1
|
Zmorzynski S, Popek-Marciniec S, Biernacka B, Szudy-Szczyrek A, Chocholska S, Styk W, Czerwik-Marcinkowska J, Swiderska-Kolacz G. In Vitro Low-Bortezomib Doses Induce Apoptosis and Independently Decrease the Activities of Glutathione S-Transferase and Glutathione Peroxidase in Multiple Myeloma, Taking into Account the GSTT1 and GSTM1 Gene Variants. Genes (Basel) 2024; 15:387. [PMID: 38540446 PMCID: PMC10970692 DOI: 10.3390/genes15030387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/13/2024] [Accepted: 03/19/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Multiple myeloma (MM) is a malignancy derived from plasma cells. Bortezomib affects the concentration of reduced glutathione (GSH) and the activity of glutathione enzymes. The aim of our study was to analyze deletion (null/present) variants of GSTT1 and GSTM1 genes and their association with the levels of glutathione and its enzymes in bortezomib-treated cell cultures derived from MM patients. MATERIALS AND METHODS This study included 180 individuals (80 MM patients and 100 healthy blood donors) who were genotyped via multiplex PCR (for the GSTT1/GSTM1 genes). Under in vitro conditions, MM bone marrow cells were treated with bortezomib (1-4 nM) to determine apoptosis (via fluorescence microscopy), GSH concentration, and activity of glutathione enzymes (via ELISA). RESULTS Bortezomib increased the number of apoptotic cells and decreased the activity of S-glutathione transferase (GST) and glutathione peroxidase (GPx). We found significant differences in GST activity between 1 nM (GSTT1-null vs. GSTT1-present), 2 nM (GSTT1-null vs. GSTT1-present), and 4 nM (GSTM1-null vs. GSTM1-present) bortezomib: 0.07 vs. 0.12, p = 0.02; 0.06 vs. 0.10, p = 0.02; and 0.03 vs. 0.08, p = 0.01, respectively. CONCLUSIONS Bortezomib affects the activities of GST and GPx. GST activity was associated with GSTT1 and GSTM1 variants but only at some bortezomib doses.
Collapse
Affiliation(s)
| | | | - Beata Biernacka
- Institute of Nursing and Obstetrics, Academy of Zamosc, 22-400 Zamosc, Poland
| | - Aneta Szudy-Szczyrek
- Chair and Department of Haematooncology and Bone Marrow Transplantation, Medical University of Lublin, 20-059 Lublin, Poland; (A.S.-S.); (S.C.)
| | - Sylwia Chocholska
- Chair and Department of Haematooncology and Bone Marrow Transplantation, Medical University of Lublin, 20-059 Lublin, Poland; (A.S.-S.); (S.C.)
| | - Wojciech Styk
- Academic Laboratory of Psychological Tests, Medical University of Lublin, 20-059 Lublin, Poland;
| | | | | |
Collapse
|
2
|
Frikha I, Frikha R, Medhaffer M, Charfi H, Turki F, Elloumi M. Impact of CYP1A1 variants on the risk of acute lymphoblastic leukemia: evidence from an updated meta-analysis. Blood Res 2024; 59:9. [PMID: 38485870 PMCID: PMC10917727 DOI: 10.1007/s44313-024-00007-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 01/24/2024] [Indexed: 03/18/2024] Open
Abstract
OBJECTIVE Our study aimed to investigate the association between cytochrome P450 1A1 (CYP1A1) polymorphisms (T3801C and A2455G) and acute lymphoblastic leukemia (ALL) risk, considering genetic models and ethnicity. MATERIALS AND METHODS PubMed, Embase, Web of Knowledge, Scopus, and the Cochrane electronic databases were searched using combinations of keywords related to CYP1A1 polymorphisms and the risk of ALL. Studies retrieved from the database searches underwent screening based on strict inclusion and exclusion criteria. RESULTS In total, 2822 cases and 4252 controls, as well as 1636 cases and 2674 controls of the C3801T and A2455G variants of CYP1A1, respectively, were included in this meta-analysis. The T3801C polymorphism of CYP1A1 significantly increases the risk of ALL, particularly those observed in Asian and Hispanic populations, independent of age. Similarly, the A2455G polymorphism of CYP1A1 plays a significant role in the susceptibility to ALL in all genetic models, except the heterozygous form. This association was observed mainly in mixed populations and in both children and adults (except in the heterozygous model). CONCLUSION Our comprehensive analysis indicates that the T3801 and A2455G polymorphisms of CYP1A1 may increase the risk of ALL depending on ethnicity. Therefore, both variants should be considered promising biomarkers for ALL risk. Further large-scale investigations are necessary to assess other factors, such as gene-gene or gene-environment interactions.
Collapse
Affiliation(s)
- Imen Frikha
- Faculty of Medicine of Sfax, University of Sfax, Sfax, Tunisia
- Department of Hematology, Hedi Chaker Hospital, Sfax, Tunisia
| | - Rim Frikha
- Faculty of Medicine of Sfax, University of Sfax, Sfax, Tunisia.
- Department of Medical Genetics, Hedi Chaker Hospital, Sfax, Tunisia.
| | - Moez Medhaffer
- Faculty of Medicine of Sfax, University of Sfax, Sfax, Tunisia
- Department of Hematology, Hedi Chaker Hospital, Sfax, Tunisia
| | - Hanen Charfi
- Faculty of Medicine of Sfax, University of Sfax, Sfax, Tunisia
- Department of Hematology, Hedi Chaker Hospital, Sfax, Tunisia
| | - Fatma Turki
- Faculty of Medicine of Sfax, University of Sfax, Sfax, Tunisia
- Department of Medical Genetics, Hedi Chaker Hospital, Sfax, Tunisia
| | - Moez Elloumi
- Faculty of Medicine of Sfax, University of Sfax, Sfax, Tunisia
- Department of Hematology, Hedi Chaker Hospital, Sfax, Tunisia
| |
Collapse
|
3
|
Estrada N, Zamora L, Ferrer-Marín F, Palomo L, García O, Vélez P, De la Fuente I, Sagüés M, Cabezón M, Cortés M, Vallansot RO, Senín-Magán MA, Boqué C, Xicoy B. Association between Germline Single-Nucleotide Variants in ADME Genes and Major Molecular Response to Imatinib in Chronic Myeloid Leukemia Patients. J Clin Med 2022; 11:jcm11206217. [PMID: 36294538 PMCID: PMC9604607 DOI: 10.3390/jcm11206217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 12/02/2022] Open
Abstract
Imatinib is the most common first-line tyrosine kinase inhibitor (TKI) used to treat chronic-phase chronic myeloid leukemia (CP-CML). However, only a proportion of patients achieve major molecular response (MMR), so there is a need to find biological factors that aid the selection of the optimal therapeutic strategy (imatinib vs. more potent second-generation TKIs). The aim of this retrospective study was to understand the contribution of germline single-nucleotide variants (gSNVs) in the achievement of MMR with imatinib. In particular, a discovery cohort including 45 CP-CML patients was analyzed through the DMET array, which interrogates 1936 variants in 231 genes related to the absorption, distribution, metabolism and excretion (ADME) process. Variants statistically significant in the discovery cohort were then tested in an extended and independent cohort of 137 CP-CML patients. Finally, a total of 7 gSNVs (ABCG1-rs492338, ABCB11-rs496550, ABCB11-rs497692, CYP2D6-rs1135840, CYP11B1-rs7003319, MAT1A-rs4934027 and SLC22A1-rs628031) and one haplotype in the ABCB11 gene were significantly associated with the achievement of MMR with first-line imatinibtreatment. In conclusion, we identified a genetic signature of response to imatinib in CP-CML patients that could be useful in selecting those patients that may benefit from starting imatinib as first-line therapy, therefore avoiding the toxicity related to second-generation TKIs.
Collapse
Affiliation(s)
- Natalia Estrada
- Myeloid Neoplasms Group, Josep Carreras Leukaemia Research Institute, ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - Lurdes Zamora
- Myeloid Neoplasms Group, Josep Carreras Leukaemia Research Institute, ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
- Correspondence:
| | - Francisca Ferrer-Marín
- Hospital General Universitario Morales Meseguer, CIBERER (CB15/00055), IMIB-Pascual Parrilla, UCAM, 30008 Murcia, Spain
| | - Laura Palomo
- MDS Group, Josep Carreras Leukaemia Research Institute, ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
- Experimental Hematology, Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | - Olga García
- Myeloid Neoplasms Group, Josep Carreras Leukaemia Research Institute, ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | | | | | | | - Marta Cabezón
- Myeloid Neoplasms Group, Josep Carreras Leukaemia Research Institute, ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | | | | | | | | | - Blanca Xicoy
- Myeloid Neoplasms Group, Josep Carreras Leukaemia Research Institute, ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| |
Collapse
|
4
|
Hu T, Zhou G, Li W. Association Between the Individual and Combined Effects of the GSTM1 and GSTT1 Polymorphisms and Risk of Leukemia: A Meta-Analysis. Front Genet 2022; 13:898937. [PMID: 35938012 PMCID: PMC9355274 DOI: 10.3389/fgene.2022.898937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/06/2022] [Indexed: 11/24/2022] Open
Abstract
Background: Fourteen meta-analyses reported the individual effects of the GSTM1 and GSTT1 polymorphisms on leukemia risk. However, over 40 studies were not included in previously published meta-analyses. Moreover, one key aspect was that previous meta-analyses did not conduct the false-positive test on the aforementioned issues. Furthermore, previous meta-analyses did not observe the combined effects of GSTM1 present/null and GSTT1 present/null polymorphism with leukemia risk. Therefore, we conducted the current study to further analyze these associations. Objectives: This study aimed to investigate the association between the individual and combined effects of the GSTM1 present/null and GSTT1 present/null polymorphisms and the risk of leukemia. Methods: A meta-analysis was performed applying Meta-analyses of Observational Studies in Epidemiology (MOOSE) guidelines. Moreover, false-positive report probability (FPRP) and Bayesian false discovery probability (BFDP) were applied to investigate the false-positive results. Results: The individual GSTM1 and GSTT1 null genotypes and combined effects of the two genes were associated with a significantly increased leukemia risk in overall and several subgroup analyses, such as Asians, Caucasians, and so on. Then, further analysis was conducted using FPRP and BFDP. Significant associations were considered as "positive" results on the GSTM1 null genotype with leukemia risk in overall populations (FPRP < 0.001 and BFDP = 0.006), Asians (FPRP < 0.001 and BFDP < 0.001), and East Asian population (FPRP < 0.001 and BFDP = 0.002). For the GSTT1 null genotype, significant associations were regarded "positive" results in overall populations, acute myeloid leukemia (AML), Asians, and East Asian population. For the combined effects of the GSTM1 and GSTT1 polymorphisms, significant associations were also considered "positive" results in the overall analysis of Asians, Indians, and East Asian population. Conclusion: This study strongly indicates that the individual GSTM1 and GSTT1 null genotypes and combined effects of the two genes are associated with increased leukemia risk in Asians, especially in the East Asian population; the GSTT1 null genotype is associated with increased AML risk; the combined effects of the two genes are associated with increased leukemia risk in Indians.
Collapse
Affiliation(s)
- Ting Hu
- Department of Hematology, Pingxiang People’s Hospital, Pingxiang, China
| | - Guozhong Zhou
- Department of Cardiology, Pingxiang People’s Hospital, Pingxiang, China
| | - Wenjin Li
- Department of Hematology, Pingxiang People’s Hospital, Pingxiang, China
| |
Collapse
|
5
|
Mukry SN, Shahni A, Zaidi U, Sultan Shamsi T. Influence of cytochrome P450 and glutathione S transferase polymorphisms on response to nilotinib therapy among chronic myeloidleukemia patients from Pakistan. BMC Cancer 2022; 22:519. [PMID: 35527244 PMCID: PMC9080200 DOI: 10.1186/s12885-022-09605-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 04/24/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cytochrome P450 (CYP) and glutathione S transferases (GSTs) are important biotransforming enzymes responsible for detoxification of anticancer drugs and carcinogens. Polymorphisms in these enzymes may greatly influence the susceptibility to CML and overall efficacy of tyrosine kinase inhibitors. This study was aimed to estimate the possible influence of the polymorphisms of GSTs and CYP in the occurrence of CML as well as in predicting therapeutic outcome of nilotinib therapy in Pakistani CML patients. METHODS The polymorphic variability in CYP 1A1*2C, GSTP1 (A3131G), GSTT1 and GSTM1 was assessed either by RFLP or multiplex PCR. The BCR ABL1 transcripts were quantified by qPCR to monitor response to nilotinib. RESULTS The CYP1A1*2C heterozygous and GSTP1 homozygous polymorphisms seemed to be a contributing factor in developing CML. Altogether, there were 12 non-responders, 66 responders and 21 partial responders. The most frequent genotype was null GSTM1 in responders followed by CYP 1A1 and GSTP1 -wild type (p = < 0.05). Whereas, homozygous GSTP1 and GSTT1 null genotype is significantly higher only among nilotinib non-responders. CONCLUSION Hence, it can be concluded that wild type CYP1A1, GSTP1 and null GSTM1 may be frequently linked to favorable outcome in patients treated with nilotinib as depicted by sustained deep molecular response in most CML patients.
Collapse
Affiliation(s)
- Samina Naz Mukry
- Department of Molecular Biology, National Institute of Blood Diseases & Bone Marrow Transplantation, Karachi, Pakistan.
- Department of Transplant Immunology and Applied Microbiology, National Institute of Blood Diseases & Bone Marrow Transplantation, Karachi, Pakistan.
- Department of Post Graduate Studies & Research, National Institute of Blood Diseases & Bone Marrow Transplantation, Karachi, Pakistan.
| | - Aneeta Shahni
- Department of Molecular Biology, National Institute of Blood Diseases & Bone Marrow Transplantation, Karachi, Pakistan
- Department of Post Graduate Studies & Research, National Institute of Blood Diseases & Bone Marrow Transplantation, Karachi, Pakistan
| | - Uzma Zaidi
- Department of Clinical Hematology, National Institute of Blood Diseases & Bone Marrow Transplantation, Karachi, Pakistan
| | - Tahir Sultan Shamsi
- Department of Post Graduate Studies & Research, National Institute of Blood Diseases & Bone Marrow Transplantation, Karachi, Pakistan
- Department of Clinical Hematology, National Institute of Blood Diseases & Bone Marrow Transplantation, Karachi, Pakistan
| |
Collapse
|
6
|
Abdalhabib EK, Alzahrani B, Alanazi F, Algarni A, Ibrahim IK, Mohamed HA, Hamali HA, Mobarki AA, Dobie G, Saboor M. Increased Risk of Acute Lymphoblastic Leukemia in Adult Patients with GSTM1 Null Genetic Polymorphism. Pharmgenomics Pers Med 2022; 15:227-234. [PMID: 35313604 PMCID: PMC8934168 DOI: 10.2147/pgpm.s356302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/04/2022] [Indexed: 01/31/2023] Open
Abstract
Purpose Glutathione S-transferases (GSTT1 and GSTM1) detoxify various endogenous and exogenous compounds and provide cytoprotective role against reactive species. This study aimed to assess the frequency of GSTT1, and GSTM1 polymorphisms in newly diagnosed Sudanese adult patients with acute lymphoblastic leukemia (ALL) and to evaluate the association of these polymorphisms with age, gender and type of ALL. Patients and Methods This case–control study included 128 adult Sudanese, untreated newly diagnosed patients with ALL, aged 18 to 74 years and 128 age-gender matched healthy controls. Deletional polymorphisms of GSTT1 and GSTM1 genes were genotyped through a multiplex polymerase chain reaction (PCR) assay using β-globin gene as an internal positive control. Results The genotypic frequency of GSTT1 null polymorphism was 22.7% in cases and 14.8% in controls (OR = 1.68, P = 0.111). Statistically significant differences were noted in the frequencies of GSTM1 null polymorphism in cases and controls (OR = 3.7, P = <0.001). Combined GSTT1 null and GSTM1 null gene polymorphisms showed statistically significant difference in patients with ALL as compared to controls (OR = 6.5, CI 95% = 1.42–29.74, P < 0.001). Conclusion Irrespective of age at diagnosis, gender, and phenotype of ALL, GSTM1 null polymorphism either alone or in combination with GSTT1 null polymorphism poses significantly increased risk of developing ALL in adults.
Collapse
Affiliation(s)
- Ezeldine K Abdalhabib
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Al-Qurayyat, Saudi Arabia
| | - Badr Alzahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Al-Qurayyat, Saudi Arabia
| | - Fehaid Alanazi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Al-Qurayyat, Saudi Arabia
| | - Abdulrahman Algarni
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Northern Borders University, Arar, Saudi Arabia
| | - Ibrahim Khider Ibrahim
- Department of Hematology, Faculty of Medical Laboratory Sciences, Al Neelain University, Khartoum, Sudan
| | - Hozifa A Mohamed
- Department of Molecular Biology, Faculty of Medical Laboratory Sciences, Al Neelain University, Khartoum, Sudan
- Department of Molecular Biology, Faculty of Medical Laboratory Sciences, Sudan International University, Khartoum, Sudan
| | - Hassan A Hamali
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Abdullah A Mobarki
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Gasim Dobie
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Muhammad Saboor
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
- Medical Research Center (MRC), Jazan University, Jazan, Saudi Arabia
- Correspondence: Muhammad Saboor, Department of Medical Laboratory Technology, Faculty of Applied Medical Science, Jazan University, Jazan, Saudi Arabia, Tel +966 54 495 9029, Email
| |
Collapse
|
7
|
Wang P, Deng Y, Yan X, Zhu J, Yin Y, Shu Y, Bai D, Zhang S, Xu H, Lu X. The Role of ARID5B in Acute Lymphoblastic Leukemia and Beyond. Front Genet 2020; 11:598. [PMID: 32595701 PMCID: PMC7303299 DOI: 10.3389/fgene.2020.00598] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 05/18/2020] [Indexed: 02/05/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common malignancy in children with distinct characteristics among different subtypes. Although the etiology of ALL has not been fully unveiled, initiation of ALL has been demonstrated to partly depend on genetic factors. As indicated by several genome wide association studies (GWASs) and candidate gene analyses, ARID5B, a member of AT-rich interactive domain (ARID) protein family, is associated with the occurrence and prognosis of ALL. However, the mechanisms by which ARID5B genotype impact on the susceptibility and treatment outcome remain vague. In this review, we outline developments in the understanding of ARID5B in the susceptibility of ALL and its therapeutic perspectives, and summarize the underlying mechanisms based on the limited functional studies, hoping to illustrate the possible mechanisms of ARID5B impact and highlight the potential treatment regimens.
Collapse
Affiliation(s)
- Peiqi Wang
- Department of Pediatric Hematology/Oncology, West China Second University Hospital, Sichuan University, Chengdu, China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yun Deng
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Xinyu Yan
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jianhui Zhu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuanyuan Yin
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yang Shu
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Ding Bai
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shouyue Zhang
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Heng Xu
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China.,Department of Laboratory Medicine/Research Center of Clinical Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China.,Precision Medicine Center, State Key Laboratory of Biotherapy and Precision Medicine, Key Laboratory of Sichuan Province, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Xiaoxi Lu
- Department of Pediatric Hematology/Oncology, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Sbirkov Y, Burnusuzov H, Sarafian V. Metabolic reprogramming in childhood acute lymphoblastic leukemia. Pediatr Blood Cancer 2020; 67:e28255. [PMID: 32293782 DOI: 10.1002/pbc.28255] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 02/04/2020] [Accepted: 02/25/2020] [Indexed: 12/12/2022]
Abstract
The first observations of altered metabolism in malignant cells were made nearly 100 years ago and therapeutic strategies targeting cell metabolism have been in clinical use for several decades. In this review, we summarize our current understanding of cell metabolism dysregulation in childhood acute lymphoblastic leukemia (cALL). Reprogramming of cellular bioenergetic processes can be expected in the three distinct stages of cALL: at diagnosis, during standard chemotherapy, and in cases of relapse. Upregulation of glycolysis, dependency on anaplerotic energy sources, and activation of the electron transport chain have all been observed in cALL. While the current treatment strategies are tackling some of these aberrations, cALL cells are likely to be able to rewire their metabolism in order to escape therapy, which may contribute to a refractory disease and relapse. Finally, here we focus on novel therapeutic approaches emerging from our evolving understanding of the alterations of different metabolic networks in lymphoblasts.
Collapse
Affiliation(s)
- Yordan Sbirkov
- Department of Medical Biology, Medical University of Plovdiv, Plovdiv, Bulgaria.,Research Institute at Medical University- Plovdiv, Plovdiv, Bulgaria
| | - Hasan Burnusuzov
- Research Institute at Medical University- Plovdiv, Plovdiv, Bulgaria.,Department of Pediatrics and Medical Genetics, Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Victoria Sarafian
- Department of Medical Biology, Medical University of Plovdiv, Plovdiv, Bulgaria.,Research Institute at Medical University- Plovdiv, Plovdiv, Bulgaria
| |
Collapse
|
9
|
Idris HME, Khalil HB, Mills J, Elderdery AY. CYP1A1 and CYP2D6 Polymorphisms and Susceptibility to Chronic Myelocytic Leukaemia. Curr Cancer Drug Targets 2020; 20:675-680. [PMID: 32418524 DOI: 10.2174/1570163817666200518081356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/06/2020] [Accepted: 04/17/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND CYP1A1 and CYP2D6 are both xenobiotic metabolizing enzymes belonging to the CYP450 enzyme family. Polymorphisms in these genes vary between individuals, resulting in dissimilar patterns of susceptibility to the effects of carcinogenic substances and drugs. OBJECTIVE In a prospective study, the influence of CYP1A1*2C and CYP2D6*4 gene polymorphisms on the susceptibility to chronic myelocytic leukaemia (CML) were investigated. METHODS Prevalence of CYP1A1*2C and CYP2D6*4 was detected in blood specimens from three hundred participants - two hundred patients and a hundred healthy individuals as a control group, using PCR-RFLP. RESULTS CYP1A1 Ile/Val and Val/Val genotype frequency in our study population was 82% & 15% in CML patients and 55% & 8% in controls, respectively. This suggests that carriers had an elevated risk (OR=18.38, 95% CI=7.364-45.913, p value; =0.000 and OR=23.125,95 % CI=7.228-73.980, p value=0.000, respectively). Individuals carrying the CYP2D6 heterozygous genotype (IM) were notably fewer in number within the CML group at 43.5%, as opposed to 93% of the controls. This suggests that the IM genotype may have a prophylactic function in lowering CML risk (OR=0.036, 95% CI=0.005-0.271, p value =0.001). In spite of the distribution of the homozygous mutant (PM) genotype being higher in cases with CML (87% as opposed to 6% in the control), this difference was deemed non-significant (OR=0.558, 95% CI=0.064-4.845, p value =0.597). CONCLUSION These findings indicate that polymorphic CYP1A1 and CYP2D6 genes affect the susceptibility to CML.
Collapse
Affiliation(s)
- Hadeil M E Idris
- Faculty of Medical Laboratory Sciences, Al Neelain University, Khartoum, Sudan
| | - Hiba B Khalil
- Faculty of Medical Laboratory Sciences, Al Neelain University, Khartoum, Sudan
| | - Jeremy Mills
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2UP, United Kingdom
| | - Abozer Y Elderdery
- Faculty of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| |
Collapse
|
10
|
Zmorzyński S, Popek-Marciniec S, Szudy-Szczyrek A, Wojcierowska-Litwin M, Korszeń-Pilecka I, Chocholska S, Styk W, Hus M, Filip AA. The Association of GSTT1, GSTM1, and TNF-α Polymorphisms With the Risk and Outcome in Multiple Myeloma. Front Oncol 2019; 9:1056. [PMID: 31681592 PMCID: PMC6798955 DOI: 10.3389/fonc.2019.01056] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 09/27/2019] [Indexed: 01/30/2023] Open
Abstract
Oxidative stress and systemic inflammation are closely linked with increased risk of cancer development. Tumor necrosis factor alpha (TNF-α) is one of the pro-inflammatory cytokines. Glutathione S-transferases (GSTs) are enzymes involved in oxidative stress handling. Polymorphisms of genes encoding mentioned molecules may potentially influence the risk and the outcome in neoplastic diseases. Multiple myeloma (MM) is a hematological malignancy characterized by clonal, atypical plasma cell proliferation. In the present study we investigated the association of deletion polymorphisms in GSTT1/GSTM1 genes and single nucleotide polymorphisms (SNPs) in the TNF-α gene at positions −308/−238 with the risk and outcome in MM and sensitivity to bortezomib under in vitro conditions. One hundred newly diagnosed MM patients and 100 healthy blood donors were genotyped by means of multiplex PCR (for GSTs) and PCR-RFLP (for TNF-α). In a subgroup of 50 MM patients, bone marrow cells were treated with bortezomib in vitro. Patients with −238GA+AA or GSTT1-null genotypes had 2.0 (p = 0.002) or 2.29 (p = 0.013) fold increased risk of MM. The interaction effects and risk of MM were observed in GSTT1/GSTM1-null (OR = 2.82, p = 0.018), −308/−238GA+AA (OR = 5.63, p < 0.001), as well as in all combinations of −308 with GSTs. The −308/−238GA+AA genotypes in comparison to GG were associated with earlier MM onset−61.14 vs. 66.86 years (p = 0.009) and 61.72 vs. 66.52 years (p = 0.035), respectively. Patients with GSTM1-present had shorter progression-free-survival (15.17 vs. 26.81 months, p = 0.003) and overall-survival (22.79 vs. 34.81 months, p = 0.039) compared with GSTM1-null. We did not observe relationship between response rate and studied polymorphisms. The in vitro study revealed significantly higher number of apoptotic cells at 12 nM of bortezomib in GSTT1-present, GSTM1-null/present, −308GG and −238GG/GA+AA genotypes. Our findings comprise large analysis of studied polymorphisms in MM.
Collapse
Affiliation(s)
- Szymon Zmorzyński
- Department of Cancer Genetics With Cytogenetic Laboratory, Medical University of Lublin, Lublin, Poland
| | - Sylwia Popek-Marciniec
- Department of Cancer Genetics With Cytogenetic Laboratory, Medical University of Lublin, Lublin, Poland
| | - Aneta Szudy-Szczyrek
- Chair and Department of Hematooncology and Bone Marrow Transplantation, Medical University of Lublin, Lublin, Poland
| | | | - Iwona Korszeń-Pilecka
- Department of Cancer Genetics With Cytogenetic Laboratory, Medical University of Lublin, Lublin, Poland
| | - Sylwia Chocholska
- Chair and Department of Hematooncology and Bone Marrow Transplantation, Medical University of Lublin, Lublin, Poland
| | - Wojciech Styk
- Department of Cancer Genetics With Cytogenetic Laboratory, Medical University of Lublin, Lublin, Poland
| | - Marek Hus
- Chair and Department of Hematooncology and Bone Marrow Transplantation, Medical University of Lublin, Lublin, Poland
| | - Agata A Filip
- Department of Cancer Genetics With Cytogenetic Laboratory, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
11
|
Maternal Exposure to Pesticides, Paternal Occupation in the Army/Police Force, and CYP2D6*4 Polymorphism in the Etiology of Childhood Acute Leukemia. J Pediatr Hematol Oncol 2018; 40:e207-e214. [PMID: 29432309 DOI: 10.1097/mph.0000000000001105] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Epidemiologic studies have suggested that parental occupations, pesticide use, environmental factors, and genetic polymorphism are involved in the etiology of childhood acute leukemia (CAL). In total, 116 cases of CAL and 162 controls were recruited and submitted to blood drawing to assess the presence of genetic polymorphisms. Parental occupations, pesticides exposure, and other potential determinants were investigated. Increased risk for CAL was associated with prenatal maternal use of insecticides/rodenticides (odds ratio [OR]=1.87; 95% confidence intervals [CI], 1.04-3.33), with subjects living <100 m from pesticide-treated fields (OR=3.21; 95% CI, 1.37-7.53) and with a paternal occupation as traffic warden/policeman (OR=4.02; 95% CI, 1.63-9.87). Associations were found between CAL and genetic polymorphism of CYP2D6*4 for homozygous alleles (mutant type/mutant type: OR=6.39; 95% CI, 1.17-34.66). In conclusion, despite the small sample size, maternal prenatal exposure to pesticides, paternal occupation as a traffic warden/police officer, and CYP2D6*4 polymorphism could play a role in the etiology of CAL.
Collapse
|
12
|
Bruzzoni-Giovanelli H, González JR, Sigaux F, Villoutreix BO, Cayuela JM, Guilhot J, Preudhomme C, Guilhot F, Poyet JL, Rousselot P. Genetic polymorphisms associated with increased risk of developing chronic myelogenous leukemia. Oncotarget 2016; 6:36269-77. [PMID: 26474455 PMCID: PMC4742176 DOI: 10.18632/oncotarget.5915] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 09/14/2015] [Indexed: 12/22/2022] Open
Abstract
Little is known about inherited factors associated with the risk of developing chronic myelogenous leukemia (CML). We used a dedicated DNA chip containing 16 561 single nucleotide polymorphisms (SNPs) covering 1 916 candidate genes to analyze 437 CML patients and 1 144 healthy control individuals. Single SNP association analysis identified 139 SNPs that passed multiple comparisons (1% false discovery rate). The HDAC9, AVEN, SEMA3C, IKBKB, GSTA3, RIPK1 and FGF2 genes were each represented by three SNPs, the PSM family by four SNPs and the SLC15A1 gene by six. Haplotype analysis showed that certain combinations of rare alleles of these genes increased the risk of developing CML by more than two or three-fold. A classification tree model identified five SNPs belonging to the genes PSMB10, TNFRSF10D, PSMB2, PPARD and CYP26B1, which were associated with CML predisposition. A CML-risk-allele score was created using these five SNPs. This score was accurate for discriminating CML status (AUC: 0.61, 95%CI: 0.58-0.64). Interestingly, the score was associated with age at diagnosis and the average number of risk alleles was significantly higher in younger patients. The risk-allele score showed the same distribution in the general population (HapMap CEU samples) as in our control individuals and was associated with differential gene expression patterns of two genes (VAPA and TDRKH). In conclusion, we describe haplotypes and a genetic score that are significantly associated with a predisposition to develop CML. The SNPs identified will also serve to drive fundamental research on the putative role of these genes in CML development.
Collapse
Affiliation(s)
- Heriberto Bruzzoni-Giovanelli
- Université Paris Diderot, Sorbonne Paris Cité UMRS 1160 INSERM, Paris, France.,Centre d'Investigations Cliniques 9504 INSERM-AP-HP Hôpital Saint-Louis, Paris, France
| | - Juan R González
- Centre de Recerca en Epidemiologia Ambiental (CREAL), Barcelona, Spain.,Institut Municipal d'Investigació Mèdica (IMIM), Barcelona, Spain.,CIBER Epidemiología y Salud Pública (CIBERESP), Spain Centre de Recerca en Epidemiologia Ambiental (CREAL), Barcelona, Spain
| | - François Sigaux
- Institut Universitaire d'Hématologie, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Bruno O Villoutreix
- Université Paris Diderot, Sorbonne Paris Cité UMRS 973 Inserm, Paris, France/ Inserm, U973, Paris, France
| | - Jean Michel Cayuela
- Laboratoire Central d'Hématologie, Hôpital Saint Louis, Paris, France.,EA3518, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | | | - Claude Preudhomme
- Laboratoire d'Hématologie, Inserm, U837, CHRU, Lille, France/Université de Lille Nord, Institut de Recherche sur le Cancer de Lille, Lille, France
| | | | - Jean-Luc Poyet
- Université Paris Diderot, Sorbonne Paris Cité UMRS 1160 INSERM, Paris, France
| | - Philippe Rousselot
- Service d'Hématologie et d'Oncologie, Hôpital Mignot, Université Versailles, Saint-Quentin-en-Yvelines, France
| |
Collapse
|
13
|
Cerliani MB, Pavicic W, Gili JA, Klein G, Saba S, Richard S. Cigarette smoking, dietary habits and genetic polymorphisms in GSTT1, GSTM1 and CYP1A1 metabolic genes: A case-control study in oncohematological diseases. World J Clin Oncol 2016; 7:395-405. [PMID: 27777882 PMCID: PMC5056331 DOI: 10.5306/wjco.v7.i5.395] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 09/02/2016] [Accepted: 09/22/2016] [Indexed: 02/06/2023] Open
Abstract
AIM To analyze the association between oncohematological diseases and GSTT1/GSTM1/CYP1A1 polymorphisms, dietary habits and smoking, in an argentine hospital-based case-control study.
METHODS This hospital-based case-control study involved 125 patients with oncohematological diseases and 310 control subjects. A questionnaire was used to obtain sociodemographic data and information about habits. Blood samples were collected, and DNA was extracted using salting out methods. Deletions in GSTT1 and GSTM1 (null genotypes) were addressed by PCR. CYP1A1 MspI polymorphism was detected by PCR-RFLP. Odds ratio (OR) and 95%CI were calculated to estimate the association between each variable studied and oncohematological disease.
RESULTS Women showed lower risk of disease compared to men (OR 0.52, 95%CI: 0.34-0.82, P = 0.003). Higher levels of education (> 12 years) were significantly associated with an increased risk, compared to complete primary school or less (OR 3.68, 95%CI: 1.82-7.40, P < 0.001 adjusted for age and sex). With respect to tobacco, none of the smoking categories showed association with oncohematological diseases. Regarding dietary habits, consumption of grilled/barbecued meat 3 or more times per month showed significant association with an increased risk of disease (OR 1.72, 95%CI: 1.08-2.75, P = 0.02). Daily consumption of coffee also was associated with an increased risk (OR 1.77, 95%CI: 1.03-3.03, P = 0.03). Results for GSTT1, GSTM1 and CYP1A1 polymorphisms showed no significant association with oncohematological diseases. When analyzing the interaction between polymorphisms and tobacco smoking or dietary habits, no statistically significant associations that modify disease risk were found.
CONCLUSION We reported an increased risk of oncohematological diseases associated with meat and coffee intake. We did not find significant associations between genetic polymorphisms and blood cancer.
Collapse
|
14
|
Lu J, Zhao Q, Zhai YJ, He HR, Yang LH, Gao F, Zhou RS, Zheng J, Ma XC. Genetic polymorphisms of CYP1A1 and risk of leukemia: a meta-analysis. Onco Targets Ther 2015; 8:2883-2902. [PMID: 26491362 PMCID: PMC4608596 DOI: 10.2147/ott.s92259] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The associations between CYP1A1 polymorphisms and risk of leukemia have been studied extensively, but the results have been inconsistent. Therefore, in this study, we performed a meta-analysis to clarify associations of three CYP1A1 polymorphisms (T3801C, A2455G, and C4887A) with the risks of acute lymphoblastic leukemia (ALL), acute myeloid leukemia (AML), and chronic myeloid leukemia (CML). Medline, EMBASE, and China National Knowledge Infrastructure databases were searched to collect relevant studies published up to April 20, 2015. The extracted data were analyzed statistically, and pooled odds ratios with 95% confidence intervals were calculated to quantify the associations. Overall, 26 publications were included. Finally, T3801C was associated with an increased risk of AML in Asians under the dominant model. For A2455G, the risk of ALL was increased among Caucasians in the recessive model and the allele-contrast model; A2455G was also associated with an increased risk of CML among Caucasians under the recessive model, dominant model, and allele-contrast model. For C4887A, few of the included studies produced data. In conclusion, the results suggest that Asians carrying the T3801C C allele might have an increased risk of AML and that Caucasians with the A2455G GG genotype might have an increased risk of ALL. Further investigations are needed to confirm these associations.
Collapse
Affiliation(s)
- Jun Lu
- Clinical Research Center, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Qian Zhao
- Clinical Research Center, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
- College of Pharmacy, Xi’an Medical University, Xi’an, Shaanxi, People’s Republic of China
| | - Ya-Jing Zhai
- Department of Pharmacy, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Hai-Rong He
- Clinical Research Center, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Li-Hong Yang
- Clinical Research Center, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Fan Gao
- Clinical Research Center, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Rong-Sheng Zhou
- Department of Anesthesiology, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Jie Zheng
- Clinical Research Center, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Xian-Cang Ma
- Clinical Research Center, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
- Department of Psychiatry, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| |
Collapse
|
15
|
Delord M, Rousselot P, Cayuela JM, Sigaux F, Guilhot J, Preudhomme C, Guilhot F, Loiseau P, Raffoux E, Geromin D, Génin E, Calvo F, Bruzzoni-Giovanelli H. High imatinib dose overcomes insufficient response associated with ABCG2 haplotype in chronic myelogenous leukemia patients. Oncotarget 2014; 4:1582-91. [PMID: 24123600 PMCID: PMC3858547 DOI: 10.18632/oncotarget.1050] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Pharmacogenetic studies in chronic myelogenous leukemia (CML) typically use a candidate gene approach. In an alternative strategy, we analyzed the impact of single nucleotide polymorphisms (SNPs) in drug transporter genes on the molecular response to imatinib, using a DNA chip containing 857 SNPs covering 94 drug transporter genes. Two cohorts of CML patients treated with imatinib were evaluated: an exploratory cohort including 105 patients treated at 400 mg/d and a validation cohort including patients sampled from the 400 mg/d and 600 mg/d arms of the prospective SPIRIT trial (n=239). Twelve SNPs discriminating patients according to cumulative incidence of major molecular response (CI-MMR) were identified within the exploratory cohort. Three of them, all located within the ABCG2 gene, were validated in patients included in the 400 mg/d arm of the SPIRIT trial. We identified an ABCG2 haplotype (define as G-G, rs12505410 and rs2725252) as associated with significantly higher CI-MMR in patients treated at 400 mg/d. Interestingly, we found that patients carrying this ABCG2 "favorable" haplotype in the 400 mg arm reached similar CI-MMR rates that patients randomized in the imatinib 600 mg/d arm. Our results suggest that response to imatinib may be influenced by constitutive haplotypes in drug transporter genes. Lower response rates associated with "non- favorable" ABCG2 haplotypes may be overcome by increasing the imatinib daily dose up to 600 mg/d.
Collapse
Affiliation(s)
- Marc Delord
- Plateforme de Bioinformatique et Biostatistique, Institut Universitaire d'Hématologie, Université Paris Diderot, Sorbonne Paris Cité
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
He HR, Zhang XX, Sun JY, Hu SS, Ma Y, Dong YL, Lu J. Glutathione S-transferase gene polymorphisms and susceptibility to chronic myeloid leukemia. Tumour Biol 2014; 35:6119-6125. [PMID: 24659449 DOI: 10.1007/s13277-014-1810-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 02/28/2014] [Indexed: 12/21/2022] Open
Abstract
Glutathione S-transferase (GST), a phase II metabolizing enzyme, plays an important role in the cellar defense system, and its activity may modulate leukemia risk. A large body of evidence has shown the possible relevance of functional polymorphisms of the genes that encode GSTs μ, π, and θ (GSTM1, GSTP1, and GST1, respectively) to the genetic susceptibility of chronic myeloid leukemia (CML). Because of the lack of available conclusive data, we performed a meta-analysis of all relevant available studies to derive a more precise estimation of the relationship. A comprehensive literature search of PubMed and Web of Knowledge electronic databases was conducted to collect relevant studies until December 20, 2013, and the extracted data were statistically analyzed using Review Manager version 5.2. Finally, 16 eligible studies were identified in the literature. The GSTT1 null genotype was associated with an increased risk of CML, as were the double null GSTT1 and GSTM1 genotypes. These findings suggest that heritable GST status influences the risk of developing CML and that more attention should be paid to carriers of these susceptibility genes.
Collapse
|
17
|
Influence of CYP1A1, GST polymorphisms and susceptibility risk of chronic myeloid leukemia in Syrian population. Med Oncol 2014; 31:889. [PMID: 24671854 DOI: 10.1007/s12032-014-0889-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 02/10/2014] [Indexed: 12/22/2022]
Abstract
In the present study, we investigated the associations of polymorphisms in cytochrome P450 gene (CYP1A1), glutathione S-transferase genes (GSTM1 and GSTT1) with chronic myelogenous leukemia (CML). A total of 126 patients with CML and 172 healthy volunteers were genotyped, and the DNA was isolated from their blood samples. The polymorphisms were assessed by polymerase chain reaction (PCR) restriction fragment length polymorphism-based methods and multiplex PCR. Logistic regression analyses showed significant risk of CML associated with CYP1A1 Val allele [odds ratio (OR) 3.3, 95% confidence intervals (CI) 1.96-5.53], (p < 0.0001) while CYP1A1 Val/Val homozygotes were observed only in the CML patients. There was statistically significant difference in the frequency of GSTM1 and GSTT1 null genotypes. The GSTT1-null genotype was slightly higher in 27% of CML cases and 16.7% of controls (OR 1.98, 95% CI 1.12-3.5) (p < 0.020). The GSTM1 null was higher in 42.8% of CML cases and 22.7% of controls (OR 2.55, 95% CI 1.54-4.22) (p < 0.00024). The individuals carrying CYP1A1 Ile/Val (AG) and GSTM1 null genotype have 9.9 times higher risk to be CML than those carrying CYP1A1 Ile/Ile (AA) and GSTM1 present genotype (OR 9.9, 95% CI 2.7-36.3) (p < 0.0001). This suggests that the association of the GSTM1 null genotype, either alone or in combination with GSTT1 null, with CYP1AI heterozygous leads to the CML risk.
Collapse
|
18
|
Association between the CYP1A1 T3801C polymorphism and risk of cancer: Evidence from 268 case–control studies. Gene 2014. [PMID: 24498651 DOI: 10.1016/j.gene.2013.10.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
19
|
Dhaini HR, Kobeissi L. Toxicogenetic profile and cancer risk in Lebanese. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2014; 17:95-125. [PMID: 24627976 DOI: 10.1080/10937404.2013.878679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
An increasing number of genetic polymorphisms in drug-metabolizing enzymes (DME) were identified among different ethnic groups. Some of these polymorphisms are associated with an increased cancer risk, while others remain equivocal. However, there is sufficient evidence that these associations become significant in populations overexposed to environmental carcinogens. Hence, genetic differences in expression activity of both Phase I and Phase II enzymes may affect cancer risk in exposed populations. In Lebanon, there has been a marked rise in reported cancer incidence since the 1990s. There are also indicators of exposure to unusually high levels of environmental pollutants and carcinogens in the country. This review considers this high cancer incidence by exploring a potential gene-environment model based on available DME polymorphism prevalence, and their impact on bladder, colorectal, prostate, breast, and lung cancer in the Lebanese population. The examined DME include glutathione S-transferases (GST), N-acetyltransferases (NAT), and cytochromes P-450 (CYP). Data suggest that these DME influence bladder cancer risk in the Lebanese population. Evidence indicates that identification of a gene-environment interaction model may help in defining future research priorities and preventive cancer control strategies in this country, particularly for breast and lung cancer.
Collapse
Affiliation(s)
- Hassan R Dhaini
- a Faculty of Health Sciences , University of Balamand , Beirut , Lebanon
| | | |
Collapse
|
20
|
Han F, Tan Y, Cui W, Dong L, Li W. Novel insights into etiologies of leukemia: a HuGE review and meta-analysis of CYP1A1 polymorphisms and leukemia risk. Am J Epidemiol 2013; 178:493-507. [PMID: 23707957 DOI: 10.1093/aje/kwt016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We conducted a meta-analysis to investigate the association of 2 single nucleotide polymorphisms in the cytochrome P450, family 1, subfamily 1A1 gene (CYP1A1), CYP1A1*2A and CYP1A1*2C, with the risk of developing different subtypes of leukemia in adults and children. A total of 26 studies published between 1999 and 2011 were identified by searching the PubMed, EMBASE, Medline, and Web of Science databases. The odds ratios for the CYP1A1 polymorphisms and leukemia risk were calculated. The cumulative evidence in genetic associations was graded by using the Venice criteria of the Human Genome Epidemiology Network (Atlanta, Georgia). The results showed that the cumulative evidence was moderate for the association of the CYP1A1*2A variant with leukemia in Caucasians and with childhood acute lymphoid leukemia in Caucasians. In addition, there was moderate evidence that children who carry both the CYP1A1*2A variant and the glutathione S-transferase M1 null genotype have an increased risk of acute lymphoid leukemia. For the CYP1A1*2C polymorphism, the cumulative evidence of an association with leukemia risk was moderate for adults and weak for children. Logistic regression analysis demonstrated an interaction between the CYP1A1*2C polymorphism and age. This meta-analysis showed that the CYP1A1*2A and CYP1A1*2C polymorphisms were associated with an increased risk of leukemia, and that the associations might vary by ethnicity, gene-gene interactions, age, and leukemia subtype.
Collapse
Affiliation(s)
- Fujun Han
- Cancer Center, First Hospital of Jilin University, Changchun, China
| | | | | | | | | |
Collapse
|
21
|
Choi YH, Kim JH, Hong YC. CYP1A1 genetic polymorphism and polycyclic aromatic hydrocarbons on pulmonary function in the elderly: haplotype-based approach for gene-environment interaction. Toxicol Lett 2013; 221:185-90. [PMID: 23816456 DOI: 10.1016/j.toxlet.2013.06.229] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 06/18/2013] [Accepted: 06/20/2013] [Indexed: 10/26/2022]
Abstract
Lung function may be impaired by environmental pollutants not only acting alone, but working with genetic factors as well. Few epidemiologic studies have been conducted to explore the interplay of polycyclic aromatic hydrocarbons (PAHs) exposure and genetic polymorphism on lung function in the elderly. For genetic polymorphism, haplotype is considered a more informative unit than single nucleotide polymorphism markers. Therefore, we examined the role of haplotype based-CYP1A1 polymorphism in the effect of PAHs exposure on lung function in 422 participants from a community-based panel of elderly adults in Seoul, Korea. Linear mixed effect models were fit to evaluate the association of PAH exposure markers (urinary 1-hydroxypyrene and 2-naphthol) with FVC, FEV₁, FEV₁/FVC, and FEF₂₅₋₇₅, and then the interaction with CYP1A1 haplotype constructed from three single nucleotide polymorphisms of the gene (rs4646421/rs4646422/rs1048943). Urinary 1-hydroxypyrene levels were inversely associated with FEV₁/FVC (p<0.05), whereas urinary 2-naphthol levels failed to show associations with lung function. Urinary 1-hydroxypyrene was significantly associated with decrease in FEV₁/FVC among participants with rs4646421 variants (CT+TT), rs4646422 wild-type (GG), and rs1048943 wild-type (AA). At least one TGA haplotype predicted a 0.88% (95% confidence interval, 0.31-1.45%) reduction in FEV₁/FVC with an interquartile range increase in 1-hydroxypyrene, whereas no relationship was observed in participants without TGA haplotype (p for interaction=0.045). Similar patterns were also observed in FEF₂₅₋₇₅. We did not find any main effects of CYP1A1 genetic polymorphisms on lung functions. Our findings suggest that PAH exposure producing 1-hydroxypyrene as a metabolite compromises lung function in the elderly, and that haplotype-based CYP1A1 polymorphism modifies the risk.
Collapse
Affiliation(s)
- Yoon-Hyeong Choi
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea
| | | | | |
Collapse
|
22
|
Zhou LP, Luan H, Dong XH, Jin GJ, Man DL, Shang H. Genetic variants of CYP2D6 gene and cancer risk: a HuGE systematic review and meta-analysis. Asian Pac J Cancer Prev 2013; 13:3165-72. [PMID: 22994728 DOI: 10.7314/apjcp.2012.13.7.3165] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE Genetic polymorphisms in metabolic enzymes are associated with numerous cancers. A large number of single nucleotide polymorphisms (SNPs) in the CYP2D6 gene have been reported to associate with cancer susceptibility. However, the results are controversial. The aim of this Human Genome Epidemiology (HuGE) review and meta-analysis was to summarize the evidence for associations. METHODS Studies focusing on the relationship between CYP2D6 gene polymorphisms and susceptibility to cancer were selected from the Pubmed, Cochrane library, Embase, Web of Science, Springerlink, CNKI and CBM databases. Data were extracted by two independent reviewers and the meta-analysis was performed with Review Manager Version 5.1.6 and STATA Version 12.0 software. Odds ratios (ORs) with 95% confidence intervals (95%CIs) were calculated. RESULTS According to the inclusion criteria, forty-three studies with a total of 7,009 cancer cases and 9,646 healthy controls, were included in the meta-analysis. The results showed that there was a positive association between heterozygote (GC) of rs1135840 and cancer risk (OR=1.92, 95%CI: 1.14-3.21, P=0.01). In addition, we found that homozygote (CC) of rs1135840 might be a protective factor for cancer (OR=0.58, 95%CI: 0.34-0.97, P=0.04). Similarly, the G allele and G carrier (AG + GG) of rs16947 and heterozygote (A/del) of rs35742686 had negative associations with cancer risk (OR=0.69, 95%CI: 0.48-0.99, P=0.04; OR=0.60, 95%CI: 0.38-0.94, P=0.03; OR=0.50, 95%CI: 0.26-0.95, P=0.03; respectively). CONCLUSION This meta-analysis suggests that CYP2D6 gene polymorphisms are involved in the pathogenesis of various cancers. The heterozygote (GC) of rs1135840 in CYP2D6 gene might increase the risk while the homozygote (CC) of rs1135840, G allele and G carrier (AG + GG) of rs16947 and heterozygote (A/del) of rs35742686 might be protective factors.
Collapse
Affiliation(s)
- Li-Ping Zhou
- Department of Laboratory Medicine, the First Affiliated Hospital of China Medical University, Shenyang, China
| | | | | | | | | | | |
Collapse
|
23
|
Zhang BB, Xuan C, Deng KF, Wu N, Lun LM. Association between the MDR1 gene variant C3435T and risk of leukaemia: a meta-analysis. Eur J Cancer Care (Engl) 2013; 22:617-25. [PMID: 23731124 DOI: 10.1111/ecc.12067] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2013] [Indexed: 11/29/2022]
Abstract
Although a number of genetic studies have attempted to link the multidrug resistance (MDR1) C3435T polymorphism to risk of leukaemia, the results were often inconsistent. The present study aimed at investigating the pooled association using a meta-analysis on the published studies. 1933 cases and 2215 controls of 11 published studies in English before June 2012 were involved in the updated meta-analysis. Furthermore, subgroup analysis was performed in different ethnic and leukaemia subtype groups. This meta-analysis suggests that the MDR1 C3435T polymorphism associate with risk of leukaemia. The effect of the variant on the expression levels and the possible functional role of the variant in leukaemia should be addressed in further studies.
Collapse
Affiliation(s)
- B-B Zhang
- Graduate School of Medicine, Mie University, Mie, Japan
| | | | | | | | | |
Collapse
|
24
|
Does cytochrome P450 1A1 MspI polymorphism increase acute lymphoblastic leukemia risk? Evidence from 2013 cases and 2903 controls. Gene 2012; 510:14-21. [DOI: 10.1016/j.gene.2012.08.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 08/20/2012] [Accepted: 08/25/2012] [Indexed: 12/11/2022]
|
25
|
Chauhan PS, Ihsan R, Mishra AK, Yadav DS, Saluja S, Mittal V, Saxena S, Kapur S. High order interactions of xenobiotic metabolizing genes and P53 codon 72 polymorphisms in acute leukemia. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2012; 53:619-630. [PMID: 22930568 DOI: 10.1002/em.21723] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Revised: 07/02/2012] [Accepted: 07/03/2012] [Indexed: 06/01/2023]
Abstract
Polymorphisms in xenobiotic metabolizing genes are associated with altered metabolism of carcinogens in acute leukemia (AL). This study applied two data mining approaches to explore potential interactions among P53 and xenobiotic metabolizing genes in 230 AL patients [131 acute myeloid leukemia (AML) and 99 acute lymphoblastic leukemia (ALL)] and 199 controls. Individually, none of the genotypes showed significant associations with AML risk. However, in ALL the CYP1A12A TC genotype was associated with increased risk (OR = 2.02; 95% CI = 1.14-3.58; P = 0.01), whereas the GSTM1 null genotype imparted reduced risk (OR = 0.55; 95% CI = 0.31-0.96; P = 0.03). In classification and regression tree analysis, combinations of GSTM1 present, CYP1A12C AA or GG, EPHX1 exon3 TC, and EPHX1 exon4 AA or GG genotype strongly enhanced the risk of AML (OR = 5.89; 95% CI = 1.40-26.62; P = 0.01). In ALL, combinations of CYP1A12A TT, P53 GG or CC and GSTP1 AG genotypes conferred the highest risk (OR = 4.19; 95% CI = 1.45-12.25; P = 0.004). In multifactor dimensionality reduction analysis, a four locus model (GSTP1, P53, EPHX1 exon3, and CYP1A12A) was the best predictor model for ALL risk. The association between this model and ALL risk remained true even at low prior probabilities of 0.01% (false positive report probability = 0.05). Interaction entropy interpretations of the best model of ALL revealed that two-way interactions were mostly synergistic. These results suggest that high order gene-gene interactions play an important role in AL risk.
Collapse
Affiliation(s)
- Pradeep Singh Chauhan
- Department of Tumour Biology, National Institute of Pathology Indian Council of Medical Research, Safdarjung Hospital Campus, New Delhi, India
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Bhat G, Bhat A, Wani A, Sadiq N, Jeelani S, Kaur R, Masood A, Ganai B. Polymorphic variation in glutathione-S-transferase genes and risk of chronic myeloid leukaemia in the Kashmiri population. Asian Pac J Cancer Prev 2012; 13:69-73. [PMID: 22502716 DOI: 10.7314/apjcp.2012.13.1.069] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Cancer is a complex disease and the genetic susceptibility to it could be an outcome of the inherited difference in the capacity of xenobiotic metabolizing enzymes. Glutathione-S-transferases (GSTs) are phase II metabolizing enzymes whose various genotypes have been associated with increased risk of different types of cancer. Null mutations caused by the deletion of the entire gene result in the absence of the enzymatic activity and increase in the risk of developing cancer including chronic myeloid leukaemia (CML). In the present case-control study we evaluated the effect of null mutations in GSTM1 and GSTT1 genes on the risk of developing CML. The study included 75 CML patients (43 males and 32 females; age (mean ± S.D) 42.3 ± 13.4 years) and unrelated non-malignant controls (76 male and 48 females; age (mean ± S.D) 41.5 ± 12.9). The distribution of GSTM1 and GSTT1 genotypes in CML patients and controls was assessed by multiplex-PCR method. Logistic regression was used to assess the relationship between GSTM1 and GSTT1 genotypes and risk of CML. Chi-square test was used to evaluate the trend in modulating the risk to CML by one or more potential high risk genotype. Although GSTM1 null genotype frequency was higher in CML patients (41%) than in the controls (35%), it did not reached a statistical significance (OD = 1.32, 95% CI: 0.73-2.40; P value = 0.4295). The frequency of GSTT1 null genotypes was higher in the CML patients (36%) than in the controls (21%) and the difference was found to be statistically significant (OD = 2.12, 95% CI: 1.12-4.02; P value = 0.0308). This suggests that the presence of GSTT1 genotype may have protective role against the CML. We found a statistically significant (OD = 3.09, 95% CI: 1.122-8.528; P value = 0.0472) interaction between the GSTM1 and GSTT1 null genotypes and thus individuals carrying null genotypes of both GSTM1 and GSTT1 genes are at elevated risk of CML.
Collapse
Affiliation(s)
- Gulzar Bhat
- Department of Biochemistry, University of Kashmir, India
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Zhuo W, Zhang L, Wang Y, Zhu B, Chen Z. CYP1A1 MspI polymorphism and acute myeloid leukemia risk: meta-analyses based on 5018 subjects. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2012; 31:62. [PMID: 22846179 PMCID: PMC3444413 DOI: 10.1186/1756-9966-31-62] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 07/13/2012] [Indexed: 12/11/2022]
Abstract
Background Evidence indicates that CYP1A1 MspI polymorphism might be a possible risk factor for several malignancies. A growing body of literature has been devoted to the association of CYP1A1 MspI polymorphism with acute myeloid leukemia (AML). However, the results remain conflicting. The aim of the present study was to derive a more precise estimation of the relationship. Methods Meta-analyses assessing the association of CYP1A1 MspI variation with AML were conducted and subgroup analyses on ethnicity and age groups were further performed. Eligible studies were identified for the period up to May 2012. Results A total of ten case–control studies including 1330 cases and 3688 controls were selected for analysis. The overall data failed to indicate a significant association of CYP1A1 MspI polymorphism with AML risk (C vs T: OR = 1.13; 95%CI = 0.87-1.48; CC vs TT: OR = 1.72; 95%CI = 0.99-3.01; CC + TC vs TT: OR = 1.16; 95%CI = 0.86-1.55). In subgroup analysis stratified by ethnicity, significant AML risk was shown among Asians (CC + TC vs TT: OR = 1.33; 95%CI = 1.09-1.62) but not Caucasians or mixed races. In subgroup analysis regarding age groups, no associations were observed in either the childhood AML or the adult AML subgroups. Conclusion The results of the present study suggested that CYP1A1 MspI polymorphism might be a risk factor for AML among Asians. Further investigations are needed to confirm the conclusions.
Collapse
Affiliation(s)
- Wenlei Zhuo
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China.
| | | | | | | | | |
Collapse
|
28
|
Naffa RG, Awidi AS, Yousef AMF, Ismail SI. CYP1AI, glutathione S-transferase gene polymorphisms and risk of Polycythemia vera. Cancer Epidemiol 2012; 36:68-72. [DOI: 10.1016/j.canep.2011.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2010] [Revised: 04/27/2011] [Accepted: 05/02/2011] [Indexed: 12/14/2022]
|
29
|
CYP3A5 and NAT2 gene polymorphisms: role in childhood acute lymphoblastic leukemia risk and treatment outcome. Mol Cell Biochem 2012; 364:217-23. [DOI: 10.1007/s11010-011-1220-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 12/21/2011] [Indexed: 10/14/2022]
|
30
|
Qian X, Cao S, Yang G, Dong J, Jin G, Shen Y, Hu Z. Variant genotypes of MDR1 C3435T increase the risk of leukemia: evidence from 10 case–control studies. Leuk Lymphoma 2012; 53:1183-7. [DOI: 10.3109/10428194.2011.641179] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Xifeng Qian
- Department of Hematology, Wuxi People's Hospital Affiliated to Nanjing Medical University,
Wuxi, Jiangsu Province, China
| | - Songyu Cao
- Department of Epidemiology and Biostatistics and Ministry of Education Key Laboratory for Modern Toxicology, School of Public Health, Nanjing Medical University,
Nanjing, China
| | - Guohua Yang
- Department of Hematology, Wuxi People's Hospital Affiliated to Nanjing Medical University,
Wuxi, Jiangsu Province, China
| | - Jing Dong
- Department of Epidemiology and Biostatistics and Ministry of Education Key Laboratory for Modern Toxicology, School of Public Health, Nanjing Medical University,
Nanjing, China
| | - Guangfu Jin
- Department of Epidemiology and Biostatistics and Ministry of Education Key Laboratory for Modern Toxicology, School of Public Health, Nanjing Medical University,
Nanjing, China
- Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Nanjing Medical University,
Nanjing, China
| | - Yunfeng Shen
- Department of Hematology, Wuxi People's Hospital Affiliated to Nanjing Medical University,
Wuxi, Jiangsu Province, China
| | - Zhibin Hu
- Department of Epidemiology and Biostatistics and Ministry of Education Key Laboratory for Modern Toxicology, School of Public Health, Nanjing Medical University,
Nanjing, China
- Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Nanjing Medical University,
Nanjing, China
| |
Collapse
|
31
|
Özten N, Sunguroğlu A, Bosland MC. Variations in glutathione-S-transferase genes influence risk of chronic myeloid leukemia. Hematol Oncol 2011; 30:150-5. [PMID: 21969307 DOI: 10.1002/hon.1018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 09/06/2011] [Accepted: 09/08/2011] [Indexed: 11/10/2022]
Abstract
Glutathione S-transferases (GSTs) are phase II enzymes that detoxify hazardous xenobiotics including carcinogens. Inter-individual variations in GSTM1 and GSTT1 loci have been associated with several types of cancer, including leukemias. In this study, we investigated the possible association between GSTM1 and GSTT1 polymorphisms and susceptibility to chronic myeloid leukemia (CML) in a Turkish population. In a case-control study, 106 CML patients and 190 healthy controls were evaluated for GSTM1 and GSTT1 polymorphisms. GSTM1 null (GSTM1(-)) genotype frequencies in CML cases and controls were 45.3% and 42.6%, respectively. GSTT1 null (GSTT1(-)) genotype frequencies were 44.3% and 18.4%, respectively. The frequency of the GSTT1(-) genotype among CML patients was significantly higher than in controls [odds ratio (OR) 3.53, 95% confidence interval (CI) 2.08-6.00; P < 0.0001]. Individuals with the GSTM1(-) genotype did not have increased risk of CML [OR: 1.11; 95% CI: 0.69-1.80; P = 0.714]. The combined GSTM1(-)/GSTT1(-) genotype was significantly associated with risk of CML compared to the GSTM1(+) /GSTT1(+) genotype which was most frequent in both cases and controls [OR: 9.47; 95% CI: 3.61-24.87]. Similar findings have only been obtained in Turkish and Indian populations but not elsewhere. The GSTM1(+) /GSTT1(-) genotype was associated with a 2.5-fold increased risk compared with the GSTM1(-)/GSTT1(+) genotype, the second most frequent genotype (OR; 2.46; 95% CI: 1.17, 5.20), suggesting a complex interaction between GSTM1 and GSTT1. Our results indicate an association between the GSTT1(-) genotype, either alone or in combination with GSTM1(-) genotype, and risk of CML, suggesting a possible interaction between GSTM1 and GSTT1. These findings, which are possibly restricted to Turkey and India, warrant further research.
Collapse
Affiliation(s)
- Nur Özten
- Department of Medical Biology, School of Medicine, Ankara University, Ankara, Turkey.
| | | | | |
Collapse
|
32
|
Khan MA, Chen HC, Tania M, Zhang DZ. Anticancer activities of Nigella sativa (black cumin). AFRICAN JOURNAL OF TRADITIONAL, COMPLEMENTARY, AND ALTERNATIVE MEDICINES : AJTCAM 2011; 8:226-232. [PMID: 22754079 PMCID: PMC3252704 DOI: 10.4314/ajtcam.v8i5s.10] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Nigella sativa has been used as traditional medicine for centuries. The crude oil and thymoquinone (TQ) extracted from its seeds and oil are effective against many diseases like cancer, cardiovascular complications, diabetes, asthma, kidney disease etc. It is effective against cancer in blood system, lung, kidney, liver, prostate, breast, cervix, skin with much safety. The molecular mechanisms behind its anticancer role is still not clearly understood, however, some studies showed that TQ has antioxidant role and improves body's defense system, induces apoptosis and controls Akt pathway. Although the anti-cancer activity of N. sativa components was recognized thousands of years ago but proper scientific research with this important traditional medicine is a history of last 2∼3 decades. There are not so many research works done with this important traditional medicine and very few reports exist in the scientific database. In this article, we have summarized the actions of TQ and crude oil of N. sativa against different cancers with their molecular mechanisms.
Collapse
Affiliation(s)
- Md Asaduzzaman Khan
- Department of Biochemistry, School of Biological Science and Technology, Central South University, Changsha, Hunan 410013, P R China
| | | | | | | |
Collapse
|
33
|
Swinney RM, Beuten J, Collier AB, Chen TTL, Winick NJ, Pollock BH, Tomlinson GE. Polymorphisms in CYP1A1 and Ethnic-Specific Susceptibility to Acute Lymphoblastic Leukemia in Children. Cancer Epidemiol Biomarkers Prev 2011; 20:1537-42. [DOI: 10.1158/1055-9965.epi-10-1265] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
34
|
Luo YP, Chen HC, Khan MA, Chen FZ, Wan XX, Tan B, Ou-Yang FD, Zhang DZ. Genetic polymorphisms of metabolic enzymes-CYP1A1, CYP2D6, GSTM1, and GSTT1, and gastric carcinoma susceptibility. Tumour Biol 2011; 32:215-222. [PMID: 20878561 DOI: 10.1007/s13277-010-0115-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Accepted: 09/16/2010] [Indexed: 12/11/2022] Open
Abstract
Genetic polymorphisms in metabolic enzymes are associated with numerous cancers. In this study, the relationships between genetic polymorphisms of phase I metabolic enzymes including cytochrome P450 1A1 (CYP1A1), CYP2D6 and phase II metabolic enzymes such as glutathione S-transferase M1 (GSTM1) and GSTT1 and gastric carcinoma susceptibility were investigated. Genomic DNA was isolated from the peripheral blood of 129 healthy controls and 123 gastric carcinoma patients from Han ethnic group of Hunan Province located in Central South China. The genetic polymorphisms of the above mentioned enzymes were analyzed using PCR-RFLP techniques. There was no significant difference among the frequencies of CYP1A1 and/or CYP2D6 gene's wild type, heterozygous or homozygous mutations between the gastric carcinoma group and control group. But the differences among the frequencies of GSTM1 and GSTT1 null genotype between the gastric carcinoma and control group were significant (both P < 0.05). Also there were significant differences in the frequencies of GSTM1 null in high/high-middle differentiated, middle differentiated, middle-low differentiated and low differentiated gastric tumor separately. GSTM1 null showed an increased risk in middle-low differentiated and low differentiated gastric carcinoma type, but GSTT1 null was not a risk factor for the four pathological types of gastric carcinoma mentioned above. We report here that the genotypes of CYP1A1 and CYP2D6 are not associated with gastric carcinoma risk; GSTM1 null, but not GSTT1 null inheritably increases risk of some pathological types of gastric carcinoma in Han ethnic population of Hunan Province.
Collapse
Affiliation(s)
- Ya-Ping Luo
- Department of Biochemistry, School of Biological Science and Technology, Central South University, Changsha, Hunan 410013, China.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Zintzaras E. Glutathione S-transferase M1 and T1 genes and susceptibility to chronic myeloid leukemia: a meta-analysis. Genet Test Mol Biomarkers 2010; 13:791-7. [PMID: 19860557 DOI: 10.1089/gtmb.2009.0079] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Variants of glutathione S-transferase M1 (GSTM1) and T1 (GSTT1) genes have been implicated as risk factors for chronic myeloid leukemia (CML). However, the genetic association studies that examined the relation between the null genotypes of GSTM1 and GSTT1 genes and risk of developing CML gave conflicting or inconclusive results. In an attempt to interpret these results, a meta-analysis of all available studies (nine studies, with 757 cases and 1959 controls) was performed. In the meta-analysis the pooled odds ratios (OR) were estimated using random effects models. The heterogeneity between studies, the sources of potential bias, and the consistency of genetic effects across ethnicities were explored. Cumulative meta-analysis was also performed. Overall, the meta-analysis showed nonsignificant association between GSTM1 null genotype and CML (OR = 1.00 [0.83-1.20]) and lack of heterogeneity between the studies (p(Q) = 0.87). The association was also nonsignificant in Whites, East Asians, and Indians: OR = 1.38 (0.43-4.46), 0.94 (0.65-1.35), and 1.16 (0.74-1.82), respectively. However, GSTT1 null genotype was associated with increased risk of CML (OR = 1.57 [1.13-2.17]) and the heterogeneity between studies was significant (p(Q) = 0.04). In Indians, the association was significant (OR = 2.89 [1.56-5.35]) whereas in East Asians it was not significant (OR = 1.07 [0.74-1.54]). The combined GSTM1 normal/GSTT1 null genotypes produced significant association (OR = 1.95 [1.17-3.24]). Cumulative meta-analysis for GSTT1 gene showed an upward trend in risk effect, whereas the trend was downward in GSTM1. There was a differential magnitude of effect in large versus small studies. In conclusion, the accumulated evidence indicated an association between GSTT1 null genotype and CML.
Collapse
Affiliation(s)
- Elias Zintzaras
- Department of Biomathematics, University of Thessaly School of Medicine, Larissa, Greece.
| |
Collapse
|
36
|
Mahmoud S, A. Labib D, H. Khalifa R, Abu Khalil RE, A. Marie M. CYP1A1, GSTM1 and GSTT1 Genetic Polymorphism in Egyptian Chronic Myeloid Leukemia Patients. ACTA ACUST UNITED AC 2010. [DOI: 10.3923/rji.2010.12.21] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
37
|
Yadav SS, Ruwali M, Pant MC, Shukla P, Singh RL, Parmar D. Interaction of drug metabolizing cytochrome P450 2D6 poor metabolizers with cytochrome P450 2C9 and 2C19 genotypes modify the susceptibility to head and neck cancer and treatment response. Mutat Res 2009; 684:49-55. [PMID: 19954746 DOI: 10.1016/j.mrfmmm.2009.11.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Revised: 11/16/2009] [Accepted: 11/24/2009] [Indexed: 11/28/2022]
Abstract
The present case-control study attempted to investigate the association of poor metabolizer (PM) genotypes of cytochrome P450 2D6 (CYP2D6*4 and CYP2D6*10) with squamous cell carcinoma of head and neck (HNSCC) and treatment response in patients receiving chemotherapy or combination of chemo- and radiotherapy. Cases with the PM genotypes of CYP2D6 displayed a significantly increased risk for HNSCC as compared to wild type genotypes. The risk was found to further increase in cases (up to 4.8) carrying combination of PM genotypes of CYP2D6, CYP2C9 (CYP2C9*2) or CYP2C19 (CYP2C19*2), suggesting that synergism amongst the PM genotypes of drug metabolizing CYPs leads to impairment in the detoxification of the tobacco carcinogens. A small increase in the risk in tobacco (chewers or smokers) or alcohol users in cases with CYP2D6*4 allele while no change or even a small decrease in risk in cases with CYP2D6*10 allele when compared to non-tobacco or alcohol users have suggested that CYP2D6 genotypes alone do not appear to interact significantly with environmental risk factors in modifying the susceptibility to HNSCC. Furthermore, most of the cases carrying PM genotypes of CYP2D6 did not respond to the treatment. Moreover, higher prevalence of non-responders among cases carrying combination of CYP2D6*4 or CYP2D6*4, CYP2C9*2 and CYP2C19*2 have demonstrated that interaction of PM genotypes may not only significantly modify the susceptibility to HNSCC but also the treatment response.
Collapse
Affiliation(s)
- Sunishtha S Yadav
- Developmental Toxicology Division, Indian Institute of Toxicology Research (Formerly: Industrial Toxicology Research Centre), Council CSIR, P.O. Box 80, Mahatma Gandhi Marg, Lucknow 226 001, India
| | | | | | | | | | | |
Collapse
|
38
|
Treviño LR, Yang W, French D, Hunger S, Carroll WL, Devidas M, Willman C, Neale G, Downing J, Raimondi S, Pui CH, Evans WE, Relling MV. Germline genomic variants associated with childhood acute lymphoblastic leukemia. Nat Genet 2009; 41:1001-5. [PMID: 19684603 PMCID: PMC2762391 DOI: 10.1038/ng.432] [Citation(s) in RCA: 382] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Accepted: 06/24/2009] [Indexed: 01/02/2023]
Abstract
Using the Affymetrix 500K Mapping array and publicly available genotypes, we identified 18 SNPs whose allele frequency differed significantly(P < 1 x 10(-5)) between pediatric acute lymphoblastic leukemia (ALL) cases (n = 317) and non-ALL controls (n = 17,958). Two SNPs in ARID5B not only differed between ALL and non-ALL groups (rs10821936, P = 1.4 x 10(-15), odds ratio (OR) = 1.91; rs10994982, P = 5.7 x 10(-9), OR = 1.62) but also distinguished B-hyperdiploid ALL from other subtypes (rs10821936, P = 1.62 x 10(-5), OR = 2.17; rs10994982, P = 0.003, OR 1.72). These ARID5B SNPs also distinguished B-hyperdiploid ALL from other subtypes in an independent validation cohort (n = 124 children with ALL; P = 0.003 and P = 0.0008, OR 2.45 and 2.86, respectively) and were associated with methotrexate accumulation and gene expression pattern in leukemic lymphoblasts. We conclude that germline variants affect susceptibility to, and characteristics of, specific ALL subtypes.
Collapse
MESH Headings
- Alleles
- Antimetabolites, Antineoplastic/metabolism
- Antimetabolites, Antineoplastic/therapeutic use
- Case-Control Studies
- Child
- Child, Preschool
- Chromosomes, Human, Pair 10
- Chromosomes, Human, Pair 7
- Cohort Studies
- DNA-Binding Proteins/genetics
- Dopa Decarboxylase/genetics
- Gene Dosage
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Frequency
- Genetic Predisposition to Disease
- Genetic Variation
- Genome-Wide Association Study
- Germ Cells
- Germ-Line Mutation
- Haplotypes
- Humans
- Ikaros Transcription Factor/genetics
- Linkage Disequilibrium
- Methotrexate/metabolism
- Methotrexate/therapeutic use
- Odds Ratio
- Oncogene Proteins, Fusion/genetics
- Polyglutamic Acid/metabolism
- Polymorphism, Single Nucleotide
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/classification
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics
- Probability
- Reproducibility of Results
- Risk Factors
- Trans-Activators
- Transcription Factors/genetics
- White People/genetics
Collapse
Affiliation(s)
| | - Wenjian Yang
- St. Jude Children’s Research Hospital, Memphis TN, USA
| | | | | | | | | | | | | | - James Downing
- St. Jude Children’s Research Hospital, Memphis TN, USA
| | | | - Ching-Hon Pui
- St. Jude Children’s Research Hospital, Memphis TN, USA
| | | | | |
Collapse
|