1
|
Qi K, Jia D, Zhou S, Zhang K, Guan F, Yao M, Sui X. Cryopreservation of Immune Cells: Recent Progress and Challenges Ahead. Adv Biol (Weinh) 2024; 8:e2400201. [PMID: 39113431 DOI: 10.1002/adbi.202400201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/02/2024] [Indexed: 12/14/2024]
Abstract
Cryopreservation of immune cells is considered as a key enabling technology for adoptive cellular immunotherapy. However, current immune cell cryopreservation technologies face the challenges with poor biocompatibility of cryoprotection materials, low efficiency, and impaired post-thaw function, limiting their clinical translation. This review briefly introduces the adoptive cellular immunotherapy and the approved immune cell-based products, which involve T cells, natural killer cells and etc. The cryodamage mechanisms to these immune cells during cryopreservation process are described, including ice formation related mechanical and osmotic injuries, cryoprotectant induced toxic injuries, and other biochemical injuries. Meanwhile, the recent advances in the cryopreservation medium and freeze-thaw protocol for several representative immune cell type are summarized. Furthermore, the remaining challenges regarding on the cryoprotection materials, freeze-thaw protocol, and post-thaw functionality evaluation of current cryopreservation technologies are discussed. Finally, the future perspectives are proposed toward advancing highly efficient cryopreservation of immune cells.
Collapse
Affiliation(s)
- Kejun Qi
- School of Life Science, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Danqi Jia
- School of Life Science, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Shengxi Zhou
- School of Life Science, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Kun Zhang
- School of Life Science, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Fangxia Guan
- School of Life Science, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Minghao Yao
- School of Life Science, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Xiaojie Sui
- School of Life Science, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
2
|
Kysielova H, Yampolska K, Dubrava T, Lutsenko O, Bondarovych M, Babenko N, Gaevska Y, Ostankov M, Goltsev A. Improvement of bone marrow mononuclear cells cryopreservation methods to increase the efficiency of dendritic cell production. Cryobiology 2022; 106:122-130. [PMID: 35245536 DOI: 10.1016/j.cryobiol.2022.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 02/09/2022] [Accepted: 02/20/2022] [Indexed: 11/27/2022]
Abstract
Cryopreservation is now considered an integral part of the biotechnological process, exploiting different types of cells and tissues in clinical practice. Among them, dendritic cells (DCs) deserve special attention, notably the immature tolerogenic cells (tolDCs), which provide natural tolerance in humans and animals. High cryolability of tolDCs has necessitated the search for the methods that would provide cryopreservation of their precursors; those more resistant to negative effects of cryopreservation factors, in particular, bone marrow or peripheral blood mononuclear cells (MNCs). Based on this, the aim of our research was to optimize the cryopreservation conditions for mice bone marrow MNCs with further assessment of their ability to form tolDCs ex vivo. A cryopreservation mode for bone marrow MNCs has been developed which provides structural and functional completeness of tolDCs obtained from them ex vivo. The ability of DCs derived from cryopreserved MNCs by the developed mode to induce T-regulatory (FOXP3+) cells in vitro when co-cultured with CD4+-lymphocytes was shown.Tolerogenic properties of the DCs derived from cryopreserved MNCs are implemented by increasing the content of hsp70 heat shock proteins and the expression rate of glucocorticoid-induced leucine zipper (GILZ). DCs with increased tolerogenic activities, obtained by the developed cryopreservation regimen, can be used in treatment of autoimmune diseases. In this research we not only evaluated the qualitative characteristics and tolerogenic activity of DCs produced in vitro from cryopreserved MNCs, but also outlined the prospects of accumulating their reserves in low-temperature banks for clinical use.
Collapse
Affiliation(s)
- H Kysielova
- Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine 23, Pereyaslavska str., Kharkiv, 61016, Ukraine.
| | - K Yampolska
- Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine 23, Pereyaslavska str., Kharkiv, 61016, Ukraine
| | - T Dubrava
- Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine 23, Pereyaslavska str., Kharkiv, 61016, Ukraine
| | - O Lutsenko
- Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine 23, Pereyaslavska str., Kharkiv, 61016, Ukraine
| | - M Bondarovych
- Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine 23, Pereyaslavska str., Kharkiv, 61016, Ukraine
| | - N Babenko
- Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine 23, Pereyaslavska str., Kharkiv, 61016, Ukraine
| | - Yu Gaevska
- Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine 23, Pereyaslavska str., Kharkiv, 61016, Ukraine
| | - M Ostankov
- Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine 23, Pereyaslavska str., Kharkiv, 61016, Ukraine
| | - A Goltsev
- Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine 23, Pereyaslavska str., Kharkiv, 61016, Ukraine
| |
Collapse
|
3
|
Haider P, Hoberstorfer T, Salzmann M, Fischer MB, Speidl WS, Wojta J, Hohensinner PJ. Quantitative and Functional Assessment of the Influence of Routinely Used Cryopreservation Media on Mononuclear Leukocytes for Medical Research. Int J Mol Sci 2022; 23:ijms23031881. [PMID: 35163803 PMCID: PMC8837123 DOI: 10.3390/ijms23031881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 02/04/2023] Open
Abstract
Quantitative and functional analysis of mononuclear leukocyte populations is an invaluable tool to understand the role of the immune system in the pathogenesis of a disease. Cryopreservation of mononuclear cells (MNCs) is routinely used to guarantee similar experimental conditions. Immune cells react differently to cryopreservation, and populations and functions of immune cells change during the process of freeze–thawing. To allow for a setup that preserves cell number and function optimally, we tested four different cryopreservation media. MNCs from 15 human individuals were analyzed. Before freezing and after thawing, the distribution of leukocytes was quantified by flow cytometry. Cultured cells were stimulated using lipopolysaccharide, and their immune response was quantified by flow cytometry, quantitative polymerase chain reaction (qPCR), and enzyme-linked immunosorbent assay (ELISA). Ultimately, the performance of the cryopreservation media was ranked. Cell recovery and viability were different between the media. Cryopreservation led to changes in the relative number of monocytes, T cells, B cells, and their subsets. The inflammatory response of MNCs was altered by cryopreservation, enhancing the basal production of inflammatory cytokines. Different cryopreservation media induce biases, which needs to be considered when designing a study relying on cryopreservation. Here, we provide an overview of four different cryopreservation media for choosing the optimal medium for a specific task.
Collapse
Affiliation(s)
- Patrick Haider
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, 1090 Vienna, Austria; (P.H.); (T.H.); (M.S.); (W.S.S.)
- Ludwig Boltzmann Institute for Cardiovascular Research, Medical University of Vienna, 1090 Vienna, Austria;
| | - Timothy Hoberstorfer
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, 1090 Vienna, Austria; (P.H.); (T.H.); (M.S.); (W.S.S.)
| | - Manuel Salzmann
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, 1090 Vienna, Austria; (P.H.); (T.H.); (M.S.); (W.S.S.)
| | - Michael B. Fischer
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Vienna, 1090 Vienna, Austria;
| | - Walter S. Speidl
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, 1090 Vienna, Austria; (P.H.); (T.H.); (M.S.); (W.S.S.)
- Ludwig Boltzmann Institute for Cardiovascular Research, Medical University of Vienna, 1090 Vienna, Austria;
| | - Johann Wojta
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, 1090 Vienna, Austria; (P.H.); (T.H.); (M.S.); (W.S.S.)
- Ludwig Boltzmann Institute for Cardiovascular Research, Medical University of Vienna, 1090 Vienna, Austria;
- Core Facilities, Medical University of Vienna, 1090 Vienna, Austria
- Correspondence: ; Tel.: +43-1-40400-73500
| | - Philipp J. Hohensinner
- Ludwig Boltzmann Institute for Cardiovascular Research, Medical University of Vienna, 1090 Vienna, Austria;
- Center for Biomedical Research, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
4
|
Usero L, Miralles L, Esteban I, Pastor-Quiñones C, Maleno MJ, Leal L, García F, Plana M. Feasibility of using monocyte-derived dendritic cells obtained from cryopreserved cells for DC-based vaccines. J Immunol Methods 2021; 498:113133. [PMID: 34480950 DOI: 10.1016/j.jim.2021.113133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/05/2021] [Accepted: 08/23/2021] [Indexed: 12/22/2022]
Abstract
The study of the effect of cryopreservation on the functionality of monocyte-derived dendritic cells (MDDCs) and dendritic cells (DCs) is essential for their use in different clinical applications such as DCs-based vaccines. Its full maturation and its optimal functionality are crucial for DCs based immunotherapy. In this study, we compared MDDCs derived from fresh and cryopreserved PBMCs in the aspects of phenotype and its effect on T cells at the level of proliferation and cytokine secretion. We pulsed MDDCs obtained from fresh and cryopreserved PBMCs with two different stimuli, CEF and SEA, and the expression maturation markers and cytokine secretion were analyzed. Our results showed that the cryopreservation had no effects in the phenotype of the MDDCs obtained, cell viability, maturation markers expression and/or cytokines secretion, independently whether MDDCs had been generated from fresh or cryopreserved PBMCs. Thus, this study suggests that the use of cryopreserved cells is a good method to keep the cells before use in immunotherapy, avoiding the variability within same individual due to severe blood draws. Even so, the interpretation and comparison of different results should be done considering the different cryopreservation techniques and assays, and their effects on PBMCs, specifically on MDDC and DC cells.
Collapse
Affiliation(s)
- Lorena Usero
- AIDS Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) - Hospital Clinic, University of Barcelona, Barcelona, Spain.
| | - Laia Miralles
- AIDS Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) - Hospital Clinic, University of Barcelona, Barcelona, Spain.
| | - Ignasi Esteban
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
| | | | - Maria José Maleno
- AIDS Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) - Hospital Clinic, University of Barcelona, Barcelona, Spain.
| | - Lorna Leal
- Infectious Diseases Service and AIDS Research Group, IDIBAPS - Hospital Clinic, University of Barcelona, Barcelona, Spain.
| | - Felipe García
- Infectious Diseases Service and AIDS Research Group, IDIBAPS - Hospital Clinic, University of Barcelona, Barcelona, Spain.
| | - Montserrat Plana
- AIDS Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) - Hospital Clinic, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
5
|
Geervliet M, Lute LCP, Jansen CA, Rutten VPMG, Savelkoul HFJ, Tijhaar E. Differential immunomodulation of porcine bone marrow derived dendritic cells by E. coli Nissle 1917 and β-glucans. PLoS One 2020; 15:e0233773. [PMID: 32559198 PMCID: PMC7304589 DOI: 10.1371/journal.pone.0233773] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 05/12/2020] [Indexed: 01/09/2023] Open
Abstract
In early life and around weaning, pigs are at risk of developing infectious diseases which compromise animal welfare and have major economic consequences for the pig industry. A promising strategy to enhance resistance against infectious diseases is immunomodulation by feed additives. To assess the immune stimulating potential of feed additives in vitro, bone marrow-derived dendritic cells were used. These cells play a central role in the innate and adaptive immune system and are the first cells encountered by antigens that pass the epithelial barrier. Two different feed additives were tested on dendritic cells cultured from fresh and cryopreserved bone marrow cells; a widely used commercial feed additive based on yeast-derived β-glucans and the gram-negative probiotic strain E. coli Nissle 1917. E. coli Nissle 1917, but not β-glucans, induced a dose-dependent upregulation of the cell maturation marker CD80/86, whereas both feed additives induced a dose-dependent production of pro- and anti-inflammatory cytokines, including TNFα, IL-1β, IL-6 and IL-10. Furthermore, E. coli Nissle 1917 consistently induced higher levels of cytokine production than β-glucans. These immunomodulatory responses could be assessed by fresh as well as cryopreserved in vitro cultured porcine bone marrow-derived dendritic cells. Taken together, these results demonstrate that both β-glucans and E. coli Nissle 1917 are able to enhance dendritic cell maturation, but in a differential manner. A more mature dendritic cell phenotype could contribute to a more efficient response to infections. Moreover, both fresh and cryopreserved bone marrow-derived dendritic cells can be used as in vitro pre-screening tools which enable an evidence based prediction of the potential immune stimulating effects of different feed additives.
Collapse
Affiliation(s)
- Mirelle Geervliet
- Cell Biology and Immunology group, Department of Animal Sciences, Wageningen University, Wageningen, The Netherlands
| | - Laura C. P. Lute
- Cell Biology and Immunology group, Department of Animal Sciences, Wageningen University, Wageningen, The Netherlands
| | - Christine A. Jansen
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Victor P. M. G. Rutten
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Huub F. J. Savelkoul
- Cell Biology and Immunology group, Department of Animal Sciences, Wageningen University, Wageningen, The Netherlands
| | - Edwin Tijhaar
- Cell Biology and Immunology group, Department of Animal Sciences, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
6
|
Immunomodulatory Effects of 1,25-Dihydroxyvitamin D 3 on Dendritic Cells Promote Induction of T Cell Hyporesponsiveness to Myelin-Derived Antigens. J Immunol Res 2016; 2016:5392623. [PMID: 27703987 PMCID: PMC5039280 DOI: 10.1155/2016/5392623] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 06/06/2016] [Accepted: 06/27/2016] [Indexed: 11/25/2022] Open
Abstract
While emerging evidence indicates that dendritic cells (DC) play a central role in the pathogenesis of multiple sclerosis (MS), their modulation with immunoregulatory agents provides prospect as disease-modifying therapy. Our observations reveal that 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) treatment of monocyte-derived DC results in a semimature phenotype and anti-inflammatory cytokine profile as compared to conventional DC, in both healthy controls and MS patients. Importantly, 1,25(OH)2D3-treated DC induce T cell hyporesponsiveness, as demonstrated in an allogeneic mixed leukocyte reaction. Next, following a freeze-thaw cycle, 1,25(OH)2D3-treated immature DC could be recovered with a 78% yield and 75% viability. Cryopreservation did not affect the expression of membrane markers by 1,25(OH)2D3-treated DC nor their capacity to induce T cell hyporesponsiveness. In addition, the T cell hyporesponsiveness induced by 1,25(OH)2D3-treated DC is antigen-specific and robust since T cells retain their capacity to respond to an unrelated antigen and do not reactivate upon rechallenge with fully mature conventional DC, respectively. These observations underline the clinical potential of tolerogenic DC (tolDC) to correct the immunological imbalance in MS. Furthermore, the feasibility to cryopreserve highly potent tolDC will, ultimately, contribute to the large-scale production and the widely applicable use of tolDC.
Collapse
|
7
|
Martikainen MV, Kääriö H, Karvonen A, Schröder PC, Renz H, Kaulek V, Dalphin JC, von Mutius E, Schaub B, Pekkanen J, Hirvonen MR, Roponen M. Farm exposures are associated with lower percentage of circulating myeloid dendritic cell subtype 2 at age 6. Allergy 2015; 70:1278-87. [PMID: 26119336 DOI: 10.1111/all.12682] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2015] [Indexed: 01/07/2023]
Abstract
BACKGROUND Early life farm exposures have been shown to decrease the risk of allergic diseases. Dendritic cells (DCs) may mediate asthma-protective effect of farm exposures as they play an important role in the development of immunity and tolerance. Our aim was to investigate whether the numbers and phenotypes of circulating DCs at age 6 are associated with farming, asthma, and atopy in a selected sample of French and Finnish children from the PASTURE study. METHODS We studied 82 farm and 86 nonfarm children with and without asthma. Using flow cytometry, BDCA1+ CD11c+ myeloid DC1s (mDC1), BDCA3+(high) mDC2s and BDCA2+ plasmacytoid DCs (pDCs) were identified and expressions of CD86, immunoglobulin-like transcript 3 (ILT3) and ILT4 were analyzed. Questionnaires were used to assess prenatal and lifetime patterns of farm exposures and to define asthma. Atopic sensitization was defined by specific IgE measurements. RESULTS The percentage of mDC2 cells was lower in farm children (0.033 ± 0.001) than in nonfarm children (0.042 ± 0.001; P = 0.008). Similar associations were found between mDC2 percentage and prenatal (P = 0.02) and lifetime exposure to farm milk (P = 0.03) and stables (P = 0.003), but these associations were not independent from farming. Asthma was positively associated with ILT4 + mDCs (P = 0.04) and negatively with CD86 + pDCs (P = 0.048) but only in nonfarm children. CONCLUSIONS Inverse association between farm exposure and mDC2 percentage suggest that this DC subset may play a role in farm-related immunoregulation.
Collapse
Affiliation(s)
- M.-V. Martikainen
- Department of Environmental Science; University of Eastern Finland; Kuopio Finland
| | - H. Kääriö
- Department of Environmental Science; University of Eastern Finland; Kuopio Finland
| | - A. Karvonen
- Department of Health Protection; National Institute for Health and Welfare; Kuopio Finland
| | - P. C. Schröder
- Department of Allergy and Pulmonary; University Children's Hospital; Dr. von Hauner Children's Hospital; LMU Munich; Munich Germany
- Member of the German Center for Lung Research (DZL); Munich; Germany
| | - H. Renz
- Institute of Laboratory Medicine, Pathobiochemistry and Molecular Diagnostics; Philipps University; Marburg Germany
| | - V. Kaulek
- Department of Respiratory Disease; UMR/CNRS 6249 Chrono-Environment; University Hospital of Besançon; Besançon France
| | - J.-C. Dalphin
- Department of Respiratory Disease; UMR/CNRS 6249 Chrono-Environment; University Hospital of Besançon; Besançon France
| | - E. von Mutius
- Department of Allergy and Pulmonary; University Children's Hospital; Dr. von Hauner Children's Hospital; LMU Munich; Munich Germany
- Member of the German Center for Lung Research (DZL); Munich; Germany
| | - B. Schaub
- Department of Allergy and Pulmonary; University Children's Hospital; Dr. von Hauner Children's Hospital; LMU Munich; Munich Germany
- Member of the German Center for Lung Research (DZL); Munich; Germany
| | - J. Pekkanen
- Department of Public Health; University of Helsinki; Helsinki Finland
| | - M.-R. Hirvonen
- Department of Environmental Science; University of Eastern Finland; Kuopio Finland
- Department of Health Protection; National Institute for Health and Welfare; Kuopio Finland
| | - M. Roponen
- Department of Environmental Science; University of Eastern Finland; Kuopio Finland
| |
Collapse
|
8
|
Mackern-Oberti JP, Vega F, Llanos C, Bueno SM, Kalergis AM. Targeting dendritic cell function during systemic autoimmunity to restore tolerance. Int J Mol Sci 2014; 15:16381-417. [PMID: 25229821 PMCID: PMC4200801 DOI: 10.3390/ijms150916381] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 08/29/2014] [Accepted: 09/05/2014] [Indexed: 12/11/2022] Open
Abstract
Systemic autoimmune diseases can damage nearly every tissue or cell type of the body. Although a great deal of progress has been made in understanding the pathogenesis of autoimmune diseases, current therapies have not been improved, remain unspecific and are associated with significant side effects. Because dendritic cells (DCs) play a major role in promoting immune tolerance against self-antigens (self-Ags), current efforts are focusing at generating new therapies based on the transfer of tolerogenic DCs (tolDCs) during autoimmunity. However, the feasibility of this approach during systemic autoimmunity has yet to be evaluated. TolDCs may ameliorate autoimmunity mainly by restoring T cell tolerance and, thus, indirectly modulating autoantibody development. In vitro induction of tolDCs loaded with immunodominant self-Ags and subsequent cell transfer to patients would be a specific new therapy that will avoid systemic immunosuppression. Herein, we review recent approaches evaluating the potential of tolDCs for the treatment of systemic autoimmune disorders.
Collapse
Affiliation(s)
- Juan P Mackern-Oberti
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Portugal 49, Santiago 8330025, Chile.
| | - Fabián Vega
- Departamento de Inmunología Clínica y Reumatología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 350, Santiago 8330033, Chile.
| | - Carolina Llanos
- Departamento de Inmunología Clínica y Reumatología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 350, Santiago 8330033, Chile.
| | - Susan M Bueno
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Portugal 49, Santiago 8330025, Chile.
| | - Alexis M Kalergis
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Portugal 49, Santiago 8330025, Chile.
| |
Collapse
|
9
|
Immature dendritic cells generated from cryopreserved human monocytes show impaired ability to respond to LPS and to induce allogeneic lymphocyte proliferation. PLoS One 2013; 8:e71291. [PMID: 23936267 PMCID: PMC3729849 DOI: 10.1371/journal.pone.0071291] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 06/28/2013] [Indexed: 12/19/2022] Open
Abstract
Dendritic cells play a key role in the immune system, in the sensing of foreign antigens and triggering of an adaptive immune response. Cryopreservation of human monocytes was investigated to understand its effect on differentiation into immature monocyte-derived dendritic cells (imdDCs), the response to inflammatory stimuli and the ability to induce allogeneic lymphocyte proliferation. Cryopreserved (crp)-monocytes were able to differentiate into imdDCs, albeit to a lesser extent than freshly (frh)-obtained monocytes. Furthermore, crp-imdDCs had lower rates of maturation and cytokine/chemokine secretion in response to LPS than frh-imdDCs. Lower expression of Toll-like receptor 4 (at 24 and 48 h) and higher susceptibility to apoptosis in crp-imdDCs than in fresh cells would account for the impaired maturation and cytokine/chemokine secretion observed. A mixed leukocyte reaction showed that lymphocyte proliferation was lower with crp-imdDCs than with frh-imdDCs. These findings suggested that the source of monocytes used to generate human imdDCs could influence the accuracy of results observed in studies of the immune response to pathogens, lymphocyte activation, vaccination and antigen sensing. It is not always possible to work with freshly isolated monocytes but the possible effects of freezing/thawing on the biology and responsiveness of imdDCs should be taken into account.
Collapse
|
10
|
Carreno BM, Becker-Hapak M, Huang A, Chan M, Alyasiry A, Lie WR, Aft RL, Cornelius LA, Trinkaus KM, Linette GP. IL-12p70-producing patient DC vaccine elicits Tc1-polarized immunity. J Clin Invest 2013; 123:3383-94. [PMID: 23867552 DOI: 10.1172/jci68395] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 05/06/2013] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Systemic administration of IL-12p70 has demonstrated clinical activity in cancer patients, but dose-limiting toxicities have hindered its incorporation in vaccine formulations. Here, we report on the immunological and clinical outcomes upon vaccination with CD40L/IFN-γ-matured, IL-12p70-producing DCs. METHODS 7 HLA-A*0201+ newly diagnosed stage IV melanoma patients were immunized against the gp100 melanoma antigen using autologous peptide-pulsed, CD40L/IFN-γ-matured DCs. PBMCs were taken weekly for immune monitoring by tetramer analysis and functional assays. CT imaging was performed at baseline, week 9, and week 18 for clinical assessment using RECIST. RESULTS 6 of 7 treated patients developed sustained T cell immunity to all 3 melanoma gp100 antigen-derived peptides. 3 of the 6 immunological responders developed confirmed clinical responses (1 complete remission >4 years, 2 partial response). Importantly, DC vaccine-derived IL-12p70 levels positively correlated with time to progression (P = 0.019, log-rank), as did T-cytotoxic 1 (Tc1) immunity, as assessed by IFN-γ/IL-13 and IFN-γ/IL-5 ratios (P = 0.035 and P = 0.030, respectively, log-rank). In contrast, a pathway-specific defect in IL-12p35 transcription was identified upon CD40L/IFN-γ activation in clinical nonresponder patient DCs, and gp100-specific T cells from these patients displayed a Tc2 phenotype. Incorporation of TLR3 and TLR8 agonists into the CD40L/IFN-γ activation protocol corrected the IL-12p70 production defect in DCs derived from clinical nonresponder patients. CONCLUSION These findings underscore the essential role of IL-12p70 in the development of therapeutic type 1 antigen-specific CD8+ T cell immunity in humans with cancer.
Collapse
Affiliation(s)
- Beatriz M Carreno
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Buhl T, Legler TJ, Rosenberger A, Schardt A, Schön MP, Haenssle HA. Controlled-rate freezer cryopreservation of highly concentrated peripheral blood mononuclear cells results in higher cell yields and superior autologous T-cell stimulation for dendritic cell-based immunotherapy. Cancer Immunol Immunother 2012; 61:2021-31. [PMID: 22527251 PMCID: PMC3493671 DOI: 10.1007/s00262-012-1262-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 04/04/2012] [Indexed: 11/28/2022]
Abstract
Availability of large quantities of functionally effective dendritic cells (DC) represents one of the major challenges for immunotherapeutic trials against infectious or malignant diseases. Low numbers or insufficient T-cell activation of DC may result in premature termination of treatment and unsatisfying immune responses in clinical trials. Based on the notion that cryopreservation of monocytes is superior to cryopreservation of immature or mature DC in terms of resulting DC quantity and immuno-stimulatory capacity, we aimed to establish an optimized protocol for the cryopreservation of highly concentrated peripheral blood mononuclear cells (PBMC) for DC-based immunotherapy. Cryopreserved cell preparations were analyzed regarding quantitative recovery, viability, phenotype, and functional properties. In contrast to standard isopropyl alcohol (IPA) freezing, PBMC cryopreservation in an automated controlled-rate freezer (CRF) with subsequent thawing and differentiation resulted in significantly higher cell yields of immature and mature DC. Immature DC yields and total protein content after using CRF were comparable with results obtained with freshly prepared PBMC and exceeded results of standard IPA freezing by approximately 50 %. While differentiation markers, allogeneic T-cell stimulation, viability, and cytokine profiles were similar to DC from standard freezing procedures, DC generated from CRF-cryopreserved PBMC induced a significantly higher antigen-specific IFN-γ release from autologous effector T cells. In summary, automated controlled-rate freezing of highly concentrated PBMC represents an improved method for increasing DC yields and autologous T-cell stimulation.
Collapse
Affiliation(s)
- Timo Buhl
- Department of Dermatology, Venereology and Allergology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany.
| | | | | | | | | | | |
Collapse
|
12
|
Meijerink M, Ulluwishewa D, Anderson RC, Wells JM. Cryopreservation of monocytes or differentiated immature DCs leads to an altered cytokine response to TLR agonists and microbial stimulation. J Immunol Methods 2011; 373:136-42. [PMID: 21878338 DOI: 10.1016/j.jim.2011.08.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2011] [Revised: 08/12/2011] [Accepted: 08/12/2011] [Indexed: 10/17/2022]
Abstract
Literature on the effects of cryopreservation and thawing of monocytes or monocyte-derived immature dendritic cells (iDCs) on the subsequent functional capacities of the DCs is limited to a few specific maturation stimuli and is focused on applications in clinical immunotherapy. Given the cardinal role of DCs in regulating tolerance and immunity at mucosal surfaces there is a growing interest in understanding the effect of stromal, microbial and probiotic signals on DC function. Therefore our aim was to investigate the effects of cryopreservation on the functional properties of DCs stimulated with bacteria or the bacterial components using a standardized method. Surface markers CD83 and CD86 were expressed at similar levels on iDCs generated from cryopreserved or freshly isolated monocytes. Cryopreservation of iDCs led to slightly decreased expression of CD86 and CD83 compared to freshly generated iDCs prepared from unfrozen cells but this did not affect the capacity of DCs to acquire fully mature characteristics after stimulation. In contrast the cytokine response to lipoteichoic acid and bacterial stimulation was altered by cryopreservation of monocytes or iDCs, particularly for IL-12p70 which was decreased up to 250 fold or not detected. Cryopreservation also decreased TNF-α and IL-1β production in stimulated iDCs but to a lesser extent than for IL-12p70, depending on the maturation factors used. The amounts of IL-10 produced by stimulated iDCs were increased up to 3.6 fold when iDCs were cryopreserved, but decreased up to 90 fold when generated from cryopreserved monocytes. Immature DCs are often used to investigate the immunomodulatory properties of probiotics and here we show for the first time that cryopreserved monocytes and cryopreserved iDCs have a skewed cytokine response to microbial stimulation. These findings have implications for the methods used in bacterial-DC immune assays and highlight the importance of comparing different cytokines and stimuli in immune cell cryopreservation protocols.
Collapse
Affiliation(s)
- Marjolein Meijerink
- Top Institute Food and Nutrition, Nieuwe Kanaal 9A, 6709 PA, Wageningen, The Netherlands
| | | | | | | |
Collapse
|
13
|
Sachet M, Friedl J, Hassler M, Ploder M, Stary G, Stift A, Bergmann M. Improvement of a dendritic cell-based tumour vaccine by an influenza virus. Eur J Clin Invest 2009; 39:1000-9. [PMID: 19807781 DOI: 10.1111/j.1365-2362.2009.02210.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Induction of cytotoxic T cells by dendritic cells (DCs) is a promising approach to tumour-immunotherapy. A standardized effective preparation of DCs remains a challenge for clinical application. MATERIAL AND METHODS We assessed whether influenza A partial NS1 deletion (NS1-124) - or complete NS1 deletion (delNS1) vaccine viruses can be employed to enhance monocyte-derived dendritic cell (MODC)-based T-cell stimulation directed against malignant cells in vitro. RESULTS Infection of cultures containing human MODCs and CD3(+) T cells with NS1 deletion viruses led to an increased induction of type I interferons and IL-6 compared with infection with wild-type virus. This correlated with the fact that infection of MODCs with NS1 deletion viruses but not with wild type virus led to stimulation of a cytotoxic T-cell (CTL) response against the Panc-1 cells, which were used as cell lysate to prime the MODCs. Moreover, stimulation of MODCs with Panc-1 tumour cell lysate obtained via lysis with the complete deletion virus delNS1, but not with the partial NS1 deletion virus also enhanced the CTL response against the tumour cells. Induction of function CTL response in those assays correlated with an increased proliferation of CD8(+) T cells. CONCLUSIONS The pro-inflammatory capacity of influenza NS1 deletion vaccine viruses could serve as an adjuvant-like agent to improve preparations of MODC-based anti-cancer vaccines. The complete NS1 deletion virus appears to be more potent as adjuvant when used for production of tumour lysates.
Collapse
Affiliation(s)
- M Sachet
- Medical University of Vienna, 1090 Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|