neurologic disorders. HANDBOOK OF CLINICAL NEUROLOGY 2022; 189:361-386. [PMID: 36031314 DOI: 10.1016/b978-0-323-91532-8.00015-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Patients with acute neurologic injuries frequently require mechanical ventilation due to diminished airway protective reflexes, cardiopulmonary failure secondary to neurologic insults, or to facilitate gas exchange to precise targets. Mechanical ventilation enables tight control of oxygenation and carbon dioxide levels, enabling clinicians to modulate cerebral hemodynamics and intracranial pressure with the goal of minimizing secondary brain injury. In patients with acute spinal cord injuries, neuromuscular conditions, or diseases of the peripheral nerve, mechanical ventilation enables respiratory support under conditions of impending or established respiratory failure. Noninvasive ventilatory approaches may be carefully considered for certain disease conditions, including myasthenia gravis and amyotrophic lateral sclerosis, but may be inappropriate in patients with Guillain-Barré syndrome or when relevant contra-indications exist. With regard to discontinuing mechanical ventilation, considerable uncertainty persists about the best approach to wean patients, how to identify patients ready for extubation, and when to consider primary tracheostomy. Recent consensus guidelines highlight these and other knowledge gaps that are the focus of active research efforts. This chapter outlines important general principles to consider when initiating, titrating, and discontinuing mechanical ventilation in patients with acute neurologic injuries. Important disease-specific considerations are also reviewed where appropriate.
Collapse
Affiliation(s)
- Shaurya Taran
- Interdepartmental Division of Critical Care, University of Toronto, Toronto, ON, Canada; Department of Medicine, University Health Network, Toronto, ON, Canada
| | - Victoria A McCredie
- Interdepartmental Division of Critical Care, University of Toronto, Toronto, ON, Canada; Department of Medicine, University Health Network, Toronto, ON, Canada
| | - Ewan C Goligher
- Interdepartmental Division of Critical Care, University of Toronto, Toronto, ON, Canada; Department of Medicine, University Health Network, Toronto, ON, Canada.
| |
Collapse
|
35
|
Decompressive Craniectomy for Infarction and Intracranial Hemorrhages. Stroke 2022. [DOI: 10.1016/b978-0-323-69424-7.00078-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
36
|
Barnett HM, Davis AP, Khot SP. Stroke and breathing. HANDBOOK OF CLINICAL NEUROLOGY 2022; 189:201-222. [PMID: 36031305 DOI: 10.1016/b978-0-323-91532-8.00016-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Stroke remains a leading cause of neurologic disability with wide ranging effects, including a variety of respiratory abnormalities. Stroke may influence the central control of the respiratory drive and breathing pattern, airway protection and maintenance, and the respiratory mechanics of inspiration and expiration. In the acute phase of stroke, the central control of breathing is affected by changes in consciousness, cerebral edema, and direct damage to brainstem respiratory centers, resulting in abnormalities in respiratory pattern and loss of airway protection. Common acute complications related to respiratory dysfunction include dysphagia, aspiration, and pneumonia. Respiratory control centers are located in the brainstem, and brainstem stroke causes specific patterns of respiratory dysfunction. Depending on the exact location and extent of stroke, respiratory failure may occur. While major respiratory abnormalities often improve over time, sleep-disordered breathing remains common in the subacute and chronic phases and worsens outcomes. Respiratory mechanics are impaired in hemiplegic or hemiparetic stroke, contributing to worse cardiopulmonary health in stroke survivors. Interventions to address the respiratory complications are under researched, and further investigation in this area is critical to improving outcomes among stroke survivors.
Collapse
Affiliation(s)
- Heather M Barnett
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA, United States
| | - Arielle P Davis
- Department of Neurology, University of Washington, Seattle, WA, United States
| | - Sandeep P Khot
- Department of Neurology, University of Washington, Seattle, WA, United States.
| |
Collapse
|
37
|
How Important Are Arterial Blood Gas Parameters for Severe Head Trauma in Children? JOURNAL OF CONTEMPORARY MEDICINE 2022. [DOI: 10.16899/jcm.1016696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
38
|
Navarro JC, Kofke WA. Perioperative Management of Acute Central Nervous System Injury. Perioper Med (Lond) 2022. [DOI: 10.1016/b978-0-323-56724-4.00024-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
39
|
Al-Mufti F, Mayer SA, Kaur G, Bassily D, Li B, Holstein ML, Ani J, Matluck NE, Kamal H, Nuoman R, Bowers CA, S Ali F, Al-Shammari H, El-Ghanem M, Gandhi C, Amuluru K. Neurocritical care management of poor-grade subarachnoid hemorrhage: Unjustified nihilism to reasonable optimism. Neuroradiol J 2021; 34:542-551. [PMID: 34476991 PMCID: PMC8649190 DOI: 10.1177/19714009211024633] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND AND PURPOSE Historically, overall outcomes for patients with high-grade subarachnoid hemorrhage (SAH) have been poor. Generally, between physicians, either reluctance to treat, or selectivity in treating such patients has been the paradigm. Recent studies have shown that early and aggressive care leads to significant improvement in survival rates and favorable outcomes of grade V SAH patients. With advancements in both neurocritical care and end-of-life care, non-treatment or selective treatment of grade V SAH patients is rarely justified. Current paradigm shifts towards early and aggressive care in such cases may lead to improved outcomes for many more patients. MATERIALS AND METHODS We performed a detailed review of the current literature regarding neurointensive management strategies in high-grade SAH, discussing multiple aspects. We discussed the neurointensive care management protocols for grade V SAH patients. RESULTS Acutely, intracranial pressure control is of utmost importance with external ventricular drain placement, sedation, optimization of cerebral perfusion pressure, osmotherapy and hyperventilation, as well as cardiopulmonary support through management of hypotension and hypertension. CONCLUSIONS Advancements of care in SAH patients make it unethical to deny treatment to poor Hunt and Hess grade patients. Early and aggressive treatment results in a significant improvement in survival rate and favorable outcome in such patients.
Collapse
Affiliation(s)
- Fawaz Al-Mufti
- Department of Neurology, Westchester Medical Center, Westchester Medical Center, Valhalla, USA
- Department of Neurosurgery, Westchester Medical Center, Westchester Medical Center, Valhalla, USA
| | - Stephan A Mayer
- Department of Neurosurgery, Westchester Medical Center, Westchester Medical Center, Valhalla, USA
| | - Gurmeen Kaur
- Department of Neurology, Westchester Medical Center, Westchester Medical Center, Valhalla, USA
- Department of Neurosurgery, Westchester Medical Center, Westchester Medical Center, Valhalla, USA
| | - Daniel Bassily
- School of Medicine, New York Medical College, New York Medical College, Valhalla, USA
| | - Boyi Li
- School of Medicine, New York Medical College, New York Medical College, Valhalla, USA
| | - Matthew L Holstein
- School of Medicine, New York Medical College, New York Medical College, Valhalla, USA
| | - Jood Ani
- School of Medicine, New York Medical College, New York Medical College, Valhalla, USA
| | - Nicole E Matluck
- School of Medicine, New York Medical College, New York Medical College, Valhalla, USA
| | - Haris Kamal
- Department of Neurosurgery, Westchester Medical Center, Westchester Medical Center, Valhalla, USA
| | - Rolla Nuoman
- Department of Neurology, Westchester Medical Center, Maria Fareri Children’s Hospital, Westchester Medical Center, Valhalla, USA
| | | | - Faizan S Ali
- Department of Neurology, Westchester Medical Center, Westchester Medical Center, Valhalla, USA
| | - Hussein Al-Shammari
- Department of Neurology, Westchester Medical Center, Westchester Medical Center, Valhalla, USA
| | - Mohammad El-Ghanem
- Department of Neurology, Neurosurgery and Medical Imaging, University of Arizona, Tucson, USA
| | - Chirag Gandhi
- Department of Neurosurgery, Westchester Medical Center, Westchester Medical Center, Valhalla, USA
| | - Krishna Amuluru
- Goodman Campbell Brain and Spine, Ascension St. Vincent Medical Center, Indianapolis, USA
| |
Collapse
|
40
|
Dong L, Takeda C, Yamazaki H, Kamitani T, Kimachi M, Hamada M, Fukuhara S, Mizota T, Yamamoto Y. Intraoperative end-tidal carbon dioxide and postoperative mortality in major abdominal surgery: a historical cohort study. Can J Anaesth 2021; 68:1601-1610. [PMID: 34357567 DOI: 10.1007/s12630-021-02086-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 06/23/2021] [Accepted: 06/23/2021] [Indexed: 11/26/2022] Open
Abstract
PURPOSE There is a paucity of data on the effect of intraoperative end-tidal carbon dioxide (EtCO2) levels on postoperative mortality. The purpose of this study was to investigate the relationship between intraoperative EtCO2 and 90-day mortality in patients undergoing major abdominal surgery under general anesthesia. METHODS We conducted a historical cohort study of patients undergoing major abdominal surgery under general anesthesia at Kyoto University Hospital. We measured the intraoperative EtCO2, and patients with a mean EtCO2 value < 35 mm Hg were classified as low EtCO2. The time effect was determined based on minutes below an EtCO2 of 35 mm Hg, and cumulative effects were evaluated by measuring the area under the threshold of 35 mm Hg for each patient. RESULTS Of 4,710 patients, 1,374 (29%) had low EtCO2 and 55 (1.2%) died within 90 days of surgery. Multivariable Cox regression analysis-adjusted for age, American Society of Anesthesiologists Physical Status classification, sex, laparoscopic surgery, emergency surgery, blood loss, mean arterial pressure, duration of surgery, type of surgery, and chronic obstructive pulmonary disease-revealed an association between low EtCO2 and 90-day mortality (adjusted hazard ratio, 2.2; 95% confidence interval [CI], 1.2 to 3.8; P = 0.006). In addition, severity of low EtCO2 was associated with an increased 90-day mortality (area under the threshold; adjusted hazard ratio; 2.9, 95% CI, 1.2 to 7.4; P =0.02); for long-term exposure to an EtCO2 < 35 mm Hg (≥ 226 min), the adjusted hazard ratio for increased 90-day mortality was 2.3 (95% CI, 0.9 to 6.0; P = 0.08). CONCLUSION A mean intraoperative EtCO2 < 35 mm Hg was associated with increased postoperative 90-day mortality.
Collapse
Affiliation(s)
- Li Dong
- Department of Healthcare Epidemiology, Graduate School of Medicine and Public Health, Kyoto University, Kyoto, Japan
- Department of Anesthesia, Kyoto University Hospital, 54 Shogoin-Kawahara-cho, Kyoto, 606-8507, Japan
| | - Chikashi Takeda
- Department of Anesthesia, Kyoto University Hospital, 54 Shogoin-Kawahara-cho, Kyoto, 606-8507, Japan
| | - Hajime Yamazaki
- Section of Clinical Epidemiology, Department of Community Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tsukasa Kamitani
- Department of Healthcare Epidemiology, Graduate School of Medicine and Public Health, Kyoto University, Kyoto, Japan
| | - Miho Kimachi
- Department of Healthcare Epidemiology, Graduate School of Medicine and Public Health, Kyoto University, Kyoto, Japan
| | - Miho Hamada
- Department of Anesthesia, Kyoto University Hospital, 54 Shogoin-Kawahara-cho, Kyoto, 606-8507, Japan
| | - Shunichi Fukuhara
- Section of Clinical Epidemiology, Department of Community Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Toshiyuki Mizota
- Department of Anesthesia, Kyoto University Hospital, 54 Shogoin-Kawahara-cho, Kyoto, 606-8507, Japan.
| | - Yosuke Yamamoto
- Department of Healthcare Epidemiology, Graduate School of Medicine and Public Health, Kyoto University, Kyoto, Japan
| |
Collapse
|
41
|
Citerio G, Robba C, Rebora P, Petrosino M, Rossi E, Malgeri L, Stocchetti N, Galimberti S, Menon DK. Management of arterial partial pressure of carbon dioxide in the first week after traumatic brain injury: results from the CENTER-TBI study. Intensive Care Med 2021; 47:961-973. [PMID: 34302517 PMCID: PMC8308080 DOI: 10.1007/s00134-021-06470-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 06/26/2021] [Indexed: 11/24/2022]
Abstract
Purpose To describe the management of arterial partial pressure of carbon dioxide (PaCO2) in severe traumatic brain-injured (TBI) patients, and the optimal target of PaCO2 in patients with high intracranial pressure (ICP). Methods Secondary analysis of CENTER-TBI, a multicentre, prospective, observational, cohort study. The primary aim was to describe current practice in PaCO2 management during the first week of intensive care unit (ICU) after TBI, focusing on the lowest PaCO2 values. We also assessed PaCO2 management in patients with and without ICP monitoring (ICPm), and with and without intracranial hypertension. We evaluated the effect of profound hyperventilation (defined as PaCO2 < 30 mmHg) on long-term outcome. Results We included 1100 patients, with a total of 11,791 measurements of PaCO2 (5931 lowest and 5860 highest daily values). The mean (± SD) PaCO2 was 38.9 (± 5.2) mmHg, and the mean minimum PaCO2 was 35.2 (± 5.3) mmHg. Mean daily minimum PaCO2 values were significantly lower in the ICPm group (34.5 vs 36.7 mmHg, p < 0.001). Daily PaCO2 nadir was lower in patients with intracranial hypertension (33.8 vs 35.7 mmHg, p < 0.001). Considerable heterogeneity was observed between centers. Management in a centre using profound hyperventilation (HV) more frequently was not associated with increased 6 months mortality (OR = 1.06, 95% CI = 0.77–1.45, p value = 0.7166), or unfavourable neurological outcome (OR 1.12, 95% CI = 0.90–1.38, p value = 0.3138). Conclusions Ventilation is manipulated differently among centers and in response to intracranial dynamics. PaCO2 tends to be lower in patients with ICP monitoring, especially if ICP is increased. Being in a centre which more frequently uses profound hyperventilation does not affect patient outcomes. Supplementary Information The online version contains supplementary material available at 10.1007/s00134-021-06470-7.
Collapse
Affiliation(s)
- Giuseppe Citerio
- School of Medicine and Surgery, University of Milano - Bicocca, Monza, Italy. .,Neurointensive Care Unit, Ospedale San Gerardo, Azienda Socio-Sanitaria Territoriale Di Monza, Monza, Italy.
| | - Chiara Robba
- Anesthesia and Intensive Care, Policlinico San Martino, IRCCS for Oncology and Neuroscience, Genoa, Italy.,Department of Surgical Science and Integrated Diagnostic, University of Genoa, Genoa, Italy
| | - Paola Rebora
- School of Medicine and Surgery, University of Milano - Bicocca, Monza, Italy.,Bicocca Bioinformatics Biostatistics and Bioimaging Center B4, School of Medicine and Surgery, University of Milano - Bicocca, Milan, Italy
| | - Matteo Petrosino
- Bicocca Bioinformatics Biostatistics and Bioimaging Center B4, School of Medicine and Surgery, University of Milano - Bicocca, Milan, Italy
| | - Eleonora Rossi
- Department of Clinical-Surgical, Diagnostic and Paediatric Sciences, Unit of Anaesthesia and Intensive Care, University of Pavia, Pavia, Italy
| | - Letterio Malgeri
- Anesthesia and Intensive Care, School of Medicine, Messina, Italy
| | - Nino Stocchetti
- Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Physiopathology and Transplantation, Milan University, Milan, Italy
| | - Stefania Galimberti
- School of Medicine and Surgery, University of Milano - Bicocca, Monza, Italy.,Bicocca Bioinformatics Biostatistics and Bioimaging Center B4, School of Medicine and Surgery, University of Milano - Bicocca, Milan, Italy
| | - David K Menon
- Neurocritical Care Unit, Addenbrooke's Hospital, Cambridge, UK
| | | |
Collapse
|
42
|
Timing, Outcome, and Risk Factors of Intracranial Hemorrhage in Acute Respiratory Distress Syndrome Patients During Venovenous Extracorporeal Membrane Oxygenation. Crit Care Med 2021; 49:e120-e129. [PMID: 33323749 DOI: 10.1097/ccm.0000000000004762] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Intracranial hemorrhage is a serious complication in patients receiving venovenous extracorporeal membrane oxygenation during treatment of the acute respiratory distress syndrome. We analyzed timing, outcome, and risk factors of intracranial hemorrhage in patients on venovenous extracorporeal membrane oxygenation. DESIGN Retrospective cohort study. SETTING Single acute respiratory distress syndrome referral center. PATIENTS Patients receiving venovenous extracorporeal membrane oxygenation were identified from a cohort of 1,044 patients with acute respiratory distress syndrome. Patients developing an intracranial hemorrhage during venovenous extracorporeal membrane oxygenation therapy were compared with patients without evidence for intracranial hemorrhage. The primary objective was to assess the association of intracranial hemorrhage with 60-day mortality. Further objectives included the identification of risk factors for intracranial hemorrhage and the evaluation of clinical cutoff values. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS Among 444 patients treated with venovenous extracorporeal membrane oxygenation, 49 patients (11.0% [95% CI, 8.3-14.4%]) developed an intracranial hemorrhage. The median time to intracranial hemorrhage occurrence was 4 days (95% CI, 2-7 d). Patients who developed an intracranial hemorrhage had a higher 60-day mortality compared with patients without intracranial hemorrhage (69.4% [54.4-81.3%] vs 44.6% [39.6-49.6%]; odds ratio 3.05 [95% CI, 1.54-6.32%]; p = 0.001). A low platelet count, a high positive end expiratory pressure, and a major initial decrease of Paco2 were identified as independent risk factors for the occurrence of intracranial hemorrhage. A platelet count greater than 100/nL and a positive end expiratory pressure less than or equal to 14 cm H2O during the first 7 days of venovenous extracorporeal membrane oxygenation therapy as well as a decrease of Paco2 less than 24 mm Hg during venovenous extracorporeal membrane oxygenation initiation were identified as clinical cutoff values to prevent intracranial hemorrhage (sensitivity 91% [95% CI, 82-99%], 94% [85-99%], and 67% [48-81%], respectively). CONCLUSIONS Intracranial hemorrhage occurs early during venovenous extracorporeal membrane oxygenation and is a determinant for 60-day mortality. Appropriate adjustment of identified modifiable risk factors might lower the prevalence of intracranial hemorrhage during venovenous extracorporeal membrane oxygenation therapy.
Collapse
|
43
|
Nolan JP, Sandroni C, Böttiger BW, Cariou A, Cronberg T, Friberg H, Genbrugge C, Haywood K, Lilja G, Moulaert VRM, Nikolaou N, Olasveengen TM, Skrifvars MB, Taccone F, Soar J. Postreanimationsbehandlung. Notf Rett Med 2021. [DOI: 10.1007/s10049-021-00892-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
44
|
Zhou Y, He H, Cui N, Wang H, Zhou X, Long Y. Acute hyperventilation increases oxygen consumption and decreases peripheral tissue perfusion in critically ill patients. J Crit Care 2021; 66:148-153. [PMID: 34364716 DOI: 10.1016/j.jcrc.2021.05.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 05/07/2021] [Accepted: 05/15/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE This study aimed to evaluate the effects of acute hyperventilation on central venous-to-arterial carbon dioxide tension difference (Pv-aCO2), central venous oxygen saturation (ScvO2), central venous-to-arterial CO2 difference/arterial-central venous O2 difference ratio (CO2GAP-Ratio), and peripheral perfusion index (PI) in hemodynamically stable critically ill patients. METHODS Fifty-four mechanically ventilated patients were evaluated. The cardiac index, Pv-aCO2, ScvO2, CO2GAP-Ratio, PI, and arterial and venous blood gas parameters were measured in the first set of measurements. Then, alveolar ventilation was increased by raising the respiratory rate (10 breaths/min). After a 30 min hyperventilation period, the second set of measurements was recorded. RESULTS Acute hyperventilation induces an increase in Pv-aCO2 (from 3.87 ± 1.31 to 8.44 ± 1.81 mmHg, P < 0.001) and a decrease in ScvO2(from 71.78 ± 4.82 to 66.47 ± 5.74%, P < 0.001). The CO2GAP-Ratio was significantly increased(from 0.97 ± 0.40 to 1.74 ± 0.46, P < 0.001), and the PI showed a remarkable decrease caused by acute hyperventilation(from 1.82 ± 1.14 to 1.40 ± 0.99,P = 0.04). Hyperventilation-induced ∆_Pv-aCO2 was negatively correlated with ∆PaCO2(r = -0.572, P<0.001). The change in ∆_PaCO2 was correlated with ∆_ScvO2(r = 0.450, P<0.001). However, the left ventricular outflow tract velocity time integral (LVOT-VTI) remained unchanged during hyperventilation. CONCLUSIONS Acute hyperventilation induced an increase in oxygen consumption and decreased peripheral tissue perfusion in patients. For critical care patients, it is necessary to pay attention to the influence of hyperventilation on peripheral tissue perfusion indices and oxygen consumption indices.
Collapse
Affiliation(s)
- Yuankai Zhou
- Department of Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Huaiwu He
- Department of Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Na Cui
- Department of Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Hao Wang
- Department of Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Xiang Zhou
- Department of Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yun Long
- Department of Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China.
| |
Collapse
|
45
|
Sparrow NA, Anwar F, Covarrubias AE, Rajput PS, Rashid MH, Nisson PL, Gezalian MM, Toossi S, Ayodele MO, Karumanchi SA, Ely EW, Lahiri S. Interleukin-6 Inhibition Reduces Neuronal Injury In A Murine Model of Ventilator-Induced Lung Injury. Am J Respir Cell Mol Biol 2021; 65:403-412. [PMID: 34014798 DOI: 10.1165/rcmb.2021-0072oc] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Mechanical ventilation is a known risk factor for delirium, a cognitive impairment characterized by frontal cortex and hippocampal dysfunction. Although interleukin-6 (IL-6) is upregulated in mechanical ventilation-induced lung injury (VILI) and may contribute to delirium, it is not known whether inhibition of systemic IL-6 mitigates delirium-relevant neuropathology. To histologically define neuropathological effects of IL-6 inhibition in an experimental VILI model. VILI was simulated in anesthetized adult mice using a 35cc/kg tidal volume mechanical ventilation model. There were two controls groups: 1) spontaneously breathing, or 2) anesthetized and mechanically ventilated with 10cc/kg tidal volume to distinguish effects of anesthesia from VILI. Two hours prior to inducing VILI, mice were treated with either anti-IL-6 antibody, anti-IL-6 receptor antibody, or saline. Neuronal injury, stress, and inflammation were assessed using immunohistochemistry. Cleaved caspase-3 (CC3), a neuronal apoptosis marker, was significantly increased in the frontal (p<0.001) and hippocampal (p<0.0001) brain regions and accompanied by significant increases in c-Fos and heat shock protein-90 in the frontal cortices of VILI mice compared to controls (p<0.001). These findings were not related to cerebral hypoxia and there was no evidence of irreversible neuronal death. Frontal and hippocampal neuronal CC3 were significantly reduced with anti-IL-6 antibody (p<0.01 and p<0.0001, respectively), anti-IL-6 receptor antibody (p<0.05 and p<0.0001, respectively) compared to saline VILI mice. VILI induces potentially reversible neuronal injury and inflammation in the frontal cortex and hippocampus, which is mitigated with IL-6 inhibition. These data suggest a potentially novel neuroprotective role of systemic IL-6 inhibition that justifies further investigation.
Collapse
Affiliation(s)
- Nicklaus A Sparrow
- Cedars-Sinai Medical Center, 22494, Neurology, West Hollywood, California, United States
| | - Faizan Anwar
- Cedars-Sinai Medical Center, 22494, Los Angeles, California, United States
| | | | - Padmesh S Rajput
- Cedars-Sinai Health System, 5149, Neurology, Los Angeles, California, United States
| | | | - Peyton L Nisson
- Cedars-Sinai Medical Center, 22494, West Hollywood, California, United States
| | - Michael M Gezalian
- Cedars-Sinai Medical Center, 22494, Neurology, West Hollywood, California, United States
| | - Shahed Toossi
- Cedars-Sinai Medical Center, 22494, West Hollywood, California, United States
| | - Maranatha O Ayodele
- Cedars-Sinai Medical Center, 22494, West Hollywood, California, United States
| | | | - E Wesley Ely
- Vanderbilt University School of Medicine, 12327, Nashville, Tennessee, United States
| | - Shouri Lahiri
- Cedars-Sinai Health System, 5149, Neurology and Neurosurgery, Los Angeles, California, United States;
| |
Collapse
|
46
|
Effects on cerebral blood flow of position changes, hyperoxia, CO2 partial pressure variations and the Valsalva manoeuvre: A study in healthy volunteers. Eur J Anaesthesiol 2021; 38:49-57. [PMID: 33074942 DOI: 10.1097/eja.0000000000001356] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Maintaining adequate blood pressure to ensure proper cerebral blood flow (CBF) during surgery is challenging. Induced mild hypotension, sitting position or unavoidable intra-operative circumstances such as haemorrhage, added to variations in carbon dioxide and oxygen tensions, may influence perfusion. Several of these circumstances may coincide and it is unclear how these may affect CBF. OBJECTIVE To describe the variation in transcranial Doppler and regional cerebral oxygen saturation (rSO2), as a surrogate of CBF, after cardiac preload and gravitational positional changes. DESIGN Observational study. SETTING Operating room at Hospital Clínic de Barcelona. VOLUNTEERS Ten healthy volunteers, white, both sexes. INTERVENTIONS Measurements were performed in the supine, sitting and standing positions during hyperoxia, hypocapnia and hypercapnia protocols and after a Valsalva manoeuvre. MAIN OUTCOME MEASURES Cardiac index (CI), haemodynamic and respiratory variables, maximal and mean velocities (Vmax, Vmean) (transcranial Doppler) and rSO2 were acquired. Results were analysed using a generalised estimating equation technique. RESULTS CI increases more than 16% after a preload challenge were not accompanied by differences in rSO2 or Vmax - Vmean. With positional changes, Vmean decreased more than 7% (P = 0.042) from the supine to the seated position. Hyperoxia induced a cerebral rSO2 increase more than 6% (P = 0.0001) with decreases in Vmax, Vmean and CI values more than 3% (P = 0.001, 0.022 and 0.001) in the supine and standing position. During hypocapnia, CI rose more than 20% from supine to seated and standing (P = 0.0001) with a 4.5% decrease in cerebral rSO2 (P = 0.001) and a decrease of Vmax - Vmean more than 24% in all positions (P = 0.001). Hypercapnia increased cerebral rSO2 more than 17% (P = 0.001), Vmax - Vmean more than 30% (P = 0.001) with no changes in CI. After a Valsalva manoeuvre, rSO2 decreased more than 3% in the right hemisphere in the upright position (P = 0.001). Vmax - Vmean decreased more than 10% (P = 0.001) with no changes in CI. CONCLUSION CBF changes in response to cerebral vasoconstriction and vasodilatation were detected with rSO2 and transcranial Doppler in healthy volunteers during cardiac preload and in different body positions. Acute hypercapnia had a greater effect on recorded brain parameters than hypocapnia.
Collapse
|
47
|
Benesch C, Glance LG, Derdeyn CP, Fleisher LA, Holloway RG, Messé SR, Mijalski C, Nelson MT, Power M, Welch BG. Perioperative Neurological Evaluation and Management to Lower the Risk of Acute Stroke in Patients Undergoing Noncardiac, Nonneurological Surgery: A Scientific Statement From the American Heart Association/American Stroke Association. Circulation 2021; 143:e923-e946. [PMID: 33827230 DOI: 10.1161/cir.0000000000000968] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Perioperative stroke is a potentially devastating complication in patients undergoing noncardiac, nonneurological surgery. This scientific statement summarizes established risk factors for perioperative stroke, preoperative and intraoperative strategies to mitigate the risk of stroke, suggestions for postoperative assessments, and treatment approaches for minimizing permanent neurological dysfunction in patients who experience a perioperative stroke. The first section focuses on preoperative optimization, including the role of preoperative carotid revascularization in patients with high-grade carotid stenosis and delaying surgery in patients with recent strokes. The second section reviews intraoperative strategies to reduce the risk of stroke, focusing on blood pressure control, perioperative goal-directed therapy, blood transfusion, and anesthetic technique. Finally, this statement presents strategies for the evaluation and treatment of patients with suspected postoperative strokes and, in particular, highlights the value of rapid recognition of strokes and the early use of intravenous thrombolysis and mechanical embolectomy in appropriate patients.
Collapse
|
48
|
Masterson C, Horie S, McCarthy SD, Gonzalez H, Byrnes D, Brady J, Fandiño J, Laffey JG, O'Toole D. Hypercapnia in the critically ill: insights from the bench to the bedside. Interface Focus 2021; 11:20200032. [PMID: 33628425 PMCID: PMC7898152 DOI: 10.1098/rsfs.2020.0032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2020] [Indexed: 01/16/2023] Open
Abstract
Carbon dioxide (CO2) has long been considered, at best, a waste by-product of metabolism, and at worst, a toxic molecule with serious health consequences if physiological concentration is dysregulated. However, clinical observations have revealed that 'permissive' hypercapnia, the deliberate allowance of respiratory produced CO2 to remain in the patient, can have anti-inflammatory effects that may be beneficial in certain circumstances. In parallel, studies at the cell level have demonstrated the profound effect of CO2 on multiple diverse signalling pathways, be it the effect from CO2 itself specifically or from the associated acidosis it generates. At the whole organism level, it now appears likely that there are many biological sensing systems designed to respond to CO2 concentration and tailor respiratory and other responses to atmospheric or local levels. Animal models have been widely employed to study the changes in CO2 levels in various disease states and also to what extent permissive or even directly delivered CO2 can affect patient outcome. These findings have been advanced to the bedside at the same time that further clinical observations have been elucidated at the cell and animal level. Here we present a synopsis of the current understanding of how CO2 affects mammalian biological systems, with a particular emphasis on inflammatory pathways and diseases such as lung specific or systemic sepsis. We also explore some future directions and possibilities, such as direct control of blood CO2 levels, that could lead to improved clinical care in the future.
Collapse
|
49
|
Nolan JP, Sandroni C, Böttiger BW, Cariou A, Cronberg T, Friberg H, Genbrugge C, Haywood K, Lilja G, Moulaert VRM, Nikolaou N, Olasveengen TM, Skrifvars MB, Taccone F, Soar J. European Resuscitation Council and European Society of Intensive Care Medicine guidelines 2021: post-resuscitation care. Intensive Care Med 2021; 47:369-421. [PMID: 33765189 PMCID: PMC7993077 DOI: 10.1007/s00134-021-06368-4] [Citation(s) in RCA: 576] [Impact Index Per Article: 144.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/08/2021] [Indexed: 12/13/2022]
Abstract
The European Resuscitation Council (ERC) and the European Society of Intensive Care Medicine (ESICM) have collaborated to produce these post-resuscitation care guidelines for adults, which are based on the 2020 International Consensus on Cardiopulmonary Resuscitation Science with Treatment Recommendations. The topics covered include the post-cardiac arrest syndrome, diagnosis of cause of cardiac arrest, control of oxygenation and ventilation, coronary reperfusion, haemodynamic monitoring and management, control of seizures, temperature control, general intensive care management, prognostication, long-term outcome, rehabilitation and organ donation.
Collapse
Affiliation(s)
- Jerry P. Nolan
- University of Warwick, Warwick Medical School, Coventry, CV4 7AL UK
- Royal United Hospital, Bath, BA1 3NG UK
| | - Claudio Sandroni
- Department of Intensive Care, Emergency Medicine and Anaesthesiology, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
- Institute of Anaesthesiology and Intensive Care Medicine, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Bernd W. Böttiger
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital of Cologne, Kerpener Straße 62, 50937 Cologne, Germany
| | - Alain Cariou
- Cochin University Hospital (APHP) and University of Paris (Medical School), Paris, France
| | - Tobias Cronberg
- Department of Clinical Sciences, Neurology, Lund University, Skane University Hospital, Lund, Sweden
| | - Hans Friberg
- Department of Clinical Sciences, Anaesthesia and Intensive Care Medicine, Lund University, Skane University Hospital, Lund, Sweden
| | - Cornelia Genbrugge
- Acute Medicine Research Pole, Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain, Brussels, Belgium
- Emergency Department, University Hospitals Saint-Luc, Brussels, Belgium
| | - Kirstie Haywood
- Warwick Research in Nursing, Division of Health Sciences, Warwick Medical School, University of Warwick, Room A108, Coventry, CV4 7AL UK
| | - Gisela Lilja
- Department of Clinical Sciences Lund, Neurology, Lund University, Skane University Hospital, Lund, Sweden
| | - Véronique R. M. Moulaert
- Department of Rehabilitation Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Nikolaos Nikolaou
- Cardiology Department, Konstantopouleio General Hospital, Athens, Greece
| | - Theresa Mariero Olasveengen
- Department of Anesthesiology, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Markus B. Skrifvars
- Department of Emergency Care and Services, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Fabio Taccone
- Department of Intensive Care, Hôpital Erasme, Université Libre de Bruxelles, Route de Lennik, 808, 1070 Brussels, Belgium
| | - Jasmeet Soar
- Southmead Hospital, North Bristol NHS Trust, Bristol, BS10 5NB UK
| |
Collapse
|
50
|
Nolan JP, Sandroni C, Böttiger BW, Cariou A, Cronberg T, Friberg H, Genbrugge C, Haywood K, Lilja G, Moulaert VRM, Nikolaou N, Mariero Olasveengen T, Skrifvars MB, Taccone F, Soar J. European Resuscitation Council and European Society of Intensive Care Medicine Guidelines 2021: Post-resuscitation care. Resuscitation 2021; 161:220-269. [PMID: 33773827 DOI: 10.1016/j.resuscitation.2021.02.012] [Citation(s) in RCA: 447] [Impact Index Per Article: 111.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The European Resuscitation Council (ERC) and the European Society of Intensive Care Medicine (ESICM) have collaborated to produce these post-resuscitation care guidelines for adults, which are based on the 2020 International Consensus on Cardiopulmonary Resuscitation Science with Treatment Recommendations. The topics covered include the post-cardiac arrest syndrome, diagnosis of cause of cardiac arrest, control of oxygenation and ventilation, coronary reperfusion, haemodynamic monitoring and management, control of seizures, temperature control, general intensive care management, prognostication, long-term outcome, rehabilitation, and organ donation.
Collapse
Affiliation(s)
- Jerry P Nolan
- University of Warwick, Warwick Medical School, Coventry CV4 7AL, UK; Royal United Hospital, Bath, BA1 3NG, UK.
| | - Claudio Sandroni
- Department of Intensive Care, Emergency Medicine and Anaesthesiology, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy; Institute of Anaesthesiology and Intensive Care Medicine, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Bernd W Böttiger
- University Hospital of Cologne, Kerpener Straße 62, D-50937 Cologne, Germany
| | - Alain Cariou
- Cochin University Hospital (APHP) and University of Paris (Medical School), Paris, France
| | - Tobias Cronberg
- Department of Clinical Sciences, Neurology, Lund University, Skane University Hospital, Lund, Sweden
| | - Hans Friberg
- Department of Clinical Sciences, Anaesthesia and Intensive Care Medicine, Lund University, Skane University Hospital, Lund, Sweden
| | - Cornelia Genbrugge
- Acute Medicine Research Pole, Institute of Experimental and Clinical Research (IREC) Université Catholique de Louvain, Brussels, Belgium; Emergency Department, University Hospitals Saint-Luc, Brussels, Belgium
| | - Kirstie Haywood
- Warwick Research in Nursing, Room A108, Division of Health Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Gisela Lilja
- Lund University, Skane University Hospital, Department of Clinical Sciences Lund, Neurology, Lund, Sweden
| | - Véronique R M Moulaert
- University of Groningen, University Medical Center Groningen, Department of Rehabilitation Medicine, Groningen, The Netherlands
| | - Nikolaos Nikolaou
- Cardiology Department, Konstantopouleio General Hospital, Athens, Greece
| | - Theresa Mariero Olasveengen
- Department of Anesthesiology, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Norway
| | - Markus B Skrifvars
- Department of Emergency Care and Services, University of Helsinki and Helsinki University Hospital, Finland
| | - Fabio Taccone
- Department of Intensive Care, Hôpital Erasme, Université Libre de Bruxelles, Route de Lennik, 808, 1070 Brussels, Belgium
| | - Jasmeet Soar
- Southmead Hospital, North Bristol NHS Trust, Bristol BS10 5NB, UK
| |
Collapse
|