1
|
Glaviano A, Lau HSH, Carter LM, Lee EHC, Lam HY, Okina E, Tan DJJ, Tan W, Ang HL, Carbone D, Yee MYH, Shanmugam MK, Huang XZ, Sethi G, Tan TZ, Lim LHK, Huang RYJ, Ungefroren H, Giovannetti E, Tang DG, Bruno TC, Luo P, Andersen MH, Qian BZ, Ishihara J, Radisky DC, Elias S, Yadav S, Kim M, Robert C, Diana P, Schalper KA, Shi T, Merghoub T, Krebs S, Kusumbe AP, Davids MS, Brown JR, Kumar AP. Harnessing the tumor microenvironment: targeted cancer therapies through modulation of epithelial-mesenchymal transition. J Hematol Oncol 2025; 18:6. [PMID: 39806516 PMCID: PMC11733683 DOI: 10.1186/s13045-024-01634-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 11/11/2024] [Indexed: 01/16/2025] Open
Abstract
The tumor microenvironment (TME) is integral to cancer progression, impacting metastasis and treatment response. It consists of diverse cell types, extracellular matrix components, and signaling molecules that interact to promote tumor growth and therapeutic resistance. Elucidating the intricate interactions between cancer cells and the TME is crucial in understanding cancer progression and therapeutic challenges. A critical process induced by TME signaling is the epithelial-mesenchymal transition (EMT), wherein epithelial cells acquire mesenchymal traits, which enhance their motility and invasiveness and promote metastasis and cancer progression. By targeting various components of the TME, novel investigational strategies aim to disrupt the TME's contribution to the EMT, thereby improving treatment efficacy, addressing therapeutic resistance, and offering a nuanced approach to cancer therapy. This review scrutinizes the key players in the TME and the TME's contribution to the EMT, emphasizing avenues to therapeutically disrupt the interactions between the various TME components. Moreover, the article discusses the TME's implications for resistance mechanisms and highlights the current therapeutic strategies toward TME modulation along with potential caveats.
Collapse
Affiliation(s)
- Antonino Glaviano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123, Palermo, Italy
| | - Hannah Si-Hui Lau
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore, 169610, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Lukas M Carter
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - E Hui Clarissa Lee
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Hiu Yan Lam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Elena Okina
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Donavan Jia Jie Tan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
- School of Chemical and Life Sciences, Singapore Polytechnic, Singapore, 139651, Singapore
| | - Wency Tan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
- School of Chemical and Life Sciences, Singapore Polytechnic, Singapore, 139651, Singapore
| | - Hui Li Ang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Daniela Carbone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123, Palermo, Italy
| | - Michelle Yi-Hui Yee
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore, 169610, Singapore
| | - Muthu K Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Xiao Zi Huang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Tuan Zea Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Lina H K Lim
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore, 169610, Singapore
- Immunology Program, Life Sciences Institute, National University of Singapore, Singapore, 117456, Singapore
- Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Ruby Yun-Ju Huang
- School of Medicine and Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
- Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117456, Singapore
| | - Hendrik Ungefroren
- First Department of Medicine, University Hospital Schleswig-Holstein (UKSH), Campus Lübeck, 23538, Lübeck, Germany
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, UMC, Vrije Universiteit, HV Amsterdam, 1081, Amsterdam, The Netherlands
- Cancer Pharmacology Lab, Fondazione Pisana Per La Scienza, 56017, San Giuliano, Italy
| | - Dean G Tang
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
- Experimental Therapeutics (ET) Graduate Program, University at Buffalo & Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Tullia C Bruno
- Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Mads Hald Andersen
- National Center for Cancer Immune Therapy, Department of Oncology, Herlev and Gentofte Hospital, Herlev, Denmark
| | - Bin-Zhi Qian
- Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, The Human Phenome Institute, Zhangjiang-Fudan International Innovation Center, Fudan University, Shanghai, China
| | - Jun Ishihara
- Department of Bioengineering, Imperial College London, London, W12 0BZ, UK
| | - Derek C Radisky
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Salem Elias
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Saurabh Yadav
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Minah Kim
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Caroline Robert
- Department of Cancer Medicine, Inserm U981, Gustave Roussy Cancer Center, Université Paris-Saclay, Villejuif, France
- Faculty of Medicine, University Paris-Saclay, Kremlin Bicêtre, Paris, France
| | - Patrizia Diana
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123, Palermo, Italy
| | - Kurt A Schalper
- Department of Pathology, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Tao Shi
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Taha Merghoub
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Department of Medicine, Parker Institute for Cancer Immunotherapy, Weill Cornell Medicine, New York, NY, USA
| | - Simone Krebs
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anjali P Kusumbe
- Tissue and Tumor Microenvironment Group, MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Matthew S Davids
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Jennifer R Brown
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore.
| |
Collapse
|
2
|
Russano F, Rastrelli M, Dall'Olmo L, Del Fiore P, Gianesini C, Vecchiato A, Mazza M, Tropea S, Mocellin S. Therapeutic Treatment Options for In-Transit Metastases from Melanoma. Cancers (Basel) 2024; 16:3065. [PMID: 39272923 PMCID: PMC11394241 DOI: 10.3390/cancers16173065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
In-transit metastases (ITM) in melanoma present a significant therapeutic challenge due to their advanced stage and complex clinical nature. From traditional management with surgical resection, ITM treatment has evolved with the advent of systemic therapies such as immune checkpoint inhibitors and targeted therapies, which have markedly improved survival outcomes. This study aims to review and highlight the efficacy of both systemic and locoregional treatment approaches for ITM. Methods include a comprehensive review of clinical studies examining the impact of treatments like immune checkpoint inhibitors, targeted therapies, Isolated Limb Perfusion, and electrochemotherapy. The results indicate that combining systemic therapies with locoregional treatments enhances both local disease control and overall survival rates. The introduction of modern immunotherapies has not diminished the effectiveness of locoregional therapies but rather improved patient outcomes when used in conjunction. The conclusions emphasize that a multidisciplinary approach integrating systemic and locoregional therapies offers a promising strategy for optimizing the management of ITM in melanoma patients. This integrated treatment model not only improves survival rates but also enhances the quality of life for patients, suggesting a shift in standard care practices toward more comprehensive therapeutic regimens.
Collapse
Affiliation(s)
- Francesco Russano
- Soft-Tissue, Peritoneum and Melanoma Surgical Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padova, Italy
| | - Marco Rastrelli
- Soft-Tissue, Peritoneum and Melanoma Surgical Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padova, Italy
- Department of Surgical, Oncological and Gastroenterological Sciences (DISCOG), University of Padua, 35128 Padova, Italy
| | - Luigi Dall'Olmo
- Soft-Tissue, Peritoneum and Melanoma Surgical Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padova, Italy
- Department of Surgical, Oncological and Gastroenterological Sciences (DISCOG), University of Padua, 35128 Padova, Italy
| | - Paolo Del Fiore
- Soft-Tissue, Peritoneum and Melanoma Surgical Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padova, Italy
| | - Carlomaria Gianesini
- Department of Surgical, Oncological and Gastroenterological Sciences (DISCOG), University of Padua, 35128 Padova, Italy
| | - Antonella Vecchiato
- Soft-Tissue, Peritoneum and Melanoma Surgical Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padova, Italy
| | - Marcodomenico Mazza
- Soft-Tissue, Peritoneum and Melanoma Surgical Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padova, Italy
| | - Saveria Tropea
- Soft-Tissue, Peritoneum and Melanoma Surgical Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padova, Italy
| | - Simone Mocellin
- Soft-Tissue, Peritoneum and Melanoma Surgical Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padova, Italy
- Department of Surgical, Oncological and Gastroenterological Sciences (DISCOG), University of Padua, 35128 Padova, Italy
| |
Collapse
|
3
|
Boersma B, Poinot H, Pommier A. Stimulating the Antitumor Immune Response Using Immunocytokines: A Preclinical and Clinical Overview. Pharmaceutics 2024; 16:974. [PMID: 39204319 PMCID: PMC11357675 DOI: 10.3390/pharmaceutics16080974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 09/04/2024] Open
Abstract
Cytokines are immune modulators which can enhance the immune response and have been proven to be an effective class of immunotherapy. Nevertheless, the clinical use of cytokines in cancer treatment has faced several challenges associated with poor pharmacokinetic properties and the occurrence of adverse effects. Immunocytokines (ICKs) have emerged as a promising approach to overcome the pharmacological limitations observed with cytokines. ICKs are fusion proteins designed to deliver cytokines in the tumor microenvironment by taking advantage of the stability and specificity of immunoglobulin-based scaffolds. Several technological approaches have been developed. This review focuses on ICKs designed with the most impactful cytokines in the cancer field: IL-2, TNFα, IL-10, IL-12, IL-15, IL-21, IFNγ, GM-CSF, and IFNα. An overview of the pharmacological effects of the naked cytokines and ICKs tested for cancer therapy is detailed. A particular emphasis is given on the immunomodulatory effects of ICKs associated with their technological design. In conclusion, this review highlights active ways of development of ICKs. Their already promising results observed in clinical trials are likely to be improved with the advances in targeting technologies such as cytokine/linker engineering and the design of multispecific antibodies with tumor targeting and immunostimulatory functional properties.
Collapse
Affiliation(s)
- Bart Boersma
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland;
- School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva, Switzerland
| | - Hélène Poinot
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland;
- Translational Research Centre in Oncohaematology, University of Geneva, 1211 Geneva, Switzerland
| | - Aurélien Pommier
- UMR1240 Imagerie Moléculaire et Stratégies Théranostiques INSERM, Université Clermont Auvergne, BP 184, F-63005 Clermont-Ferrand, France
| |
Collapse
|
4
|
El-Sayed MM, Bianco JR, Li Y, Fabian Z. Tumor-Agnostic Therapy-The Final Step Forward in the Cure for Human Neoplasms? Cells 2024; 13:1071. [PMID: 38920700 PMCID: PMC11201516 DOI: 10.3390/cells13121071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024] Open
Abstract
Cancer accounted for 10 million deaths in 2020, nearly one in every six deaths annually. Despite advancements, the contemporary clinical management of human neoplasms faces a number of challenges. Surgical removal of tumor tissues is often not possible technically, while radiation and chemotherapy pose the risk of damaging healthy cells, tissues, and organs, presenting complex clinical challenges. These require a paradigm shift in developing new therapeutic modalities moving towards a more personalized and targeted approach. The tumor-agnostic philosophy, one of these new modalities, focuses on characteristic molecular signatures of transformed cells independently of their traditional histopathological classification. These include commonly occurring DNA aberrations in cancer cells, shared metabolic features of their homeostasis or immune evasion measures of the tumor tissues. The first dedicated, FDA-approved tumor-agnostic agent's profound progression-free survival of 78% in mismatch repair-deficient colorectal cancer paved the way for the accelerated FDA approvals of novel tumor-agnostic therapeutic compounds. Here, we review the historical background, current status, and future perspectives of this new era of clinical oncology.
Collapse
Affiliation(s)
| | | | | | - Zsolt Fabian
- School of Medicine and Dentistry, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK; (M.M.E.-S.); (J.R.B.); (Y.L.)
| |
Collapse
|
5
|
Dillman RO, Nistor GI, Keirstead HS. Autologous dendritic cells loaded with antigens from self-renewing autologous tumor cells as patient-specific therapeutic cancer vaccines. Hum Vaccin Immunother 2023:2198467. [PMID: 37133853 DOI: 10.1080/21645515.2023.2198467] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023] Open
Abstract
A promising personal immunotherapy is autologous dendritic cells (DC) loaded ex vivo with autologous tumor antigens (ATA) derived from self-renewing autologous cancer cells. DC-ATA are suspended in granulocyte-macrophage colony stimulating factor at the time of each subcutaneous injection. Previously, irradiated autologous tumor cell vaccines have produced encouraging results in 150 cancer patients, but the DC-ATA vaccine demonstrated superiority in single-arm and randomized trials in metastatic melanoma. DC-ATA have been injected into more than 200 patients with melanoma, glioblastoma, and ovarian, hepatocellular, and renal cell cancers. Key observations include: [1] greater than 95% success rates for tumor cell cultures and monocyte collection for dendritic cell production; [2] injections are well-tolerated; [3] the immune response is rapid and includes primarily TH1/TH17 cellular responses; [4] efficacy has been suggested by delayed but durable complete tumor regressions in patients with measurable disease, by progression-free survival in glioblastoma, and by overall survival in melanoma.
Collapse
Affiliation(s)
| | - Gabriel I Nistor
- Research and Development, AIVITA Biomedical Inc, Irvine, CA, USA
| | | |
Collapse
|
6
|
Abstract
Oncolytic viruses (OVs) are an emerging class of cancer therapeutics that offer the benefits of selective replication in tumour cells, delivery of multiple eukaryotic transgene payloads, induction of immunogenic cell death and promotion of antitumour immunity, and a tolerable safety profile that largely does not overlap with that of other cancer therapeutics. To date, four OVs and one non-oncolytic virus have been approved for the treatment of cancer globally although talimogene laherparepvec (T-VEC) remains the only widely approved therapy. T-VEC is indicated for the treatment of patients with recurrent melanoma after initial surgery and was initially approved in 2015. An expanding body of data on the clinical experience of patients receiving T-VEC is now becoming available as are data from clinical trials of various other OVs in a range of other cancers. Despite increasing research interest, a better understanding of the underlying biology and pharmacology of OVs is needed to enable the full therapeutic potential of these agents in patients with cancer. In this Review, we summarize the available data and provide guidance on optimizing the use of OVs in clinical practice, with a focus on the clinical experience with T-VEC. We describe data on selected novel OVs that are currently in clinical development, either as monotherapies or as part of combination regimens. We also discuss some of the preclinical, clinical and regulatory hurdles that have thus far limited the development of OVs.
Collapse
|
7
|
Kumar A, Taghi Khani A, Sanchez Ortiz A, Swaminathan S. GM-CSF: A Double-Edged Sword in Cancer Immunotherapy. Front Immunol 2022; 13:901277. [PMID: 35865534 PMCID: PMC9294178 DOI: 10.3389/fimmu.2022.901277] [Citation(s) in RCA: 111] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/06/2022] [Indexed: 12/23/2022] Open
Abstract
Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a cytokine that drives the generation of myeloid cell subsets including neutrophils, monocytes, macrophages, and dendritic cells in response to stress, infections, and cancers. By modulating the functions of innate immune cells that serve as a bridge to activate adaptive immune responses, GM-CSF globally impacts host immune surveillance under pathologic conditions. As with other soluble mediators of immunity, too much or too little GM-CSF has been found to promote cancer aggressiveness. While too little GM-CSF prevents the appropriate production of innate immune cells and subsequent activation of adaptive anti-cancer immune responses, too much of GM-CSF can exhaust immune cells and promote cancer growth. The consequences of GM-CSF signaling in cancer progression are a function of the levels of GM-CSF, the cancer type, and the tumor microenvironment. In this review, we first discuss the secretion of GM-CSF, signaling downstream of the GM-CSF receptor, and GM-CSF’s role in modulating myeloid cell homeostasis. We then outline GM-CSF’s anti-tumorigenic and pro-tumorigenic effects both on the malignant cells and on the non-malignant immune and other cells in the tumor microenvironment. We provide examples of current clinical and preclinical strategies that harness GM-CSF’s anti-cancer potential while minimizing its deleterious effects. We describe the challenges in achieving the Goldilocks effect during administration of GM-CSF-based therapies to patients with cancer. Finally, we provide insights into how technologies that map the immune microenvironment spatially and temporally may be leveraged to intelligently harness GM-CSF for treatment of malignancies.
Collapse
Affiliation(s)
- Anil Kumar
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, United States
| | - Adeleh Taghi Khani
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, United States
| | - Ashly Sanchez Ortiz
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, United States
| | - Srividya Swaminathan
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, United States
- Department of Hematological Malignancies, Beckman Research Institute of City of Hope, Monrovia, CA, United States
- *Correspondence: Srividya Swaminathan,
| |
Collapse
|
8
|
Lazarus HM, Ragsdale CE, Gale RP, Lyman GH. Sargramostim (rhu GM-CSF) as Cancer Therapy (Systematic Review) and An Immunomodulator. A Drug Before Its Time? Front Immunol 2021; 12:706186. [PMID: 34484202 PMCID: PMC8416151 DOI: 10.3389/fimmu.2021.706186] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/26/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Sargramostim [recombinant human granulocyte-macrophage colony-stimulating factor (rhu GM-CSF)] was approved by US FDA in 1991 to accelerate bone marrow recovery in diverse settings of bone marrow failure and is designated on the list of FDA Essential Medicines, Medical Countermeasures, and Critical Inputs. Other important biological activities including accelerating tissue repair and modulating host immunity to infection and cancer via the innate and adaptive immune systems are reported in pre-clinical models but incompletely studied in humans. OBJECTIVE Assess safety and efficacy of sargramostim in cancer and other diverse experimental and clinical settings. METHODS AND RESULTS We systematically reviewed PubMed, Cochrane and TRIP databases for clinical data on sargramostim in cancer. In a variety of settings, sargramostim after exposure to bone marrow-suppressing agents accelerated hematologic recovery resulting in fewer infections, less therapy-related toxicity and sometimes improved survival. As an immune modulator, sargramostim also enhanced anti-cancer responses in solid cancers when combined with conventional therapies, for example with immune checkpoint inhibitors and monoclonal antibodies. CONCLUSIONS Sargramostim accelerates hematologic recovery in diverse clinical settings and enhances anti-cancer responses with a favorable safety profile. Uses other than in hematologic recovery are less-well studied; more data are needed on immune-enhancing benefits. We envision significantly expanded use of sargramostim in varied immune settings. Sargramostim has the potential to reverse the immune suppression associated with sepsis, trauma, acute respiratory distress syndrome (ARDS) and COVID-19. Further, sargramostim therapy has been promising in the adjuvant setting with vaccines and for anti-microbial-resistant infections and treating autoimmune pulmonary alveolar proteinosis and gastrointestinal, peripheral arterial and neuro-inflammatory diseases. It also may be useful as an adjuvant in anti-cancer immunotherapy.
Collapse
Affiliation(s)
- Hillard M. Lazarus
- Department of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | | | - Robert Peter Gale
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
| | - Gary H. Lyman
- Public Health Sciences and Clinical Research Divisions, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| |
Collapse
|
9
|
Tarhini AA, Joshi I, Garner F. Sargramostim and immune checkpoint inhibitors: combinatorial therapeutic studies in metastatic melanoma. Immunotherapy 2021; 13:1011-1029. [PMID: 34157863 DOI: 10.2217/imt-2021-0119] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The use of immune checkpoint inhibitors in patients with metastatic melanoma generates clinical benefit, including improved survival. Yet disease resistance and immune-related adverse events persist as unmet needs. Sargramostim, a yeast-derived recombinant human GM-CSF, has shown clinical activity against diverse solid tumors, including metastatic melanoma. Here we review the use of sargramostim for treatment of advanced melanoma. Potential sargramostim applications in melanoma draw on the unique ability of GM-CSF to link innate and adaptive immune responses. We review preclinical and translational data describing the mechanism of action of sargramostim and synergy with immune checkpoint inhibitors to enhance efficacy and reduce treatment-related toxicity.
Collapse
Affiliation(s)
- Ahmad A Tarhini
- Cutaneous Oncology & Immunology, H. Lee Moffitt Cancer Center & Research Institute, 12902 USF Magnolia Drive, Tampa, FL 33612, USA
| | - Ila Joshi
- Pre-Clinical & Translational Research & Development, Partner Therapeutics, 19 Muzzey Street, Lexington, MA 02421, USA
| | - Fiona Garner
- Immuno-Oncology Clinical Development & Translational Medicine, Partner Therapeutics, 19 Muzzey Street, Lexington, MA 02421, USA
| |
Collapse
|
10
|
Bejarano L, Jordāo MJC, Joyce JA. Therapeutic Targeting of the Tumor Microenvironment. Cancer Discov 2021; 11:933-959. [PMID: 33811125 DOI: 10.1158/2159-8290.cd-20-1808] [Citation(s) in RCA: 870] [Impact Index Per Article: 217.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 01/10/2023]
Abstract
Strategies to therapeutically target the tumor microenvironment (TME) have emerged as a promising approach for cancer treatment in recent years due to the critical roles of the TME in regulating tumor progression and modulating response to standard-of-care therapies. Here, we summarize the current knowledge regarding the most advanced TME-directed therapies, which have either been clinically approved or are currently being evaluated in trials, including immunotherapies, antiangiogenic drugs, and treatments directed against cancer-associated fibroblasts and the extracellular matrix. We also discuss some of the challenges associated with TME therapies, and future perspectives in this evolving field. SIGNIFICANCE: This review provides a comprehensive analysis of the current therapies targeting the TME, combining a discussion of the underlying basic biology with clinical evaluation of different therapeutic approaches, and highlighting the challenges and future perspectives.
Collapse
Affiliation(s)
- Leire Bejarano
- Department of Oncology, University of Lausanne, Lausanne, Switzerland
| | - Marta J C Jordāo
- Department of Oncology, University of Lausanne, Lausanne, Switzerland
| | - Johanna A Joyce
- Department of Oncology, University of Lausanne, Lausanne, Switzerland. .,Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
11
|
Borgers JSW, Haanen JBAG. Cellular Therapy and Cytokine Treatments for Melanoma. Hematol Oncol Clin North Am 2021; 35:129-144. [PMID: 33759770 DOI: 10.1016/j.hoc.2020.08.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cancer immunotherapy plays an important role in the treatment of patients with advanced stage melanoma. Recombinant cytokines were the first tested and approved treatments; however, due to disappointing response rates and severe toxicities, their use has significantly decreased. More recently, adoptive cell transfer therapies have shown to be a promising new treatment strategy able to induce complete and durable remissions in patients with melanoma progressive on first-line treatment. This review provides an overview of the cellular therapies (tumor-infiltrating lymphocytes, T-cell receptor T cells, chimeric antigen receptor T cells) and cytokine treatments (interleukin-2 [IL-2], IL-15, IL-7, IL-10, IL-21, interferon alpha, granulocyte-macrophage colony-stimulating factor) for melanoma.
Collapse
Affiliation(s)
- Jessica S W Borgers
- Department of Medical Oncology, Netherlands Cancer Institute-Antoni van Leeuwenhoek, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| | - John B A G Haanen
- Department of Medical Oncology, Netherlands Cancer Institute-Antoni van Leeuwenhoek, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands.
| |
Collapse
|
12
|
Duwa R, Jeong JH, Yook S. Immunotherapeutic strategies for the treatment of ovarian cancer: current status and future direction. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2020.11.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
13
|
Characterization of a Long-Acting Site-Specific PEGylated Murine GM-CSF Analog and Analysis of Its Hematopoietic Properties in Normal and Cyclophosphamide-Treated Neutropenic Rats. Protein J 2020; 39:160-173. [PMID: 32172395 DOI: 10.1007/s10930-020-09894-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Previously we reported that site-specific modification of the human granulocyte-macrophage colony-stimulating factor (GM-CSF) A3C analog with polyethylene glycol (PEG) dramatically improved the pharmacokinetic properties of the protein in rats. However, we could not evaluate the hematological properties of the PEG-A3C protein in rats because human GM-CSF is inactive in rodents. To study the biological effects of PEGylated GM-CSF analogs in rodents we created a homologous site-specific PEGylated murine (mu) GM-CSF (T3C) protein. muGM-CSF and the T3C protein were expressed in Escherichia coli and purified by column chromatography. The purified T3C protein was covalently modified with a linear 20 kDa- or a branched 40 kDa-maleimide-PEG, and the monoPEGylated proteins purified by column chromatography. muGM-CSF, T3C and the two PEG-T3C proteins had comparable in vitro biological activities, as measured by stimulation of proliferation of the murine FDC-P1 cell line. The PEG-T3C proteins had 10- to 25-fold longer circulating half-lives than muGM-CSF and stimulated greater and longer lasting increases in neutrophils and white blood cells than muGM-CSF following a single intravenous or subcutaneous administration to rats. Treatment of rats made neutropenic with cyclophosphamide with the PEG-T3C proteins shortened the time for recovery of neutrophils to normal levels from 9 or 10 days to 5 or 6 days, whereas muGM-CSF showed no benefit versus vehicle solution. Acceleration of neutrophil recovery in cyclophosphamide-treated rats required a minimum of three PEG-T3C treatments over five days. The PEG-T3C proteins should prove useful for evaluating the potential therapeutic benefits of GM-CSF and long-acting GM-CSF proteins in rodent disease models.
Collapse
|
14
|
Abstract
GM-CSF drives the differentiation of granulocytes and monocyte/macrophages from hematopoietic stem cell progenitors. It is required for differentiating monocytes into dendritic cells (DC). Although approved for recovery of granulocytes/monocytes in patients receiving chemotherapy, G-CSF is preferred. Enthusiasm for GM-CSF monotherapy as a melanoma treatment was dampened by two large randomized trials. Although GM-CSF has been injected into tumors for many years, the efficacy of this has not been tested. There is a strong rationale for GM-CSF as a vaccine adjuvant, but it appears of benefit only for strategies that directly involve DCs, such as intratumor talimogene laherparepvec and vaccines in which DCs are loaded with antigen ex vivo and injected admixed with GM-CSF.
Collapse
Affiliation(s)
- Robert O Dillman
- Chief Medical Officer, AIVITA Biomedical, Inc. Irvine, CA 92612, USA.,Clinical Professor Medicine, University of California Irvine, Irvine, CA 92697, USA
| |
Collapse
|
15
|
Mody PH, Pathak S, Hanson LK, Spencer JV. Herpes Simplex Virus: A Versatile Tool for Insights Into Evolution, Gene Delivery, and Tumor Immunotherapy. Virology (Auckl) 2020; 11:1178122X20913274. [PMID: 34093008 PMCID: PMC8142529 DOI: 10.1177/1178122x20913274] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 02/19/2020] [Indexed: 12/20/2022] Open
Abstract
Herpesviruses are prevalent throughout the animal kingdom, and they have coexisted and coevolved along with their host species for millions of years. Herpesviruses carry a large (120-230 kb) double-stranded DNA genome surrounded by a protein capsid, a tegument layer consisting of viral and host proteins, and a lipid bilayer envelope with surface glycoproteins. A key characteristic of these viruses is their ability to enter a latent state following primary infection, allowing them to evade the host's immune system and persist permanently. Herpesviruses can reactivate from their dormant state, usually during times of stress or when the host's immune responses are impaired. While herpesviruses can cause complications with severe disease in immune-compromised people, most of the population experiences few ill effects from herpesvirus infections. Indeed, herpes simplex virus 1 (HSV-1) in particular has several features that make it an attractive tool for therapeutic gene delivery. Herpes simplex virus 1 targets and infects specific cell types, such as epithelial cells and neurons. The HSV-1 genome can also accommodate large insertions of up to 14 kb. The HSV-1-based vectors have already achieved success for the oncolytic treatment of melanoma. In addition to serving as a vehicle for therapeutic gene delivery and targeted cell lysis, comparative genomics of herpesviruses HSV-1 and 2 has revealed valuable information about the evolutionary history of both viruses and their hosts. This review focuses on the adaptability of HSV-1 as an instrument for gene delivery and an evolutionary marker. Overall, HSV-1 shows great promise as a tool for treating human disease and studying human migration patterns, disease outbreaks, and evolution.
Collapse
Affiliation(s)
- Prapti H Mody
- Department of Biology, Texas Woman’s University, Denton, TX, USA
| | - Sushila Pathak
- Department of Biology, Texas Woman’s University, Denton, TX, USA
| | - Laura K Hanson
- Department of Biology, Texas Woman’s University, Denton, TX, USA
| | - Juliet V Spencer
- Department of Biology, Texas Woman’s University, Denton, TX, USA
| |
Collapse
|
16
|
Local and Recurrent Regional Metastases of Melanoma. CUTANEOUS MELANOMA 2020. [PMCID: PMC7123735 DOI: 10.1007/978-3-030-05070-2_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Up to 10% of patients with cutaneous melanoma will develop recurrent locoregional disease. While surgical resection remains the mainstay of treatment for isolated recurrences, locoregional melanoma can often present as bulky, unresectable disease and can pose a significant therapeutic challenge. This chapter focuses on the natural history of local and regionally recurrent metastases and the multiple treatment modalities which exist for advanced locoregional melanoma, including regional perfusion procedures such as hyperthermic isolated limb perfusion and isolated limb infusion, intralesional therapies, and neo-adjuvant systemic therapy strategies for borderline resectable regional disease. Hyperthermic limb perfusion (HILP) and isolated limb infusion (ILI) are generally well-tolerated and have shown overall response rates between 44% and 90%. Intralesional therapies also appear to be well-tolerated as adverse events are usually limited to the site of injection and minor transient flu-like symptoms. Systemic targeted therapies have shown to have response rates up to 85% when used as neoadjuvant therapy in patients with borderline resectable disease. While combination immunotherapy in the neoadjuvant setting has also shown promising results, this data has not yet matured.
Collapse
|
17
|
Dillman RO, Cornforth AN, McClay EF, Depriest C. Patient-specific dendritic cell vaccines with autologous tumor antigens in 72 patients with metastatic melanoma. Melanoma Manag 2019; 6:MMT20. [PMID: 31406564 PMCID: PMC6688559 DOI: 10.2217/mmt-2018-0010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Aim: Metastatic melanoma patients were treated with patient-specific vaccines consisting of autologous dendritic cells loaded with antigens from irradiated cells from short-term autologous tumor cell lines. Patients & methods: A total of 72 patients were enrolled in a single-arm Phase I/II (NCT00948480) trial or a randomized Phase II (NCT00436930). Results: Toxicity was minimal. Median overall survival (OS) was 49.4 months; 5-year OS 46%. A 5-year OS was 72% for 18 recurrent stage 3 without measurable disease when treated and 53% for 30 stage 4 without measurable disease when treated. A total of 24 patients with measurable stage 4 when treated (median of four prior therapies) had an 18.5 months median OS and 46% 2-year OS. Conclusion: This dendritic cell vaccine was associated with encouraging survival in all three clinical subsets. Clinicaltrial.gov NCT00436930 and NCT00948480.
Collapse
Affiliation(s)
- Robert O Dillman
- AIVITA Biomedical, Inc., Irvine, CA 92612, USA.,Hoag Cancer Institute, Newport Beach, CA 92658, USA.,University of California, Irvine, CA 92697, USA
| | | | - Edward F McClay
- California Cancer Associates for Research & Excellence (cCARE), Institute for Melanoma Research & Education, Encinitas, CA 92024, USA
| | | |
Collapse
|
18
|
Abstract
Cytokines are major regulators of innate and adaptive immunity that enable cells of the immune system to communicate over short distances. Cytokine therapy to activate the immune system of cancer patients has been an important treatment modality and continues to be a key contributor to current clinical cancer research. Interferon alpha (IFNα) is approved for adjuvant treatment of completely resected high-risk melanoma patients and several refractory malignancies. High-dose interleukin-2 (HDIL-2) is approved for treatment of metastatic renal cell cancer and melanoma, but both agents are currently less commonly used with the development of newer agents. Granulocyte-macrophage colony-stimulating factor (GM-CSF), IFN gamma (IFNγ), IL-7, IL-12, and IL-21 were evaluated in clinical trials and remain part of certain investigational trials. The initial single-agent clinical trials with the long-awaited IL-15 have been completed and combination trials with antitumor antibodies or checkpoint inhibitors (CPIs) have been initiated. However, cytokines in monotherapy have not fulfilled the promise of efficacy seen in preclinical experiments. They are often associated with severe dose-limiting toxicities that are manageable with appropriate dosing and are now better understood to induce immune-suppressive humoral factors, suppressive cells, and cellular checkpoints, without consistently inducing a tumor-specific response. To circumvent these impediments, cytokines are being investigated clinically with new engineered cytokine mutants (superkines), chimeric antibody-cytokine fusion proteins (immunokines), anticancer vaccines, CPIs, and cancer-directed monoclonal antibodies to increase their antibody-dependent cellular cytotoxicity or sustain cellular responses and anticancer efficacy. In this review, we summarize current knowledge and clinical application of cytokines either as monotherapy or in combination with other biological agents. We emphasize a discussion of future directions for research on these cytokines, to bring them to fruition as major contributors for the treatment of metastatic malignancy.
Collapse
Affiliation(s)
- Kevin C Conlon
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Milos D Miljkovic
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Thomas A Waldmann
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| |
Collapse
|
19
|
García-Martínez E, Smith M, Buqué A, Aranda F, de la Peña FA, Ivars A, Cánovas MS, Conesa MAV, Fucikova J, Spisek R, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: Immunostimulation with recombinant cytokines for cancer therapy. Oncoimmunology 2018; 7:e1433982. [PMID: 29872569 PMCID: PMC5980390 DOI: 10.1080/2162402x.2018.1433982] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 01/24/2018] [Indexed: 12/15/2022] Open
Abstract
Cytokines regulate virtually aspects of innate and adaptive immunity, including the initiation, execution and extinction of tumor-targeting immune responses. Over the past three decades, the possibility of using recombinant cytokines as a means to elicit or boost clinically relevant anticancer immune responses has attracted considerable attention. However, only three cytokines have been approved so far by the US Food and Drug Administration and the European Medicines Agency for use in cancer patients, namely, recombinant interleukin (IL)-2 and two variants of recombinant interferon alpha 2 (IFN-α2a and IFN-α2b). Moreover, the use of these cytokines in the clinics is steadily decreasing, mostly as a consequence of: (1) the elevated pleiotropism of IL-2, IFN-α2a and IFN-α2b, resulting in multiple unwarranted effects; and (2) the development of highly effective immunostimulatory therapeutics, such as immune checkpoint blockers. Despite this and other obstacles, research in the field continues as alternative cytokines with restricted effects on specific cell populations are being evaluated. Here, we summarize research preclinical and clinical developments on the use of recombinant cytokines for immunostimulation in cancer patients.
Collapse
Affiliation(s)
- Elena García-Martínez
- Hematology and Oncology Department, Hospital Universitario Morales Meseguer, Murcia, Spain
| | - Melody Smith
- Department of Medicine and Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Aitziber Buqué
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Fernando Aranda
- Immunoreceptors of the Innate and Adaptive System, IDIBAPS, Barcelona, Spain
| | | | - Alejandra Ivars
- Hematology and Oncology Department, Hospital Universitario Morales Meseguer, Murcia, Spain
| | - Manuel Sanchez Cánovas
- Hematology and Oncology Department, Hospital Universitario Morales Meseguer, Murcia, Spain
| | | | - Jitka Fucikova
- Sotio, Prague, Czech Republic
- Dept. of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Radek Spisek
- Sotio, Prague, Czech Republic
- Dept. of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Laurence Zitvogel
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM, U1015, Villejuif, France
- Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France
- Université Paris Sud/Paris XI, Le Kremlin-Bicêtre, France
| | - Guido Kroemer
- Université Paris Descartes/Paris V, France
- Université Pierre et Marie Curie/Paris VI, Paris
- Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- INSERM, U1138, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
- Pôle de Biologie, Hopitâl Européen George Pompidou, AP-HP, Paris, France
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Université Paris Descartes/Paris V, France
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
| |
Collapse
|
20
|
|
21
|
Yan WL, Shen KY, Tien CY, Chen YA, Liu SJ. Recent progress in GM-CSF-based cancer immunotherapy. Immunotherapy 2017; 9:347-360. [PMID: 28303764 DOI: 10.2217/imt-2016-0141] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cancer immunotherapy is a growing field. GM-CSF, a potent cytokine promoting the differentiation of myeloid cells, can also be used as an immunostimulatory adjuvant to elicit antitumor immunity. Additionally, GM-CSF is essential for the differentiation of dendritic cells, which are responsible for processing and presenting tumor antigens for the priming of antitumor cytotoxic T lymphocytes. Some strategies have been developed for GM-CSF-based cancer immunotherapy in clinical practice: GM-CSF monotherapy, GM-CSF-secreting cancer cell vaccines, GM-CSF-fused tumor-associated antigen protein-based vaccines, GM-CSF-based DNA vaccines and GM-CSF combination therapy. GM-CSF also contributes to the regulation of immunosuppression in the tumor microenvironment. This review provides recommendations regarding GM-CSF-based cancer immunotherapy.
Collapse
Affiliation(s)
- Wan-Lun Yan
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.,National Institute of Infectious Diseases & Vaccinology, National Health Research Institutes, No. 35 Keyan Road, Zhunan Town, Miaoli County 350, Taiwan
| | - Kuan-Yin Shen
- National Institute of Infectious Diseases & Vaccinology, National Health Research Institutes, No. 35 Keyan Road, Zhunan Town, Miaoli County 350, Taiwan.,Graduate Instituteof Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Chun-Yuan Tien
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.,National Institute of Infectious Diseases & Vaccinology, National Health Research Institutes, No. 35 Keyan Road, Zhunan Town, Miaoli County 350, Taiwan
| | - Yu-An Chen
- Graduate Instituteof Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Shih-Jen Liu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.,National Institute of Infectious Diseases & Vaccinology, National Health Research Institutes, No. 35 Keyan Road, Zhunan Town, Miaoli County 350, Taiwan
| |
Collapse
|
22
|
Spitler LE, Cao H, Piironen T, Whiteside TL, Weber RW, Cruickshank S. Biological Effects of Anti-Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF) Antibody Formation in Patients Treated With GM-CSF (Sargramostim) as Adjuvant Therapy of Melanoma. Am J Clin Oncol 2017; 40:207-213. [PMID: 25286079 PMCID: PMC4385005 DOI: 10.1097/coc.0000000000000124] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES We investigated the development of binding and neutralizing antibodies to granulocyte-macrophage colony-stimulating factor (GM-CSF) in patients receiving prolonged therapy with GM-CSF as adjuvant therapy of melanoma and the impact of these antibodies on biological effects. METHODS Fifty-three patients with high-risk melanoma that had been surgically excised were treated with GM-CSF, 125 μg/m daily for 14 days every 28 days for 1 year after surgical resection of disease. Serum samples for antibodies to GM-CSF were measured before treatment and on study days 155 and 351. Blood draws for testing biological effects were keyed to GM-CSF administration: days 0 (before), 15 (after 14 d on GM-CSF), 29 (after 14 d off GM-CSF), 155, and 351 (after 14 d on GM-CSF in the sixth and 13th cycle of treatment). RESULTS Of 53 patients enrolled, 43 were evaluable for the development of anti-GM-CSF antibodies. Of these, 93% developed binding antibodies and 42% developed both binding and neutralizing antibodies. The increase in the white blood cell count, percent eosinophils, or neopterin levels engendered by GM-CSF administration was abrogated or markedly decreased in patients with neutralizing antibodies but not in patients who developed only binding antibodies. CONCLUSIONS Ninety-three percent of patients with melanoma treated with GM-CSF as adjuvant therapy develop antibodies to GM-CSF. In those with neutralizing antibodies, a diminution of the biological effects of GM-CSF was observed. The development of neutralizing antibodies might also abrogate the potential clinical benefit of this treatment and should be considered in the design of future clinical trials.
Collapse
Affiliation(s)
- Lynn E. Spitler
- Northern California Melanoma Center, St. Mary’s Medical Center, San Francisco, CA
| | - Huynh Cao
- Northern California Melanoma Center, St. Mary’s Medical Center, San Francisco, CA
| | | | | | - Robert W. Weber
- Northern California Melanoma Center, St. Mary’s Medical Center, San Francisco, CA
| | | |
Collapse
|
23
|
van Akkooi ACJ, Atkins MB, Agarwala SS, Lorigan P. Surgical Management and Adjuvant Therapy for High-Risk and Metastatic Melanoma. Am Soc Clin Oncol Educ Book 2017; 35:e505-14. [PMID: 27249760 DOI: 10.1200/edbk_159087] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Wide local excision is considered routine therapy after initial diagnosis of primary melanoma to reduce local recurrences, but it does not impact survival. Sentinel node staging is recommended for melanomas of intermediate thickness, but it has also not demonstrated any indisputable therapeutic effect on survival. The prognostic value of sentinel node staging has been long established and is therefore considered routine, especially in light of the eligibility criteria for adjuvant therapy (trials). Whether completion lymph node dissection after a positive sentinel node biopsy improves survival is the question of current trials. The MSLT-2 study is best powered to show a potential benefit, but it has not yet reported any data. Another study, the German DECOG study, presented at the 2015 American Society of Clinical Oncology (ASCO) Annual Meeting did not show any benefit but is criticized for the underpowered design and insufficient follow-up. There is no consensus on the use of adjuvant interferon in melanoma. This topic has been the focus of many studies with different regimens (low-, intermediate-, or high-dose and/or short- or long-term treatment). Adjuvant interferon has been shown to improve relapse-free survival but failed to improve overall survival. More recently, adjuvant ipilimumab has also demonstrated an improved relapse-free survival. Overall survival data have not yet been reported due to insufficient follow-up. Currently, studies are ongoing to analyze the use of adjuvant anti-PD-1 and molecular targeted therapies (vemurafenib, dabrafenib, and trametinib). In the absence of unambiguously positive approved agents, clinical trial participation remains a priority. This could change in the near future.
Collapse
Affiliation(s)
- Alexander C J van Akkooi
- From the Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, Netherlands; Georgetown Lombardi Comprehensive Cancer Center, Washington, DC; St. Luke's University Hospital, Temple University, Allentown, PA; University of Manchester, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Michael B Atkins
- From the Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, Netherlands; Georgetown Lombardi Comprehensive Cancer Center, Washington, DC; St. Luke's University Hospital, Temple University, Allentown, PA; University of Manchester, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Sanjiv S Agarwala
- From the Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, Netherlands; Georgetown Lombardi Comprehensive Cancer Center, Washington, DC; St. Luke's University Hospital, Temple University, Allentown, PA; University of Manchester, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Paul Lorigan
- From the Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, Netherlands; Georgetown Lombardi Comprehensive Cancer Center, Washington, DC; St. Luke's University Hospital, Temple University, Allentown, PA; University of Manchester, The Christie NHS Foundation Trust, Manchester, United Kingdom
| |
Collapse
|
24
|
Hoffner B, Iodice GM, Gasal E. Administration and Handling of Talimogene Laherparepvec: An Intralesional Oncolytic Immunotherapy for Melanoma. Oncol Nurs Forum 2017; 43:219-26. [PMID: 26906132 DOI: 10.1188/16.onf.219-226] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PURPOSE/OBJECTIVES To describe the administration and handling requirements of oncolytic viruses in the context of talimogene laherparepvec (Imlygic™), a first-in-class oncolytic immunotherapy.
. DATA SOURCES Study procedures employed in clinical trials, in particular the OPTiM study.
. DATA SYNTHESIS Evaluation of nursing considerations for administration of talimogene laherparepvec.
. CONCLUSIONS Talimogene laherparepvec is administered through a series of intralesional injections into cutaneous, subcutaneous, or nodal tumors (with ultrasound guidance as needed) during an outpatient clinic visit. A single insertion point is recommended; however, multiple insertion points are acceptable if the tumor radius exceeds the needle's radial reach. Talimogene laherparepvec must be evenly distributed throughout the tumor through each insertion site. Talimogene laherparepvec requires storage at -90°C to -70°C and, once thawed, should be administered immediately or stored in its original vial and carton and protected from light in a refrigerator (2°C to 8°C).
. IMPLICATIONS FOR NURSING Because talimogene laherparepvec can be administered in the outpatient setting, nurses will be pivotal for appropriate integration and administration of this unique and effective therapy.
Collapse
|
25
|
Pollack MH, Aston J, Benrashid M, Johnson DB, Puzanov I. Talimogene laherparepvec in advanced melanoma. Expert Opin Orphan Drugs 2016. [DOI: 10.1080/21678707.2016.1186539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Megan H. Pollack
- Department of Pharmaceutical Services, Vanderbilt University Medical Center and Vanderbilt Ingram Cancer Center, Nashville, TN, USA
| | - Jonathan Aston
- Department of Pharmaceutical Services, Vanderbilt University Medical Center and Vanderbilt Ingram Cancer Center, Nashville, TN, USA
| | - Mona Benrashid
- Department of Pharmaceutical Services, Vanderbilt University Medical Center and Vanderbilt Ingram Cancer Center, Nashville, TN, USA
| | - Douglas B. Johnson
- Department of Medicine, Vanderbilt University Medical Center and Vanderbilt Ingram Cancer Center, Nashville, TN, USA
| | - Igor Puzanov
- Department of Medicine, Vanderbilt University Medical Center and Vanderbilt Ingram Cancer Center, Nashville, TN, USA
| |
Collapse
|
26
|
Hoeller C, Michielin O, Ascierto PA, Szabo Z, Blank CU. Systematic review of the use of granulocyte-macrophage colony-stimulating factor in patients with advanced melanoma. Cancer Immunol Immunother 2016; 65:1015-34. [PMID: 27372293 PMCID: PMC4995227 DOI: 10.1007/s00262-016-1860-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 06/15/2016] [Indexed: 12/24/2022]
Abstract
Several immunomodulatory checkpoint inhibitors have been approved for the treatment of patients with advanced melanoma, including ipilimumab, nivolumab and pembrolizumab. Talimogene laherparepvec is the first oncolytic virus to gain regulatory approval in the USA; it is also approved in Europe. Talimogene laherparepvec expresses granulocyte–macrophage colony-stimulating factor (GM-CSF), and with other GM-CSF-expressing oncolytic viruses in development, understanding the clinical relevance of this cytokine in treating advanced melanoma is important. Results of trials of GM-CSF in melanoma have been mixed, and while GM-CSF has the potential to promote anti-tumor responses, some preclinical data suggest that GM-CSF may sometimes promote tumor growth. GM-CSF has not been approved as a melanoma treatment. We undertook a systematic literature review of studies of GM-CSF in patients with advanced melanoma (stage IIIB–IV). Of the 503 articles identified, 26 studies met the eligibility criteria. Most studies investigated the use of GM-CSF in combination with another treatment, such as peptide vaccines or chemotherapy, or as an adjuvant to surgery. Some clinical benefit was reported in patients who received GM-CSF as an adjuvant to surgery, or in combination with other treatments. In general, outcomes for patients receiving peptide vaccines were not improved with the addition of GM-CSF. GM-CSF may be a valuable therapeutic adjuvant; however, further studies are needed, particularly head-to-head comparisons, to confirm the optimal dosing regimen and clinical effectiveness in patients with advanced melanoma.
Collapse
Affiliation(s)
- Christoph Hoeller
- Department of Dermatology, Medical University Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
| | - Olivier Michielin
- Department of Oncology, Lausanne University Hospital, Champ de l'Air, Rue du Bugnon 21, 1011, Lausanne, Switzerland.,Ludwig Centre and Swiss Institute of Bioinformatics, Génopode Building, 1015, Lausanne, Switzerland
| | - Paolo A Ascierto
- Istituto Nazionale Tumori, Fondazione 'G. Pascale', Via Mariano Semmola, 52, 80131, Naples, Italy
| | - Zsolt Szabo
- Clinical Development, Amgen Europe GmbH, Dammstrasse 23, 6300, Zug, Switzerland
| | - Christian U Blank
- Division of Immunology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, Netherlands
| |
Collapse
|
27
|
Dillman RO, McClay EF, Barth NM, Amatruda TT, Schwartzberg LS, Mahdavi K, de Leon C, Ellis RE, DePriest C. Dendritic Versus Tumor Cell Presentation of Autologous Tumor Antigens for Active Specific Immunotherapy in Metastatic Melanoma: Impact on Long-Term Survival by Extent of Disease at the Time of Treatment. Cancer Biother Radiopharm 2016; 30:187-94. [PMID: 26083950 PMCID: PMC4492594 DOI: 10.1089/cbr.2015.1843] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
In patients with metastatic melanoma, sequential single-arm and randomized phase II trials with a therapeutic vaccine consisting of autologous dendritic cells (DCs) loaded with antigens from self-renewing, proliferating, irradiated autologous tumor cells (DC-TC) showed superior survival compared with similar patients immunized with irradiated tumor cells (TC). We wished to determine whether this difference was evident in cohorts who at the time of treatment had (1) no evidence of disease (NED) or (2) had detectable disease. Eligibility criteria and treatment schedules were the same for all three trials. Pooled data confirmed that overall survival (OS) was longer in 72 patients treated with DC-TC compared with 71 patients treated with TC (median OS 60 versus 22 months; 5-year OS 51% versus 32%, p=0.004). Treatment with DC-TC was associated with longer OS in both cohorts. Among 70 patients who were NED at the time that treatment was started, OS was better for DC-TC: 5-year OS 73% versus 43% (p=0.015). Among 73 patients who had detectable metastases, OS was better for DC-TC: median 38.8 months versus 14.7 months, 5-year OS 33% versus 20% (p=0.025). This approach is promising as an adjunct to other therapies in patients who have had metastatic melanoma.
Collapse
Affiliation(s)
| | - Edward F McClay
- 2 California Cancer Associates for Research and Excellence (cCARE) , Institute for Melanoma Research & Education , Encinitas California
| | - Neil M Barth
- 3 Genomics Institute Inc. , Laguna Beach, California
| | | | | | | | - Cristina de Leon
- 7 Hoag Institute for Research and Education , Newport Beach, California
| | - Robin E Ellis
- 7 Hoag Institute for Research and Education , Newport Beach, California
| | - Carol DePriest
- 8 Cancer Biotherapy Research Group , Franklin, Tennessee
| |
Collapse
|
28
|
Lawson DH, Lee S, Zhao F, Tarhini AA, Margolin KA, Ernstoff MS, Atkins MB, Cohen GI, Whiteside TL, Butterfield LH, Kirkwood JM. Randomized, Placebo-Controlled, Phase III Trial of Yeast-Derived Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF) Versus Peptide Vaccination Versus GM-CSF Plus Peptide Vaccination Versus Placebo in Patients With No Evidence of Disease After Complete Surgical Resection of Locally Advanced and/or Stage IV Melanoma: A Trial of the Eastern Cooperative Oncology Group-American College of Radiology Imaging Network Cancer Research Group (E4697). J Clin Oncol 2015; 33:4066-76. [PMID: 26351350 PMCID: PMC4669592 DOI: 10.1200/jco.2015.62.0500] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE We conducted a double-blind, placebo-controlled trial to evaluate the effect of granulocyte-macrophage colony-stimulating factor (GM-CSF) and peptide vaccination (PV) on relapse-free survival (RFS) and overall survival (OS) in patients with resected high-risk melanoma. PATIENTS AND METHODS Patients with completely resected stage IV or high-risk stage III melanoma were grouped by human leukocyte antigen (HLA) -A2 status. HLA-A2-positive patients were randomly assigned to receive GM-CSF, PV, both, or placebo; HLA-A2-negative patients, GM-CSF or placebo. Treatment lasted for 1 year or until recurrence. Efficacy analyses were conducted in the intent-to-treat population. RESULTS A total of 815 patients were enrolled. There were no significant improvements in OS (stratified log-rank P = .528; hazard ratio, 0.94; 95% repeated CI, 0.77 to 1.15) or RFS (P = .131; hazard ratio, 0.88; 95% CI, 0.74 to 1.04) in the patients assigned to GM-CSF (n = 408) versus those assigned to placebo (n = 407). The median OS times with GM-CSF versus placebo treatments were 69.6 months (95% CI, 53.4 to 83.5 months) versus 59.3 months (95% CI, 44.4 to 77.3 months); the 5-year OS probability rates were 52.3% (95% CI, 47.3% to 57.1%) versus 49.4% (95% CI, 44.3% to 54.3%), respectively. The median RFS times with GM-CSF versus placebo were 11.4 months (95% CI, 9.4 to 14.8 months) versus 8.8 months (95% CI, 7.5 to 11.2 months); the 5-year RFS probability rates were 31.2% (95% CI, 26.7% to 35.9%) versus 27.0% (95% CI, 22.7% to 31.5%), respectively. Exploratory analyses showed a trend toward improved OS in GM-CSF-treated patients with resected visceral metastases. When survival in HLA-A2-positive patients who received PV versus placebo was compared, RFS and OS were not significantly different. Treatment-related grade 3 or greater adverse events were similar between GM-CSF and placebo groups. CONCLUSION Neither adjuvant GM-CSF nor PV significantly improved RFS or OS in patients with high-risk resected melanoma. Exploratory analyses suggest that GM-CSF may be beneficial in patients with resected visceral metastases; this observation requires prospective validation.
Collapse
Affiliation(s)
- David H Lawson
- David H. Lawson, Winship Cancer Institute of Emory University, Atlanta, GA; Sandra Lee and Fengmin Zhao, Dana-Farber Cancer Institute; Michael B. Atkins, Beth Israel Deaconess Medical Center, Boston, MA; Ahmad A. Tarhini, Theresa L. Whiteside, Lisa H. Butterfield, and John M. Kirkwood, University of Pittsburgh Medical Center, Pittsburgh, PA; Kim A. Margolin, Seattle Cancer Care Alliance, Seattle, WA; Marc S. Ernstoff, Dartmouth-Hitchcock Medical Center, Lebanon, NH; and Gary I. Cohen, Greater Baltimore Medical Center, Baltimore, MD.
| | - Sandra Lee
- David H. Lawson, Winship Cancer Institute of Emory University, Atlanta, GA; Sandra Lee and Fengmin Zhao, Dana-Farber Cancer Institute; Michael B. Atkins, Beth Israel Deaconess Medical Center, Boston, MA; Ahmad A. Tarhini, Theresa L. Whiteside, Lisa H. Butterfield, and John M. Kirkwood, University of Pittsburgh Medical Center, Pittsburgh, PA; Kim A. Margolin, Seattle Cancer Care Alliance, Seattle, WA; Marc S. Ernstoff, Dartmouth-Hitchcock Medical Center, Lebanon, NH; and Gary I. Cohen, Greater Baltimore Medical Center, Baltimore, MD
| | - Fengmin Zhao
- David H. Lawson, Winship Cancer Institute of Emory University, Atlanta, GA; Sandra Lee and Fengmin Zhao, Dana-Farber Cancer Institute; Michael B. Atkins, Beth Israel Deaconess Medical Center, Boston, MA; Ahmad A. Tarhini, Theresa L. Whiteside, Lisa H. Butterfield, and John M. Kirkwood, University of Pittsburgh Medical Center, Pittsburgh, PA; Kim A. Margolin, Seattle Cancer Care Alliance, Seattle, WA; Marc S. Ernstoff, Dartmouth-Hitchcock Medical Center, Lebanon, NH; and Gary I. Cohen, Greater Baltimore Medical Center, Baltimore, MD
| | - Ahmad A Tarhini
- David H. Lawson, Winship Cancer Institute of Emory University, Atlanta, GA; Sandra Lee and Fengmin Zhao, Dana-Farber Cancer Institute; Michael B. Atkins, Beth Israel Deaconess Medical Center, Boston, MA; Ahmad A. Tarhini, Theresa L. Whiteside, Lisa H. Butterfield, and John M. Kirkwood, University of Pittsburgh Medical Center, Pittsburgh, PA; Kim A. Margolin, Seattle Cancer Care Alliance, Seattle, WA; Marc S. Ernstoff, Dartmouth-Hitchcock Medical Center, Lebanon, NH; and Gary I. Cohen, Greater Baltimore Medical Center, Baltimore, MD
| | - Kim A Margolin
- David H. Lawson, Winship Cancer Institute of Emory University, Atlanta, GA; Sandra Lee and Fengmin Zhao, Dana-Farber Cancer Institute; Michael B. Atkins, Beth Israel Deaconess Medical Center, Boston, MA; Ahmad A. Tarhini, Theresa L. Whiteside, Lisa H. Butterfield, and John M. Kirkwood, University of Pittsburgh Medical Center, Pittsburgh, PA; Kim A. Margolin, Seattle Cancer Care Alliance, Seattle, WA; Marc S. Ernstoff, Dartmouth-Hitchcock Medical Center, Lebanon, NH; and Gary I. Cohen, Greater Baltimore Medical Center, Baltimore, MD
| | - Marc S Ernstoff
- David H. Lawson, Winship Cancer Institute of Emory University, Atlanta, GA; Sandra Lee and Fengmin Zhao, Dana-Farber Cancer Institute; Michael B. Atkins, Beth Israel Deaconess Medical Center, Boston, MA; Ahmad A. Tarhini, Theresa L. Whiteside, Lisa H. Butterfield, and John M. Kirkwood, University of Pittsburgh Medical Center, Pittsburgh, PA; Kim A. Margolin, Seattle Cancer Care Alliance, Seattle, WA; Marc S. Ernstoff, Dartmouth-Hitchcock Medical Center, Lebanon, NH; and Gary I. Cohen, Greater Baltimore Medical Center, Baltimore, MD
| | - Michael B Atkins
- David H. Lawson, Winship Cancer Institute of Emory University, Atlanta, GA; Sandra Lee and Fengmin Zhao, Dana-Farber Cancer Institute; Michael B. Atkins, Beth Israel Deaconess Medical Center, Boston, MA; Ahmad A. Tarhini, Theresa L. Whiteside, Lisa H. Butterfield, and John M. Kirkwood, University of Pittsburgh Medical Center, Pittsburgh, PA; Kim A. Margolin, Seattle Cancer Care Alliance, Seattle, WA; Marc S. Ernstoff, Dartmouth-Hitchcock Medical Center, Lebanon, NH; and Gary I. Cohen, Greater Baltimore Medical Center, Baltimore, MD
| | - Gary I Cohen
- David H. Lawson, Winship Cancer Institute of Emory University, Atlanta, GA; Sandra Lee and Fengmin Zhao, Dana-Farber Cancer Institute; Michael B. Atkins, Beth Israel Deaconess Medical Center, Boston, MA; Ahmad A. Tarhini, Theresa L. Whiteside, Lisa H. Butterfield, and John M. Kirkwood, University of Pittsburgh Medical Center, Pittsburgh, PA; Kim A. Margolin, Seattle Cancer Care Alliance, Seattle, WA; Marc S. Ernstoff, Dartmouth-Hitchcock Medical Center, Lebanon, NH; and Gary I. Cohen, Greater Baltimore Medical Center, Baltimore, MD
| | - Theresa L Whiteside
- David H. Lawson, Winship Cancer Institute of Emory University, Atlanta, GA; Sandra Lee and Fengmin Zhao, Dana-Farber Cancer Institute; Michael B. Atkins, Beth Israel Deaconess Medical Center, Boston, MA; Ahmad A. Tarhini, Theresa L. Whiteside, Lisa H. Butterfield, and John M. Kirkwood, University of Pittsburgh Medical Center, Pittsburgh, PA; Kim A. Margolin, Seattle Cancer Care Alliance, Seattle, WA; Marc S. Ernstoff, Dartmouth-Hitchcock Medical Center, Lebanon, NH; and Gary I. Cohen, Greater Baltimore Medical Center, Baltimore, MD
| | - Lisa H Butterfield
- David H. Lawson, Winship Cancer Institute of Emory University, Atlanta, GA; Sandra Lee and Fengmin Zhao, Dana-Farber Cancer Institute; Michael B. Atkins, Beth Israel Deaconess Medical Center, Boston, MA; Ahmad A. Tarhini, Theresa L. Whiteside, Lisa H. Butterfield, and John M. Kirkwood, University of Pittsburgh Medical Center, Pittsburgh, PA; Kim A. Margolin, Seattle Cancer Care Alliance, Seattle, WA; Marc S. Ernstoff, Dartmouth-Hitchcock Medical Center, Lebanon, NH; and Gary I. Cohen, Greater Baltimore Medical Center, Baltimore, MD
| | - John M Kirkwood
- David H. Lawson, Winship Cancer Institute of Emory University, Atlanta, GA; Sandra Lee and Fengmin Zhao, Dana-Farber Cancer Institute; Michael B. Atkins, Beth Israel Deaconess Medical Center, Boston, MA; Ahmad A. Tarhini, Theresa L. Whiteside, Lisa H. Butterfield, and John M. Kirkwood, University of Pittsburgh Medical Center, Pittsburgh, PA; Kim A. Margolin, Seattle Cancer Care Alliance, Seattle, WA; Marc S. Ernstoff, Dartmouth-Hitchcock Medical Center, Lebanon, NH; and Gary I. Cohen, Greater Baltimore Medical Center, Baltimore, MD
| |
Collapse
|
29
|
Andtbacka RH, Kaufman HL, Collichio F, Amatruda T, Senzer N, Chesney J, Delman KA, Spitler LE, Puzanov I, Agarwala SS, Milhem M, Cranmer L, Curti B, Lewis K, Ross M, Guthrie T, Linette GP, Daniels GA, Harrington K, Middleton MR, Miller WH, Zager JS, Ye Y, Yao B, Li A, Doleman S, VanderWalde A, Gansert J, Coffin RS. Talimogene Laherparepvec Improves Durable Response Rate in Patients With Advanced Melanoma. J Clin Oncol 2015; 33:2780-8. [DOI: 10.1200/jco.2014.58.3377] [Citation(s) in RCA: 1591] [Impact Index Per Article: 159.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Purpose Talimogene laherparepvec (T-VEC) is a herpes simplex virus type 1–derived oncolytic immunotherapy designed to selectively replicate within tumors and produce granulocyte macrophage colony-stimulating factor (GM-CSF) to enhance systemic antitumor immune responses. T-VEC was compared with GM-CSF in patients with unresected stage IIIB to IV melanoma in a randomized open-label phase III trial. Patients and Methods Patients with injectable melanoma that was not surgically resectable were randomly assigned at a two-to-one ratio to intralesional T-VEC or subcutaneous GM-CSF. The primary end point was durable response rate (DRR; objective response lasting continuously ≥ 6 months) per independent assessment. Key secondary end points included overall survival (OS) and overall response rate. Results Among 436 patients randomly assigned, DRR was significantly higher with T-VEC (16.3%; 95% CI, 12.1% to 20.5%) than GM-CSF (2.1%; 95% CI, 0% to 4.5%]; odds ratio, 8.9; P < .001). Overall response rate was also higher in the T-VEC arm (26.4%; 95% CI, 21.4% to 31.5% v 5.7%; 95% CI, 1.9% to 9.5%). Median OS was 23.3 months (95% CI, 19.5 to 29.6 months) with T-VEC and 18.9 months (95% CI, 16.0 to 23.7 months) with GM-CSF (hazard ratio, 0.79; 95% CI, 0.62 to 1.00; P = .051). T-VEC efficacy was most pronounced in patients with stage IIIB, IIIC, or IVM1a disease and in patients with treatment-naive disease. The most common adverse events (AEs) with T-VEC were fatigue, chills, and pyrexia. The only grade 3 or 4 AE occurring in ≥ 2% of T-VEC–treated patients was cellulitis (2.1%). No fatal treatment-related AEs occurred. Conclusion T-VEC is the first oncolytic immunotherapy to demonstrate therapeutic benefit against melanoma in a phase III clinical trial. T-VEC was well tolerated and resulted in a higher DRR (P < .001) and longer median OS (P = .051), particularly in untreated patients or those with stage IIIB, IIIC, or IVM1a disease. T-VEC represents a novel potential therapy for patients with metastatic melanoma.
Collapse
Affiliation(s)
- Robert H.I. Andtbacka
- Robert H.I. Andtbacka, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT; Howard L. Kaufman, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ; Frances Collichio, University of North Carolina Medical Center, Chapel Hill, NC; Thomas Amatruda, Minnesota Oncology, Fridley, MN; Neil Senzer, Mary Crowley Cancer Research Center, Dallas; Merrick Ross, University of Texas MD Anderson Cancer Center, Houston, TX; Jason Chesney, University of Louisville, Louisville, KY; Keith A. Delman,
| | - Howard L. Kaufman
- Robert H.I. Andtbacka, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT; Howard L. Kaufman, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ; Frances Collichio, University of North Carolina Medical Center, Chapel Hill, NC; Thomas Amatruda, Minnesota Oncology, Fridley, MN; Neil Senzer, Mary Crowley Cancer Research Center, Dallas; Merrick Ross, University of Texas MD Anderson Cancer Center, Houston, TX; Jason Chesney, University of Louisville, Louisville, KY; Keith A. Delman,
| | - Frances Collichio
- Robert H.I. Andtbacka, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT; Howard L. Kaufman, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ; Frances Collichio, University of North Carolina Medical Center, Chapel Hill, NC; Thomas Amatruda, Minnesota Oncology, Fridley, MN; Neil Senzer, Mary Crowley Cancer Research Center, Dallas; Merrick Ross, University of Texas MD Anderson Cancer Center, Houston, TX; Jason Chesney, University of Louisville, Louisville, KY; Keith A. Delman,
| | - Thomas Amatruda
- Robert H.I. Andtbacka, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT; Howard L. Kaufman, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ; Frances Collichio, University of North Carolina Medical Center, Chapel Hill, NC; Thomas Amatruda, Minnesota Oncology, Fridley, MN; Neil Senzer, Mary Crowley Cancer Research Center, Dallas; Merrick Ross, University of Texas MD Anderson Cancer Center, Houston, TX; Jason Chesney, University of Louisville, Louisville, KY; Keith A. Delman,
| | - Neil Senzer
- Robert H.I. Andtbacka, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT; Howard L. Kaufman, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ; Frances Collichio, University of North Carolina Medical Center, Chapel Hill, NC; Thomas Amatruda, Minnesota Oncology, Fridley, MN; Neil Senzer, Mary Crowley Cancer Research Center, Dallas; Merrick Ross, University of Texas MD Anderson Cancer Center, Houston, TX; Jason Chesney, University of Louisville, Louisville, KY; Keith A. Delman,
| | - Jason Chesney
- Robert H.I. Andtbacka, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT; Howard L. Kaufman, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ; Frances Collichio, University of North Carolina Medical Center, Chapel Hill, NC; Thomas Amatruda, Minnesota Oncology, Fridley, MN; Neil Senzer, Mary Crowley Cancer Research Center, Dallas; Merrick Ross, University of Texas MD Anderson Cancer Center, Houston, TX; Jason Chesney, University of Louisville, Louisville, KY; Keith A. Delman,
| | - Keith A. Delman
- Robert H.I. Andtbacka, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT; Howard L. Kaufman, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ; Frances Collichio, University of North Carolina Medical Center, Chapel Hill, NC; Thomas Amatruda, Minnesota Oncology, Fridley, MN; Neil Senzer, Mary Crowley Cancer Research Center, Dallas; Merrick Ross, University of Texas MD Anderson Cancer Center, Houston, TX; Jason Chesney, University of Louisville, Louisville, KY; Keith A. Delman,
| | - Lynn E. Spitler
- Robert H.I. Andtbacka, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT; Howard L. Kaufman, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ; Frances Collichio, University of North Carolina Medical Center, Chapel Hill, NC; Thomas Amatruda, Minnesota Oncology, Fridley, MN; Neil Senzer, Mary Crowley Cancer Research Center, Dallas; Merrick Ross, University of Texas MD Anderson Cancer Center, Houston, TX; Jason Chesney, University of Louisville, Louisville, KY; Keith A. Delman,
| | - Igor Puzanov
- Robert H.I. Andtbacka, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT; Howard L. Kaufman, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ; Frances Collichio, University of North Carolina Medical Center, Chapel Hill, NC; Thomas Amatruda, Minnesota Oncology, Fridley, MN; Neil Senzer, Mary Crowley Cancer Research Center, Dallas; Merrick Ross, University of Texas MD Anderson Cancer Center, Houston, TX; Jason Chesney, University of Louisville, Louisville, KY; Keith A. Delman,
| | - Sanjiv S. Agarwala
- Robert H.I. Andtbacka, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT; Howard L. Kaufman, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ; Frances Collichio, University of North Carolina Medical Center, Chapel Hill, NC; Thomas Amatruda, Minnesota Oncology, Fridley, MN; Neil Senzer, Mary Crowley Cancer Research Center, Dallas; Merrick Ross, University of Texas MD Anderson Cancer Center, Houston, TX; Jason Chesney, University of Louisville, Louisville, KY; Keith A. Delman,
| | - Mohammed Milhem
- Robert H.I. Andtbacka, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT; Howard L. Kaufman, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ; Frances Collichio, University of North Carolina Medical Center, Chapel Hill, NC; Thomas Amatruda, Minnesota Oncology, Fridley, MN; Neil Senzer, Mary Crowley Cancer Research Center, Dallas; Merrick Ross, University of Texas MD Anderson Cancer Center, Houston, TX; Jason Chesney, University of Louisville, Louisville, KY; Keith A. Delman,
| | - Lee Cranmer
- Robert H.I. Andtbacka, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT; Howard L. Kaufman, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ; Frances Collichio, University of North Carolina Medical Center, Chapel Hill, NC; Thomas Amatruda, Minnesota Oncology, Fridley, MN; Neil Senzer, Mary Crowley Cancer Research Center, Dallas; Merrick Ross, University of Texas MD Anderson Cancer Center, Houston, TX; Jason Chesney, University of Louisville, Louisville, KY; Keith A. Delman,
| | - Brendan Curti
- Robert H.I. Andtbacka, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT; Howard L. Kaufman, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ; Frances Collichio, University of North Carolina Medical Center, Chapel Hill, NC; Thomas Amatruda, Minnesota Oncology, Fridley, MN; Neil Senzer, Mary Crowley Cancer Research Center, Dallas; Merrick Ross, University of Texas MD Anderson Cancer Center, Houston, TX; Jason Chesney, University of Louisville, Louisville, KY; Keith A. Delman,
| | - Karl Lewis
- Robert H.I. Andtbacka, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT; Howard L. Kaufman, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ; Frances Collichio, University of North Carolina Medical Center, Chapel Hill, NC; Thomas Amatruda, Minnesota Oncology, Fridley, MN; Neil Senzer, Mary Crowley Cancer Research Center, Dallas; Merrick Ross, University of Texas MD Anderson Cancer Center, Houston, TX; Jason Chesney, University of Louisville, Louisville, KY; Keith A. Delman,
| | - Merrick Ross
- Robert H.I. Andtbacka, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT; Howard L. Kaufman, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ; Frances Collichio, University of North Carolina Medical Center, Chapel Hill, NC; Thomas Amatruda, Minnesota Oncology, Fridley, MN; Neil Senzer, Mary Crowley Cancer Research Center, Dallas; Merrick Ross, University of Texas MD Anderson Cancer Center, Houston, TX; Jason Chesney, University of Louisville, Louisville, KY; Keith A. Delman,
| | - Troy Guthrie
- Robert H.I. Andtbacka, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT; Howard L. Kaufman, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ; Frances Collichio, University of North Carolina Medical Center, Chapel Hill, NC; Thomas Amatruda, Minnesota Oncology, Fridley, MN; Neil Senzer, Mary Crowley Cancer Research Center, Dallas; Merrick Ross, University of Texas MD Anderson Cancer Center, Houston, TX; Jason Chesney, University of Louisville, Louisville, KY; Keith A. Delman,
| | - Gerald P. Linette
- Robert H.I. Andtbacka, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT; Howard L. Kaufman, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ; Frances Collichio, University of North Carolina Medical Center, Chapel Hill, NC; Thomas Amatruda, Minnesota Oncology, Fridley, MN; Neil Senzer, Mary Crowley Cancer Research Center, Dallas; Merrick Ross, University of Texas MD Anderson Cancer Center, Houston, TX; Jason Chesney, University of Louisville, Louisville, KY; Keith A. Delman,
| | - Gregory A. Daniels
- Robert H.I. Andtbacka, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT; Howard L. Kaufman, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ; Frances Collichio, University of North Carolina Medical Center, Chapel Hill, NC; Thomas Amatruda, Minnesota Oncology, Fridley, MN; Neil Senzer, Mary Crowley Cancer Research Center, Dallas; Merrick Ross, University of Texas MD Anderson Cancer Center, Houston, TX; Jason Chesney, University of Louisville, Louisville, KY; Keith A. Delman,
| | - Kevin Harrington
- Robert H.I. Andtbacka, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT; Howard L. Kaufman, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ; Frances Collichio, University of North Carolina Medical Center, Chapel Hill, NC; Thomas Amatruda, Minnesota Oncology, Fridley, MN; Neil Senzer, Mary Crowley Cancer Research Center, Dallas; Merrick Ross, University of Texas MD Anderson Cancer Center, Houston, TX; Jason Chesney, University of Louisville, Louisville, KY; Keith A. Delman,
| | - Mark R. Middleton
- Robert H.I. Andtbacka, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT; Howard L. Kaufman, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ; Frances Collichio, University of North Carolina Medical Center, Chapel Hill, NC; Thomas Amatruda, Minnesota Oncology, Fridley, MN; Neil Senzer, Mary Crowley Cancer Research Center, Dallas; Merrick Ross, University of Texas MD Anderson Cancer Center, Houston, TX; Jason Chesney, University of Louisville, Louisville, KY; Keith A. Delman,
| | - Wilson H. Miller
- Robert H.I. Andtbacka, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT; Howard L. Kaufman, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ; Frances Collichio, University of North Carolina Medical Center, Chapel Hill, NC; Thomas Amatruda, Minnesota Oncology, Fridley, MN; Neil Senzer, Mary Crowley Cancer Research Center, Dallas; Merrick Ross, University of Texas MD Anderson Cancer Center, Houston, TX; Jason Chesney, University of Louisville, Louisville, KY; Keith A. Delman,
| | - Jonathan S. Zager
- Robert H.I. Andtbacka, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT; Howard L. Kaufman, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ; Frances Collichio, University of North Carolina Medical Center, Chapel Hill, NC; Thomas Amatruda, Minnesota Oncology, Fridley, MN; Neil Senzer, Mary Crowley Cancer Research Center, Dallas; Merrick Ross, University of Texas MD Anderson Cancer Center, Houston, TX; Jason Chesney, University of Louisville, Louisville, KY; Keith A. Delman,
| | - Yining Ye
- Robert H.I. Andtbacka, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT; Howard L. Kaufman, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ; Frances Collichio, University of North Carolina Medical Center, Chapel Hill, NC; Thomas Amatruda, Minnesota Oncology, Fridley, MN; Neil Senzer, Mary Crowley Cancer Research Center, Dallas; Merrick Ross, University of Texas MD Anderson Cancer Center, Houston, TX; Jason Chesney, University of Louisville, Louisville, KY; Keith A. Delman,
| | - Bin Yao
- Robert H.I. Andtbacka, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT; Howard L. Kaufman, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ; Frances Collichio, University of North Carolina Medical Center, Chapel Hill, NC; Thomas Amatruda, Minnesota Oncology, Fridley, MN; Neil Senzer, Mary Crowley Cancer Research Center, Dallas; Merrick Ross, University of Texas MD Anderson Cancer Center, Houston, TX; Jason Chesney, University of Louisville, Louisville, KY; Keith A. Delman,
| | - Ai Li
- Robert H.I. Andtbacka, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT; Howard L. Kaufman, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ; Frances Collichio, University of North Carolina Medical Center, Chapel Hill, NC; Thomas Amatruda, Minnesota Oncology, Fridley, MN; Neil Senzer, Mary Crowley Cancer Research Center, Dallas; Merrick Ross, University of Texas MD Anderson Cancer Center, Houston, TX; Jason Chesney, University of Louisville, Louisville, KY; Keith A. Delman,
| | - Susan Doleman
- Robert H.I. Andtbacka, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT; Howard L. Kaufman, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ; Frances Collichio, University of North Carolina Medical Center, Chapel Hill, NC; Thomas Amatruda, Minnesota Oncology, Fridley, MN; Neil Senzer, Mary Crowley Cancer Research Center, Dallas; Merrick Ross, University of Texas MD Anderson Cancer Center, Houston, TX; Jason Chesney, University of Louisville, Louisville, KY; Keith A. Delman,
| | - Ari VanderWalde
- Robert H.I. Andtbacka, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT; Howard L. Kaufman, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ; Frances Collichio, University of North Carolina Medical Center, Chapel Hill, NC; Thomas Amatruda, Minnesota Oncology, Fridley, MN; Neil Senzer, Mary Crowley Cancer Research Center, Dallas; Merrick Ross, University of Texas MD Anderson Cancer Center, Houston, TX; Jason Chesney, University of Louisville, Louisville, KY; Keith A. Delman,
| | - Jennifer Gansert
- Robert H.I. Andtbacka, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT; Howard L. Kaufman, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ; Frances Collichio, University of North Carolina Medical Center, Chapel Hill, NC; Thomas Amatruda, Minnesota Oncology, Fridley, MN; Neil Senzer, Mary Crowley Cancer Research Center, Dallas; Merrick Ross, University of Texas MD Anderson Cancer Center, Houston, TX; Jason Chesney, University of Louisville, Louisville, KY; Keith A. Delman,
| | - Robert S. Coffin
- Robert H.I. Andtbacka, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT; Howard L. Kaufman, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ; Frances Collichio, University of North Carolina Medical Center, Chapel Hill, NC; Thomas Amatruda, Minnesota Oncology, Fridley, MN; Neil Senzer, Mary Crowley Cancer Research Center, Dallas; Merrick Ross, University of Texas MD Anderson Cancer Center, Houston, TX; Jason Chesney, University of Louisville, Louisville, KY; Keith A. Delman,
| |
Collapse
|
30
|
Grotz TE, Kottschade L, Pavey ES, Markovic SN, Jakub JW. Adjuvant GM-CSF improves survival in high-risk stage iiic melanoma: a single-center Study. Am J Clin Oncol 2014; 37:467-472. [PMID: 23428946 PMCID: PMC3664256 DOI: 10.1097/coc.0b013e31827def82] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVES Stage III melanoma is associated with an increased risk of recurrence and death. Complete surgical resection remains the best chance for cure. Unfortunately, no adjuvant therapy has demonstrated a consistent improvement in melanoma-specific survival (MSS). We hypothesize that adjuvant granulocyte-macrophage colony-stimulating factor (GM-CSF) may improve clinical outcomes. PATIENTS AND METHODS Retrospective cohort study of 317 surgically resected stage III melanoma patients managed with observation or adjuvant GM-CSF at a single institution from 2001 to 2010. RESULTS Of the 317 stage III patients, 165 (52%) were observed and 152 (48%) were treated with GM-CSF, with a median follow-up of 34 months. Patients treated with GM-CSF tended to be younger (P < 0.0001), had more advanced stage disease (P = 0.002), and were more likely to have had a recurrence before initiation of adjuvant therapy than the observation group (P < 0.0001). Adjuvant GM-CSF seemed to be associated with improved MSS, but this did not reach statistical significance (P = 0.08). Patients with stage IIIC melanoma derived a substantial benefit from adjuvant GM-CSF, with a 52% risk reduction in melanoma-specific death (hazard ratio 0.48; 95% confidence interval, 0.27-0.87; P = 0.02). CONCLUSIONS Despite selecting patients with more advanced stage and a higher incidence of regional relapse, adjuvant GM-CSF was associated with an improved MSS but not disease-free survival in patients with stage IIIC disease. In patients not otherwise eligible for clinical trials, adjuvant GM-CSF treatment is a reasonable option for individuals with resected high-risk melanoma.
Collapse
Affiliation(s)
| | - Lisa Kottschade
- Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester MN
| | - Emily S. Pavey
- Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester MN
| | | | | |
Collapse
|
31
|
Kaufman HL, Ruby CE, Hughes T, Slingluff CL. Current status of granulocyte-macrophage colony-stimulating factor in the immunotherapy of melanoma. J Immunother Cancer 2014; 2:11. [PMID: 24971166 PMCID: PMC4072479 DOI: 10.1186/2051-1426-2-11] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 03/25/2014] [Indexed: 02/04/2023] Open
Abstract
In 2012, it was estimated that 9180 people in the United States would die from melanoma and that more than 76,000 new cases would be diagnosed. Surgical resection is effective for early-stage melanoma, but outcomes are poor for patients with advanced disease. Expression of tumor-associated antigens by melanoma cells makes the disease a promising candidate for immunotherapy. The hematopoietic cytokine granulocyte–macrophage colony-stimulating factor (GM-CSF) has a variety of effects on the immune system including activation of T cells and maturation of dendritic cells, as well as an ability to promote humoral and cell-mediated responses. Given its immunobiology, there has been interest in strategies incorporating GM-CSF in the treatment of melanoma. Preclinical studies with GM-CSF have suggested that it has antitumor activity against melanoma and can enhance the activity of anti-melanoma vaccines. Numerous clinical studies have evaluated recombinant GM-CSF as a monotherapy, as adjuvant with or without cancer vaccines, or in combination with chemotherapy. Although there have been suggestions of clinical benefit in some studies, results have been inconsistent. More recently, novel approaches incorporating GM-CSF in the treatment of melanoma have been evaluated. These have included oncolytic immunotherapy with the GM-CSF–expressing engineered herpes simplex virus talimogene laherparepvec and administration of GM-CSF in combination with ipilimumab, both of which have improved patient outcomes in phase 3 studies. This review describes the diverse body of preclinical and clinical evidence regarding use of GM-CSF in the treatment of melanoma.
Collapse
Affiliation(s)
- Howard L Kaufman
- Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08901, USA
| | - Carl E Ruby
- Rush University Medical Center, 600 S Paulina St Suite 527, Chicago, IL 60612, USA
| | - Tasha Hughes
- Rush University Medical Center, 600 S Paulina St Suite 527, Chicago, IL 60612, USA
| | - Craig L Slingluff
- University of Virginia, P.O. Box 800709, Charlottesville, VA 22908, USA
| |
Collapse
|
32
|
Hughes T, Coffin RS, Lilley CE, Ponce R, Kaufman HL. Critical analysis of an oncolytic herpesvirus encoding granulocyte-macrophage colony stimulating factor for the treatment of malignant melanoma. Oncolytic Virother 2014; 3:11-20. [PMID: 27512660 PMCID: PMC4918360 DOI: 10.2147/ov.s36701] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Oncolytic viruses that selectively lyse tumor cells with minimal damage to normal cells are a new area of therapeutic development in oncology. An attenuated herpesvirus encoding the granulocyte-macrophage colony stimulating factor (GM-CSF), known as talimogene laherparepvec (T-VEC), has been identified as an attractive oncolytic virus for cancer therapy based on preclinical tumor studies and results from early-phase clinical trials and a large randomized Phase III study in melanoma. In this review, we discuss the basic biology of T-VEC, describe the role of GM-CSF as an immune adjuvant, summarize the preclinical data, and report the outcomes of published clinical trials using T-VEC. The emerging data suggest that T-VEC is a safe and potentially effective antitumor therapy in malignant melanoma and represents the first oncolytic virus to demonstrate therapeutic activity against human cancer in a randomized, controlled Phase III study.
Collapse
Affiliation(s)
- Tasha Hughes
- Departments of General Surgery and Immunology and Microbiology, Rush University Medical Center, Chicago IL, USA
| | - Robert S Coffin
- BioVex, Inc, a subsidiary of Amgen, Inc, Sherman Oaks, CA, USA
| | | | - Rafael Ponce
- BioVex, Inc, a subsidiary of Amgen, Inc, Sherman Oaks, CA, USA
| | - Howard L Kaufman
- Departments of General Surgery and Immunology and Microbiology, Rush University Medical Center, Chicago IL, USA
| |
Collapse
|
33
|
Dillman RO, Cornforth AN, Nistor G. Cancer stem cell antigen-based vaccines: the preferred strategy for active specific immunotherapy of metastatic melanoma? Expert Opin Biol Ther 2013; 13:643-56. [PMID: 23451922 DOI: 10.1517/14712598.2013.759556] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION There are now two chemotherapy agents, one tyrosine kinase inhibitor and three immunotherapy products approved for the treatment of metastatic melanoma, but an unmet need persists because these options are toxic and of limited therapeutic benefit. Active specific immunotherapy with therapeutic vaccines could be a useful addition to the therapeutic armamentarium, especially in patients whose tumor burden has been reduced by other treatment modalities. AREAS COVERED This article reviews various sources of melanoma antigens, such as peptides, gangliosides, autologous tumor and cancer stem cells including allogeneic and autologous cell lines. The advantages and disadvantages of various antigen sources and allogeneic and autologous approaches are discussed with an emphasis on the theoretical benefits of immunizing against cancer stem cells. The results from published randomized trials testing the benefit of various vaccine approaches are summarized, as well as promising results from three Phase II trials (one randomized) of patient-specific stem cell antigen-based products. EXPERT OPINION Immune responses directed toward the unique neoantigens and stem cell antigens expressed on continuously proliferating, self-renewing, autologous tumor cells could potentially overcome the limitations inherent in these other antigen-based approaches, that to date, have yielded disappointing results in randomized trials.
Collapse
Affiliation(s)
- Robert O Dillman
- Hoag Institute for Research and Education, Hoag Hospital, One Hoag Dr, Bldg 44 Suite 210, Newport Beach, California 92663, USA.
| | | | | |
Collapse
|
34
|
Menaa F. Latest approved therapies for metastatic melanoma: what comes next? J Skin Cancer 2013; 2013:735282. [PMID: 23533766 PMCID: PMC3595667 DOI: 10.1155/2013/735282] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 01/16/2013] [Accepted: 01/18/2013] [Indexed: 01/12/2023] Open
Abstract
Nowadays, oncogene-directed therapy and immunotherapy represent the two most promising avenues for patients with metastatic melanoma. The recent oncogene-directed therapeutic, vemurafenib, usually produces high level of tumor shrinkage and survival benefits in many patients with B-RAF (V600E) mutant melanomas, although the fast and high degrees of responses are likely short-lived. Conversely, the newly-approved immunotherapeutic, ipilimumab, produces durable responses in patients presenting CTLA-4 T-cell surface protein. Nevertheless, the possible synergy in combining these two therapeutic strategies primarily rely on the rational design of medical protocols (e.g., sequence and timing of agent administration; drug selectivity; compatibility of combined therapies i.e., adoptive T cell or agents, i.e., MEK inhibitor trametinib, PD-1 and PDL-1 blockers). Improved therapeutic protocols shall overcome therapeutic limitations such as the (i) tolerability and safety (i.e., minimal toxic side-effects); (ii) progression free survival (e.g., reduced relapse disease frequency); (iii) duration response (i.e., decreased drug resistance). Eventually, multidisciplinary approaches are still requested (e.g., genomics for personalized medicine, nanomedicine to overcome low free-drug bioavailability and targeting, systematic search of "melanoma stem cells" to enhance the prognosis and develop more valuable theranostics). In this paper, I will mainly present and discuss the latest and promising treatments for advanced cutaneous melanomas.
Collapse
Affiliation(s)
- Farid Menaa
- Department of Oncology, Stem Cells and Nanomedicine, Fluorotronics, Inc., 2453 Cades Way, Building C, San Diego, CA 92081, USA
| |
Collapse
|
35
|
|
36
|
Abstract
There is much renewed activity in the testing of vaccines that target metastatic melanoma, driven by successes in other areas, most notably prostate cancer. Yet, sound evidence that any stand-alone vaccination approach has clinical benefit against melanoma remains lacking. With phase III studies showing no efficacy of promising whole-cell vaccines and heat shock proteins, peptide and dendritic cell vaccines remain the most common approaches. A major obstacle to progress is the lack of any surrogate measures in phase II studies that associate meaningfully with clinical benefit, and this is further complicated by phase III evidence in prostate cancer that immunologic monitoring, tumor response rates, or even times to tumor progression may not accurately predict survival benefit. The area with the most progress has been in combining vaccines with other systemic immunostimulatory agents. Although no vaccine has been found which fulfills the prediction from murine models that they can enhance the efficacy of ipilimumab, combining a peptide vaccination with high-dose interleukin 2 was shown to enhance complete and overall response rates compared with interleukin 2 alone. These promising combinations continue to struggle with the same unresolved issues that have plagued melanoma vaccines from the beginning-what are the best antigens to target, what are the best methods of vaccination, and what constitutes a sufficient immune response to be of value? Virtually no progress has been made toward answering these questions.
Collapse
|
37
|
Tietze JK, Sckisel GD, Hsiao HH, Murphy WJ. Antigen-specific versus antigen-nonspecific immunotherapeutic approaches for human melanoma: the need for integration for optimal efficacy? Int Rev Immunol 2012; 30:238-93. [PMID: 22053969 DOI: 10.3109/08830185.2011.598977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Due to its immunogenecity and evidence of immune responses resulting in tumor regression, metastatic melanoma has been the target for numerous immunotherapeutic approaches. Unfortunately, based on the clinical outcomes, even the successful induction of tumor-specific responses does not correlate with efficacy. Immunotherapies can be divided into antigen-specific approaches, which seek to induce T cells specific to one or several known tumor associated antigens (TAA), or with antigen-nonspecific approaches, which generally activate T cells to become nonspecifically lytic effectors. Here the authors critically review the different immunotherapeutic approaches in melanoma.
Collapse
Affiliation(s)
- Julia K Tietze
- Departments of Dermatology and Internal Medicine, University of California-Davis, Sacramento, CA 95817, USA
| | | | | | | |
Collapse
|
38
|
Pilot study of granulocyte-macrophage colony-stimulating factor and interleukin-2 as immune adjuvants for a melanoma peptide vaccine. Melanoma Res 2011; 21:438-45. [DOI: 10.1097/cmr.0b013e32834640c0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
39
|
Abstract
Cancer immunotherapy consists of approaches that modify the host immune system, and/or the utilization of components of the immune system, as cancer treatment. During the past 25 years, 17 immunologic products have received regulatory approval based on anticancer activity as single agents and/or in combination with chemotherapy. These include the nonspecific immune stimulants BCG and levamisole; the cytokines interferon-α and interleukin-2; the monoclonal antibodies rituximab, ofatumumab, alemtuzumab, trastuzumab, bevacizumab, cetuximab, and panitumumab; the radiolabeled antibodies Y-90 ibritumomab tiuxetan and I-131 tositumomab; the immunotoxins denileukin diftitox and gemtuzumab ozogamicin; nonmyeloablative allogeneic transplants with donor lymphocyte infusions; and the anti-prostate cancer cell-based therapy sipuleucel-T. All but two of these products are still regularly used to treat various B- and T-cell malignancies, and numerous solid tumors, including breast, lung, colorectal, prostate, melanoma, kidney, glioblastoma, bladder, and head and neck. Positive randomized trials have recently been reported for idiotype vaccines in lymphoma and a peptide vaccine in melanoma. The anti-CTLA-4 monoclonal antibody ipilumumab, which blocks regulatory T-cells, is expected to receive regulatory approval in the near future, based on a randomized trial in melanoma. As the fourth modality of cancer treatment, biotherapy/immunotherapy is an increasingly important component of the anticancer armamentarium.
Collapse
Affiliation(s)
- Robert O Dillman
- Hoag Cancer Institute of Hoag Hospital , Newport Beach, California 92658, USA.
| |
Collapse
|
40
|
Sivendran S, Glodny B, Pan M, Merad M, Saenger Y. Melanoma Immunotherapy. ACTA ACUST UNITED AC 2010; 77:620-42. [DOI: 10.1002/msj.20215] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
41
|
Algazi AP, Soon CW, Daud AI. Treatment of cutaneous melanoma: current approaches and future prospects. Cancer Manag Res 2010. [PMID: 21188111 DOI: 10.2147/cmar.s6073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Melanoma is the most aggressive and deadly type of skin cancer. Surgical resection with or without lymph node sampling is the standard of care for primary cutaneous melanoma. Adjuvant therapy decisions may be informed by careful consideration of prognostic factors. High-dose adjuvant interferon alpha-2b increases disease-free survival and may modestly improve overall survival. Less toxic alternatives for adjuvant therapy are currently under study. External beam radiation therapy is an option for nodal beds where the risk of local recurrence is very high. In-transit melanoma metastases may be treated locally with surgery, immunotherapy, radiation, or heated limb perfusion. For metastatic melanoma, the options include chemotherapy or immunotherapy; targeted anti-BRAF and anti-KIT therapy is under active investigation. Standard chemotherapy yields objective tumor responses in approximately 10%-20% of patients, and sustained remissions are uncommon. Immunotherapy with high-dose interleukin-2 yields objective tumor responses in a minority of patients; however, some of these responses may be durable. Identification of activating mutations of BRAF, NRAS, c-KIT, and GNAQ in distinct clinical subtypes of melanoma suggest that these are molecularly distinct. Emerging data from clinical trials suggest that substantial improvements in the standard of care for melanoma may be possible.
Collapse
Affiliation(s)
- Alain P Algazi
- Department of Medicine, Division of Hematology and Oncology
| | | | | |
Collapse
|
42
|
Algazi AP, Soon CW, Daud AI. Treatment of cutaneous melanoma: current approaches and future prospects. Cancer Manag Res 2010; 2:197-211. [PMID: 21188111 PMCID: PMC3004577 DOI: 10.2147/cmr.s6073] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Indexed: 12/22/2022] Open
Abstract
Melanoma is the most aggressive and deadly type of skin cancer. Surgical resection with or without lymph node sampling is the standard of care for primary cutaneous melanoma. Adjuvant therapy decisions may be informed by careful consideration of prognostic factors. High-dose adjuvant interferon alpha-2b increases disease-free survival and may modestly improve overall survival. Less toxic alternatives for adjuvant therapy are currently under study. External beam radiation therapy is an option for nodal beds where the risk of local recurrence is very high. In-transit melanoma metastases may be treated locally with surgery, immunotherapy, radiation, or heated limb perfusion. For metastatic melanoma, the options include chemotherapy or immunotherapy; targeted anti-BRAF and anti-KIT therapy is under active investigation. Standard chemotherapy yields objective tumor responses in approximately 10%-20% of patients, and sustained remissions are uncommon. Immunotherapy with high-dose interleukin-2 yields objective tumor responses in a minority of patients; however, some of these responses may be durable. Identification of activating mutations of BRAF, NRAS, c-KIT, and GNAQ in distinct clinical subtypes of melanoma suggest that these are molecularly distinct. Emerging data from clinical trials suggest that substantial improvements in the standard of care for melanoma may be possible.
Collapse
Affiliation(s)
- Alain P Algazi
- Department of Medicine, Division of Hematology and Oncology
| | - Christopher W Soon
- Department of Dermatology, University of California, San Francisco San Francisco, CA, USA
| | - Adil I Daud
- Department of Medicine, Division of Hematology and Oncology
| |
Collapse
|
43
|
Abstract
IMPORTANCE OF THE FIELD Immunotherapy for cancer has been investigated for several decades, achieving limited success. The development of effective new immunotherapeutic agents has reignited interest in the filed. Intralesional injection of plasmids in order to transfect genes capable of stimulating or augmenting immune recognition and destruction of tumors is a relatively new approach. AREAS COVERED IN THIS REVIEW Our objective is to discuss the role velimogene aliplasmid (Allovectin-7, Vical Incorporated), a plasmid-lipid complex containing the DNA sequences encoding HLA-B7 and beta2 microglobulin, as an immunotherapeutic agent. WHAT THE READER WILL GAIN Intralesional velimogene aliplasmid induces anti-tumor responses in a proportion of melanoma patients with locoregional and limited distant metastases. Preclinical data and the results of Phase I, II and III clinical trials with this drug are reviewed. The limited data in other malignancies is also reviewed. Velimogene aliplasmid in humans appears safe, with minimal drug-related adverse events. TAKE HOME MESSAGE Velimogene aliplasmid has activity in melanoma with local and limited distant disease associated with an excellent safety profile. The activity of this approach is also being investigated in other malignancies.
Collapse
Affiliation(s)
- Heloisa P Soares
- Department of Medicine, Mount Sinai Medical Center, 4300 Alton Road, Miami Beach, FL 33140, USA
| | | |
Collapse
|