1
|
Ijaz M, Ullah Z, Aslam B, Khurshid M, Chen P, Guo B. From promise to progress: the dynamic landscape of glioblastoma immunotherapy. Drug Discov Today 2024; 29:104188. [PMID: 39307298 DOI: 10.1016/j.drudis.2024.104188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 09/09/2024] [Accepted: 09/17/2024] [Indexed: 09/29/2024]
Abstract
Glioblastoma multiforme (GBM) is the most common CNS cancer, it has dismal survival rates despite several effective mediators: intensified cytotoxic therapy, chimeric antigen receptor (CAR)-T cell therapy, viral therapy, adoptive cell therapy, immune checkpoint blockade therapy, radiation therapy and vaccine therapy. This review examines the basic concepts underlying immune targeting and examines products such as checkpoint blockade drugs, CAR-T cells, oncolytic viruses, combinatory multimodal immunotherapy and cancer vaccines. New approaches to overcoming current constraints and challenges in GBM therapy are discussed, based on recent studies into these tactics, findings from ongoing clinical trials, as well as previous trial results.
Collapse
Affiliation(s)
- Muhammad Ijaz
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen 518055, China; Institute of Microbiology, Government College University Faisalabad, Pakistan
| | - Zia Ullah
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen 518055, China
| | - Bilal Aslam
- Institute of Microbiology, Government College University Faisalabad, Pakistan
| | - Mohsin Khurshid
- Institute of Microbiology, Government College University Faisalabad, Pakistan
| | - Pengfei Chen
- Department of Traumatic Orthopedics, Shenzhen Longhua District Central Hospital, Shenzhen, China.
| | - Bing Guo
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen 518055, China.
| |
Collapse
|
2
|
Aghajani M, Jalilzadeh N, Aghebati-Maleki A, Yari A, Tabnak P, Mardi A, Saeedi H, Aghebati-Maleki L, Baradaran B. Current approaches in glioblastoma multiforme immunotherapy. Clin Transl Oncol 2024; 26:1584-1612. [PMID: 38512448 DOI: 10.1007/s12094-024-03395-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 01/08/2024] [Indexed: 03/23/2024]
Abstract
Glioblastoma multiform (GBM) is the most prevalent CNS (central nervous system) tumor in adults, with an average survival length shorter than 2 years and rare metastasis to organs other than CNS. Despite extensive attempts at surgical resecting, the inherently permeable nature of this disease has rendered relapse nearly unavoidable. Thus, immunotherapy is a feasible alternative, as stimulated immune cells can enter into the remote and inaccessible tumor cells. Immunotherapy has revolutionized patient upshots in various malignancies and might introduce different effective ways for GBM patients. Currently, researchers are exploring various immunotherapeutic strategies in patients with GBM to target both the innate and acquired immune responses. These approaches include reprogrammed tumor-associated macrophages, the use of specific antibodies to inhibit tumor progression and metastasis, modifying tumor-associated macrophages with antibodies, vaccines that utilize tumor-specific dendritic cells to activate anti-tumor T cells, immune checkpoint inhibitors, and enhanced T cells that function against tumor cells. Despite these findings, there is still room for improving the response faults of the many currently tested immunotherapies. This study aims to review the currently used immunotherapy approaches with their molecular mechanisms and clinical application in GBM.
Collapse
Affiliation(s)
- Marjan Aghajani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazila Jalilzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Aghebati-Maleki
- Molecular Medicine Department, Faculty of Modern Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amirhossein Yari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biology, Islamic Azad University, Tabriz Branch, Tabriz, Iran
| | - Peyman Tabnak
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amirhossein Mardi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Saeedi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leili Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
3
|
Mowforth OD, Brannigan J, El Khoury M, Sarathi CIP, Bestwick H, Bhatti F, Mair R. Personalised therapeutic approaches to glioblastoma: A systematic review. Front Med (Lausanne) 2023; 10:1166104. [PMID: 37122327 PMCID: PMC10140534 DOI: 10.3389/fmed.2023.1166104] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/23/2023] [Indexed: 05/02/2023] Open
Abstract
Introduction Glioblastoma is the most common and malignant primary brain tumour with median survival of 14.6 months. Personalised medicine aims to improve survival by targeting individualised patient characteristics. However, a major limitation has been application of targeted therapies in a non-personalised manner without biomarker enrichment. This has risked therapies being discounted without fair and rigorous evaluation. The objective was therefore to synthesise the current evidence on survival efficacy of personalised therapies in glioblastoma. Methods Studies reporting a survival outcome in human adults with supratentorial glioblastoma were eligible. PRISMA guidelines were followed. MEDLINE, Embase, Scopus, Web of Science and the Cochrane Library were searched to 5th May 2022. Clinicaltrials.gov was searched to 25th May 2022. Reference lists were hand-searched. Duplicate title/abstract screening, data extraction and risk of bias assessments were conducted. A quantitative synthesis is presented. Results A total of 102 trials were included: 16 were randomised and 41 studied newly diagnosed patients. Of 5,527 included patients, 59.4% were male and mean age was 53.7 years. More than 20 types of personalised therapy were included: targeted molecular therapies were the most studied (33.3%, 34/102), followed by autologous dendritic cell vaccines (32.4%, 33/102) and autologous tumour vaccines (10.8%, 11/102). There was no consistent evidence for survival efficacy of any personalised therapy. Conclusion Personalised glioblastoma therapies remain of unproven survival benefit. Evidence is inconsistent with high risk of bias. Nonetheless, encouraging results in some trials provide reason for optimism. Future focus should address target-enriched trials, combination therapies, longitudinal biomarker monitoring and standardised reporting.
Collapse
Affiliation(s)
- Oliver D. Mowforth
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, England, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, England, United Kingdom
| | - Jamie Brannigan
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, England, United Kingdom
| | - Marc El Khoury
- School of Clinical Medicine, University of Cambridge, Cambridge, England, United Kingdom
| | | | - Harry Bestwick
- School of Clinical Medicine, University of Cambridge, Cambridge, England, United Kingdom
| | - Faheem Bhatti
- School of Clinical Medicine, University of Cambridge, Cambridge, England, United Kingdom
| | - Richard Mair
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, England, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, England, United Kingdom
- *Correspondence: Richard Mair,
| |
Collapse
|
4
|
Hu W, Liu H, Li Z, Liu J, Chen L. Impact of molecular and clinical variables on survival outcome with immunotherapy for glioblastoma patients: A systematic review and meta-analysis. CNS Neurosci Ther 2022; 28:1476-1491. [PMID: 35822692 PMCID: PMC9437230 DOI: 10.1111/cns.13915] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Given that only a subset of patients with glioblastoma multiforme (GBM) responds to immuno-oncology, this study aimed to assess the impact of multiple factors on GBM immunotherapy prognosis and investigate the potential predictors. METHODS A quantitative meta-analysis was conducted using the random-effects model. Several potential factors were also reviewed qualitatively. RESULTS A total of 39 clinical trials were included after screening 1317 papers. Patients with O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation [hazard ratio (HR) for overall survival (OS) = 2.30, p < 0.0001; HR for progression-free survival (PFS) = 2.10, p < 0.0001], gross total resection (HR for OS = 0.70, p = 0.02; HR for PFS = 0.56, p = 0.004), and no baseline steroid use (HR for OS = 0.52, p = 0.0002; HR for PFS = 0.61, p = 0.02) had a relatively significant favorable OS and PFS following immunotherapy. Patients with a Karnofsky Performance Status score < 80 (HR = 1.73, p = 0.0007) and undergoing two prior relapses (HR = 2.08, p = 0.003) were associated with worse OS. Age, gender, tumor programmed death-ligand 1 expression, and history of chemotherapy were not associated with survival outcomes. Notably, immunotherapy significantly improved the OS among patients undergoing two prior recurrences (HR = 0.40, p = 0.008) but not among patients in any other subgroups, as opposed to non-immunotherapy. CONCLUSION Several factors were associated with prognostic outcomes of GBM patients receiving immunotherapy; multiple recurrences might be a candidate predictor. More marker-driven prospective studies are warranted.
Collapse
Affiliation(s)
- Wentao Hu
- School of Medicine, Nankai University, Tianjin, China.,Department of Neurosurgery, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Hongyu Liu
- Department of Neurosurgery, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ze Li
- Department of Neurosurgery, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jialin Liu
- Department of Neurosurgery, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ling Chen
- Department of Neurosurgery, First Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
5
|
Balatsoukas A, Rossignoli F, Shah K. NK cells in the brain: implications for brain tumor development and therapy. Trends Mol Med 2022; 28:194-209. [PMID: 35078713 PMCID: PMC8882142 DOI: 10.1016/j.molmed.2021.12.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 11/23/2022]
Abstract
Natural killer (NK) cells are innate lymphoid cells with robust antitumor functions rendering them promising therapeutic tools against malignancies. Despite constituting a minor fraction of the immune cells infiltrating tumors in the brain, insights into their role in central nervous system (CNS) pathophysiology are emerging. The challenges posed by a profoundly immunosuppressive microenvironment as well as by tumor resistance mechanisms necessitate exploring avenues to enhance the therapeutic potential of NK cells in both primary and metastatic brain malignancies. In this review, we summarize the role of NK cells in the pathogenesis of tumors in the brain and discuss the avenues investigated to harness their anticancer effects against primary and metastatic CNS tumors, including sources of therapeutic NK cells, combinations with other treatments, and novel engineering approaches for augmenting their cytotoxicity. We also highlight relevant preclinical evidence and clinical trials of NK cell-based therapies.
Collapse
Affiliation(s)
- Agisilaos Balatsoukas
- Center for Stem Cell and Translational Immunotherapy (CSTI), Harvard Medical School, Boston, MA 02115, USA
| | - Filippo Rossignoli
- Center for Stem Cell and Translational Immunotherapy (CSTI), Harvard Medical School, Boston, MA 02115, USA; Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Khalid Shah
- Center for Stem Cell and Translational Immunotherapy (CSTI), Harvard Medical School, Boston, MA 02115, USA; Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| |
Collapse
|
6
|
Immunotherapeutic Approaches for Glioblastoma Treatment. Biomedicines 2022; 10:biomedicines10020427. [PMID: 35203636 PMCID: PMC8962267 DOI: 10.3390/biomedicines10020427] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/05/2022] [Accepted: 02/08/2022] [Indexed: 11/17/2022] Open
Abstract
Glioblastoma remains a challenging disease to treat, despite well-established standard-of-care treatments, with a median survival consistently of less than 2 years. In this review, we delineate the unique disease-specific challenges for immunotherapies, both brain-related and non-brain-related, which will need to be adequately overcome for the development of effective treatments. We also review current immunotherapy treatments, with a focus on clinical applications, and propose future directions for the field of GBM immunotherapy.
Collapse
|
7
|
da Silva LHR, Catharino LCC, da Silva VJ, Evangelista GCM, Barbuto JAM. The War Is on: The Immune System against Glioblastoma—How Can NK Cells Drive This Battle? Biomedicines 2022; 10:biomedicines10020400. [PMID: 35203609 PMCID: PMC8962431 DOI: 10.3390/biomedicines10020400] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/09/2021] [Accepted: 12/16/2021] [Indexed: 11/24/2022] Open
Abstract
Natural killer (NK) cells are innate lymphocytes that play an important role in immunosurveillance, acting alongside other immune cells in the response against various types of malignant tumors and the prevention of metastasis. Since their discovery in the 1970s, they have been thoroughly studied for their capacity to kill neoplastic cells without the need for previous sensitization, executing rapid and robust cytotoxic activity, but also helper functions. In agreement with this, NK cells are being exploited in many ways to treat cancer. The broad arsenal of NK-based therapies includes adoptive transfer of in vitro expanded and activated cells, genetically engineered cells to contain chimeric antigen receptors (CAR-NKs), in vivo stimulation of NK cells (by cytokine therapy, checkpoint blockade therapies, etc.), and tumor-specific antibody-guided NK cells, among others. In this article, we review pivotal aspects of NK cells’ biology and their contribution to immune responses against tumors, as well as providing a wide perspective on the many antineoplastic strategies using NK cells. Finally, we also discuss those approaches that have the potential to control glioblastoma—a disease that, currently, causes inevitable death, usually in a short time after diagnosis.
Collapse
Affiliation(s)
- Lucas Henrique Rodrigues da Silva
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508000, Brazil; (L.H.R.d.S.); (L.C.C.C.); (V.J.d.S.); (G.C.M.E.)
| | - Luana Correia Croda Catharino
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508000, Brazil; (L.H.R.d.S.); (L.C.C.C.); (V.J.d.S.); (G.C.M.E.)
| | - Viviane Jennifer da Silva
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508000, Brazil; (L.H.R.d.S.); (L.C.C.C.); (V.J.d.S.); (G.C.M.E.)
- Laboratory of Medical Investigation in Pathogenesis and Targeted Therapy in Onco-Immuno-Hematology (LIM-31), Departamento de Hematologia, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 0124690, Brazil
| | - Gabriela Coeli Menezes Evangelista
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508000, Brazil; (L.H.R.d.S.); (L.C.C.C.); (V.J.d.S.); (G.C.M.E.)
| | - José Alexandre Marzagão Barbuto
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508000, Brazil; (L.H.R.d.S.); (L.C.C.C.); (V.J.d.S.); (G.C.M.E.)
- Laboratory of Medical Investigation in Pathogenesis and Targeted Therapy in Onco-Immuno-Hematology (LIM-31), Departamento de Hematologia, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 0124690, Brazil
- Correspondence: ; Tel.: +55-11-3091-7375
| |
Collapse
|
8
|
Wang EJ, Chen JS, Jain S, Morshed RA, Haddad AF, Gill S, Beniwal AS, Aghi MK. Immunotherapy Resistance in Glioblastoma. Front Genet 2021; 12:750675. [PMID: 34976006 PMCID: PMC8718605 DOI: 10.3389/fgene.2021.750675] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/27/2021] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma is the most common malignant primary brain tumor in adults. Despite treatment consisting of surgical resection followed by radiotherapy and adjuvant chemotherapy, survival remains poor at a rate of 26.5% at 2 years. Recent successes in using immunotherapies to treat a number of solid and hematologic cancers have led to a growing interest in harnessing the immune system to target glioblastoma. Several studies have examined the efficacy of various immunotherapies, including checkpoint inhibitors, vaccines, adoptive transfer of lymphocytes, and oncolytic virotherapy in both pre-clinical and clinical settings. However, these therapies have yielded mixed results at best when applied to glioblastoma. While the initial failures of immunotherapy were thought to reflect the immunoprivileged environment of the brain, more recent studies have revealed immune escape mechanisms created by the tumor itself and adaptive resistance acquired in response to therapy. Several of these resistance mechanisms hijack key signaling pathways within the immune system to create a protumoral microenvironment. In this review, we discuss immunotherapies that have been trialed in glioblastoma, mechanisms of tumor resistance, and strategies to sensitize these tumors to immunotherapies. Insights gained from the studies summarized here may help pave the way for novel therapies to overcome barriers that have thus far limited the success of immunotherapy in glioblastoma.
Collapse
Affiliation(s)
- Elaina J. Wang
- Department of Neurological Surgery, The Warren Alpert School of Medicine, Brown University, Providence, RI, United States
| | - Jia-Shu Chen
- Department of Neurological Surgery, The Warren Alpert School of Medicine, Brown University, Providence, RI, United States
| | - Saket Jain
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Ramin A. Morshed
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Alexander F. Haddad
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Sabraj Gill
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Angad S. Beniwal
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Manish K. Aghi
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
9
|
Kilian M, Bunse T, Wick W, Platten M, Bunse L. Genetically Modified Cellular Therapies for Malignant Gliomas. Int J Mol Sci 2021; 22:12810. [PMID: 34884607 PMCID: PMC8657496 DOI: 10.3390/ijms222312810] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/12/2021] [Accepted: 11/22/2021] [Indexed: 01/22/2023] Open
Abstract
Despite extensive preclinical research on immunotherapeutic approaches, malignant glioma remains a devastating disease of the central nervous system for which standard of care treatment is still confined to resection and radiochemotherapy. For peripheral solid tumors, immune checkpoint inhibition has shown substantial clinical benefit, while promising preclinical results have yet failed to translate into clinical efficacy for brain tumor patients. With the advent of high-throughput sequencing technologies, tumor antigens and corresponding T cell receptors (TCR) and antibodies have been identified, leading to the development of chimeric antigen receptors (CAR), which are comprised of an extracellular antibody part and an intracellular T cell receptor signaling part, to genetically engineer T cells for antigen recognition. Due to efficacy in other tumor entities, a plethora of CARs has been designed and tested for glioma, with promising signs of biological activity. In this review, we describe glioma antigens that have been targeted using CAR T cells preclinically and clinically, review their drawbacks and benefits, and illustrate how the emerging field of transgenic TCR therapy can be used as a potent alternative for cell therapy of glioma overcoming antigenic limitations.
Collapse
Affiliation(s)
- Michael Kilian
- DKTK (German Cancer Consortium), Clinical Cooperation Unit (CCU), Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Theresa Bunse
- DKTK (German Cancer Consortium), Clinical Cooperation Unit (CCU), Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, MCTN, University of Heidelberg, 68167 Mannheim, Germany
| | - Wolfgang Wick
- Neurology Clinic, Heidelberg University Hospital, University of Heidelberg, 69120 Heidelberg, Germany
- DKTK CCU Neurooncology, DKFZ, 69120 Heidelberg, Germany
| | - Michael Platten
- DKTK (German Cancer Consortium), Clinical Cooperation Unit (CCU), Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, MCTN, University of Heidelberg, 68167 Mannheim, Germany
- Immune Monitoring Unit, National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
- Helmholtz-Institute of Translational Oncology (HI-TRON), 55131 Mainz, Germany
| | - Lukas Bunse
- DKTK (German Cancer Consortium), Clinical Cooperation Unit (CCU), Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, MCTN, University of Heidelberg, 68167 Mannheim, Germany
| |
Collapse
|
10
|
Ex Vivo Expanded and Activated Natural Killer Cells Prolong the Overall Survival of Mice with Glioblastoma-like Cell-Derived Tumors. Int J Mol Sci 2021; 22:ijms22189975. [PMID: 34576141 PMCID: PMC8472834 DOI: 10.3390/ijms22189975] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/09/2021] [Accepted: 09/13/2021] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma (GBM) is the leading malignant intracranial tumor and is associated with a poor prognosis. Highly purified, activated natural killer (NK) cells, designated as genuine induced NK cells (GiNKs), represent a promising immunotherapy for GBM. We evaluated the anti-tumor effect of GiNKs in association with the programmed death 1(PD-1)/PD-ligand 1 (PD-L1) immune checkpoint pathway. We determined the level of PD-1 expression, a receptor known to down-regulate the immune response against malignancy, on GiNKs. PD-L1 expression on glioma cell lines (GBM-like cell line U87MG, and GBM cell line T98G) was also determined. To evaluate the anti-tumor activity of GiNKs in vivo, we used a xenograft model of subcutaneously implanted U87MG cells in immunocompromised NOG mice. The GiNKs expressed very low levels of PD-1. Although PD-L1 was expressed on U87MG and T98G cells, the expression levels were highly variable. Our xenograft model revealed that the retro-orbital administration of GiNKs and interleukin-2 (IL-2) prolonged the survival of NOG mice bearing subcutaneous U87MG-derived tumors. PD-1 blocking antibodies did not have an additive effect with GiNKs for prolonging survival. GiNKs may represent a promising cell-based immunotherapy for patients with GBM and are minimally affected by the PD-1/PD-L1 immune evasion axis in GBM.
Collapse
|
11
|
Melero I, Castanon E, Alvarez M, Champiat S, Marabelle A. Intratumoural administration and tumour tissue targeting of cancer immunotherapies. Nat Rev Clin Oncol 2021; 18:558-576. [PMID: 34006998 PMCID: PMC8130796 DOI: 10.1038/s41571-021-00507-y] [Citation(s) in RCA: 296] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2021] [Indexed: 02/04/2023]
Abstract
Immune-checkpoint inhibitors and chimeric antigen receptor (CAR) T cells are revolutionizing oncology and haematology practice. With these and other immunotherapies, however, systemic biodistribution raises safety issues, potentially requiring the use of suboptimal doses or even precluding their clinical development. Delivering or attracting immune cells or immunomodulatory factors directly to the tumour and/or draining lymph nodes might overcome these problems. Hence, intratumoural delivery and tumour tissue-targeted compounds are attractive options to increase the in situ bioavailability and, thus, the efficacy of immunotherapies. In mouse models, intratumoural administration of immunostimulatory monoclonal antibodies, pattern recognition receptor agonists, genetically engineered viruses, bacteria, cytokines or immune cells can exert powerful effects not only against the injected tumours but also often against uninjected lesions (abscopal or anenestic effects). Alternatively, or additionally, biotechnology strategies are being used to achieve higher functional concentrations of immune mediators in tumour tissues, either by targeting locally overexpressed moieties or engineering 'unmaskable' agents to be activated by elements enriched within tumour tissues. Clinical trials evaluating these strategies are ongoing, but their development faces issues relating to the administration methodology, pharmacokinetic parameters, pharmacodynamic end points, and immunobiological and clinical response assessments. Herein, we discuss these approaches in the context of their historical development and describe the current landscape of intratumoural or tumour tissue-targeted immunotherapies.
Collapse
Affiliation(s)
- Ignacio Melero
- Department of Immunology, Clínica Universidad de Navarra, Pamplona, Spain.
- Department of Oncology, Clínica Universidad de Navarra, Pamplona, Spain.
- Program for Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Universidad de Navarra, Pamplona, Spain.
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
| | - Eduardo Castanon
- Department of Immunology, Clínica Universidad de Navarra, Pamplona, Spain
- Department of Oncology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Maite Alvarez
- Program for Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Stephane Champiat
- Département d'Innovation Thérapeutique et d'Essais Précoces (DITEP), Université Paris Saclay, Gustave Roussy, Villejuif, France
- INSERM U1015, Gustave Roussy, Villejuif, France
- Biotherapies for In Situ Antitumor Immunization (BIOTHERIS), Centre d'Investigation Clinique INSERM CICBT1428, Villejuif, France
| | - Aurelien Marabelle
- Département d'Innovation Thérapeutique et d'Essais Précoces (DITEP), Université Paris Saclay, Gustave Roussy, Villejuif, France.
- INSERM U1015, Gustave Roussy, Villejuif, France.
- Biotherapies for In Situ Antitumor Immunization (BIOTHERIS), Centre d'Investigation Clinique INSERM CICBT1428, Villejuif, France.
| |
Collapse
|
12
|
Karachi A, Dastmalchi F, Nazarian S, Huang J, Sayour EJ, Jin L, Yang C, Mitchell DA, Rahman M. Optimizing T Cell-Based Therapy for Glioblastoma. Front Immunol 2021; 12:705580. [PMID: 34421912 PMCID: PMC8374079 DOI: 10.3389/fimmu.2021.705580] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/20/2021] [Indexed: 11/30/2022] Open
Abstract
Evading T cell surveillance is a hallmark of cancer. Patients with solid tissue malignancy, such as glioblastoma (GBM), have multiple forms of immune dysfunction, including defective T cell function. T cell dysfunction is exacerbated by standard treatment strategies such as steroids, chemotherapy, and radiation. Reinvigoration of T cell responses can be achieved by utilizing adoptively transferred T cells, including CAR T cells. However, these cells are at risk for depletion and dysfunction as well. This review will discuss adoptive T cell transfer strategies and methods to avoid T cell dysfunction for the treatment of brain cancer.
Collapse
Affiliation(s)
- Aida Karachi
- Lillian S. Wells Department of Neurosurgery, University of Florida (UF) Brain Tumor Immunotherapy Program, University of Florida, Gainesville, FL, United States
| | - Farhad Dastmalchi
- Lillian S. Wells Department of Neurosurgery, University of Florida (UF) Brain Tumor Immunotherapy Program, University of Florida, Gainesville, FL, United States
| | - Saina Nazarian
- Lillian S. Wells Department of Neurosurgery, University of Florida (UF) Brain Tumor Immunotherapy Program, University of Florida, Gainesville, FL, United States
| | - Jianping Huang
- Lillian S. Wells Department of Neurosurgery, University of Florida (UF) Brain Tumor Immunotherapy Program, University of Florida, Gainesville, FL, United States
| | - Elias J Sayour
- Lillian S. Wells Department of Neurosurgery, University of Florida (UF) Brain Tumor Immunotherapy Program, University of Florida, Gainesville, FL, United States
| | - Linchun Jin
- Lillian S. Wells Department of Neurosurgery, University of Florida (UF) Brain Tumor Immunotherapy Program, University of Florida, Gainesville, FL, United States
| | - Changlin Yang
- Lillian S. Wells Department of Neurosurgery, University of Florida (UF) Brain Tumor Immunotherapy Program, University of Florida, Gainesville, FL, United States
| | - Duane A Mitchell
- Lillian S. Wells Department of Neurosurgery, University of Florida (UF) Brain Tumor Immunotherapy Program, University of Florida, Gainesville, FL, United States
| | - Maryam Rahman
- Lillian S. Wells Department of Neurosurgery, University of Florida (UF) Brain Tumor Immunotherapy Program, University of Florida, Gainesville, FL, United States
| |
Collapse
|
13
|
Desbaillets N, Hottinger AF. Immunotherapy in Glioblastoma: A Clinical Perspective. Cancers (Basel) 2021; 13:3721. [PMID: 34359621 PMCID: PMC8345081 DOI: 10.3390/cancers13153721] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma is the most frequent and the most aggressive brain tumor. It is notoriously resistant to current treatments, and the prognosis remains dismal. Immunotherapies have revolutionized the treatment of numerous cancer types and generate great hope for glioblastoma, alas without success until now. In this review, the rationale underlying immune targeting of glioblastoma, as well as the challenges faced when targeting these highly immunosuppressive tumors, are discussed. Innovative immune-targeting strategies including cancer vaccines, oncolytic viruses, checkpoint blockade inhibitors, adoptive cell transfer, and CAR T cells that have been investigated in glioblastoma are reviewed. From a clinical perspective, key clinical trial findings and ongoing trials are discussed for each approach. Finally, limitations, either biological or arising from trial designs are analyzed, and strategies to overcome them are presented. Proof of efficacy for immunotherapy approaches remains to be demonstrated in glioblastoma, but our rapidly expanding understanding of its biology, its immune microenvironment, and the emergence of novel promising combinatorial approaches might allow researchers to finally fulfill the medical need for GBM patients.
Collapse
Affiliation(s)
- Nicolas Desbaillets
- Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois & Université de Lausanne, 1011 Lausanne, Switzerland;
| | - Andreas Felix Hottinger
- Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois & Université de Lausanne, 1011 Lausanne, Switzerland;
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, 1011 Lausanne, Switzerland
| |
Collapse
|
14
|
Stem cells-derived natural killer cells for cancer immunotherapy: current protocols, feasibility, and benefits of ex vivo generated natural killer cells in treatment of advanced solid tumors. Cancer Immunol Immunother 2021; 70:3369-3395. [PMID: 34218295 DOI: 10.1007/s00262-021-02975-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 05/26/2021] [Indexed: 12/13/2022]
Abstract
Nowadays, natural killer (NK) cell-based immunotherapy provides a practical therapeutic strategy for patients with advanced solid tumors (STs). This approach is adaptively conducted by the autologous and identical NK cells after in vitro expansion and overnight activation. However, the NK cell-based cancer immunotherapy has been faced with some fundamental and technical limitations. Moreover, the desirable outcomes of the NK cell therapy may not be achieved due to the complex tumor microenvironment by inhibition of intra-tumoral polarization and cytotoxicity of implanted NK cells. Currently, stem cells (SCs) technology provides a powerful opportunity to generate more effective and universal sources of the NK cells. Till now, several strategies have been developed to differentiate types of the pluripotent and adult SCs into the mature NK cells, with both feeder layer-dependent and/or feeder laye-free strategies. Higher cytokine production and intra-tumoral polarization capabilities as well as stronger anti-tumor properties are the main features of these SCs-derived NK cells. The present review article focuses on the principal barriers through the conventional NK cell immunotherapies for patients with advanced STs. It also provides a comprehensive resource of protocols regarding the generation of SCs-derived NK cells in an ex vivo condition.
Collapse
|
15
|
Luzzi S, Giotta Lucifero A, Brambilla I, Magistrali M, Mosconi M, Savasta S, Foiadelli T. Adoptive immunotherapies in neuro-oncology: classification, recent advances, and translational challenges. ACTA BIO-MEDICA : ATENEI PARMENSIS 2020; 91:18-31. [PMID: 32608373 PMCID: PMC7975830 DOI: 10.23750/abm.v91i7-s.9952] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 06/04/2020] [Indexed: 12/16/2022]
Abstract
Background: Adoptive immunotherapies are among the pillars of ongoing biological breakthroughs in neuro-oncology, as their potential applications are tremendously wide. The present literature review comprehensively classified adoptive immunotherapies in neuro-oncology, provides an update, and overviews the main translational challenges of this approach. Methods: The PubMed/MEDLINE platform, Medical Subject Heading (MeSH) database, and ClinicalTrials.gov website were the sources. The MeSH terms “Immunotherapy, Adoptive,” “Cell- and Tissue-Based Therapy,” “Tissue Engineering,” and “Cell Engineering” were combined with “Central Nervous System,” and “Brain.” “Brain tumors” and “adoptive immunotherapy” were used for a further unrestricted search. Only articles published in the last 5 years were selected and further sorted based on the best match and relevance. The search terms “Central Nervous System Tumor,” “Malignant Brain Tumor,” “Brain Cancer,” “Brain Neoplasms,” and “Brain Tumor” were used on the ClinicalTrials.gov website. Results: A total of 79 relevant articles and 16 trials were selected. T therapies include chimeric antigen receptor T (CAR T) cell therapy and T cell receptor (TCR) transgenic therapy. Natural killer (NK) cell-based therapies are another approach; combinations are also possible. Trials in phase 1 and 2 comprised 69% and 31% of the studies, respectively, 8 of which were concluded. CAR T cell therapy targeting epidermal growth factor receptor variant III (EGFRvIII) was demonstrated to reduce the recurrence rate of glioblastoma after standard-of-care treatment. Conclusion: Adoptive immunotherapies can be classified as T, NK, and NKT cell-based. CAR T cell therapy redirected against EGFRvIII has been shown to be the most promising treatment for glioblastoma. Overcoming immune tolerance and immune escape are the main translational challenges in the near future of neuro-oncology. (www.actabiomedica.it)
Collapse
Affiliation(s)
- Sabino Luzzi
- Neurosurgery Unit, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy; Neurosurgery Unit, Department of Surgical Sciences, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.
| | - Alice Giotta Lucifero
- Neurosurgery Unit, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy.
| | - Ilaria Brambilla
- Pediatric Clinic, Department of Pediatrics, Fondazione IRCCS Policlinico San Matteo, Uni-versity of Pavia, Pavia, Italy.
| | - Mariasole Magistrali
- Pediatric Clinic, Department of Pediatrics, Fondazione IRCCS Policlinico San Matteo, Uni-versity of Pavia, Pavia, Italy.
| | - Mario Mosconi
- Orthopaedic and Traumatology Unit, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy.
| | - Salvatore Savasta
- Pediatric Clinic, Department of Pediatrics, Fondazione IRCCS Policlinico San Matteo, Uni-versity of Pavia, Pavia, Italy.
| | - Thomas Foiadelli
- Pediatric Clinic, Department of Pediatrics, Fondazione IRCCS Policlinico San Matteo, Uni-versity of Pavia, Pavia, Italy.
| |
Collapse
|
16
|
Cao JX, Gao WJ, You J, Wu LH, Wang ZX. Assessment of the efficacy of passive cellular immunotherapy for glioma patients. Rev Neurosci 2020; 31:427-440. [PMID: 31926107 DOI: 10.1515/revneuro-2019-0102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 11/08/2019] [Indexed: 11/15/2022]
Abstract
To evaluate the therapeutic efficacy of passive cellular immunotherapy for glioma, a total of 979 patients were assigned to the meta-analysis. PubMed and the Cochrane Central Register of Controlled Trials were searched initially from February 2018 and updated in April 2019. The overall survival (OS) rates and Karnofsky performance status (KPS) values of patients who underwent passive cellular immunotherapy were compared to those of patients who did not undergo immunotherapy. The proportion of survival rates was also evaluated in one group of clinical trials. Pooled analysis was performed with random- or fixed-effects models. Clinical trials of lymphokine-activated killer cells, cytotoxic T lymphocytes, autologous tumor-specific T lymphocytes, chimeric antigen receptor T cells, cytokine-induced killer cells, cytomegalovirus-specific T cells, and natural killer cell therapies were selected. Results showed that treatment of glioma with passive cellular immunotherapy was associated with a significantly improved 0.5-year OS (p = 0.003) as well as improved 1-, 1.5-, and 3-year OS (p ≤ 0.05). A meta-analysis of 206 patients in one group of clinical trials with 12-month follow-up showed that the overall pooled survival rate was 37.9% (p = 0.003). Analysis of KPS values demonstrated favorable results for the immunotherapy arm (p < 0.001). Thus, the present meta-analysis showed that passive cellular immunotherapy prolongs survival and improves quality of life for glioma patients, suggesting that it has some clinical benefits.
Collapse
Affiliation(s)
- Jun-Xia Cao
- Biotherapy Center, The Seventh Medical Center of PLA General Hospital, No. 5 Nan Men Cang Road, Dongcheng District, Beijing 100700, China
| | - Wei-Jian Gao
- Biotherapy Center, The Seventh Medical Center of PLA General Hospital, No. 5 Nan Men Cang Road, Dongcheng District, Beijing 100700, China
| | - Jia You
- Biotherapy Center, The Seventh Medical Center of PLA General Hospital, No. 5 Nan Men Cang Road, Dongcheng District, Beijing 100700, China
| | - Li-Hua Wu
- Biotherapy Center, The Seventh Medical Center of PLA General Hospital, No. 5 Nan Men Cang Road, Dongcheng District, Beijing 100700, China
| | - Zheng-Xu Wang
- Biotherapy Center, The Seventh Medical Center of PLA General Hospital, No. 5 Nan Men Cang Road, Dongcheng District, Beijing 100700, China, e-mail:
| |
Collapse
|
17
|
Lynes JP, Nwankwo AK, Sur HP, Sanchez VE, Sarpong KA, Ariyo OI, Dominah GA, Nduom EK. Biomarkers for immunotherapy for treatment of glioblastoma. J Immunother Cancer 2020; 8:e000348. [PMID: 32474411 PMCID: PMC7264836 DOI: 10.1136/jitc-2019-000348] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2020] [Indexed: 12/25/2022] Open
Abstract
Immunotherapy is a promising new therapeutic field that has demonstrated significant benefits in many solid-tumor malignancies, such as metastatic melanoma and non-small cell lung cancer. However, only a subset of these patients responds to treatment. Glioblastoma (GBM) is the most common malignant primary brain tumor with a poor prognosis of 14.6 months and few treatment advancements over the last 10 years. There are many clinical trials testing immune therapies in GBM, but patient responses in these studies have been highly variable and a definitive benefit has yet to be identified. Biomarkers are used to quantify normal physiology and physiological response to therapies. When extensively characterized and vigorously validated, they have the potential to delineate responders from non-responders for patients treated with immunotherapy in malignancies outside of the central nervous system (CNS) as well as GBM. Due to the challenges of current modalities of radiographic diagnosis and disease monitoring, identification of new predictive and prognostic biomarkers to gauge response to immune therapy for patients with GBM will be critical in the precise treatment of this highly heterogenous disease. This review will explore the current and future strategies for the identification of potential biomarkers in the field of immunotherapy for GBM, as well as highlight major challenges of adapting immune therapy for CNS malignancies.
Collapse
Affiliation(s)
- John P Lynes
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Anthony K Nwankwo
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Hannah P Sur
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Victoria E Sanchez
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Kwadwo A Sarpong
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Oluwatobi I Ariyo
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Gifty A Dominah
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Edjah K Nduom
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
18
|
Marenco-Hillembrand L, Wijesekera O, Suarez-Meade P, Mampre D, Jackson C, Peterson J, Trifiletti D, Hammack J, Ortiz K, Lesser E, Spiegel M, Prevatt C, Hawayek M, Quinones-Hinojosa A, Chaichana KL. Trends in glioblastoma: outcomes over time and type of intervention: a systematic evidence based analysis. J Neurooncol 2020; 147:297-307. [PMID: 32157552 DOI: 10.1007/s11060-020-03451-6] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 03/05/2020] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Despite aggressive treatment with chemoradiotherapy and maximum surgical resection, survival in patients with glioblastoma (GBM) remains poor. Ongoing efforts are aiming to prolong the lifespan of these patients; however, disparities exist in reported survival values with lack of clear evidence that objectively examines GBM survival trends. We aim to describe the current status and advances in the survival of patients with GBM, by analyzing median overall survival through time and between treatment modalities. METHODS A systematic review was conducted according to PRISMA guidelines to identify articles of newly diagnosed glioblastoma from 1978 to 2018. Full-text glioblastoma papers with human subjects, ≥ 18 years old, and n ≥ 25, were included for evaluation. RESULTS The central tendency of median overall survival (MOS) was 13.5 months (2.3-29.6) and cumulative 5-year survival was 5.8% (0.01%-29.1%), with a significant difference in survival between studies that predate versus postdate the implementation of temozolomide and radiation, [12.5 (2.3-28) vs 15.6 (3.8-29.6) months, P < 0.001]. In clinical trials, bevacizumab [18.2 (10.6-23.0) months], tumor treating fields (TTF) [20.7 (20.5-20.9) months], and vaccines [19.2 (15.3-26.0) months] reported the highest central measure of median survival. CONCLUSION Coadministration with radiotherapy and temozolomide provided a statistically significant increase in survival for patients suffering from glioblastoma. However, the natural history for GBM remains poor. Therapies including TTF pooled values of MOS and provide means of prolonging the survival of GBM patients.
Collapse
Affiliation(s)
- Lina Marenco-Hillembrand
- Department of Neurological Surgery, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Olindi Wijesekera
- Department of Neurological Surgery, Case Western University, Cleveland, OH, USA
| | - Paola Suarez-Meade
- Department of Neurological Surgery, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - David Mampre
- School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Christina Jackson
- Department of Neurological Surgery, Johns Hopkins University, Baltimore, MD, USA
| | - Jennifer Peterson
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, USA
| | - Daniel Trifiletti
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, USA
| | - Julie Hammack
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
| | - Kyle Ortiz
- School of Medicine, University of Puerto Rico, San Juan, PR, USA
| | - Elizabeth Lesser
- Division of Biomedical Statistics and Bioinformatics, Mayo Clinic, Jacksonville, FL, USA
| | - Matthew Spiegel
- Division of Biomedical Statistics and Bioinformatics, Mayo Clinic, Jacksonville, FL, USA
| | - Calder Prevatt
- Department of Neurological Surgery, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Maria Hawayek
- School of Medicine, University of Puerto Rico, San Juan, PR, USA
| | - Alfredo Quinones-Hinojosa
- Department of Neurological Surgery, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Kaisorn L Chaichana
- Department of Neurological Surgery, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA.
| |
Collapse
|
19
|
Wang J, Shen F, Yao Y, Wang LL, Zhu Y, Hu J. Adoptive Cell Therapy: A Novel and Potential Immunotherapy for Glioblastoma. Front Oncol 2020; 10:59. [PMID: 32083009 PMCID: PMC7005203 DOI: 10.3389/fonc.2020.00059] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 01/13/2020] [Indexed: 12/16/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common primary brain tumor in adults with very poor prognosis and few advances in its treatment. Recently, fast-growing cancer immunotherapy provides a glimmer of hope for GBM treatment. Adoptive cell therapy (ACT) aims at infusing immune cells with direct anti-tumor activity, including tumor-infiltrating lymphocyte (TIL) transfer and genetically engineered T cells transfer. For example, complete regressions in patients with melanoma and refractory lymphoma have been shown by using naturally tumor-reactive T cells and genetically engineered T cells expressing the chimeric anti-CD19 receptor, respectively. Recently, the administration of ACT showed therapeutic potentials for GBM treatment as well. In this review, we summarize the success of ACT in the treatment of cancer and provide approaches to overcome some challenges of ACT to allow its adoption for GBM treatment.
Collapse
Affiliation(s)
- Jingyu Wang
- Department of Neurosurgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fang Shen
- Department of Orthopaedic Surgery's Spine Division, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, China
| | - Ying Yao
- Department of Neurosurgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lin-Lin Wang
- Department of Basic Medicine Sciences, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yongjian Zhu
- Department of Neurosurgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jue Hu
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
20
|
Loya J, Zhang C, Cox E, Achrol AS, Kesari S. Biological intratumoral therapy for the high-grade glioma part II: vector- and cell-based therapies and radioimmunotherapy. CNS Oncol 2019; 8:CNS40. [PMID: 31747784 PMCID: PMC6880300 DOI: 10.2217/cns-2019-0002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Management of high-grade gliomas (HGGs) remains a complex challenge with an overall poor prognosis despite aggressive multimodal treatment. New translational research has focused on maximizing tumor cell eradication through improved tumor cell targeting while minimizing collateral systemic side effects. In particular, biological intratumoral therapies have been the focus of novel translational research efforts due to their inherent potential to be both dynamically adaptive and target specific. This two part review will provide an overview of biological intratumoral therapies that have been evaluated in human clinical trials in HGGs, and summarize key advances and remaining challenges in the development of these therapies as a potential new paradigm in the management of HGGs. Part II discusses vector-based therapies, cell-based therapies and radioimmunotherapy.
Collapse
Affiliation(s)
- Joshua Loya
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Charlie Zhang
- Buffalo School of Medicine, State University of New York, Buffalo, NY 14202, USA
| | - Emily Cox
- Providence Medical Research Center, Spokane, WA 99204, USA
| | - Achal S Achrol
- John Wayne Cancer Institute, Pacific Neuroscience Institute, Santa Monica, CA 90404, USA
| | - Santosh Kesari
- John Wayne Cancer Institute, Pacific Neuroscience Institute, Santa Monica, CA 90404, USA
| |
Collapse
|
21
|
Burger MC, Zhang C, Harter PN, Romanski A, Strassheimer F, Senft C, Tonn T, Steinbach JP, Wels WS. CAR-Engineered NK Cells for the Treatment of Glioblastoma: Turning Innate Effectors Into Precision Tools for Cancer Immunotherapy. Front Immunol 2019; 10:2683. [PMID: 31798595 PMCID: PMC6868035 DOI: 10.3389/fimmu.2019.02683] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 10/31/2019] [Indexed: 01/08/2023] Open
Abstract
Glioblastoma (GB) is the most common and aggressive primary brain tumor in adults and currently incurable. Despite multimodal treatment regimens, median survival in unselected patient cohorts is <1 year, and recurrence remains almost inevitable. Escape from immune surveillance is thought to contribute to the development and progression of GB. While GB tumors are frequently infiltrated by natural killer (NK) cells, these are actively suppressed by the GB cells and the GB tumor microenvironment. Nevertheless, ex vivo activation with cytokines can restore cytolytic activity of NK cells against GB, indicating that NK cells have potential for adoptive immunotherapy of GB if potent cytotoxicity can be maintained in vivo. NK cells contribute to cancer immune surveillance not only by their direct natural cytotoxicity which is triggered rapidly upon stimulation through germline-encoded cell surface receptors, but also by modulating T-cell mediated antitumor immune responses through maintaining the quality of dendritic cells and enhancing the presentation of tumor antigens. Furthermore, similar to T cells, specific recognition and elimination of cancer cells by NK cells can be markedly enhanced through expression of chimeric antigen receptors (CARs), which provides an opportunity to generate NK-cell therapeutics of defined specificity for cancer immunotherapy. Here, we discuss effects of the GB tumor microenvironment on NK-cell functionality, summarize early treatment attempts with ex vivo activated NK cells, and describe relevant CAR target antigens validated with CAR-T cells. We then outline preclinical approaches that employ CAR-NK cells for GB immunotherapy, and give an overview on the ongoing clinical development of ErbB2 (HER2)-specific CAR-NK cells currently applied in a phase I clinical trial in glioblastoma patients.
Collapse
Affiliation(s)
- Michael C Burger
- Institute for Neurooncology, Goethe University, Frankfurt am Main, Germany.,Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Congcong Zhang
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Patrick N Harter
- Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Neurological Institute (Edinger Institute), Goethe University, Frankfurt am Main, Germany
| | - Annette Romanski
- German Red Cross Blood Donation Service Baden-Württemberg-Hessen, Frankfurt am Main, Germany
| | - Florian Strassheimer
- Institute for Neurooncology, Goethe University, Frankfurt am Main, Germany.,Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
| | - Christian Senft
- Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany.,Department of Neurosurgery, Goethe University, Frankfurt am Main, Germany
| | - Torsten Tonn
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Red Cross Blood Donation Service North-East, Dresden, Germany.,Transfusion Medicine, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, Germany
| | - Joachim P Steinbach
- Institute for Neurooncology, Goethe University, Frankfurt am Main, Germany.,Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Winfried S Wels
- Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| |
Collapse
|
22
|
Foster JB, Madsen PJ, Hegde M, Ahmed N, Cole KA, Maris JM, Resnick AC, Storm PB, Waanders AJ. Immunotherapy for pediatric brain tumors: past and present. Neuro Oncol 2019; 21:1226-1238. [PMID: 31504801 PMCID: PMC6784275 DOI: 10.1093/neuonc/noz077] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The field of cancer immunotherapy has progressed at an accelerated rate over the past decade. Pediatric brain tumors thus far have presented a formidable challenge for immunotherapy development, given their typically low mutational burden, location behind the blood-brain barrier in a unique tumor microenvironment, and intratumoral heterogeneity. Despite these challenges, recent developments in the field have resulted in exciting preclinical evidence for various immunotherapies and multiple clinical trials. This work reviews the history and advances in active immunotherapy, checkpoint blockade, and adoptive T-cell therapy for pediatric brain tumors, including ongoing clinical trials.
Collapse
Affiliation(s)
- Jessica B Foster
- Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Peter J Madsen
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Meenakshi Hegde
- Texas Children’s Cancer Center, Texas Children’s Hospital, Houston, Texas
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Nabil Ahmed
- Texas Children’s Cancer Center, Texas Children’s Hospital, Houston, Texas
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Kristina A Cole
- Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - John M Maris
- Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Adam C Resnick
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Center for Data Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Phillip B Storm
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Center for Data Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Angela J Waanders
- Division of Oncology, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois
| |
Collapse
|
23
|
Zhang H, Wang R, Yu Y, Liu J, Luo T, Fan F. Glioblastoma Treatment Modalities besides Surgery. J Cancer 2019; 10:4793-4806. [PMID: 31598150 PMCID: PMC6775524 DOI: 10.7150/jca.32475] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 07/04/2019] [Indexed: 01/04/2023] Open
Abstract
Glioblastoma multiforme (GBM) is commonly known as the most aggressive primary CNS tumor in adults. The mean survival of it is 14 to 15 months, following the standard therapy from surgery, chemotherapy, to radiotherapy. Efforts in recent decades have brought many novel therapies to light, however, with limitations. In this paper, authors reviewed current treatments for GBM besides surgery. In the past decades, only radiotherapy, temozolomide (TMZ), and tumor treating field (TTF) were approved by FDA. Though promising in preclinical experiments, therapeutic effects of other novel treatments including BNCT, anti-angiogenic therapy, immunotherapy, epigenetic therapy, oncolytic virus therapy, and gene therapy are still either uncertain or discouraging in clinical results. In this review, we went through current clinical trials, underlying causes, and future therapy designs to present neurosurgeons and researchers a sketch of this field.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Ruizhe Wang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Yuanqiang Yu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Jinfang Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Tianmeng Luo
- Department of Medical Affairs, Xiangya Hospital, Central South University, Chang Sha, Hunan Province, China
| | - Fan Fan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Center for Medical Genetics & Hunan Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Central South University Changsha, China
| |
Collapse
|
24
|
Targeting immune cells for cancer therapy. Redox Biol 2019; 25:101174. [PMID: 30917934 PMCID: PMC6859550 DOI: 10.1016/j.redox.2019.101174] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 03/08/2019] [Accepted: 03/17/2019] [Indexed: 12/29/2022] Open
Abstract
Recent years have seen a renaissance in the research linking inflammation and cancer with immune cells playing a central role in smouldering inflammation in the tumor microenvironment. Diverse immune cell types infiltrate the tumor microenvironment, and the dynamic tumor-immune cell interplay gives rise to a rich milieu of cytokines and growth factors. Fundamentally, this intricate cross-talk creates the conducive condition for tumor cell proliferation, survival and metastasis. Interestingly, the prominent impact of immune cells is expounded in their contrary pro-tumoral role, as well as their potential anti-cancer cellular weaponry. The latter is known as immunotherapy, a concept born out of evidence that tumors are susceptible to immune defence and that by manipulating the immune system, tumor growth can be successfully restrained. Naturally, a deeper understanding of the multifaceted roles of various immune cell types thus contributes toward developing innovative anti-cancer strategies. Therefore, in this review we first outline the roles played by the major immune cell types, such as macrophages, neutrophils, natural killer cells, T cells and B cells. We then explain the recently-explored strategies of immunomodulation and discuss some important approaches via an immunology perspective.
Collapse
|
25
|
Ex vivo-expanded highly purified natural killer cells in combination with temozolomide induce antitumor effects in human glioblastoma cells in vitro. PLoS One 2019; 14:e0212455. [PMID: 30840664 PMCID: PMC6402639 DOI: 10.1371/journal.pone.0212455] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 02/02/2019] [Indexed: 01/12/2023] Open
Abstract
Glioblastoma is the leading malignant glioma with a poor prognosis. This study aimed to investigate the antitumor effects of natural killer cells in combination with temozolomide as the standard chemotherapeutic agent for glioblastoma. Using a simple, feeder-less, and chemically defined culture method, we expanded human peripheral blood mononuclear cells and assessed the receptor expression, natural killer cell activity, and regulatory T cell frequency in expanded cells. Next, using the standard human glioblastoma cell lines (temozolomide-sensitive U87MG, temozolomide-resistant T98G, and LN-18), we assessed the ligand expressions of receptors on natural killer cells. Furthermore, the antitumor effects of the combination of the expanded natural killer cells and temozolomide were assessed using growth inhibition assays, apoptosis detection assays, and senescence-associated β-galactosidase activity assays in the glioblastoma cell lines. Novel culture systems were sufficient to attain highly purified (>98%), expanded (>440-fold) CD3−/CD56+ peripheral blood-derived natural killer cells. We designated the expanded population as genuine induced natural killer cells. Genuine induced natural killer cells exhibited a high natural killer activity and low regulatory T cell frequency compared with lymphokine-activated killer cells. Growth inhibition assays revealed that genuine induced natural killer cells inhibited the glioblastoma cell line growth but enhanced temozolomide-induced inhibition effects in U87MG. Apoptosis detection assays revealed that genuine induced natural killer cells induced apoptosis in the glioblastoma cell lines. Furthermore, senescence-associated β-galactosidase activity assays revealed that temozolomide induced senescence in U87MG. Genuine induced natural killer cells induce apoptosis in temozolomide-sensitive and temozolomide-resistant glioblastoma cells and enhances temozolomide-induced antitumor effects in different mechanisms. Hence, the combination of genuine induced natural killer cells and temozolomide may prove to be a promising immunochemotherapeutic approach in patients with glioblastoma if the antitumor effects in vivo can be demonstrated.
Collapse
|
26
|
Abstract
High-grade glioma is the most common primary brain tumor, with glioblastoma multiforme (GBM) accounting for 52% of all brain tumors. The current standard of care (SOC) of GBM involves surgery followed by adjuvant fractionated radiotherapy and chemotherapy. However, little progress has been made in extending overall survival, progression-free survival, and quality of life. Attempts to characterize and customize treatment of GBM have led to mitigating the deleterious effects of radiotherapy using hypofractionated radiotherapy, as well as various immunotherapies as a promising strategy for the incurable disease. A combination of radiotherapy and immunotherapy may prove to be even more effective than either alone, and preclinical evidence suggests that hypofractionated radiotherapy can actually prime the immune system to make immunotherapy more effective. This review addresses the complications of the current radiotherapy regimen, various methods of immunotherapy, and preclinical and clinical data from combined radioimmunotherapy trials.
Collapse
|
27
|
Stepanenko AA, Chekhonin VP. Recent Advances in Oncolytic Virotherapy and Immunotherapy for Glioblastoma: A Glimmer of Hope in the Search for an Effective Therapy? Cancers (Basel) 2018; 10:E492. [PMID: 30563098 PMCID: PMC6316815 DOI: 10.3390/cancers10120492] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 11/19/2018] [Accepted: 11/29/2018] [Indexed: 02/06/2023] Open
Abstract
To date, no targeted drugs, antibodies or combinations of chemotherapeutics have been demonstrated to be more efficient than temozolomide, or to increase efficacy of standard therapy (surgery, radiotherapy, temozolomide, steroid dexamethasone). According to recent phase III trials, standard therapy may ensure a median overall survival of up to 18⁻20 months for adult patients with newly diagnosed glioblastoma. These data explain a failure of positive non-controlled phase II trials to predict positive phase III trials and should result in revision of the landmark Stupp trial as a historical control for median overall survival in non-controlled trials. A high rate of failures in clinical trials and a lack of effective chemotherapy on the horizon fostered the development of conceptually distinct therapeutic approaches: dendritic cell/peptide immunotherapy, chimeric antigen receptor (CAR) T-cell therapy and oncolytic virotherapy. Recent early phase trials with the recombinant adenovirus DNX-2401 (Ad5-delta24-RGD), polio-rhinovirus chimera (PVSRIPO), parvovirus H-1 (ParvOryx), Toca 511 retroviral vector with 5-fluorocytosine, heat shock protein-peptide complex-96 (HSPPC-96) and dendritic cell vaccines, including DCVax-L vaccine, demonstrated that subsets of patients with glioblastoma/glioma may benefit from oncolytic virotherapy/immunotherapy (>3 years of survival after treatment). However, large controlled trials are required to prove efficacy of next-generation immunotherapeutics and oncolytic vectors.
Collapse
Affiliation(s)
- Aleksei A Stepanenko
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center for Psychiatry and Narcology, the Ministry of Health of the Russian Federation, Kropotkinsky lane 23, 119034 Moscow, Russia.
| | - Vladimir P Chekhonin
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center for Psychiatry and Narcology, the Ministry of Health of the Russian Federation, Kropotkinsky lane 23, 119034 Moscow, Russia.
- Department of Medical Nanobiotechnologies, Medico-Biological Faculty, N. I. Pirogov Russian National Research Medical University, the Ministry of Health of the Russian Federation, Ostrovitianov str. 1, 117997 Moscow, Russia.
| |
Collapse
|
28
|
|
29
|
Artene SA, Tuţă C, Dragoi A, Alexandru O, Stefana Oana P, Tache DE, Dănciulescu MM, Boldeanu MV, Siloşi CA, Dricu A. Current and emerging EGFR therapies for glioblastoma. J Immunoassay Immunochem 2018; 39:1-11. [PMID: 29308973 DOI: 10.1080/15321819.2017.1411816] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Glioblastomas (GBMs) are the most lethal and hard to treat malignancies in clinical practice. The standard of care for treating GBM involving surgery and adjuvant radiotherapy and concomitant temozolomide (TMZ) has remained virtually unchanged in the past decade. Molecular targeted therapies against cancer-specific structures have reported mediocre results in the treatment of GBM, due to multiple factors such as the presence of the blood brain barrier or a vast array of molecular alterations which greatly hinder the action of the most therapeutic agents. One such therapy is directed against the epidermal growth factor (EGF) and its' receptor (EGFR) using either monoclonal antibodies or tyrosine kinase inhibitors. Even though anti-EGF/EGFR treatment produced encouraging results in other forms of cancer it failed to present any clinical benefit for patients with GBM. Lately, immunotherapies that focus on using the host's own immune system against cancer cells have gained popularity, with approaches like peptide vaccination being successfully used in clinical trials for different types of malignancies. These immune-based therapies could hold the key to improving both the prognosis and quality of life for patients suffering for cancers previously considered incurable, such as GBM.
Collapse
Affiliation(s)
- Stefan Alexandru Artene
- a Department of Functional Sciences , University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Cristian Tuţă
- a Department of Functional Sciences , University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Alexandra Dragoi
- a Department of Functional Sciences , University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Oana Alexandru
- b Department of Neurology , "Bagdasar-Arseni" University of Medicine and Pharmacy Carol Davila, Bucharest, Romania
| | - Purcaru Stefana Oana
- a Department of Functional Sciences , University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Daniela Elise Tache
- a Department of Functional Sciences , University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | | | - Mihai Virgil Boldeanu
- d Department of Microbiology , University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Cristian Adrian Siloşi
- e Department of Immunology-Laboratory of Immunology , University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Anica Dricu
- a Department of Functional Sciences , University of Medicine and Pharmacy of Craiova, Craiova, Romania
| |
Collapse
|
30
|
NY-ESO-1- and survivin-specific T-cell responses in the peripheral blood from patients with glioma. Cancer Immunol Immunother 2017; 67:237-246. [PMID: 29058035 PMCID: PMC5799356 DOI: 10.1007/s00262-017-2066-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Accepted: 09/18/2017] [Indexed: 12/17/2022]
Abstract
The prognosis for patients with glioblastoma is grim. Ex vivo expanded tumor-associated antigen (TAA)-reactive T-cells from patients with glioma may represent a viable source for anticancer-directed cellular therapies. Immunohistochemistry was used to test the survivin (n = 40 samples) and NY-ESO-1 (n = 38 samples) protein expression in tumor specimens. T-cells from peripheral blood were stimulated with TAAs (synthetic peptides) in IL-2 and IL-7, or using a combination of IL-2, IL-15 and IL-21. CD4+ and CD8+ T-cells were tested for antigen-specific proliferation by flow cytometry, and IFN-γ production was tested by ELISA. Twenty-eight out of 38 cancer specimens exhibited NY-ESO-1 protein expression, 2/38 showed a strong universal (4+) NY-ESO-1 staining, and 9/40 cancer lesions exhibited a strong (4+) staining for survivin. We could detect antigen-specific IFN-γ responses in 25% blood samples for NY-ESO-1 and 30% for survivin. NY-ESO-1-expanded T-cells recognized naturally processed and presented epitopes. NY-ESO-1 or survivin expression in glioma represents viable targets for anticancer-directed T-cells for the biological therapy of patients with glioma.
Collapse
|
31
|
Felthun J, Reddy R, McDonald KL. How immunotherapies are targeting the glioblastoma immune environment. J Clin Neurosci 2017; 47:20-27. [PMID: 29042147 DOI: 10.1016/j.jocn.2017.10.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 10/02/2017] [Indexed: 12/13/2022]
Abstract
The diagnosis of glioblastoma remains one of the most dismal in medical practice, with current standard care only providing a median survival of 14.6 months. The need for new therapies is desperately clear. Components of the tumour microenvironment are demonstrating growing importance in the field, given they allow the tumour to utilise pathways involved in autoimmune prevention, something that enables the tumour's establishment and growth. As with many different cancers, the search for a new standard has progressed to the design of immunotherapies, which aim to counteract the immune changes within this microenvironment. Serotherapy, adoptive lymphocyte transfer, peptide and dendritic cell vaccines and a range of other methods are currently under investigation, while intracranial infection has also been researched for its capacity to reverse glioblastoma mediated immunosuppression. Some of these new therapies have shown promise, but it is a long road ahead before their incorporation into glioblastoma standard therapy.
Collapse
Affiliation(s)
- Jonathan Felthun
- Faculty of Medicine, University of New South Wales, Sydney, Australia.
| | - Rajesh Reddy
- Faculty of Medicine, University of New South Wales, Sydney, Australia; Department of Neurosurgery, Prince of Wales Hospital, Sydney, Australia
| | - Kerrie Leanne McDonald
- Cure Brain Cancer Foundation Biomarkers & Translational Research Group, Prince of Wales Clinical School, Lowy Cancer Research Centre, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
32
|
Zhang Y, Zhang X, Zhang A, Li K, Qu K. Clinical applications of dendritic cells-cytokine-induced killer cells mediated immunotherapy for pancreatic cancer: an up-to-date meta-analysis. Onco Targets Ther 2017; 10:4173-4192. [PMID: 28860827 PMCID: PMC5574601 DOI: 10.2147/ott.s143382] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
PURPOSE This study aimed to systematically evaluate the efficacy and safety of dendritic cells-cytokine-induced killer (DC-CIK) cells immunotherapy in treating pancreatic cancer (PC) patients. METHODS Data were collected from published articles of clinical trials. Databases including Web of Science, EMBASE, PubMed, Cochrane Library, Wanfang, and CNKI were searched. The main outcome measures in this research included the overall response rate (ORR), disease control rate (DCR), overall survival (OS), patients' quality of life (QoL), immune function, and adverse events. Comparative analysis was conducted between DC-CIK immunotherapy and chemotherapy (combined therapy) and chemotherapy alone. RESULTS This analysis covered 14 trials with 1,088 PC patients involved. The combined therapy showed advantages over chemotherapy alone in ORR (odds ratio [OR] =1.69, 95% confidence interval [CI] =1.20-2.38, P=0.003), DCR (OR =2.33, 95% CI =1.63-3.33, P<0.00001), OS (1-year OS, OR =3.61, 95% CI =2.41-5.40, P<0.00001; 3-year OS, OR =2.65, 95% CI =1.56-4.50, P=0.0003) and patients' QoL (P<0.01) with statistical significance. After immunotherapy, lymphocyte subsets' percentages of CD3+ (P<0.00001), CD4+ (P=0.01), CD3+CD56+ (P<0.00001), and cytokine levels of IFN-γ (P<0.00001) were significantly increased, and the percentages of CD4+CD25+CD127low (P<0.00001) and levels of IL-4 (P<0.0001) were significantly decreased, whereas analysis on CD8+ (P=0.59) and CD4+/CD8+ ratio (P=0.64) did not show a significant difference. CONCLUSION The combination of DC-CIK immunotherapy and chemotherapy is effective for PC treatment, indicated by prolonging the PC patients' survival time, which benefit from reconstructed immune function of patients.
Collapse
Affiliation(s)
| | | | - Anqi Zhang
- Department of Central Laboratory, Liaocheng People's Hospital of Taishan Medical University, Liaocheng, Shandong
| | - Ke Li
- Department of Central Laboratory, Liaocheng People's Hospital of Taishan Medical University, Liaocheng, Shandong
| | - Kai Qu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
33
|
McGranahan T, Li G, Nagpal S. History and current state of immunotherapy in glioma and brain metastasis. Ther Adv Med Oncol 2017; 9:347-368. [PMID: 28529551 PMCID: PMC5424864 DOI: 10.1177/1758834017693750] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 01/20/2017] [Indexed: 11/29/2022] Open
Abstract
Malignant brain tumors such as glioblastoma (GBM) and brain metastasis have poor prognosis despite conventional therapies. Successful use of vaccines and checkpoint inhibitors in systemic malignancy has increased the hope that immune therapies could improve survival in patients with brain tumors. Manipulating the immune system to fight malignancy has a long history of both modest breakthroughs and pitfalls that should be considered when applying the current immunotherapy approaches to patients with brain tumors. Therapeutic vaccine trials for GBM date back to the mid 1900s and have taken many forms; from irradiated tumor lysate to cell transfer therapies and peptide vaccines. These therapies were generally well tolerated without significant autoimmune toxicity, however also did not demonstrate significant clinical benefit. In contrast, the newer checkpoint inhibitors have demonstrated durable benefit in some metastatic malignancies, accompanied by significant autoimmune toxicity. While this toxicity was not unexpected, it exceeded what was predicted from pre-clinical studies and in many ways was similar to the prior trials of immunostimulants. This review will discuss the history of these studies and demonstrate that the future use of immune therapy for brain tumors will likely need a personalized approach that balances autoimmune toxicity with the opportunity for significant survival benefit.
Collapse
Affiliation(s)
- Tresa McGranahan
- Stanford Hospital and Clinics, Neurology, 300 Pasteur Drive, Stanford, CA 94305-2200, USA
| | - Gordon Li
- Stanford Hospital and Clinics, Neurosurgery, Stanford, CA, USA
| | - Seema Nagpal
- Stanford Hospital and Clinics, Neurology, Stanford, CA, USA
| |
Collapse
|
34
|
Schiariti MP, Restelli F, Ferroli P, Benetti A, Berenzi A, Ferri A, Ceserani V, Ciusani E, Cadei M, Finocchiaro G, Pessina A, Parati E, Pallini R, Alessandri G. Fibronectin-adherent peripheral blood derived mononuclear cells as Paclitaxel carriers for glioblastoma treatment: An in vitro study. Cytotherapy 2017; 19:721-734. [PMID: 28434806 DOI: 10.1016/j.jcyt.2017.03.069] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/20/2017] [Accepted: 03/10/2017] [Indexed: 12/25/2022]
Abstract
BACKGROUND Glioblastoma (GBM) represents the most aggressive malignant brain tumor in adults, with a risible median life expectancy despite gold standard treatment. Novel drug-delivery methods have been explored. Here we evaluated the possibility to use mononuclear cells (MCs) belonging to the monocytic-dendritic lineage as drug-carrier. METHODS MCs were obtained from 10 patients harboring a GBM, and from healthy volunteers, considered as controls. GBM tissue was also obtained from patients. MCs were cultured and the adherent population on fibronectin (FN-MCs), after immunocytochemistry and flow cytometry characterization, was loaded with Paclitaxel (FN-MCs-PTX). Antiproliferative and migration activity of FN-MCs-PTX was evaluated in two-dimensional (2D) and three-dimensional (3D) co-culture assays with red fluorescent U87 Malignant Glioma cells and primary GBM cells. Antiangiogenic properties of FN-MCs-PTX were tested on cultures with endothelial cells. RESULTS Phenotypical characterization showed a high expression of monocytic-dendritic markers in GBM cells and FN-MCs. FN-MCs demonstrated to effectively uptake PTX and to strongly inhibit GBM growth in vitro (P <0.01). Moreover, tumor-induced migration of MCs, although partially affected by the PTX cargo, remained statistically significant when compared with unprimed cells and this was confirmed in a 3D Matrigel model (P <0.01) and in a Trans-well assay (P <0.01). FN-MCs-PTX also disclosed considerable antiangiogenic properties. DISCUSSION Our results suggest that the fibronectin-adherent population of MCs isolated from peripheral blood can be an effective tool to inhibit GBM growth. Given the relative facility to obtain such cells and the short time needed for their culture and drug loading this approach may have potential as an adjuvant therapy for GBM.
Collapse
Affiliation(s)
- Marco Paolo Schiariti
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.
| | - Francesco Restelli
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Paolo Ferroli
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Anna Benetti
- Department of Clinical and Experimental Sciences, Institute of Pathological Anatomy, University of Brescia, Brescia, Italy
| | - Angiola Berenzi
- Department of Clinical and Experimental Sciences, Institute of Pathological Anatomy, University of Brescia, Brescia, Italy
| | - Anna Ferri
- Cellular Neurobiology Laboratory, Department of Cerebrovascular Diseases, IRCCS Neurological Institute C. Besta, Milan, Italy
| | - Valentina Ceserani
- Cellular Neurobiology Laboratory, Department of Cerebrovascular Diseases, IRCCS Neurological Institute C. Besta, Milan, Italy
| | - Emilio Ciusani
- Laboratory of Clinical Pathology and Neurogenetic Medicine, IRCCS Neurological Institute C. Besta, Milan, Italy
| | - Moris Cadei
- Department of Clinical and Experimental Sciences, Institute of Pathological Anatomy, University of Brescia, Brescia, Italy
| | - Gaetano Finocchiaro
- Molecular Neuroncology Unit, IRCCS Neurological Institute C. Besta, Milan, Italy
| | - Augusto Pessina
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Eugenio Parati
- Cellular Neurobiology Laboratory, Department of Cerebrovascular Diseases, IRCCS Neurological Institute C. Besta, Milan, Italy
| | - Roberto Pallini
- Institute of Neurosurgery, Catholic University of Sacro Cuore, Roma, Italy
| | - Giulio Alessandri
- Cellular Neurobiology Laboratory, Department of Cerebrovascular Diseases, IRCCS Neurological Institute C. Besta, Milan, Italy
| |
Collapse
|
35
|
Liu Z, Meng Q, Bartek J, Poiret T, Persson O, Rane L, Rangelova E, Illies C, Peredo IH, Luo X, Rao MV, Robertson RA, Dodoo E, Maeurer M. Tumor-infiltrating lymphocytes (TILs) from patients with glioma. Oncoimmunology 2016; 6:e1252894. [PMID: 28344863 DOI: 10.1080/2162402x.2016.1252894] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 10/13/2016] [Accepted: 10/14/2016] [Indexed: 12/11/2022] Open
Abstract
Tumor-infiltrating lymphocytes (TILs) may represent a viable source of T cells for the biological treatment of patients with gliomas. Glioma tissue was obtained from 16 patients, tumor cell lines were established, and TILs were expanded in 16/16 cases using a combination of IL-2/IL-15/IL-21. Intracellular cytokine staining (ICS, IL-2, IL-17, TNFα and IFNγ production) as well as a cytotoxicity assay was used to detect TIL reactivity against autologous tumor cells or shared tumor-associated antigens (TAAs; i.e., NY-ESO-1, Survivin or EGFRvIII). TILs were analyzed by flow cytometry, including T-cell receptor (TCR) Vβ family composition, exhaustion/activation and T-cell differentiation markers (CD45RA/CCR7). IL-2/IL-15/IL-21 expanded TILs exhibited a mixture of CD4+, CD8+, as well as CD3+ CD4-CD8- T cells with a predominant central memory CD45RA-CCR7+ phenotype. TIL showed low frequencies of T cells testing positive for PD-1, TIM-3 and CTLA-4. LAG3 tested positive in up to 30% of CD8+ TIL, with low (1.25%) frequencies in CD4+ T cells. TIL cultures exhibited preferential usage of Vβ families and recognition of autologous tumor cells defined by cytokine production and cytotoxicity. IL-2/IL-15/IL-21 expanded TILs represent a viable source for the cellular therapy of patients with gliomas.
Collapse
Affiliation(s)
- Zhenjiang Liu
- Therapeutic Immunology Unit, Department of Laboratory Medicine, Karolinska Institutet , Stockholm, Sweden
| | - Qingda Meng
- Therapeutic Immunology Unit, Department of Laboratory Medicine, Karolinska Institutet , Stockholm, Sweden
| | - Jiri Bartek
- Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden; Department of Clinical Neuroscience, Section for Neurosurgery, Karolinska Institutet, Stockholm, Sweden; Department of Neurosurgery, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Thomas Poiret
- Therapeutic Immunology Unit, Department of Laboratory Medicine, Karolinska Institutet , Stockholm, Sweden
| | - Oscar Persson
- Department of Neurosurgery, Karolinska University Hospital , Stockholm, Sweden
| | - Lalit Rane
- Therapeutic Immunology Unit, Department of Laboratory Medicine, Karolinska Institutet , Stockholm, Sweden
| | - Elena Rangelova
- Department of Clinical Science, Intervention and Technology, Karolinska Hospital , Stockholm, Sweden
| | - Christopher Illies
- Department of Neurosurgery, Karolinska University Hospital , Stockholm, Sweden
| | - Inti Harvey Peredo
- Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden; Department of Clinical Neuroscience, Section for Neurosurgery, Karolinska Institutet, Stockholm, Sweden
| | - Xiaohua Luo
- Therapeutic Immunology Unit, Department of Laboratory Medicine, Karolinska Institutet , Stockholm, Sweden
| | - Martin Vijayakumar Rao
- Therapeutic Immunology Unit, Department of Laboratory Medicine, Karolinska Institutet , Stockholm, Sweden
| | - Rebecca Axelsson Robertson
- Therapeutic Immunology Unit, Department of Laboratory Medicine, Karolinska Institutet , Stockholm, Sweden
| | - Ernest Dodoo
- Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden; Department of Clinical Neuroscience, Section for Neurosurgery, Karolinska Institutet, Stockholm, Sweden
| | - Markus Maeurer
- Therapeutic Immunology Unit, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; Center for Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
36
|
Tivnan A, Heilinger T, Lavelle EC, Prehn JHM. Advances in immunotherapy for the treatment of glioblastoma. J Neurooncol 2016; 131:1-9. [PMID: 27743144 PMCID: PMC5258809 DOI: 10.1007/s11060-016-2299-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 10/09/2016] [Indexed: 10/29/2022]
Abstract
Glioblastoma (GBM) is an aggressive brain tumour, associated with extremely poor prognosis and although there have been therapeutic advances, treatment options remain limited. This review focuses on the use of immunotherapy, harnessing the power of the host's immune system to reject cancer cells. Key challenges in glioma specific immunotherapy as with many other cancers are the limited immunogenicity of the cancer cells and the immunosuppressive environment of the tumour. Although specific antigens have been identified in several cancers; brain tumours, such as GBM, are considered poorly immunogenic. However, as detailed in this review, strategies aimed at circumventing these challenges are showing promise for GBM treatment; including identification of glioma specific antigens and endogenous immune cell activation in an attempt to overcome the immunosuppressive environment which is associated with GBM tumours. An up-to-date summary of current Phase I/II and ongoing Phase III GBM immunotherapy clinical trials is provided in addition to insights into promising preclinical approaches which are focused predominantly on increased induction of Type 1 helper T cell (Th1) immune responses within patients.
Collapse
Affiliation(s)
- Amanda Tivnan
- Department of Physiology and Medical Physics and RCSI Centre for Systems Medicine, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland.
| | - Tatjana Heilinger
- Department of Physiology and Medical Physics and RCSI Centre for Systems Medicine, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland.,IMC Fachhochschule Krems, University of Applied Sciences, Piaristengasse 1, 3500, Krems, Austria
| | - Ed C Lavelle
- Adjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, D02 PN40, Ireland.,Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin 2, D02 PN40, Ireland.,Advanced Materials Bio-Engineering Research Centre (AMBER), Trinity College Dublin, Dublin 2, D02 PN40, Ireland
| | - Jochen H M Prehn
- Department of Physiology and Medical Physics and RCSI Centre for Systems Medicine, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland
| |
Collapse
|
37
|
Hodges TR, Ferguson SD, Caruso HG, Kohanbash G, Zhou S, Cloughesy TF, Berger MS, Poste GH, Khasraw M, Ba S, Jiang T, Mikkelson T, Yung WKA, de Groot JF, Fine H, Cantley LC, Mellinghoff IK, Mitchell DA, Okada H, Heimberger AB. Prioritization schema for immunotherapy clinical trials in glioblastoma. Oncoimmunology 2016; 5:e1145332. [PMID: 27471611 DOI: 10.1080/2162402x.2016.1145332] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 01/12/2016] [Accepted: 01/16/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Emerging immunotherapeutic strategies for the treatment of glioblastoma (GBM) such as dendritic cell (DC) vaccines, heat shock proteins, peptide vaccines, and adoptive T-cell therapeutics, to name a few, have transitioned from the bench to clinical trials. With upcoming strategies and developing therapeutics, it is challenging to critically evaluate the practical, clinical potential of individual approaches and to advise patients on the most promising clinical trials. METHODS The authors propose a system to prioritize such therapies in an organized and data-driven fashion. This schema is based on four categories of factors: antigenic target robustness, immune-activation and -effector responses, preclinical vetting, and early evidence of clinical response. Each of these categories is subdivided to focus on the most salient elements for developing a successful immunotherapeutic approach for GBM, and a numerical score is generated. RESULTS The Score Card reveals therapeutics that have the most robust data to support their use, provides a reference prioritization score, and can be applied in a reiterative fashion with emerging data. CONCLUSIONS The authors hope that this schema will give physicians an evidence-based and rational framework to make the best referral decisions to better guide and serve this patient population.
Collapse
Affiliation(s)
- Tiffany R Hodges
- Department of Neurosurgery, The University of Texas M.D. Anderson Cancer Center , Houston, TX, USA
| | - Sherise D Ferguson
- Department of Neurosurgery, The University of Texas M.D. Anderson Cancer Center , Houston, TX, USA
| | - Hillary G Caruso
- The Division of Pediatrics, The University of Texas M.D. Anderson Cancer Center , Houston, TX, USA
| | - Gary Kohanbash
- Department of Neurosurgery, the University of California at San Francisco , San Francisco, USA
| | - Shouhao Zhou
- Department of Biostatistics, The University of Texas M.D. Anderson Cancer Center , Houston, TX, USA
| | - Timothy F Cloughesy
- Department of Neuro-Oncology, the University of California at Los Angeles , Los Angeles, CA, USA
| | - Mitchel S Berger
- Department of Neurosurgery, the University of California at San Francisco , San Francisco, USA
| | | | | | - Sujuan Ba
- The National Foundation for Cancer Research, Bethesda, MD, USA, Asian Fund for Cancer Research , Hong Kong, People's Republic of China
| | - Tao Jiang
- Department of Neurosurgery, Tiantan Hospital, Capital Medical University , Beijing, China
| | - Tom Mikkelson
- Department of Neurosurgery, Henry Ford Health System , Detroit, MI, USA
| | - W K Alfred Yung
- Department of Neuro-Oncology, The University of Texas M.D. Anderson Cancer Center , Houston, TX, USA
| | - John F de Groot
- Department of Neuro-Oncology, The University of Texas M.D. Anderson Cancer Center , Houston, TX, USA
| | - Howard Fine
- Division of Neuro-Oncology, Weill Cornell Medical College , New York, NY, USA
| | - Lewis C Cantley
- Department of Systems Biology, Harvard Medical School , Boston, MA, USA
| | - Ingo K Mellinghoff
- Department of Neurology and Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center , New York, NY, USA
| | - Duane A Mitchell
- Department of Neurosurgery, University of Florida , Gainesville, FL, USA
| | - Hideho Okada
- Department of Neurosurgery, the University of California at San Francisco , San Francisco, USA
| | - Amy B Heimberger
- Department of Neurosurgery, The University of Texas M.D. Anderson Cancer Center , Houston, TX, USA
| |
Collapse
|
38
|
Yang F, Jin H, Wang J, Sun Q, Yan C, Wei F, Ren X. Adoptive Cellular Therapy (ACT) for Cancer Treatment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 909:169-239. [PMID: 27240459 DOI: 10.1007/978-94-017-7555-7_4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Adoptive cellular therapy (ACT) with various lymphocytes or antigen-presenting cells is one stone in the pillar of cancer immunotherapy, which relies on the tumor-specific T cell. The transfusion of bulk T-cell population into patients is an effective treatment for regression of cancer. In this chapter, we summarize the development of various strategies in ACT for cancer immunotherapy and discuss some of the latest progress and obstacles in technical, safety, and even regulatory aspects to translate these technologies to the clinic. ACT is becoming a potentially powerful approach to cancer treatment. Further experiments and clinical trials are needed to optimize this strategy.
Collapse
Affiliation(s)
- Fan Yang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China
- Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China
| | - Hao Jin
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China
| | - Jian Wang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China
| | - Qian Sun
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China
| | - Cihui Yan
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China
| | - Feng Wei
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China
| | - Xiubao Ren
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China.
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China.
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China.
- Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China.
| |
Collapse
|
39
|
Mathios D, Park CK, Marcus WD, Alter S, Rhode PR, Jeng EK, Wong HC, Pardoll DM, Lim M. Therapeutic administration of IL-15 superagonist complex ALT-803 leads to long-term survival and durable antitumor immune response in a murine glioblastoma model. Int J Cancer 2015; 138:187-94. [PMID: 26174883 DOI: 10.1002/ijc.29686] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 06/28/2015] [Accepted: 07/06/2015] [Indexed: 01/24/2023]
Abstract
Glioblastoma is the most aggressive primary central nervous system malignancy with a poor prognosis in patients. Despite the need for better treatments against glioblastoma, very little progress has been made in discovering new therapies that exhibit superior survival benefit than the standard of care. Immunotherapy has been shown to be a promising treatment modality that could help improve clinical outcomes of glioblastoma patients by assisting the immune system to overcome the immunosuppressive tumor environment. Interleukin-15 (IL-15), a cytokine shown to activate several effector components of the immune system, may serve as an excellent immunotherapeutic candidate for the treatment of glioblastoma. Thus, we evaluated the efficacy of an IL-15 superagonist complex (IL-15N72D:IL-15RαSu-Fc; also known as ALT-803) in a murine GL261-luc glioblastoma model. We show that ALT-803, as a single treatment as well as in combination with anti-PD-1 antibody or stereotactic radiosurgery, exhibits a robust antitumor immune response resulting in a prolonged survival including complete remission in tumor bearing mice. In addition, ALT-803 treatment results in long-term immune memory against glioblastoma tumor rechallenge. Flow cytometric analysis of tumor infiltrating immune cells shows that ALT-803 leads to increased percentage of CD8+-cell infiltration, but not the NK cells, and IFN-γ production into the tumor microenvironment. Cell depletion studies, in accordance with the flow cytometric results, show that the ALT-803 therapeutic effect is dependent on CD4+ and CD8+ cells. These results provide a rationale for evaluating the therapeutic activity of ALT-803 against glioblastoma in the clinical setting.
Collapse
Affiliation(s)
- Dimitrios Mathios
- Johns Hopkins University School of Medicine, Department of Neurosurgery, Baltimore, MD
| | - Chul-Kee Park
- Johns Hopkins University School of Medicine, Department of Neurosurgery, Baltimore, MD.,Seoul National University College of Medicine, Department of Neurosurgery, Seoul, Republic of Korea
| | | | | | | | | | | | - Drew M Pardoll
- Johns Hopkins University School of Medicine, Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD
| | - Michael Lim
- Johns Hopkins University School of Medicine, Department of Neurosurgery, Baltimore, MD
| |
Collapse
|
40
|
Alifieris C, Trafalis DT. Glioblastoma multiforme: Pathogenesis and treatment. Pharmacol Ther 2015; 152:63-82. [PMID: 25944528 DOI: 10.1016/j.pharmthera.2015.05.005] [Citation(s) in RCA: 537] [Impact Index Per Article: 53.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 04/28/2015] [Indexed: 12/12/2022]
Abstract
Each year, about 5-6 cases out of 100,000 people are diagnosed with primary malignant brain tumors, of which about 80% are malignant gliomas (MGs). Glioblastoma multiforme (GBM) accounts for more than half of MG cases. They are associated with high morbidity and mortality. Despite current multimodality treatment efforts including maximal surgical resection if feasible, followed by a combination of radiotherapy and/or chemotherapy, the median survival is short: only about 15months. A deeper understanding of the pathogenesis of these tumors has presented opportunities for newer therapies to evolve and an expectation of better control of this disease. Lately, efforts have been made to investigate tumor resistance, which results from complex alternate signaling pathways, the existence of glioma stem-cells, the influence of the blood-brain barrier as well as the expression of 0(6)-methylguanine-DNA methyltransferase. In this paper, we review up-to-date information on MGs treatment including current approaches, novel drug-delivering strategies, molecular targeted agents and immunomodulative treatments, and discuss future treatment perspectives.
Collapse
Affiliation(s)
| | - Dimitrios T Trafalis
- Laboratory of Pharmacology, Medical School, University of Athens, Athens, Greece.
| |
Collapse
|
41
|
Biomarkers for glioma immunotherapy: the next generation. J Neurooncol 2015; 123:359-72. [PMID: 25724916 DOI: 10.1007/s11060-015-1746-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 02/16/2015] [Indexed: 12/11/2022]
Abstract
The term "biomarker" historically refers to a single parameter, such as the expression level of a gene or a radiographic pattern, used to indicate a broader biological state. Molecular indicators have been applied to several aspects of cancer therapy: to describe the genotypic and phenotypic state of neoplastic tissue for prognosis, to predict susceptibility to anti-proliferative agents, to validate the presence of specific drug targets, and to evaluate responsiveness to therapy. For glioblastoma (GBM), immunohistochemical and radiographic biomarkers accessible to the clinical lab have informed traditional regimens, but while immunotherapies have emerged as potentially disruptive weapons against this diffusely infiltrating, heterogeneous tumor, biomarkers with strong predictive power have not been fully established. The cancer immunotherapy field, through the recently accelerated expansion of trials, is currently leveraging this wealth of clinical and biological data to define and revise the use of biomarkers for improving prognostic accuracy, personalization of therapy, and evaluation of responses across the wide variety of tumors. Technological advancements in DNA sequencing, cytometry, and microscopy have facilitated the exploration of more integrated, high-dimensional profiling of the disease system-incorporating both immune and tumor parameters-rather than single metrics, as biomarkers for therapeutic sensitivity. Here we discuss the utility of traditional GBM biomarkers in immunotherapy and how the impending transformation of the biomarker paradigm-from single markers to integrated profiles-may offer the key to bringing predictive, personalized immunotherapy to GBM patients.
Collapse
|
42
|
Immunobiology and immunotherapeutic targeting of glioma stem cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 853:139-66. [PMID: 25895711 DOI: 10.1007/978-3-319-16537-0_8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
For decades human brain tumors have confounded our efforts to effectively manage and treat patients. In adults, glioblastoma multiforme is the most common malignant brain tumor with a patient survival of just over 14 months. In children, brain tumors are the leading cause of solid tumor cancer death and gliomas account for one-fifth of all childhood cancers. Despite advances in conventional treatments such as surgical resection, radiotherapy, and systemic chemotherapy, the incidence and mortality rates for gliomas have essentially stayed the same. Furthermore, research efforts into novel therapeutics that initially appeared promising have yet to show a marked benefit. A shocking and somewhat disturbing view is that investigators and clinicians may have been targeting the wrong cells, resulting in the appearance of the removal or eradication of patient gliomas only to have brain cancer recurrence. Here we review research progress in immunotherapy as it pertains to glioma treatment and how it can and is being adapted to target glioma stem cells (GSCs) as a means of dealing with this potential paradigm.
Collapse
|
43
|
Price RL, Chiocca EA. Evolution of malignant glioma treatment: from chemotherapy to vaccines to viruses. Neurosurgery 2014; 61 Suppl 1:74-83. [PMID: 25032534 PMCID: PMC4104417 DOI: 10.1227/neu.0000000000000390] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Richard Lee Price
- Dardinger Neuro-oncology Center, Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Ennio Antonio Chiocca
- Harvey Cushing Neuro-oncology Laboratories, Harvard Institutes of Medicine, Department of Neurosurgery and Institute for the Neurosciences at the Brigham, Brigham and Women’s/Faulkner Hospital and Center for Neuro-oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| |
Collapse
|
44
|
Zang YW, Gu XD, Xiang JB, Chen ZY. Clinical application of adoptive T cell therapy in solid tumors. Med Sci Monit 2014; 20:953-9. [PMID: 24912947 PMCID: PMC4063985 DOI: 10.12659/msm.890496] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
As an emerging therapeutic approach, adoptive T cell therapy shown promise in advanced solid malignancies. The results obtained in patients with metastatic melanoma and kidney cancer are encouraging because of the visible clinical benefits and limited adverse effects. Recently, the genetically-modified T cells expressing specific T cell receptors or chimeric antigen receptors are just now entering the clinical arena and show great potential for high avidity to tumor-associated antigens and long-lasting anti-tumor responses. However, continued investigations are necessary to improve the cell product quality so as to decrease adverse effects and clinical costs, and make adoptive T cell therapy a tool of choice for solid malignancies.
Collapse
Affiliation(s)
- Yi-Wen Zang
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China (mainland)
| | - Xiao-Dong Gu
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China (mainland)
| | - Jian-Bin Xiang
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China (mainland)
| | - Zong-You Chen
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China (mainland)
| |
Collapse
|
45
|
A new hope in immunotherapy for malignant gliomas: adoptive T cell transfer therapy. J Immunol Res 2014; 2014:326545. [PMID: 25009822 PMCID: PMC4070364 DOI: 10.1155/2014/326545] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 05/02/2014] [Accepted: 05/18/2014] [Indexed: 11/18/2022] Open
Abstract
Immunotherapy emerged as a promising therapeutic approach to highly incurable malignant gliomas due to tumor-specific cytotoxicity, minimal side effect, and a durable antitumor effect by memory T cells. But, antitumor activities of endogenously activated T cells induced by immunotherapy such as vaccination are not sufficient to control tumors because tumor-specific antigens may be self-antigens and tumors have immune evasion mechanisms to avoid immune surveillance system of host. Although recent clinical results from vaccine strategy for malignant gliomas are encouraging, these trials have some limitations, particularly their failure to expand tumor antigen-specific T cells reproducibly and effectively. An alternative strategy to overcome these limitations is adoptive T cell transfer therapy, in which tumor-specific T cells are expanded ex vivo rapidly and then transferred to patients. Moreover, enhanced biologic functions of T cells generated by genetic engineering and modified immunosuppressive microenvironment of host by homeostatic T cell expansion and/or elimination of immunosuppressive cells and molecules can induce more potent antitumor T cell responses and make this strategy hold promise in promoting a patient response for malignant glioma treatment. Here we will review the past and current progresses and discuss a new hope in adoptive T cell therapy for malignant gliomas.
Collapse
|
46
|
Lowenstein PR, Castro MG. The value of EGFRvIII as the target for glioma vaccines. Am Soc Clin Oncol Educ Book 2014:42-50. [PMID: 24857059 DOI: 10.14694/edbook_am.2014.34.42] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Malignant brain tumors continue to be rapidly progressive and resistant to most treatments. Even with state-of-the-art standard of care (surgery, chemotherapy, and radiotherapy) long-term survival in the last 80 years improved from 6 to 15 months. Improved imaging has also likely contributed to prolonged survival. Immunotherapy for cancer dates back to publications from 1742. The central idea is that the immune system can detect and eliminate foreign antigens, either from infectious agents or tumors, and thus could be therapeutic in brain tumors. Recent introduction of immune modulators of cytotoxic T-lymphocyte antigen (CTLA)-4 and programmed cell death 1/programmed cell death 1 ligand (PD-1/PDL1) add much excitement to this field. For brain tumors, there are several ongoing phase I and III trials to determine whether any of the current immunotherapy approaches can demonstrate activity in randomized, controlled double-blinded trials-with ongoing and historical trials presented in tables within the manuscript. Immunotherapy has explored the use of various types of antigens (obtained either from homogenates of patients' tumors or synthetically produced), and various immunization procedures and adjuvants. Glioma antigens have also been isolated from the patients' own tumor, then produced in vitro (for example the glioma antigen EGFRvIII), and used to immunize patients directly, or with carriers such as dendritic cells with or without additional adjuvants. Several of these practical approaches are currently in phase III trials. Remaining challenges are how to increase the percentage of complete responses and response duration, and the enigmatic absence of an almost total lack of adverse brain inflammation following immunization of brain tumor patients, as has been observed following immunization against brain antigens in other diseases, such as Alzheimer's Disease.
Collapse
Affiliation(s)
- Pedro R Lowenstein
- From the Department of Neurosurgery and Cell and Developmental Biology, Graduate Program in Immunology, and Graduate Program in Cancer Biology, The University of Michigan Comprehensive Cancer Center, The University of Michigan School of Medicine, Ann Arbor, MI
| | - Maria G Castro
- From the Department of Neurosurgery and Cell and Developmental Biology, Graduate Program in Immunology, and Graduate Program in Cancer Biology, The University of Michigan Comprehensive Cancer Center, The University of Michigan School of Medicine, Ann Arbor, MI
| |
Collapse
|
47
|
Wilson TA, Karajannis MA, Harter DH. Glioblastoma multiforme: State of the art and future therapeutics. Surg Neurol Int 2014; 5:64. [PMID: 24991467 PMCID: PMC4078454 DOI: 10.4103/2152-7806.132138] [Citation(s) in RCA: 194] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Accepted: 03/13/2014] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is the most common and lethal primary malignancy of the central nervous system (CNS). Despite the proven benefit of surgical resection and aggressive treatment with chemo- and radiotherapy, the prognosis remains very poor. Recent advances of our understanding of the biology and pathophysiology of GBM have allowed the development of a wide array of novel therapeutic approaches, which have been developed. These novel approaches include molecularly targeted therapies, immunotherapies, and gene therapy. METHODS We offer a brief review of the current standard of care, and a survey of novel therapeutic approaches for treatment of GBM. RESULTS Despite promising results in preclinical trials, many of these therapies have demonstrated limited therapeutic efficacy in human clinical trials. Thus, although survival of patients with GBM continues to slowly improve, treatment of GBM remains extremely challenging. CONCLUSION Continued research and development of targeted therapies, based on a detailed understanding of molecular pathogenesis can reasonably be expected to yield improved outcomes for patients with GBM.
Collapse
Affiliation(s)
- Taylor A Wilson
- Department of Neurosurgery, Division of Oncology, New York University School of Medicine, NY, USA
| | - Matthias A Karajannis
- Department of Pediatrics, Division of Oncology, New York University School of Medicine, NY, USA
| | - David H Harter
- Department of Neurosurgery, Division of Oncology, New York University School of Medicine, NY, USA
| |
Collapse
|
48
|
Sachamitr P, Hackett S, Fairchild PJ. Induced pluripotent stem cells: challenges and opportunities for cancer immunotherapy. Front Immunol 2014; 5:176. [PMID: 24860566 PMCID: PMC4029000 DOI: 10.3389/fimmu.2014.00176] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 04/03/2014] [Indexed: 12/22/2022] Open
Abstract
Despite recent advances in cancer treatment over the past 30 years, therapeutic options remain limited and do not always offer a cure for malignancy. Given that tumor-associated antigens (TAA) are, by definition, self-proteins, the need to productively engage autoreactive T cells remains at the heart of strategies for cancer immunotherapy. These have traditionally focused on the administration of autologous monocyte-derived dendritic cells (moDC) pulsed with TAA, or the ex vivo expansion and adoptive transfer of tumor-infiltrating lymphocytes (TIL) as a source of TAA-specific cytotoxic T cells (CTL). Although such approaches have shown some efficacy, success has been limited by the poor capacity of moDC to cross present exogenous TAA to the CD8+ T-cell repertoire and the potential for exhaustion of CTL expanded ex vivo. Recent advances in induced pluripotency offer opportunities to generate patient-specific stem cell lines with the potential to differentiate in vitro into cell types whose properties may help address these issues. Here, we review recent success in the differentiation of NK cells from human induced pluripotent stem (iPS) cells as well as minor subsets of dendritic cells (DCs) with therapeutic potential, including CD141+XCR1+ DC, capable of cross presenting TAA to naïve CD8+ T cells. Furthermore, we review recent progress in the use of TIL as the starting material for the derivation of iPSC lines, thereby capturing their antigen specificity in a self-renewing stem cell line, from which potentially unlimited numbers of naïve TAA-specific T cells may be differentiated, free of the risks of exhaustion.
Collapse
Affiliation(s)
- Patty Sachamitr
- Sir William Dunn School of Pathology , University of Oxford, Oxford , UK
| | - Simon Hackett
- Sir William Dunn School of Pathology , University of Oxford, Oxford , UK
| | | |
Collapse
|
49
|
Angamuthu M, Nanjappa SH, Raman V, Jo S, Cegu P, Murthy SN. Controlled-release injectable containing terbinafine/PLGA microspheres for onychomycosis treatment. J Pharm Sci 2014; 103:1178-83. [PMID: 24497012 DOI: 10.1002/jps.23887] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 01/08/2014] [Accepted: 01/13/2014] [Indexed: 12/15/2022]
Abstract
Controlled-release drug delivery systems based on biodegradable polymers have been extensively evaluated for use in localized drug delivery. In the present study, intralesionally injectable poly (lactide-co-glycolide) (PLGA) microspheres for controlled release of terbinafine hydrochloride (TH) was developed for treating fungal toe/finger nail infections. TH-PLGA microspheres were formulated using O/W emulsification and modified solvent extraction/evaporation technique. Microspheres were evaluated for particle size and size distribution, encapsulation efficiency, surface, and morphology. The in vitro drug release profile was studied in aqueous media as well as in 1% agar gel. Microspheres system was also evaluated in excised cadaver toe model, and extent of TH accumulation in nail bed, nail plate, and nail matrix was measured at different time points. Microspheres were found to provide consistent and sustained TH release. Intralesional administration of controlled-release microspheres can be a potential alternative mode of treating fungus-infected toe and/or finger nails.
Collapse
|
50
|
Bielamowicz K, Khawja S, Ahmed N. Adoptive cell therapies for glioblastoma. Front Oncol 2013; 3:275. [PMID: 24273748 PMCID: PMC3823029 DOI: 10.3389/fonc.2013.00275] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Accepted: 10/25/2013] [Indexed: 01/21/2023] Open
Abstract
Glioblastoma (GBM) is the most common and most aggressive primary brain malignancy and, as it stands, is virtually incurable. With the current standard of care, maximum feasible surgical resection followed by radical radiotherapy and adjuvant temozolomide, survival rates are at a median of 14.6 months from diagnosis in molecularly unselected patients (1). Collectively, the current knowledge suggests that the continued tumor growth and survival is in part due to failure to mount an effective immune response. While this tolerance is subtended by the tumor being utterly “self,” it is to a great extent due to local and systemic immune compromise mediated by the tumor. Different cell modalities including lymphokine-activated killer cells, natural killer cells, cytotoxic T lymphocytes, and transgenic chimeric antigen receptor or αβ T cell receptor grafted T cells are being explored to recover and or redirect the specificity of the cellular arm of the immune system toward the tumor complex. Promising phase I/II trials of such modalities have shown early indications of potential efficacy while maintaining a favorable toxicity profile. Efficacy will need to be formally tested in phase II/III clinical trials. Given the high morbidity and mortality of GBM, it is imperative to further investigate and possibly integrate such novel cell-based therapies into the current standards-of-care and herein we collectively assess and critique the state-of-the-knowledge pertaining to these efforts.
Collapse
Affiliation(s)
- Kevin Bielamowicz
- Center for Cell and Gene Therapy, Baylor College of Medicine , Houston, TX , USA ; Texas Children's Cancer Center, Baylor College of Medicine , Houston, TX , USA ; Department of Pediatrics, Baylor College of Medicine , Houston, TX , USA ; Baylor College of Medicine , Houston, TX , USA
| | | | | |
Collapse
|