1
|
Hull CM, Larcombe-Young D, Mazza R, George M, Davies DM, Schurich A, Maher J. Granzyme B-activated IL18 potentiates αβ and γδ CAR T cell immunotherapy in a tumor-dependent manner. Mol Ther 2024; 32:2373-2392. [PMID: 38745414 PMCID: PMC11286818 DOI: 10.1016/j.ymthe.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 03/27/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024] Open
Abstract
Interleukin (IL)18 is a potent pro-inflammatory cytokine that is activated upon caspase 1 cleavage of the latent precursor, pro-IL18. Therapeutic T cell armoring with IL18 promotes autocrine stimulation and positive modulation of the tumor microenvironment (TME). However, existing strategies are imperfect since they involve constitutive/poorly regulated activity or fail to modify the TME. Here, we have substituted the caspase 1 cleavage site within pro-IL18 with that preferred by granzyme B, yielding GzB-IL18. We demonstrate that GzB-IL18 is constitutively released but remains functionally latent unless chimeric antigen receptor (CAR) T cells are activated, owing to concomitant granzyme B release. Armoring with GzB-IL18 enhances cytolytic activity, proliferation, interferon (IFN)-γ release, and anti-tumor efficacy by a similar magnitude to constitutively active IL18. We also demonstrate that GzB-IL18 provides a highly effective armoring strategy for γδ CAR T cells, leading to enhanced metabolic fitness and significant potentiation of therapeutic activity. Finally, we show that constitutively active IL18 can unmask CAR T cell-mediated cytokine release syndrome in immunocompetent mice. By contrast, GzB-IL18 promotes anti-tumor activity and myeloid cell re-programming without inducing such toxicity. Using this stringent system, we have tightly coupled the biological activity of IL18 to the activation state of the host CAR T cell, favoring safer clinical implementation of this technology.
Collapse
MESH Headings
- Interleukin-18/metabolism
- Granzymes/metabolism
- Animals
- Mice
- Humans
- Immunotherapy, Adoptive/methods
- Receptors, Chimeric Antigen/metabolism
- Receptors, Chimeric Antigen/immunology
- Cell Line, Tumor
- Tumor Microenvironment/immunology
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Neoplasms/therapy
- Neoplasms/immunology
- Neoplasms/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Lymphocyte Activation/immunology
- Cytotoxicity, Immunologic
- Xenograft Model Antitumor Assays
- Interferon-gamma/metabolism
Collapse
Affiliation(s)
- Caroline M Hull
- Leucid Bio Ltd, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK
| | - Daniel Larcombe-Young
- King's College London, School of Cancer and Pharmaceutical Sciences, CAR Mechanics Lab, Guy's Cancer Centre, Great Maze Pond, London SE1 9RT, UK
| | - Roberta Mazza
- Leucid Bio Ltd, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK
| | - Molly George
- King's College London, Department of Infectious Diseases, School of Immunology and Microbial Sciences, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK
| | - David M Davies
- Leucid Bio Ltd, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK
| | - Anna Schurich
- King's College London, Department of Infectious Diseases, School of Immunology and Microbial Sciences, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK
| | - John Maher
- Leucid Bio Ltd, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK; King's College London, School of Cancer and Pharmaceutical Sciences, CAR Mechanics Lab, Guy's Cancer Centre, Great Maze Pond, London SE1 9RT, UK; Department of Immunology, Eastbourne Hospital, Kings Drive, Eastbourne, East Sussex BN21 2UD, UK.
| |
Collapse
|
2
|
Wu J, Sun X, Jiang P. Metabolism-inflammasome crosstalk shapes innate and adaptive immunity. Cell Chem Biol 2024; 31:884-903. [PMID: 38759617 DOI: 10.1016/j.chembiol.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/08/2024] [Accepted: 04/16/2024] [Indexed: 05/19/2024]
Abstract
Inflammasomes are a central component of innate immunity and play a vital role in regulating innate immune response. Activation of inflammasomes is also indispensable for adaptive immunity, modulating the development and response of adaptive immunity. Recently, increasing studies have shown that metabolic alterations and adaptations strongly influence and regulate the differentiation and function of the immune system. In this review, we will take a holistic view of how inflammasomes bridge innate and adaptive (especially T cell) immunity and how inflammasomes crosstalk with metabolic signals during the immune responses. And, special attention will be paid to the metabolic control of inflammasome-mediated interactions between innate and adaptive immunity in disease. Understanding the metabolic regulatory functions of inflammasomes would provide new insights into future research directions in this area and may help to identify potential targets for inflammasome-associated diseases and broaden therapeutic avenues.
Collapse
Affiliation(s)
- Jun Wu
- School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, Fujian, China; State Key Laboratory of Molecular Oncology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Xuan Sun
- State Key Laboratory of Molecular Oncology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Peng Jiang
- State Key Laboratory of Molecular Oncology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China.
| |
Collapse
|
3
|
Yuan M, Wang W, Hawes I, Han J, Yao Z, Bertaina A. Advancements in γδT cell engineering: paving the way for enhanced cancer immunotherapy. Front Immunol 2024; 15:1360237. [PMID: 38576617 PMCID: PMC10991697 DOI: 10.3389/fimmu.2024.1360237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/07/2024] [Indexed: 04/06/2024] Open
Abstract
Comprising only 1-10% of the circulating T cell population, γδT cells play a pivotal role in cancer immunotherapy due to their unique amalgamation of innate and adaptive immune features. These cells can secrete cytokines, including interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α), and can directly eliminate tumor cells through mechanisms like Fas/FasL and antibody-dependent cell-mediated cytotoxicity (ADCC). Unlike conventional αβT cells, γδT cells can target a wide variety of cancer cells independently of major histocompatibility complex (MHC) presentation and function as antigen-presenting cells (APCs). Their ability of recognizing antigens in a non-MHC restricted manner makes them an ideal candidate for allogeneic immunotherapy. Additionally, γδT cells exhibit specific tissue tropism, and rapid responsiveness upon reaching cellular targets, indicating a high level of cellular precision and adaptability. Despite these capabilities, the therapeutic potential of γδT cells has been hindered by some limitations, including their restricted abundance, unsatisfactory expansion, limited persistence, and complex biology and plasticity. To address these issues, gene-engineering strategies like the use of chimeric antigen receptor (CAR) T therapy, T cell receptor (TCR) gene transfer, and the combination with γδT cell engagers are being explored. This review will outline the progress in various engineering strategies, discuss their implications and challenges that lie ahead, and the future directions for engineered γδT cells in both monotherapy and combination immunotherapy.
Collapse
Affiliation(s)
| | - Wenjun Wang
- *Correspondence: Wenjun Wang, ; Alice Bertaina,
| | | | | | | | - Alice Bertaina
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University, School of Medicine, Stanford, CA, United States
| |
Collapse
|
4
|
Taheri M, Tehrani HA, Daliri F, Alibolandi M, Soleimani M, Shoari A, Arefian E, Ramezani M. Bioengineering strategies to enhance the interleukin-18 bioactivity in the modern toolbox of cancer immunotherapy. Cytokine Growth Factor Rev 2024; 75:65-80. [PMID: 37813764 DOI: 10.1016/j.cytogfr.2023.09.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/26/2023] [Accepted: 09/26/2023] [Indexed: 10/11/2023]
Abstract
Cytokines are the first modern immunotherapeutic agents used for activation immunotherapy. Interleukin-18 (IL-18) has emerged as a potent anticancer immunostimulatory cytokine over the past three decades. IL-18, structurally is a stable protein with very low toxicity at biological doses. IL-18 promotes the process of antigen presentation and also enhances innate and acquired immune responses. It can induce the production of proinflammatory cytokines and increase tumor infiltration of effector immune cells to revert the immunosuppressive milieu of tumors. Furthermore, IL-18 can reduce tumorigenesis, suppress tumor angiogenesis, and induce tumor cell apoptosis. These characteristics present IL-18 as a promising option for cancer immunotherapy. Although several preclinical studies have reported the immunotherapeutic potential of IL-18, clinical trials using it as a monotherapy agent have reported disappointing results. These results may be due to some biological characteristics of IL-18. Several bioengineering approaches have been successfully used to correct its defects as a bioadjuvant. Currently, the challenge with this anticancer immunotherapeutic agent is mainly how to use its capabilities in a rational combinatorial therapy for clinical applications. The present study discussed the strengths and weaknesses of IL-18 as an immunotherapeutic agent, followed by comprehensive review of various promising bioengineering approaches that have been used to overcome its disadvantages. Finally, this study highlights the promising application of IL-18 in modern combinatorial therapies, such as chemotherapy, immune checkpoint blockade therapy, cell-based immunotherapy and cancer vaccines to guide future studies, circumventing the barriers to administration of IL-18 for clinical applications, and bring it to fruition as a potent immunotherapy agent in cancer treatment.
Collapse
Affiliation(s)
- Mojtaba Taheri
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hossein Abdul Tehrani
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | | | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Masoud Soleimani
- Department of Hematology and Cell Therapy, Faculty of Medical Sciences, Tarbiat Modares University, Iran
| | - Alireza Shoari
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Ehsan Arefian
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran; Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Ruf B, Greten TF, Korangy F. Innate lymphoid cells and innate-like T cells in cancer - at the crossroads of innate and adaptive immunity. Nat Rev Cancer 2023; 23:351-371. [PMID: 37081117 DOI: 10.1038/s41568-023-00562-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/13/2023] [Indexed: 04/22/2023]
Abstract
Immunotherapies targeting conventional T cells have revolutionized systemic treatment for many cancers, yet only a subset of patients benefit from these approaches. A better understanding of the complex immune microenvironment of tumours is needed to design the next generation of immunotherapeutics. Innate lymphoid cells (ILCs) and innate-like T cells (ILTCs) are abundant, tissue-resident lymphocytes that have recently been shown to have critical roles in many types of cancers. ILCs and ILTCs rapidly respond to changes in their surrounding environment and act as the first responders to bridge innate and adaptive immunity. This places ILCs and ILTCs as pivotal orchestrators of the final antitumour immune response. In this Review, we outline hallmarks of ILCs and ILTCs and discuss their emerging role in antitumour immunity, as well as the pathophysiological adaptations leading to their pro-tumorigenic function. We explore the pleiotropic, in parts redundant and sometimes opposing, mechanisms that underlie the delicate interplay between the different subsets of ILCs and ILTCs. Finally, we highlight their role in amplifying and complementing conventional T cell functions and summarize immunotherapeutic strategies for targeting ILCs and ILTCs in cancer.
Collapse
Affiliation(s)
- Benjamin Ruf
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Centre for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tim F Greten
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Centre for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- NCI CCR Liver Cancer Program, National Institutes of Health, Bethesda, MD, USA
| | - Firouzeh Korangy
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Centre for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
6
|
Song Y, Teo HY, Liu Y, Zhang X, Chen J, Zhang Y, Liu H. Reviving human γδT cells from apoptosis induced by IL-12/18 via p-JNK inhibition. J Leukoc Biol 2022; 112:1701-1716. [PMID: 35770879 DOI: 10.1002/jlb.5ma0622-741r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/05/2022] [Indexed: 01/04/2023] Open
Abstract
γδT cells recognize and exert cytotoxicity against tumor cells independently of MHC restriction and have antigen presentation and regulatory functions to promote adaptive immune responses. They are considered as potential immune cells for cellular immunotherapy in cancer patients. However, it is challenging to ex vivo expand human γδT cells that have superb effector functions and long-term survival for adoptive cancer therapy. We found that IL-12/18 combination could drastically promote IFN-γ secretion and cytotoxicity in human γδT cells. However, the enhanced activation of human γδT cells is accompanied by increased apoptosis and elevated expressions of co-inhibitory receptors under the stimulation of IL-12/18. We further demonstrated that IL-12/18 induced apoptosis of human γδT cells was in a phosphoantigen or IFN-γ-independent manner. Transcriptomic analysis suggested that IL-12/18-induced apoptosis of human γδT cells was mediated by the activation of JNK pathway. p-JNK inhibitor (SP-600125) treatment effectively revived human γδT cells from the apoptosis induced by IL-12/18 and maintained their enhanced IFN-γ production and cytotoxicity against tumor cells. Our results provide a novel and feasible strategy for ex vivo expansion of cytokine-activated human γδT cells, which could promote the efficacy of γδT cell adoptive immunotherapy in cancer patients.
Collapse
Affiliation(s)
- Yuan Song
- Immunology Programme, Life Sciences Institute; Immunology Translational Research Program and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Huey Yee Teo
- Immunology Programme, Life Sciences Institute; Immunology Translational Research Program and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yonghao Liu
- Immunology Programme, Life Sciences Institute; Immunology Translational Research Program and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Xiaomeng Zhang
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Jinmiao Chen
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Yongliang Zhang
- Immunology Programme, Life Sciences Institute; Immunology Translational Research Program and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Haiyan Liu
- Immunology Programme, Life Sciences Institute; Immunology Translational Research Program and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
7
|
Human Vδ2 T Cells and Their Versatility for Immunotherapeutic Approaches. Cells 2022; 11:cells11223572. [PMID: 36429001 PMCID: PMC9688761 DOI: 10.3390/cells11223572] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/06/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Gamma/delta (γδ) T cells are innate-like immune effectors that are a critical component linking innate and adaptive immune responses. They are recognized for their contribution to tumor surveillance and fight against infectious diseases. γδ T cells are excellent candidates for cellular immunotherapy due to their unique properties to recognize and destroy tumors or infected cells. They do not depend on the recognition of a single antigen but rather a broad-spectrum of diverse ligands through expression of various cytotoxic receptors. In this manuscript, we review major characteristics of the most abundant circulating γδ subpopulation, Vδ2 T cells, their immunotherapeutic potential, recent advances in expansion protocols, their preclinical and clinical applications for several infectious diseases and malignancies, and how additional modulation could enhance their therapeutic potential.
Collapse
|
8
|
Chan KF, Duarte JDG, Ostrouska S, Behren A. γδ T Cells in the Tumor Microenvironment-Interactions With Other Immune Cells. Front Immunol 2022; 13:894315. [PMID: 35880177 PMCID: PMC9307934 DOI: 10.3389/fimmu.2022.894315] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/15/2022] [Indexed: 01/02/2023] Open
Abstract
A growing number of studies have shown that γδ T cells play a pivotal role in mediating the clearance of tumors and pathogen-infected cells with their potent cytotoxic, cytolytic, and unique immune-modulating functions. Unlike the more abundant αβ T cells, γδ T cells can recognize a broad range of tumors and infected cells without the requirement of antigen presentation via major histocompatibility complex (MHC) molecules. Our group has recently demonstrated parts of the mechanisms of T-cell receptor (TCR)-dependent activation of Vγ9Vδ2+ T cells by tumors following the presentation of phosphoantigens, intermediates of the mevalonate pathway. This process is mediated through the B7 immunoglobulin family-like butyrophilin 2A1 (BTN2A1) and BTN3A1 complexes. Such recognition results in activation, a robust immunosurveillance process, and elicits rapid γδ T-cell immune responses. These include targeted cell killing, and the ability to produce copious quantities of cytokines and chemokines to exert immune-modulating properties and to interact with other immune cells. This immune cell network includes αβ T cells, B cells, dendritic cells, macrophages, monocytes, natural killer cells, and neutrophils, hence heavily influencing the outcome of immune responses. This key role in orchestrating immune cells and their natural tropism for tumor microenvironment makes γδ T cells an attractive target for cancer immunotherapy. Here, we review the current understanding of these important interactions and highlight the implications of the crosstalk between γδ T cells and other immune cells in the context of anti-tumor immunity.
Collapse
Affiliation(s)
- Kok Fei Chan
- Olivia Newton-John Cancer Research Institute, and School of Cancer Medicine, La Trobe University, Heidelberg, VIC, Australia
| | - Jessica Da Gama Duarte
- Olivia Newton-John Cancer Research Institute, and School of Cancer Medicine, La Trobe University, Heidelberg, VIC, Australia
| | - Simone Ostrouska
- Olivia Newton-John Cancer Research Institute, and School of Cancer Medicine, La Trobe University, Heidelberg, VIC, Australia
| | - Andreas Behren
- Olivia Newton-John Cancer Research Institute, and School of Cancer Medicine, La Trobe University, Heidelberg, VIC, Australia
- Department of Medicine, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
9
|
Nezhad Shamohammadi F, Yazdanifar M, Oraei M, Kazemi MH, Roohi A, Mahya Shariat Razavi S, Rezaei F, Parvizpour F, Karamlou Y, Namdari H. Controversial role of γδ T cells in pancreatic cancer. Int Immunopharmacol 2022; 108:108895. [PMID: 35729831 DOI: 10.1016/j.intimp.2022.108895] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/12/2022] [Accepted: 05/23/2022] [Indexed: 12/26/2022]
Abstract
γδ T cells are rare lymphocytes with cogent impact on immune responses. These cells are one of the earliest cells to be recruited in the sites of infection or tumors and play a critical role in coordinating innate and adaptive immune responses. The anti-tumor activity of γδ T cells have been numerously reported; nonetheless, there is controversy among published studies regarding their anti-tumor vs pro-tumor effect- especially in pancreatic cancer. A myriad of studies has confirmed that activated γδ T cells can potently lyse a broad variety of solid tumors and leukemia/lymphoma cells and produce an array of cytokines; however, early γδ T cell-based clinical trials did not lead to optimal efficacy, despite acceptable safety. Depending on the local micromilieu, γδ T cells can differentiate into tumor promoting or suppressing cells such as Th1-, Th2-, or Th17-like cells and produce prototypical cytokines such as interferon-γ (IFNγ) and interleukin (IL)-4/-10, IL-9, or IL-17. In an abstruse tumor such as pancreatic cancer- also known as immunologically cold tumor- γδ T cells are more likely to switch to their immunosuppressive phenotype. In this review we will adduce the accumulated knowledge on these two controversial aspects of γδ T cells in cancers- with a focus on solid tumors and pancreatic cancer. In addition, we propose strategies for enhancing the anti-tumor function of γδ T cells in cancers and discuss the potential future directions.
Collapse
Affiliation(s)
| | - Mahboubeh Yazdanifar
- Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Mona Oraei
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad H Kazemi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Azam Roohi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Farhad Rezaei
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzad Parvizpour
- Iranian Tissue Bank and Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Yalda Karamlou
- Iranian Tissue Bank and Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Haideh Namdari
- Iranian Tissue Bank and Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Human γδ T Cell Subsets and Their Clinical Applications for Cancer Immunotherapy. Cancers (Basel) 2022; 14:cancers14123005. [PMID: 35740670 PMCID: PMC9221220 DOI: 10.3390/cancers14123005] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Research into the immunotherapeutic potential of T cells has predominantly focused on conventional alpha beta (αβ) T cells, which recognize peptide antigens presented by polymorphic major histocompatibility complex (MHC) class I and class II molecules. However, innate-like T cells, such as gamma delta (γδ) T cells, also play important roles in antitumor immunity. Here, we review the current understanding of γδ T cells in antitumor immunity and discuss strategies that could potentially maximize their potential in cancer immunotherapy. Abstract Gamma delta (γδ) T cells are a minor population of T cells that share adaptive and innate immune properties. In contrast to MHC-restricted alpha beta (αβ) T cells, γδ T cells are activated in an MHC-independent manner, making them ideal candidates for developing allogeneic, off-the-shelf cell-based immunotherapies. As the field of cancer immunotherapy progresses rapidly, different subsets of γδ T cells have been explored. In addition, γδ T cells can be engineered using different gene editing technologies that augment their tumor recognition abilities and antitumor functions. In this review, we outline the unique features of different subsets of human γδ T cells and their antitumor properties. We also summarize the past and the ongoing pre-clinical studies and clinical trials utilizing γδ T cell-based cancer immunotherapy.
Collapse
|
11
|
Dong R, Zhang Y, Xiao H, Zeng X. Engineering γδ T Cells: Recognizing and Activating on Their Own Way. Front Immunol 2022; 13:889051. [PMID: 35603176 PMCID: PMC9120431 DOI: 10.3389/fimmu.2022.889051] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/11/2022] [Indexed: 11/25/2022] Open
Abstract
Adoptive cell therapy (ACT) with engineered T cells has emerged as a promising strategy for the treatment of malignant tumors. Among them, there is great interest in engineered γδ T cells for ACT. With both adaptive and innate immune characteristics, γδ T cells can be activated by γδ TCRs to recognize antigens in a MHC-independent manner, or by NK receptors to recognize stress-induced molecules. The dual recognition system enables γδ T cells with unique activation and cytotoxicity profiles, which should be considered for the design of engineered γδ T cells. However, the current designs of engineered γδ T cells mostly follow the strategies that used in αβ T cells, but not making good use of the specific characteristics of γδ T cells. Therefore, it is no surprising that current engineered γδ T cells in preclinical or clinical trials have limited efficacy. In this review, we summarized the patterns of antigen recognition of γδ T cells and the features of signaling pathways for the functions of γδ T cells. This review will additionally discuss current progress in engineered γδ T cells and provide insights in the design of engineered γδ T cells based on their specific characteristics.
Collapse
Affiliation(s)
- Ruoyu Dong
- Department of Hematology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yixi Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haowen Xiao
- Department of Hematology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xun Zeng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
12
|
Challagundla N, Saha B, Agrawal-Rajput R. Insights into inflammasome regulation: cellular, molecular, and pathogenic control of inflammasome activation. Immunol Res 2022; 70:578-606. [PMID: 35610534 DOI: 10.1007/s12026-022-09286-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 05/04/2022] [Indexed: 02/07/2023]
Abstract
Maintenance of immune homeostasis is an intricate process wherein inflammasomes play a pivotal role by contributing to innate and adaptive immune responses. Inflammasomes are ensembles of adaptor proteins that can trigger a signal following innate sensing of pathogens or non-pathogens eventuating in the inductions of IL-1β and IL-18. These inflammatory cytokines substantially influence the antigen-presenting cell's costimulatory functions and T helper cell differentiation, contributing to adaptive immunity. As acute and chronic disease conditions may accompany parallel tissue damage, we analyze the critical role of extracellular factors such as cytokines, amyloids, cholesterol crystals, etc., intracellular metabolites, and signaling molecules regulating inflammasome activation/inhibition. We develop an operative framework for inflammasome function and regulation by host cell factors and pathogens. While inflammasomes influence the innate and adaptive immune components' interplay modulating the anti-pathogen adaptive immune response, pathogens may target inflammasome inhibition as a survival strategy. As trapped between health and diseases, inflammasomes serve as promising therapeutic targets and their modus operandi serves as a scientific rationale for devising better therapeutic strategies.
Collapse
Affiliation(s)
- Naveen Challagundla
- Immunology lab, Indian Institute of Advanced Research, Gandhinagar, Gujarat, 382007, India
| | - Bhaskar Saha
- National Centre for Cell Science, Lab-5, Ganeshkhind, Pune, Maharashtra, 411007, India
| | - Reena Agrawal-Rajput
- Immunology lab, Indian Institute of Advanced Research, Gandhinagar, Gujarat, 382007, India.
| |
Collapse
|
13
|
Chu TH, Khairallah C, Shieh J, Cho R, Qiu Z, Zhang Y, Eskiocak O, Thanassi DG, Kaplan MH, Beyaz S, Yang VW, Bliska JB, Sheridan BS. γδ T cell IFNγ production is directly subverted by Yersinia pseudotuberculosis outer protein YopJ in mice and humans. PLoS Pathog 2021; 17:e1010103. [PMID: 34871329 PMCID: PMC8648121 DOI: 10.1371/journal.ppat.1010103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/09/2021] [Indexed: 12/31/2022] Open
Abstract
Yersinia pseudotuberculosis is a foodborne pathogen that subverts immune function by translocation of Yersinia outer protein (Yop) effectors into host cells. As adaptive γδ T cells protect the intestinal mucosa from pathogen invasion, we assessed whether Y. pseudotuberculosis subverts these cells in mice and humans. Tracking Yop translocation revealed that the preferential delivery of Yop effectors directly into murine Vγ4 and human Vδ2+ T cells inhibited anti-microbial IFNγ production. Subversion was mediated by the adhesin YadA, injectisome component YopB, and translocated YopJ effector. A broad anti-pathogen gene signature and STAT4 phosphorylation levels were inhibited by translocated YopJ. Thus, Y. pseudotuberculosis attachment and translocation of YopJ directly into adaptive γδ T cells is a major mechanism of immune subversion in mice and humans. This study uncovered a conserved Y. pseudotuberculosis pathway that subverts adaptive γδ T cell function to promote pathogenicity. Unconventional γδ T cells are a dynamic immune population important for mucosal protection of the intestine against invading pathogens. We determined that the foodborne pathogen Y. pseudotuberculosis preferentially targets an adaptive subset of these cells to subvert immune function. We found that direct injection of Yersinia outer proteins (Yop) into adaptive γδ T cells inhibited their anti-pathogen functions. We screened all Yop effectors and identified YopJ as the sole effector to inhibit adaptive γδ T cell production of IFNγ. We determined that adaptive γδ T cell subversion occurred by limiting activation of the transcription factor STAT4. When we infected mice with Y. pseudotuberculosis expressing an inactive YopJ, this enhanced the adaptive γδ T cell response and led to greater cytokine production from this subset of cells to aid mouse recovery. This mechanism of immune evasion appears conserved in humans as direct injection of Y. pseudotuberculosis YopJ into human γδ T cells inhibited cytokine production. This suggested to us that Y. pseudotuberculosis actively inhibits the adaptive γδ T cell response through YopJ as a mechanism to evade immune surveillance at the site of pathogen invasion.
Collapse
Affiliation(s)
- Timothy H. Chu
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - Camille Khairallah
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - Jason Shieh
- Department of Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - Rhea Cho
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - Zhijuan Qiu
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - Yue Zhang
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - Onur Eskiocak
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - David G. Thanassi
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - Mark H. Kaplan
- Department of Microbiology and Immunology, School of Medicine, Indiana University, Indianapolis, Indiana, United States of America
| | - Semir Beyaz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Vincent W. Yang
- Department of Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - James B. Bliska
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Dartmouth, New Hampshire, United States of America
| | - Brian S. Sheridan
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- * E-mail:
| |
Collapse
|
14
|
Choi H, Lee Y, Hur G, Lee SE, Cho HI, Sohn HJ, Cho BS, Kim HJ, Kim TG. γδ T cells cultured with artificial antigen-presenting cells and IL-2 show long-term proliferation and enhanced effector functions compared with γδ T cells cultured with only IL-2 after stimulation with zoledronic acid. Cytotherapy 2021; 23:908-917. [PMID: 34312069 DOI: 10.1016/j.jcyt.2021.06.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/18/2021] [Accepted: 06/01/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND AIMS Immunotherapeutic approaches using γδ T cells have emerged as the function of γδ T cells in tumor surveillance and clearance has been discovered. In vitro expansion methods of γ9δ2 T cells have been based on phosphoantigens and cytokines, but expansion methods using feeder cells to generate larger numbers of γδ T cells have also been studied recently. However, there are no studies that directly compare γδ T cells cultured with phosphoantigens with those cultured with feeder cells. Therefore, this study aimed to compare the expansion, characteristics and effector functions of γδ T cells stimulated with K562-based artificial antigen-presenting cells (aAPCs) (aAPC-γδ T cells) and γδ T cells stimulated with only zoledronic acid (ZA) (ZA-γδ T cells). METHODS Peripheral blood mononuclear cells were stimulated with ZA for 7 days, and aAPC-γδ T cells were stimulated weekly with K562-based aAPCs expressing CD32, CD80, CD83, 4-1BBL, CD40L and CD70, whereas ZA-γδ T cells were stimulated with only IL-2. Cultured γδ T cells were analyzed by flow cytometry for the expression of co-stimulatory molecules, activating receptors and checkpoint inhibitors. Differentially expressed gene (DEG) analysis was also performed to determine the difference in gene expression between aAPC-γδ T cells and ZA-γδ T cells. In vitro cytotoxicity assay was performed with calcein AM release assay, and in vivo anti-tumor effect was compared using a U937 xenograft model. RESULTS Fold expansion on day 21 was 690.7 ± 413.1 for ZA-γδ T cells and 1415.2 ± 1016.8 for aAPC- γδ T cells. Moreover, aAPC-γδ T cells showed continuous growth, whereas ZA-γδ T cells showed a decline in growth after day 21. The T-cell receptor Vγ9+δ2+ percentages (mean ± standard deviation) on day 21 were 90.0 ± 2.7% and 87.0 ± 4.5% for ZA-γδ T cells and aAPC-γδ T cells, respectively. CD25 and CD86 expression was significantly higher in aAPC-γδ T cells. In DEG analysis, aAPC-γδ T cells and ZA-γδ T cells formed distinct clusters, and aAPC-γδ T cells showed upregulation of genes associated with metabolism and cytokine pathways. In vitro cytotoxicity revealed superior anti-tumor effects of aAPC-γδ T cells compared with ZA-γδ T cells on Daudi, Raji and U937 cell lines. In addition, in the U937 xenograft model, aAPC-γδ T-cell treatment increased survival, and a higher frequency of aAPC-γδ T cells was shown in bone marrow compared with ZA-γδ T cells. CONCLUSIONS Overall, this study demonstrates that aAPC-γδ T cells show long-term proliferation, enhanced activation and anti-tumor effects compared with ZA-γδ T cells and provides a basis for using aAPC-γδ T cells in further studies, including clinical applications and genetic engineering of γδ T cells.
Collapse
Affiliation(s)
- Haeyoun Choi
- Department of Microbiology, College of Medicine, Catholic University of Korea, Seoul, Republic of Korea; Department of Biomedicine & Health Sciences, College of Medicine, Catholic University of Korea, Seoul, Republic of Korea
| | - Yunkyung Lee
- Catholic Hematopoietic Stem Cell Bank, College of Medicine, Catholic University of Korea, Seoul, Republic of Korea
| | - Gaeun Hur
- Department of Microbiology, College of Medicine, Catholic University of Korea, Seoul, Republic of Korea; Department of Biomedicine & Health Sciences, College of Medicine, Catholic University of Korea, Seoul, Republic of Korea
| | - Sang-Eun Lee
- R&D Division, ViGenCell Inc, Seoul, Republic of Korea
| | - Hyun-Il Cho
- R&D Division, ViGenCell Inc, Seoul, Republic of Korea
| | - Hyun-Jung Sohn
- Translational and Clinical Division, ViGenCell Inc, Seoul, Republic of Korea
| | - Byung Sik Cho
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary's Hospital, College of Medicine, Catholic University of Korea, Seoul, Republic of Korea
| | - Hee-Je Kim
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary's Hospital, College of Medicine, Catholic University of Korea, Seoul, Republic of Korea.
| | - Tai-Gyu Kim
- Department of Microbiology, College of Medicine, Catholic University of Korea, Seoul, Republic of Korea; Department of Biomedicine & Health Sciences, College of Medicine, Catholic University of Korea, Seoul, Republic of Korea; Catholic Hematopoietic Stem Cell Bank, College of Medicine, Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
15
|
Barros MDS, de Araújo ND, Magalhães-Gama F, Pereira Ribeiro TL, Alves Hanna FS, Tarragô AM, Malheiro A, Costa AG. γδ T Cells for Leukemia Immunotherapy: New and Expanding Trends. Front Immunol 2021; 12:729085. [PMID: 34630403 PMCID: PMC8493128 DOI: 10.3389/fimmu.2021.729085] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/30/2021] [Indexed: 12/22/2022] Open
Abstract
Recently, many discoveries have elucidated the cellular and molecular diversity in the leukemic microenvironment and improved our knowledge regarding their complex nature. This has allowed the development of new therapeutic strategies against leukemia. Advances in biotechnology and the current understanding of T cell-engineering have led to new approaches in this fight, thus improving cell-mediated immune response against cancer. However, most of the investigations focus only on conventional cytotoxic cells, while ignoring the potential of unconventional T cells that until now have been little studied. γδ T cells are a unique lymphocyte subpopulation that has an extensive repertoire of tumor sensing and may have new immunotherapeutic applications in a wide range of tumors. The ability to respond regardless of human leukocyte antigen (HLA) expression, the secretion of antitumor mediators and high functional plasticity are hallmarks of γδ T cells, and are ones that make them a promising alternative in the field of cell therapy. Despite this situation, in particular cases, the leukemic microenvironment can adopt strategies to circumvent the antitumor response of these lymphocytes, causing their exhaustion or polarization to a tumor-promoting phenotype. Intervening in this crosstalk can improve their capabilities and clinical applications and can make them key components in new therapeutic antileukemic approaches. In this review, we highlight several characteristics of γδ T cells and their interactions in leukemia. Furthermore, we explore strategies for maximizing their antitumor functions, aiming to illustrate the findings destined for a better mobilization of γδ T cells against the tumor. Finally, we outline our perspectives on their therapeutic applicability and indicate outstanding issues for future basic and clinical leukemia research, in the hope of contributing to the advancement of studies on γδ T cells in cancer immunotherapy.
Collapse
Affiliation(s)
- Mateus de Souza Barros
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
| | - Nilberto Dias de Araújo
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
| | - Fábio Magalhães-Gama
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, Instituto René Rachou - Fundação Oswaldo Cruz (FIOCRUZ) Minas, Belo Horizonte, Brazil
| | - Thaís Lohana Pereira Ribeiro
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
| | - Fabíola Silva Alves Hanna
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
| | - Andréa Monteiro Tarragô
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, Brazil
| | - Adriana Malheiro
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, Brazil
| | - Allyson Guimarães Costa
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, Brazil
- Programa de Pós-Graduação em Medicina Tropical, UEA, Manaus, Brazil
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Doutor Heitor Vieira Dourado (FMT-HVD), Manaus, Brazil
- Escola de Enfermagem de Manaus, UFAM, Manaus, Brazil
| |
Collapse
|
16
|
Galati D, Zanotta S, Bocchino M, De Filippi R, Pinto A. The subtle interplay between gamma delta T lymphocytes and dendritic cells: is there a role for a therapeutic cancer vaccine in the era of combinatorial strategies? Cancer Immunol Immunother 2021; 70:1797-1809. [PMID: 33386466 PMCID: PMC10991494 DOI: 10.1007/s00262-020-02805-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/21/2020] [Indexed: 12/12/2022]
Abstract
Human gamma delta (γδ) T cells represent heterogeneous subsets of unconventional lymphocytes with an HLA-unrestricted target cell recognition. γδ T cells display adaptive clonally restricted specificities coupled to a powerful cytotoxic function against transformed/injured cells. Dendritic cells (DCs) are documented to be the most potent professional antigen-presenting cells (APCs) able to induce adaptive immunity and support the innate immune response independently from T cells. Several data show that the cross-talk of γδ T lymphocytes with DCs can play a crucial role in the orchestration of immune response by bridging innate to adaptive immunity. In the last decade, DCs, as well as γδ T cells, have been of increasing clinical interest, especially as monotherapy for cancer immunotherapy, even though with unpredictable results mainly due to immune suppression and/or tumor-immune escape. For these reasons, new vaccine strategies have to be explored to reach cancer immunotherapy's full potential. The effect of DC-based vaccines on γδ T cell is less extensively investigated, and a combinatorial approach using DC-based vaccines with γδ T cells might promote a strong synergy for long-term tumor control and protection against escaping tumor clones. Here, we discuss the therapeutic potential of the interaction between DCs and γδ T cells to improve cancer vaccination. In particular, we describe the most relevant and updated evidence of such combinatorial approaches, including the use of Zoledronate, Interleukin-15, and protamine RNA, also looking towards future strategies such as CAR therapies.
Collapse
Affiliation(s)
- Domenico Galati
- Hematology-Oncology and Stem Cell Transplantation Unit, Department of Hematology and Developmental Therapeutics, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, Italy.
| | - Serena Zanotta
- Hematology-Oncology and Stem Cell Transplantation Unit, Department of Hematology and Developmental Therapeutics, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, Italy
| | - Marialuisa Bocchino
- Department of Clinical Medicine and Surgery, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Rosaria De Filippi
- Department of Clinical Medicine and Surgery, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Antonio Pinto
- Hematology-Oncology and Stem Cell Transplantation Unit, Department of Hematology and Developmental Therapeutics, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, Italy
| |
Collapse
|
17
|
Qi C, Wang Y, Li P, Zhao J. Gamma Delta T Cells and Their Pathogenic Role in Psoriasis. Front Immunol 2021; 12:627139. [PMID: 33732249 PMCID: PMC7959710 DOI: 10.3389/fimmu.2021.627139] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 01/15/2021] [Indexed: 12/14/2022] Open
Abstract
γδT cells are an unconventional population of T lymphocytes that play an indispensable role in host defense, immune surveillance, and homeostasis of the immune system. They display unique developmental, distributional, and functional patterns and rapidly respond to various insults and contribute to diverse diseases. Although γδT cells make up only a small portion of the total T cell pool, emerging evidence suggest that aberrantly activated γδT cells may play a role in the pathogenesis of psoriasis. Dermal γδT cells are the major IL-17-producing cells in the skin that respond to IL-23 stimulation. Furthermore, γδT cells exhibit memory-cell-like characteristics that mediate repeated episodes of psoriatic inflammation. This review discusses the differentiation, development, distribution, and biological function of γδT cells and the mechanisms by which they contribute to psoriasis. Potential therapeutic approaches targeting these cells in psoriasis have also been detailed.
Collapse
Affiliation(s)
- Cong Qi
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, Beijing Institute of Traditional Chinese Medicine, Beijing, China
| | - Yazhuo Wang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, Beijing Institute of Traditional Chinese Medicine, Beijing, China
| | - Ping Li
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, Beijing Institute of Traditional Chinese Medicine, Beijing, China
| | - Jingxia Zhao
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, Beijing Institute of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|
18
|
da Mota JB, Echevarria-Lima J, Kyle-Cezar F, Melo M, Bellio M, Scharfstein J, Oliveira AC. IL-18R signaling is required for γδ T cell response and confers resistance to Trypanosoma cruzi infection. J Leukoc Biol 2020; 108:1239-1251. [PMID: 32450614 DOI: 10.1002/jlb.4ma0420-568r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/17/2020] [Accepted: 05/08/2020] [Indexed: 01/17/2023] Open
Abstract
IFN-γ-producing γδ T cells have been suggested to play an important role in protection against infection with Trypanosoma cruzi. However, little is known about the mechanisms leading to functional differentiation of this T cell subset in this model. In the current work, we investigated the possibility that the IL-18/MyD88 pathway is central for the generation of effector γδ T cells, playing a role for resistance against infection. We found that splenic γδ+ CD3+ cells were rapidly expanded (10-14 days post infection), which was accompanied by an early γδ T cell infiltration into the heart. In the following days, intracardiac parasitism was reduced, the protective immunity being accompanied by decreased γδ T cells tissue infiltration. As predicted, there was a drastic reduction of γδ T cells in Myd88- and Il18r1-deficient mice, both transgenic strains displaying a susceptible phenotype with increased intracardiac parasitism. In vivo and in vitro assays confirmed that IL-18R deficiency hampered γδ T cell proliferation. Further characterization revealed that T. cruzi infection up-regulates IL-18R expression in WT γδ+ T cell population whereas Il18r1-/- mice showed impaired generation of cytotoxic GzB+ and IFN-γ-producing γδ T cells. Consistently, in vitro cytotoxicity assay confirmed that cytolytic function was impaired in Il18r1-deficient γδ T cells. As a proof of concept, adoptive transfer of WT γδ T cells rescues Il18r1-deficient mice from susceptibility, reducing parasitemia and abrogating the mortality. Collectively, our findings implicate the IL-18R-MyD88 signaling in the mechanisms underlying generation of immunoprotective γδ T cells response in experimental Trypanosoma cruzi infection.
Collapse
Affiliation(s)
- Julia Barbalho da Mota
- Laboratório de Imunologia Celular e Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Juliana Echevarria-Lima
- Laboratório de Imunologia Básica e Aplicada, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda Kyle-Cezar
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Matheus Melo
- Laboratório de Imunologia Celular e Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria Bellio
- Laboratório de Imunobiologia, Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Julio Scharfstein
- Laboratório de Imunologia Celular e Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Carolina Oliveira
- Laboratório de Imunologia Celular e Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
19
|
Mann BT, Sambrano E, Maggirwar SB, Soriano-Sarabia N. Boosting the Immune System for HIV Cure: A γδ T Cell Perspective. Front Cell Infect Microbiol 2020; 10:221. [PMID: 32509594 PMCID: PMC7248175 DOI: 10.3389/fcimb.2020.00221] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/22/2020] [Indexed: 12/20/2022] Open
Abstract
The major barrier to HIV cure is a population of long-lived cells that harbor latent but replication-competent virus, are not eliminated by antiretroviral therapy (ART), and remain indistinguishable from uninfected cells. However, ART does not cure HIV infection, side effects to treatment still occur, and the steady global rate of new infections makes finding a sustained ART-free HIV remission or cure for HIV-seropositive individuals urgently needed. Approaches aimed to cure HIV are mostly based on the "shock and kill" method that entails the use of a drug compound to reactivate latent virus paired together with strategies to boost or supplement the existing immune system to clear reactivated latently infected cells. Traditionally, these strategies have utilized CD8+ cytotoxic lymphocytes (CTL) but have been met with a number of challenges. Enhancing innate immune cell populations, such as γδ T cells, may provide an alternative route to HIV cure. γδ T cells possess anti-viral and cytotoxic capabilities that have been shown to directly inhibit HIV infection and specifically eliminate reactivated, latently infected cells in vitro. Most notably, their access to immune privileged anatomical sites and MHC-independent antigen recognition may circumvent many of the challenges facing CTL-based strategies. In this review, we discuss the role of γδ T cells in normal immunity and HIV infection as well as their current use in strategies to treat cancer. We present this information as means to speculate about the utilization of γδ T cells for HIV cure strategies and highlight some of the fundamental gaps in knowledge that require investigation.
Collapse
Affiliation(s)
| | | | | | - Natalia Soriano-Sarabia
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington, DC, United States
| |
Collapse
|
20
|
Lee HW, Chung YS, Kim TJ. Heterogeneity of Human γδ T Cells and Their Role in Cancer Immunity. Immune Netw 2020; 20:e5. [PMID: 32158593 PMCID: PMC7049581 DOI: 10.4110/in.2020.20.e5] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 02/04/2020] [Accepted: 02/08/2020] [Indexed: 12/24/2022] Open
Abstract
The γδ T cells are unconventional lymphocytes that function in both innate and adaptive immune responses against various intracellular and infectious stresses. The γδ T cells can be exploited as cancer-killing effector cells since γδ TCRs recognize MHC-like molecules and growth factor receptors that are upregulated in cancer cells, and γδ T cells can differentiate into cytotoxic effector cells. However, γδ T cells may also promote tumor progression by secreting IL-17 or other cytokines. Therefore, it is essential to understand how the differentiation and homeostasis of γδ T cells are regulated and whether distinct γδ T cell subsets have different functions. Human γδ T cells are classified into Vδ2 and non-Vδ2 γδ T cells. The majority of Vδ2 γδ T cells are Vγ9δ2 T cells that recognize pyrophosphorylated isoprenoids generated by the dysregulated mevalonate pathway. In contrast, Vδ1 T cells expand from initially diverse TCR repertoire in patients with infectious diseases and cancers. The ligands of Vδ1 T cells are diverse and include the growth factor receptors such as endothelial protein C receptor. Both Vδ1 and Vδ2 γδ T cells are implicated to have immunotherapeutic potentials for cancers, but the detailed elucidation of the distinct characteristics of 2 populations will be required to enhance the immunotherapeutic potential of γδ T cells. Here, we summarize recent progress regarding cancer immunology of human γδ T cells, including their development, heterogeneity, and plasticity, the putative mechanisms underlying ligand recognition and activation, and their dual effects on tumor progression in the tumor microenvironment.
Collapse
Affiliation(s)
- Hye Won Lee
- Department of Hospital Medicine, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Yun Shin Chung
- Department of Immunology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
| | - Tae Jin Kim
- Department of Immunology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
| |
Collapse
|
21
|
In the Absence of a TCR Signal IL-2/IL-12/18-Stimulated γδ T Cells Demonstrate Potent Anti-Tumoral Function Through Direct Killing and Senescence Induction in Cancer Cells. Cancers (Basel) 2020; 12:cancers12010130. [PMID: 31947966 PMCID: PMC7017313 DOI: 10.3390/cancers12010130] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/13/2019] [Accepted: 12/30/2019] [Indexed: 12/12/2022] Open
Abstract
Abundant IFN-γ secretion, potent cytotoxicity, and major histocompatibility complex-independent targeting of a large spectrum of tumors make γδ T cells attractive candidates for cancer immunotherapy. Upon tumor recognition through the T-cell receptor (TCR), NK-receptors, or NKG2D, γδ T cells generate the pro-inflammatory cytokines TNF-α and IFN-γ, or granzymes and perforin that mediate cellular apoptosis. Despite these favorable potentials, most clinical trials testing the adoptive transfer of pharmacologically TCR-targeted and expanded γδ T cells resulted in a limited response. Recently, the TCR-independent activation of γδ T cells was identified. However, the modulation of γδ T cell’s effector functions solely by cytokines remains to be elucidated. In the present study, we systematically analyzed the impact of IL-2, IL-12, and IL-18 in parallel with TCR stimulation on proliferation, cytokine production, and anti-tumor activity of γδ T cells. Our results demonstrate that IL-12 and IL-18, when combined, constitute the most potent stimulus to enhance anti-tumor activity and induce proliferation and IFN-γ production by γδ T cells in the absence of TCR signaling. Intriguingly, stimulation with IL-12 and IL-18 without TCR stimulus induces a comparable degree of anti-tumor activity in γδ T cells to TCR crosslinking by killing tumor cells and driving cancer cells into senescence. These findings approve the use of IL-12/IL-18-stimulated γδ T cells for adoptive cell therapy to boost anti-tumor activity by γδ T cells.
Collapse
|
22
|
Silva-Santos B, Mensurado S, Coffelt SB. γδ T cells: pleiotropic immune effectors with therapeutic potential in cancer. Nat Rev Cancer 2019; 19:392-404. [PMID: 31209264 PMCID: PMC7614706 DOI: 10.1038/s41568-019-0153-5] [Citation(s) in RCA: 284] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The potential of cancer immunotherapy relies on the mobilization of immune cells capable of producing antitumour cytokines and effectively killing tumour cells. These are major attributes of γδ T cells, a lymphoid lineage that is often underestimated despite its major role in tumour immune surveillance, which has been established in a variety of preclinical cancer models. This situation notwithstanding, in particular instances the tumour microenvironment seemingly mobilizes γδ T cells with immunosuppressive or tumour-promoting functions, thus emphasizing the importance of regulating γδ T cell responses in order to realize their translation into effective cancer immunotherapies. In this Review we outline both seminal work and recent advances in our understanding of how γδ T cells participate in tumour immunity and how their functions are regulated in experimental models of cancer. We also discuss the current strategies aimed at maximizing the therapeutic potential of human γδ T cells, on the eve of their exploration in cancer clinical trials that may position them as key players in cancer immunotherapy.
Collapse
Affiliation(s)
- Bruno Silva-Santos
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.
| | - Sofia Mensurado
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Seth B Coffelt
- Institute of Cancer Sciences, University of Glasgow and Cancer Research UK Beatson Institute, Glasgow, UK.
| |
Collapse
|
23
|
Kumagai A, Shimizu K, Kurata R, Cui X, Isagawa T, Harada M, Nagai J, Yoshida Y, Ozaki KI, Takeda N, Semba H, Yonezawa T. Establishment of Novel Cells Stably Secreting Various Human IL-18 Recombinant Proteins. Curr Pharm Biotechnol 2019; 20:47-55. [PMID: 30727885 DOI: 10.2174/1389201020666190206203640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/19/2019] [Accepted: 01/21/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND The immunotherapies against cancer, autoinmmune diseases or infection are remarkable development. These days programmed cell death (PD)-1 antibody-induced immune checkpoint blockade or chimeric antigen receptor-T cells (CAR-T) have been shown to have eminent therapeutic effects on tumor development. We have focused on adoptive transfer with human gamma delta T cells for novel immunotherapies. Additionally, IL-18 is one of the cytokines that enhances cytokine secretion and cytotoxicity of human gamma delta T cells. METHOD Thus, we established novel cell lines stably expressing and secreting various types of human recombinant IL-18 proteins to their culture supernatants using episomal vector. We also differentiated primary cultured human gamma delta T cells from peripheral blood mononuclear leukocytes to validate biological activity of the IL-18 proteins using measuring IFN-γ by ELISA. RESULTS AND CONCLUSION Finally, we demonstrated that the supernatant could activate human gamma delta T cells using monitoring interferon gamma in culture medium.
Collapse
Affiliation(s)
- Asuka Kumagai
- Center for Therapeutic Innovation, Gene Research Center for Frontiers Life Sciences, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-14 Sakamoto, Nagasaki 852-8523, Japan
| | - Kenji Shimizu
- Division of Immune Regulation, Institute for Genome Research, Tokushima University, Tokushima-shi, Tokushima, Japan
| | - Riho Kurata
- Education and Research Center for Fundamental Pharmaceutical Sciences, Osaka University of Pharmaceutical Sciences, Osaka, Japan
| | - Xiaofeng Cui
- School of Chemistry, Chemical Engineering and Life Sciences, School of Materials and Engineering, Wuhan University of Technology, 122 Loushi Rd, Wuhan, Hubei, China
| | - Takayuki Isagawa
- Department of Cardiovascular Medicine, Graduate School of Biomedical Sciences, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Masamitsu Harada
- Center for Therapeutic Innovation, Gene Research Center for Frontiers Life Sciences, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-14 Sakamoto, Nagasaki 852-8523, Japan.,Graduate School of information Science, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Jun Nagai
- Center for Therapeutic Innovation, Gene Research Center for Frontiers Life Sciences, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-14 Sakamoto, Nagasaki 852-8523, Japan
| | - Yasuhiro Yoshida
- Department of Immunology and Parasitology, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Kei-Ichi Ozaki
- Education and Research Center for Fundamental Pharmaceutical Sciences, Osaka University of Pharmaceutical Sciences, Osaka, Japan
| | - Norihiko Takeda
- The University of Tokyo, Department of Cardiovascular Medicine, Graduate School of Medicine, 7- 3-1, Hongo, Tokyo, Bunkyo-ku, 113-8654, Japan
| | - Hiroaki Semba
- Department of Cardiovascular Medicine, The Cardiovascular Institute, Tokyo, Japan Nishiazabu 3-2-19, Minato-ku, Tokyo 106-0031, Japan
| | - Tomo Yonezawa
- Center for Therapeutic Innovation, Gene Research Center for Frontiers Life Sciences, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-14 Sakamoto, Nagasaki 852-8523, Japan
| |
Collapse
|
24
|
Interleukin-18 in Health and Disease. Int J Mol Sci 2019; 20:ijms20030649. [PMID: 30717382 PMCID: PMC6387150 DOI: 10.3390/ijms20030649] [Citation(s) in RCA: 357] [Impact Index Per Article: 59.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/28/2019] [Accepted: 01/29/2019] [Indexed: 12/12/2022] Open
Abstract
Interleukin (IL)-18 was originally discovered as a factor that enhanced IFN-γ production from anti-CD3-stimulated Th1 cells, especially in the presence of IL-12. Upon stimulation with Ag plus IL-12, naïve T cells develop into IL-18 receptor (IL-18R) expressing Th1 cells, which increase IFN-γ production in response to IL-18 stimulation. Therefore, IL-12 is a commitment factor that induces the development of Th1 cells. In contrast, IL-18 is a proinflammatory cytokine that facilitates type 1 responses. However, IL-18 without IL-12 but with IL-2, stimulates NK cells, CD4+ NKT cells, and established Th1 cells, to produce IL-3, IL-9, and IL-13. Furthermore, together with IL-3, IL-18 stimulates mast cells and basophils to produce IL-4, IL-13, and chemical mediators such as histamine. Therefore, IL-18 is a cytokine that stimulates various cell types and has pleiotropic functions. IL-18 is a member of the IL-1 family of cytokines. IL-18 demonstrates a unique function by binding to a specific receptor expressed on various types of cells. In this review article, we will focus on the unique features of IL-18 in health and disease in experimental animals and humans.
Collapse
|
25
|
Cytokine-mediated activation of human ex vivo-expanded Vγ9Vδ2 T cells. Oncotarget 2018; 8:45928-45942. [PMID: 28521284 PMCID: PMC5542238 DOI: 10.18632/oncotarget.17498] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 04/07/2017] [Indexed: 11/25/2022] Open
Abstract
Vγ9Vδ2 T cells, the major subset of the human peripheral blood γδ T-cell, respond to microbial infection and stressed cells through the recognition of phosphoantigens. In contrast to the growing knowledge of antigen-mediated activation mechanisms, the antigen-independent and cytokine-mediated activation mechanisms of Vγ9Vδ2 T cells are poorly understood. Here, we show that interleukin (IL) -12 and IL-18 synergize to activate human ex vivo-expanded Vγ9Vδ2 T cells. Vγ9Vδ2 T cells treated with IL-12 and IL-18 enhanced effector functions, including the expression of IFN-γ and granzyme B, and cytotoxicity. These enhanced effector responses following IL-12 and IL-18 treatment were associated with homotypic aggregation, enhanced expression of ICAM-1 and decreased expression of the B- and T-lymphocyte attenuator (BTLA), a co-inhibitory receptor. IL-12 and IL-18 also induced the antigen-independent proliferation of Vγ9Vδ2 T cells. Increased expression of IκBζ, IL-12Rβ2 and IL-18Rα following IL-12 and IL-18 stimulation resulted in sustained activation of STAT4 and NF-κB. The enhanced production of IFN-γ and cytotoxic activity are critical for cancer immunotherapy using Vγ9Vδ2 T cells. Thus, the combined treatment of ex vivo-expanded Vγ9Vδ2 T cells with IL-12 and IL-18 may serve as a new strategy for the therapeutic activation of these cells.
Collapse
|
26
|
Zhao Y, Niu C, Cui J. Gamma-delta (γδ) T cells: friend or foe in cancer development? J Transl Med 2018; 16:3. [PMID: 29316940 PMCID: PMC5761189 DOI: 10.1186/s12967-017-1378-2] [Citation(s) in RCA: 207] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 12/30/2017] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND γδ T cells are a distinct subgroup of T cells containing T cell receptors (TCRs) γ and TCR δ chains with diverse structural and functional heterogeneity. As a bridge between the innate and adaptive immune systems, γδ T cells participate in various immune responses during cancer progression. Because of their direct/indirect antitumor cytotoxicity and strong cytokine production ability, the use of γδ T cells in cancer immunotherapy has received a lot of attention over the past decade. MAIN TEXT Despite the promising potential of γδ T cells, the efficacy of γδ T cell immunotherapy is limited, with an average response ratio of only 21%. In addition, research over the past 2 years has shown that γδ T cells could also promote cancer progression by inhibiting antitumor responses, and enhancing cancer angiogenesis. As a result, γδ T cells have a dual effect and can therefore be considered as being both "friends" and "foes" of cancer. In order to solve the sub-optimal efficiency problem of γδ T cell immunotherapy, we review recent observations regarding the antitumor and protumor activities of major structural and functional subsets of human γδ T cells, describing how these subsets are activated and polarized, and how these events relate to subsequent effects in cancer immunity. A mixture of both antitumor or protumor γδ T cells used in adoptive immunotherapy, coupled with the fact that γδ T cells can be polarized from antitumor cells to protumor cells appear to be the likely reasons for the mild efficacy seen with γδ T cells. CONCLUSION The future holds the promise of depleting the specific protumor γδ T cell subgroup before therapy, choosing multi-immunocyte adoptive therapy, modifying the cytokine balance in the cancer microenvironment, and using a combination of γδ T cells adoptive immunotherapy with immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Yijing Zhao
- Cancer Center, The First Hospital of Jilin University, Changchun, 130021 People’s Republic of China
| | - Chao Niu
- Cancer Center, The First Hospital of Jilin University, Changchun, 130021 People’s Republic of China
| | - Jiuwei Cui
- Cancer Center, The First Hospital of Jilin University, Changchun, 130021 People’s Republic of China
| |
Collapse
|
27
|
Abstract
Hepatitis B virus (HBV) infection is a worldwide health problem, with approximately one third of populations have been infected, among which 3-5% of adults and more than 90% of children developed to chronic HBV infection. Host immune factors play essential roles in the outcome of HBV infection. Thus, ineffective immune response against HBV may result in persistent virus replications and liver necroinflammations, then lead to chronic HBV infection, liver cirrhosis, and even hepatocellular carcinoma. Cytokine balance was shown to be an important immune characteristic in the development and progression of hepatitis B, as well as in an effective antiviral immunity. Large numbers of cytokines are not only involved in the initiation and regulation of immune responses but also contributing directly or indirectly to the inhibition of virus replication. Besides, cytokines initiate downstream signaling pathway activities by binding to specific receptors expressed on the target cells and play important roles in the responses against viral infections and, therefore, might affect susceptibility to HBV and/or the natural course of the infection. Since cytokines are the primary causes of inflammation and mediates liver injury after HBV infection, we have discussed recent advances on the roles of various cytokines [including T helper type 1 cells (Th1), Th2, Th17, regulatory T cells (Treg)-related cytokines] in different phases of HBV infection and cytokine-related mechanisms for impaired viral control and liver damage during HBV infection. We then focus on experimental therapeutic applications of cytokines to gain a better understanding of this newly emerging aspect of disease pathogenesis.
Collapse
|
28
|
Nerdal PT, Peters C, Oberg HH, Zlatev H, Lettau M, Quabius ES, Sousa S, Gonnermann D, Auriola S, Olive D, Määttä J, Janssen O, Kabelitz D. Butyrophilin 3A/CD277-Dependent Activation of Human γδ T Cells: Accessory Cell Capacity of Distinct Leukocyte Populations. THE JOURNAL OF IMMUNOLOGY 2016; 197:3059-3068. [PMID: 27619996 DOI: 10.4049/jimmunol.1600913] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 08/18/2016] [Indexed: 01/07/2023]
Abstract
Human Vγ9Vδ2 T cells recognize in a butyrophilin 3A/CD277-dependent way microbial (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP) or endogenous pyrophosphates (isopentenyl pyrophosphate [IPP]). Nitrogen-bisphosphonates such as zoledronic acid (ZOL) trigger selective γδ T cell activation because they stimulate IPP production in monocytes by inhibiting the mevalonate pathway downstream of IPP synthesis. We performed a comparative analysis of the capacity of purified monocytes, neutrophils, and CD4 T cells to serve as accessory cells for Vγ9Vδ2 T cell activation in response to three selective but mechanistically distinct stimuli (ZOL, HMBPP, agonistic anti-CD277 mAb). Only monocytes supported γδ T cell expansion in response to all three stimuli, whereas both neutrophils and CD4 T cells presented HMBPP but failed to induce γδ T cell expansion in the presence of ZOL or anti-CD277 mAb. Preincubation of accessory cells with the respective stimuli revealed potent γδ T cell-stimulating activity of ZOL- or anti-CD277 mAb-pretreated monocytes, but not neutrophils. In comparison with monocytes, ZOL-pretreated neutrophils produced little, if any, IPP and expressed much lower levels of farnesyl pyrophosphate synthase. Exogenous IL-18 enhanced the γδ T cell expansion with all three stimuli, remarkably also in response to CD4 T cells and neutrophils preincubated with anti-CD277 mAb or HMBPP. Our study uncovers unexpected differences between monocytes and neutrophils in their accessory function for human γδ T cells and underscores the important role of IL-18 in driving γδ T cell expansion. These results may have implications for the design of γδ T cell-based immunotherapeutic strategies.
Collapse
Affiliation(s)
- Patrik Theodor Nerdal
- Institute of Immunology, Christian-Albrechts-University of Kiel and University Hospital Schleswig-Holstein, D-24105 Kiel, Germany
| | - Christian Peters
- Institute of Immunology, Christian-Albrechts-University of Kiel and University Hospital Schleswig-Holstein, D-24105 Kiel, Germany
| | - Hans-Heinrich Oberg
- Institute of Immunology, Christian-Albrechts-University of Kiel and University Hospital Schleswig-Holstein, D-24105 Kiel, Germany
| | - Hristo Zlatev
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Marcus Lettau
- Institute of Immunology, Christian-Albrechts-University of Kiel and University Hospital Schleswig-Holstein, D-24105 Kiel, Germany
| | - Elgar Susanne Quabius
- Institute of Immunology, Christian-Albrechts-University of Kiel and University Hospital Schleswig-Holstein, D-24105 Kiel, Germany.,Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Schleswig-Holstein, D-24105 Kiel, Germany
| | - Sofia Sousa
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Daniel Gonnermann
- Institute of Immunology, Christian-Albrechts-University of Kiel and University Hospital Schleswig-Holstein, D-24105 Kiel, Germany
| | - Seppo Auriola
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Daniel Olive
- Laboratoire d'Immunologie des Tumeurs, Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes, INSERM, U1068, F-13009 Marseille, France.,CNRS, UMR7258, F-13009 Marseille, France.,Institut Paoli-Calmettes, F-13009 Marseille, France.,Aix-Marseille University, UM 105, F-13284 Marseille, France; and
| | - Jorma Määttä
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland.,Department of Cell Biology and Anatomy, Institute of Biomedicine, University of Turku, 20520 Turku, Finland
| | - Ottmar Janssen
- Institute of Immunology, Christian-Albrechts-University of Kiel and University Hospital Schleswig-Holstein, D-24105 Kiel, Germany
| | - Dieter Kabelitz
- Institute of Immunology, Christian-Albrechts-University of Kiel and University Hospital Schleswig-Holstein, D-24105 Kiel, Germany;
| |
Collapse
|
29
|
Li W, Jin D, Hata M, Takai S, Yamanishi K, Shen W, El-Darawish Y, Yamanishi H, Okamura H. Dysfunction of mitochondria and deformed gap junctions in the heart of IL-18-deficient mice. Am J Physiol Heart Circ Physiol 2016; 311:H313-25. [PMID: 27288439 DOI: 10.1152/ajpheart.00927.2015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 06/03/2016] [Indexed: 01/01/2023]
Abstract
Interleukin-18 (IL-18) was discovered as an interferon-γ-inducing factor and has been regarded as a proinflammatory cytokine. However, IL-18 is ubiquitously expressed both in immune/inflammatory cells and in nonimmune cells, and its biological roles have not been sufficiently elucidated. Here, we demonstrate that IL-18-deficient [IL-18 knockout (KO)] mice have heart abnormalities that may be related to impaired autophagy. In endurance running tests, IL-18KO mice ran significantly shorter distances compared with wild-type (WT) mice. Echocardiographs indicated disability in the systolic and diastolic functions of the IL-18KO mouse heart. Immunostaining of connexin 43 showed heterogeneous localization of gap junctions in the lateral membranes of the IL-18KO cardiac myocytes. Western blotting analysis revealed decreased phosphorylated connexin 43 in the IL-18KO heart. Electron microscopy revealed unusual localization of intercalated disks, swollen or damaged mitochondria, and broad, indistinct Z-lines in the IL-18KO heart. In accordance with the morphological observation, mitochondrial respiratory function, including that of complexes I and IV, was impaired, and production of reactive oxygen species was augmented in IL-18KO hearts. Notably, levels of LC3-II were markedly lower in the IL-18KO hearts than in WT hearts. In the culture of cardiac myocytes of IL-18KO neonates, exogenous IL-18 upregulated LC3-II and increased the number of intact mitochondria with high mitochondrial membrane potential. These results indicated that IL-18 has roles apart from those as a proinflammatory cytokine in cardiac myocytes and suggested that IL-18 contributes to the homeostatic maintenance of mitochondrial function and gap-junction turnover in cardiac myocytes, possibly by upregulating autophagy.
Collapse
Affiliation(s)
- Wen Li
- Laboratory of Tumor Immunology and Cell Therapy, Hyogo College of Medicine, Hyogo, Japan
| | - Denan Jin
- Department of Pharmacology, Osaka Medical College, Osaka, Japan
| | - Masaki Hata
- Laboratory of Tumor Immunology and Cell Therapy, Hyogo College of Medicine, Hyogo, Japan
| | - Shinji Takai
- Department of Pharmacology, Osaka Medical College, Osaka, Japan
| | - Kyosuke Yamanishi
- Department of Neuropsychiatry, Hyogo College of Medicine, Hyogo, Japan
| | - Weili Shen
- Shanghai Key Laboratory of Hypertension, Shanghai, China; and
| | - Yosif El-Darawish
- Laboratory of Tumor Immunology and Cell Therapy, Hyogo College of Medicine, Hyogo, Japan
| | | | - Haruki Okamura
- Laboratory of Tumor Immunology and Cell Therapy, Hyogo College of Medicine, Hyogo, Japan;
| |
Collapse
|
30
|
Ma Z, Li W, Yoshiya S, Xu Y, Hata M, El-Darawish Y, Markova T, Yamanishi K, Yamanishi H, Tahara H, Tanaka Y, Okamura H. Augmentation of Immune Checkpoint Cancer Immunotherapy with IL18. Clin Cancer Res 2016; 22:2969-80. [PMID: 26755531 DOI: 10.1158/1078-0432.ccr-15-1655] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 12/27/2015] [Indexed: 11/16/2022]
Abstract
PURPOSE Recent clinical trials and animal models demonstrated that immune checkpoint blockade enhanced effector cell responses and tumor rejection; however, further development and improvement of cancer immunotherapy is necessary for more favorable objective responses. In this study, we examined the effect of IL18 on the antitumor effect of immune checkpoint inhibitors. EXPERIMENTAL DESIGN We examined the effect of IL18 on the peritoneal dissemination of CT-26 cells or tail vein injection metastasis of B16/F10 cells using antiprogrammed death-1 ligand-1 (αPD-L1) and/or anti-CTL-associated antigen-4 (αCTLA-4) mAbs. RESULT Massive ascites developed after intraperitoneal inoculation of CT-26, resulting in animal death within 30 days. Treatment of mice with αPD-L1 and/or αCTLA-4 significantly prolonged their survival, and a combination of the antibodies and IL18 provided a much greater therapeutic benefit. The combination modality led to the accumulation of precursor of mature natural killer (pre-mNK) cells in the peritoneal cavity together with increased CD8(+) T and decreased CD4(+)CD25(+)Foxp3(+) T cells. Depletion of the pre-mNK cells abrogated the therapeutic effects and increased the number of CD4(+)CD25(+)Foxp3(+) T cells. The combination treatment also suppressed tail vein injection metastasis of B16/F10 cells. CONCLUSIONS The results demonstrated that IL18 enhanced therapeutic effects of immune checkpoint blockade against peritoneal dissemination of carcinoma or tail vein injection metastasis of melanoma through accumulation of pre-mNK cells, memory-type CD8(+) T cells, and suppression of CD4(+)CD25(+)Foxp3(+) T cells. A combination of immune checkpoint inhibitors with IL18 may give a suggestion to the development of next-generation cancer immunotherapy. Clin Cancer Res; 22(12); 2969-80. ©2016 AACR.
Collapse
Affiliation(s)
- Zhifeng Ma
- Laboratory of Tumor Immunology and Immunotherapy, Hyogo College of Medicine, Hyogo, Japan. Department of Orthopaedic Surgery, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Wen Li
- Laboratory of Tumor Immunology and Immunotherapy, Hyogo College of Medicine, Hyogo, Japan
| | - Shinichi Yoshiya
- Department of Orthopaedic Surgery, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Yunfeng Xu
- Laboratory of Tumor Immunology and Immunotherapy, Hyogo College of Medicine, Hyogo, Japan
| | - Masaki Hata
- Laboratory of Tumor Immunology and Immunotherapy, Hyogo College of Medicine, Hyogo, Japan
| | - Yosif El-Darawish
- Laboratory of Tumor Immunology and Immunotherapy, Hyogo College of Medicine, Hyogo, Japan
| | - Tzvetanka Markova
- Laboratory of Tumor Immunology and Immunotherapy, Hyogo College of Medicine, Hyogo, Japan
| | | | | | - Hideaki Tahara
- Department of Surgery and Bioengineering, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yoshimasa Tanaka
- Center for Bioinformatics and Molecular Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Haruki Okamura
- Laboratory of Tumor Immunology and Immunotherapy, Hyogo College of Medicine, Hyogo, Japan.
| |
Collapse
|
31
|
Ramutton T, Buccheri S, Dieli F, Todaro M, Stassi G, Meraviglia S. γδ T cells as a potential tool in colon cancer immunotherapy. Immunotherapy 2015; 6:989-99. [PMID: 25341120 DOI: 10.2217/imt.14.59] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
γδ T cells are capable of recognizing tumor cells and exert potent cellular cytotoxicity against a large range of tumors, including colon cancer. However, tumors utilize numerous strategies to escape recognition or killing by patrolling γδ T cells, such a downregulation of NKG2D ligands, MICA/B and ULBPs. Therefore, the combined upregulation of T-cell receptorand NKG2D ligands on tumor cells and induction of NKG2D expression on γδ T cells may greatly enhance tumor killing and unlock the functions of γδ T cells. Here, we briefly review current data on the mechanisms of γδ T-cell recognition and killing of colon cancer cells and propose that γδ T cells may represent a promising target for the design of novel and highly innovative immunotherapy in patients with colon cancer.
Collapse
Affiliation(s)
- Thiranut Ramutton
- Department of Biopathology & Biomedical Methodologies, University of Palermo, Palermo, Italy
| | | | | | | | | | | |
Collapse
|
32
|
Ribeiro ST, Ribot JC, Silva-Santos B. Five Layers of Receptor Signaling in γδ T-Cell Differentiation and Activation. Front Immunol 2015; 6:15. [PMID: 25674089 PMCID: PMC4306313 DOI: 10.3389/fimmu.2015.00015] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 01/08/2015] [Indexed: 12/15/2022] Open
Abstract
The contributions of γδ T-cells to immunity to infection or tumors critically depend on their activation and differentiation into effectors capable of secreting cytokines and killing infected or transformed cells. These processes are molecularly controlled by surface receptors that capture key extracellular cues and convey downstream intracellular signals that regulate γδ T-cell physiology. The understanding of how environmental signals are integrated by γδ T-cells is critical for their manipulation in clinical settings. Here, we discuss how different classes of surface receptors impact on human and murine γδ T-cell differentiation, activation, and expansion. In particular, we review the role of five receptor types: the T-cell receptor (TCR), costimulatory receptors, cytokine receptors, NK receptors, and inhibitory receptors. Some of the key players are the costimulatory receptors CD27 and CD28, which differentially impact on pro-inflammatory subsets of γδ T-cells; the cytokine receptors IL-2R, IL-7R, and IL-15R, which drive functional differentiation and expansion of γδ T-cells; the NK receptor NKG2D and its contribution to γδ T-cell cytotoxicity; and the inhibitory receptors PD-1 and BTLA that control γδ T-cell homeostasis. We discuss these and other receptors in the context of a five-step model of receptor signaling in γδ T-cell differentiation and activation, and discuss its implications for the manipulation of γδ T-cells in immunotherapy.
Collapse
Affiliation(s)
- Sérgio T Ribeiro
- Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de Lisboa , Lisboa , Portugal
| | - Julie C Ribot
- Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de Lisboa , Lisboa , Portugal
| | - Bruno Silva-Santos
- Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de Lisboa , Lisboa , Portugal
| |
Collapse
|
33
|
Effector Vγ9Vδ2 T cells dominate the human fetal γδ T-cell repertoire. Proc Natl Acad Sci U S A 2015; 112:E556-65. [PMID: 25617367 DOI: 10.1073/pnas.1412058112] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
γδ T cells are unconventional T cells recognizing antigens via their γδ T-cell receptor (TCR) in a way that is fundamentally different from conventional αβ T cells. γδ T cells usually are divided into subsets according the type of Vγ and/or Vδ chain they express in their TCR. T cells expressing the TCR containing the γ-chain variable region 9 and the δ-chain variable region 2 (Vγ9Vδ2 T cells) are the predominant γδ T-cell subset in human adult peripheral blood. The current thought is that this predominance is the result of the postnatal expansion of cells expressing particular complementary-determining region 3 (CDR3) in response to encounters with microbes, especially those generating phosphoantigens derived from the 2-C-methyl-d-erythritol 4-phosphate pathway of isoprenoid synthesis. However, here we show that, rather than requiring postnatal microbial exposure, Vγ9Vδ2 T cells are the predominant blood subset in the second-trimester fetus, whereas Vδ1(+) and Vδ3(+) γδ T cells are present only at low frequencies at this gestational time. Fetal blood Vγ9Vδ2 T cells are phosphoantigen responsive and display very limited diversity in the CDR3 of the Vγ9 chain gene, where a germline-encoded sequence accounts for >50% of all sequences, in association with a prototypic CDR3δ2. Furthermore, these fetal blood Vγ9Vδ2 T cells are functionally preprogrammed (e.g., IFN-γ and granzymes-A/K), with properties of rapidly activatable innatelike T cells. Thus, enrichment for phosphoantigen-responsive effector T cells has occurred within the fetus before postnatal microbial exposure. These various characteristics have been linked in the mouse to the action of selecting elements and would establish a much stronger parallel between human and murine γδ T cells than is usually articulated.
Collapse
|
34
|
Gruenbacher G, Nussbaumer O, Gander H, Steiner B, Leonhartsberger N, Thurnher M. Stress-related and homeostatic cytokines regulate Vγ9Vδ2 T-cell surveillance of mevalonate metabolism. Oncoimmunology 2014; 3:e953410. [PMID: 25960933 DOI: 10.4161/21624011.2014.953410] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 06/25/2014] [Indexed: 12/22/2022] Open
Abstract
The potentially oncogenic mevalonate pathway provides building blocks for protein prenylation and induces cell proliferation and as such is an important therapeutic target. Among mevalonate metabolites, only isopentenyl pyrophosphate (IPP) has been considered to be an immunologically relevant antigen for primate-specific, innate-like Vγ9Vδ2 T cells with antitumor potential. We show here that Vγ9Vδ2 T cells pretreated with the stress-related, inflammasome-dependent cytokine interleukin 18 (IL-18) were potently activated not only by IPP but also by all downstream isoprenoid pyrophosphates that exhibit combined features of antigens and cell-extrinsic metabolic cues. Vγ9Vδ2 T cells induced this way effectively proliferated even under severe lymphopenic conditions and the antioxidant N-acetylcysteine significantly improved reconstitution of γδ T cells predominantly with a central memory phenotype. The homeostatic cytokine IL-15 induced the differentiation of effector cells in an antigen-independent fashion, which rapidly produced abundant interferon γ (IFNγ) upon antigen re-encounter. IL-15 induced effector γδ T cells displayed increased levels of the cytotoxic lymphocyte-associated proteins CD56, CD96, CD161 and perforin. In response to stimulation with isoprenoid pyrophosphates, these effector cells upregulated surface expression of CD107a and exhibited strong cytotoxicity against tumor cells in vitro. Our data clarify understanding of innate immunosurveillance mechanisms and will facilitate the controlled generation of robust Vγ9Vδ2 T cell subsets for effective cancer immunotherapy.
Collapse
Key Words
- BTN, butyrophilin
- CD107a
- CD56
- CFSE, carboxyfluorescein succinimidyl ester
- DMAPP, dimethylallyl pyrophosphate
- FPP, farnesyl pyrophosphate
- GGPP, geranylgeranyl pyrophosphate
- GPP, geranyl pyrophosphate
- IL-15
- IL-18
- IPP, isopentenyl pyrophosphate
- N-BP, nitrogen-containing bisphosphonate
- NAC, N-acetylcysteine
- NK, natural killer
- TCR, T cell receptor
- immune surveillance
- metabolic cues
- mevalonate pathway
- γδ T cells
Collapse
Affiliation(s)
- Georg Gruenbacher
- Cell Therapy Unit; Department of Urology; K1 Center for Personalized Cancer Medicine; Innsbruck Medical University and oncotyrol ; Innsbruck, Austria
| | - Oliver Nussbaumer
- Peter Gorer Department of Immunobiology; King's College London ; London, UK
| | - Hubert Gander
- Cell Therapy Unit; Department of Urology; K1 Center for Personalized Cancer Medicine; Innsbruck Medical University and oncotyrol ; Innsbruck, Austria
| | - Bernhard Steiner
- Cell Therapy Unit; Department of Urology; K1 Center for Personalized Cancer Medicine; Innsbruck Medical University and oncotyrol ; Innsbruck, Austria
| | - Nicolai Leonhartsberger
- Cell Therapy Unit; Department of Urology; K1 Center for Personalized Cancer Medicine; Innsbruck Medical University and oncotyrol ; Innsbruck, Austria
| | - Martin Thurnher
- Cell Therapy Unit; Department of Urology; K1 Center for Personalized Cancer Medicine; Innsbruck Medical University and oncotyrol ; Innsbruck, Austria
| |
Collapse
|
35
|
Jeon M, Kwon HJ, Kim YH, Han KI, Nam KW, Baik Y, Lee S, Kim WJ, Han MD. Pretreatment with recombinant human interleukin 2 (rhIL-2) Up-regulates PCNA-positive cells after partial hepatectomy in rat liver. BIOTECHNOL BIOPROC E 2014. [DOI: 10.1007/s12257-013-0667-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Wu YL, Ding YP, Tanaka Y, Shen LW, Wei CH, Minato N, Zhang W. γδ T cells and their potential for immunotherapy. Int J Biol Sci 2014; 10:119-35. [PMID: 24520210 PMCID: PMC3920167 DOI: 10.7150/ijbs.7823] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 12/17/2013] [Indexed: 12/19/2022] Open
Abstract
Vγ9Vδ2 (also termed Vγ2Vδ2) T cells, a major human peripheral blood γδ T cell subset, recognize microbial (E)-4-hydroxy-3-methylbut-2-enyl diphosphate and endogenous isopentenyl diphosphate in a TCR-dependent manner. The recognition does not require specific accessory cells, antigen uptake, antigen processing, or MHC class I, class II, or class Ib expression. This subset of T cells plays important roles in mediating innate immunity against a wide variety of infections and displays potent and broad cytotoxic activity against human tumor cells. Because γδT cells express both natural killer receptors such as NKG2D and γδ T cell receptors, they are considered to represent a link between innate and adaptive immunity. In addition, activated γδ T cells express a high level of antigen-presenting cell-related molecules and can present peptide antigens derived from destructed cells to αβ T cells. Utilizing these antimicrobial and anti-tumor properties of γδ T cells, preclinical and clinical trials have been conducted to develop novel immunotherapies for infections and malignancies. Here, we review the immunological properties of γδ T cells including the underlying recognition mechanism of nonpeptitde antigens and summarize the results of γδ T cell-based therapies so far performed. Based on the results of the reported trials, γδ T cells appear to be a promising tool for novel immunotherapies against certain types of diseases.
Collapse
Affiliation(s)
- Yan-Ling Wu
- 1. Lab of Molecular Immunology, Zhejiang Provincial Center for Disease Control and Prevention, 630 Xincheng Road, Hangzhou, 310051, China
| | - Yan-Ping Ding
- 1. Lab of Molecular Immunology, Zhejiang Provincial Center for Disease Control and Prevention, 630 Xincheng Road, Hangzhou, 310051, China
- 2. Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, China
| | - Yoshimasa Tanaka
- 3. Center for Innovation in Immunoregulative Technology and Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Li-Wen Shen
- 2. Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, China
| | - Chuan-He Wei
- 2. Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, China
| | - Nagahiro Minato
- 4. Department of Immunology and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Wen Zhang
- 2. Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, China
| |
Collapse
|
37
|
Li W, Okuda A, Yamamoto H, Yamanishi K, Terada N, Yamanishi H, Tanaka Y, Okamura H. Regulation of development of CD56 bright CD11c + NK-like cells with helper function by IL-18. PLoS One 2013; 8:e82586. [PMID: 24376549 PMCID: PMC3869690 DOI: 10.1371/journal.pone.0082586] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 10/25/2013] [Indexed: 11/19/2022] Open
Abstract
Human γδ T cells augment host defense against tumors and infections, and might have a therapeutic potential in immunotherapy. However, mechanism of γδ T cell proliferation is unclear, and therefore it is difficult to prepare sufficient numbers of γδ T cells for clinical immunotherapy. Recently, natural killer (NK)-like CD56(bright)CD11c(+) cells were shown to promote the proliferation of γδ T cells in an IL-18-dependent manner. In this study, we demonstrated that the NK-like CD56(bright)CD11c(+) cells could directly interact with γδ T cells to promote their sustained expansion, while conventional dendritic cells (DCs), IFN-α-induced DCs, plasmacytoid DCs or monocytes did not. We also examined the cellular mechanism underlying the regulation of CD56(bright)CD11c(+) cells. CD14(+) monocytes pre-incubated with IL-2/IL-18 formed intensive interactions with CD56(int)CD11c(+) cells to promote their differentiation to CD56(bright)CD11c(+) cells with helper function. The development of CD56(bright)CD11c(+) cells was suppressed in an IFN-α dependent manner. These results indicate that CD14(+) monocytes pretreated with IL-2/IL-18, but neither DCs nor monocytes, play a determining role on the development and proliferation of CD56(bright)CD11c(+) cells, which in turn modulate the expansion of γδ T cells. CD56(bright)CD11c(+) NK-like cells may be a novel target for immunotherapy utilizing γδ T cells, by overcoming the limitation of γδ T cells proliferation.
Collapse
MESH Headings
- Adult
- CD11c Antigen/metabolism
- CD56 Antigen/metabolism
- Cell Communication/drug effects
- Dendritic Cells/cytology
- Dendritic Cells/drug effects
- Dendritic Cells/immunology
- Humans
- Interferon-alpha/pharmacology
- Interleukin-18/pharmacology
- Killer Cells, Natural/cytology
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/metabolism
- Lipopolysaccharide Receptors/metabolism
- Models, Immunological
- Monocytes/cytology
- Monocytes/drug effects
- Phenotype
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- T-Lymphocytes, Helper-Inducer/cytology
- T-Lymphocytes, Helper-Inducer/drug effects
- T-Lymphocytes, Helper-Inducer/immunology
Collapse
Affiliation(s)
- Wen Li
- Laboratory of Tumor Immunology and Cell Therapy, Hyogo College of Medicine, Hyogo, Japan
| | - Akico Okuda
- Laboratory of Tumor Immunology and Cell Therapy, Hyogo College of Medicine, Hyogo, Japan
- Department of Pathology, Hyogo College of Medicine, Hyogo, Japan
| | - Hideyuki Yamamoto
- Laboratory of Tumor Immunology and Cell Therapy, Hyogo College of Medicine, Hyogo, Japan
| | - Kyosuke Yamanishi
- Laboratory of Tumor Immunology and Cell Therapy, Hyogo College of Medicine, Hyogo, Japan
- Department of Neuropsychiatry, Hyogo College of Medicine, Hyogo, Japan
| | - Nobuyuki Terada
- Department of Pathology, Hyogo College of Medicine, Hyogo, Japan
| | - Hiromichi Yamanishi
- Hirakata General Hospital for Developmental Disorders, Hirakata, Osaka, Japan
| | - Yoshimasa Tanaka
- Center for Innovation in Immunoregulative Technology and Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Haruki Okamura
- Laboratory of Tumor Immunology and Cell Therapy, Hyogo College of Medicine, Hyogo, Japan
- * E-mail:
| |
Collapse
|
38
|
Kuppala MB, Syed SB, Bandaru S, Varre S, Akka J, Mundulru HP. Immunotherapeutic approach for better management of cancer--role of IL-18. Asian Pac J Cancer Prev 2013; 13:5353-61. [PMID: 23317183 DOI: 10.7314/apjcp.2012.13.11.5353] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Interleukin-18 (IL-18) is an immune-stimulatory cytokine with antitumor activity in preclinical models. It plays pivotal roles in linking inflammatory immune responses and tumor progression and is a useful candidate in gene therapy of lymphoma or lymphoid leukemia. A phase I study of recombinant human IL-18 (rhIL-18) in patients with advanced cancer concluded that rhIL-18 can be safely given in biologically active doses to patients with advanced cancer. Some viruses can induce the secretion of IL-18 for immune evasion. The individual cytokine activity might be potentiated or inhibited by combinations of cytokines. Here we focus on combinational effects of cytokines with IL-18 in cancer progression. IL-18 is an important non-invasive marker suspected of contributing to metastasis. Serum IL-18 may a useful biological marker as independent prognostic factor of survival. In this review we cover roles of IL-18 in immune evasion, metastasis and angiogenesis, applications for chemotherapy and prognostic or diagnostic significance.
Collapse
Affiliation(s)
- Manohar Babu Kuppala
- Institute of Genetics and Hospital for Genetic Diseases, Osmania University, Begumpet, Hyderabad, India.
| | | | | | | | | | | |
Collapse
|
39
|
Nussbaumer O, Gruenbacher G, Gander H, Komuczki J, Rahm A, Thurnher M. Essential Requirements of Zoledronate-Induced Cytokine and γδ T Cell Proliferative Responses. THE JOURNAL OF IMMUNOLOGY 2013; 191:1346-55. [DOI: 10.4049/jimmunol.1300603] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
40
|
Anastasilakis AD, Polyzos SA, Delaroudis S, Bisbinas I, Sakellariou GT, Gkiomisi A, Papadopoulou E, Gerou S, Makras P. The role of cytokines and adipocytokines in zoledronate-induced acute phase reaction in postmenopausal women with low bone mass. Clin Endocrinol (Oxf) 2012; 77:816-22. [PMID: 22676573 DOI: 10.1111/j.1365-2265.2012.04459.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Patients treated with intravenous zoledronate frequently experience an acute phase reaction (APR) characterized by flu-like symptoms and increased levels of inflammatory cytokines. We aimed to define the role of various cytokines/adipocytokines in zoledronate-induced APR and develop a prognostic model for its prediction. PATIENTS AND MEASUREMENTS Fifty-one postmenopausal women with low bone mass were subjected to zoledronate intravenous infusion. Patients were divided into those who experienced APR (APR+) and those who did not (APR-). APR was clinically defined by body temperature and the visual analogue pain scale for musculoskeletal symptoms. White blood cell count, leucocytic subpopulations, C-reactive protein, interleukin-6, tumour necrosis factor-alpha, visfatin, resistin and leptin were measured before and 48 h following the infusion. The quantitative insulin sensitivity check index (QUICKI) and homoeostasis model of assessment - insulin resistance (HOMA-IR) were calculated to assess insulin sensitivity and resistance, respectively. RESULTS (APR+) patients were younger and had lower baseline visfatin and higher baseline lymphocytes and phosphate compared with APR- patients. QUICKI decreased and HOMA-IR increased in APR+ patients while remained unchanged in APR- patients. In binary logistic regression analysis, a model containing previous bisphosphonate treatment, age, body mass index, lymphocytes and visfatin, which predicted zoledronate-induced APR with 82·1% sensitivity and 73·9% specificity, was selected. In this model, lymphocytes (P = 0·010) and visfatin (P = 0·029) at baseline could independently predict APR. CONCLUSIONS Zoledronate-induced APR is associated with serum increases of pro-inflammatory cytokines and an increase of insulin resistance. Patients with higher lymphocytes and lower visfatin levels at baseline are at higher risk for APR.
Collapse
|
41
|
Ramstead AG, Jutila MA. Complex role of γδ T-cell-derived cytokines and growth factors in cancer. J Interferon Cytokine Res 2012; 32:563-9. [PMID: 23078623 DOI: 10.1089/jir.2012.0073] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
γδ T cells are innate lymphocytes that recognize and kill a range of tumor cells and are currently being explored as a target for tumor immunotherapy. However, γδ T cells play a complex role in cancer and can promote, as well as inhibit, tumor growth. In addition to tumor cell killing, γδ T cells express a number of cytokines and other soluble factors in response to tumors. Soluble factors expressed by γδ T cells in these settings include interferon-γ, tumor necrosis factor-α, interleukin (IL)-4, IL-10, transforming growth factor-β, IL-17, and a number of growth factors. These factors have differing and sometimes opposing effects on antitumor immunity and tumor angiogenesis, and likely contribute to the complex role of these cells in cancer. Here, we review studies in both mice and humans that examine differential cytokine secretion by γδ T cells in response to tumors and tumor immunotherapy, and discuss the influence of these γδ T-cell-derived factors on tumor growth.
Collapse
Affiliation(s)
- Andrew G Ramstead
- Department of Immunology and Infectious Diseases, Montana State University, Bozeman, Montana 59717, USA
| | | |
Collapse
|
42
|
Mo C, Dai Y, Kang N, Cui L, He W. Ectopic expression of human MutS homologue 2 on renal carcinoma cells is induced by oxidative stress with interleukin-18 promotion via p38 mitogen-activated protein kinase (MAPK) and c-Jun N-terminal kinase (JNK) signaling pathways. J Biol Chem 2012; 287:19242-54. [PMID: 22493490 DOI: 10.1074/jbc.m112.349936] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human MutS homologue 2 (hMSH2), a crucial element of the highly conserved DNA mismatch repair system, maintains genetic stability in the nucleus of normal cells. Our previous studies indicate that hMSH2 is ectopically expressed on the surface of epithelial tumor cells and recognized by both T cell receptor γδ (TCRγδ) and natural killer group 2 member D (NKG2D) on Vδ2 T cells. Ectopically expressed hMSH2 could trigger a γδ T cell-mediated cytolysis. In this study, we showed that oxidative stress induced ectopic expression of hMSH2 on human renal carcinoma cells. Under oxidative stress, both p38 mitogen-activated protein kinase (MAPK) and c-Jun N-terminal kinase (JNK) pathways have been confirmed to mediate the ectopic expression of hMSH2 through the apoptosis-signaling kinase 1 (ASK1) upstream and activating transcription factor 3 (ATF3) downstream of both pathways. Moreover, renal carcinoma cell-derived interleukin (IL)-18 in oxidative stress was a prominent stimulator for ectopically induced expression of hMSH2, which was promoted by interferon (IFN)-γ as well. Finally, oxidative stress or pretreatment with IL-18 and IFN-γ enhanced γδ T cell-mediated cytolysis of renal carcinoma cells. Our results not only establish a mechanism of ectopic hMSH2 expression in tumor cells but also find a biological linkage between ectopic expression of hMSH2 and activation of γδ T cells in stressful conditions. Because γδ T cells play an important role in the early stage of innate anti-tumor response, γδ T cell activation triggered by ectopically expressed hMSH2 may be an important event in immunosurveillance for carcinogenesis.
Collapse
Affiliation(s)
- Chen Mo
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Peking Union Medical College, Beijing 100005, China
| | | | | | | | | |
Collapse
|
43
|
Tsuda J, Li W, Yamanishi H, Yamamoto H, Okuda A, Kubo S, Ma Z, Terada N, Tanaka Y, Okamura H. Involvement of CD56brightCD11c+ Cells in IL-18–Mediated Expansion of Human γδ T Cells. THE JOURNAL OF IMMUNOLOGY 2011; 186:2003-12. [DOI: 10.4049/jimmunol.1001919] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|