1
|
Zeng Z, Mao H, Lei Q, He Y. IL-7 in autoimmune diseases: mechanisms and therapeutic potential. Front Immunol 2025; 16:1545760. [PMID: 40313966 PMCID: PMC12043607 DOI: 10.3389/fimmu.2025.1545760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 03/14/2025] [Indexed: 05/03/2025] Open
Abstract
Interleukin-7 (IL-7) is a pleiotropic cytokine that plays a crucial role in the development, homeostasis, and function of the immune system. Growing evidence has demonstrated that IL-7 is involved in the pathogenesis of various autoimmune diseases including rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), type 1 diabetes (T1D) and multiple sclerosis (MS). This review aims to summarize the current understanding of the role of IL-7 in autoimmune diseases, focusing on its mechanisms of action, implications for disease progression, and potential therapeutic applications. Produced by stromal cells, IL-7 binds to IL-7 receptor (IL-7R) on diverse immune cells. It is crucial for T cell development, survival, and proliferation. In autoimmune diseases, it activates and expands autoreactive T cells and influences B cell function, potentially leading to autoantibody production. The review further delves into the role of IL-7 in different autoimmune diseases. In RA, elevated IL-7/IL-7R promotes memory T cell survival, cytokine production, and influences B cells and monocytes to contribute to inflammation and joint damage. In SLE, elevated soluble form of IL-7R is associated with disease activity, promoting the survival of autoreactive T cells and enhancing the production of pro-inflammatory cytokines. In MS, genetic variations in the IL-7R gene are linked to disease susceptibility, and IL-7 impacts the survival and differentiation of T cell subsets involved in multiple sclerosis pathogenesis. For T1D, IL-7 affects the function of immune cells that attack pancreatic β cells. Given its central role in autoimmune processes, targeting the IL-7/IL-7R axis holds great therapeutic potential. By modulating IL-7 signaling, it may be possible to restore immune tolerance, reduce the activation of autoreactive immune cells, and alleviate disease symptoms. Understanding the complex mechanisms of IL-7 in autoimmune diseases is essential for the development of effective and targeted therapies.
Collapse
Affiliation(s)
| | | | | | - Yuanmin He
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
2
|
Jørgensen LV, Christensen EB, Barnkob MB, Barington T. The clinical landscape of CAR NK cells. Exp Hematol Oncol 2025; 14:46. [PMID: 40149002 PMCID: PMC11951618 DOI: 10.1186/s40164-025-00633-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 03/04/2025] [Indexed: 03/29/2025] Open
Abstract
Chimeric antigen receptor (CAR) NK cell therapy has emerged as a promising alternative to CAR T cell therapy, offering significant advantages in terms of safety and versatility. Here we explore the current clinical landscape of CAR NK cells, and their application in hematologic malignancies and solid cancers, as well as their potential for treating autoimmune disorders. Our analysis draws from data collected from 120 clinical trials focused on CAR NK cells, and presents insights into the demographics and characteristics of these studies. We further outline the specific targets and diseases under investigation, along with the major cell sources, genetic modifications, combination strategies, preconditioning- and dosing regimens, and manufacturing strategies being utilized. Initial results from 16 of these clinical trials demonstrate promising efficacy of CAR NK cells, particularly in B cell malignancies, where response rates are comparable to those seen with CAR T cells but with lower rates of severe adverse effects, such as cytokine release syndrome (CRS), immune effector cell-associated neurotoxicity syndrome (ICANS), and graft-versus-host disease (GvHD). However, challenges remain in solid tumor applications, where only modest efficacy has been observed to date. Our analysis reveals that research is increasingly focused on enhancing CAR NK cell persistence, broadening their therapeutic targets, and refining manufacturing processes to improve accessibility and scalability. With recent advancements in NK cell engineering and their increased clinical applications, CAR NK cells are predicted to become an integral component of next-generation immunotherapies, not only for cancer but potentially for immune-mediated diseases as well.
Collapse
Affiliation(s)
- Lasse Vedel Jørgensen
- Department of Clinical Immunology, Odense University Hospital, Odense, Denmark
- Centre for Cellular Immunotherapy of Haematological Cancer Odense (CITCO), Odense, Denmark
| | - Emil Birch Christensen
- Department of Clinical Immunology, Odense University Hospital, Odense, Denmark
- Centre for Cellular Immunotherapy of Haematological Cancer Odense (CITCO), Odense, Denmark
| | - Mike Bogetofte Barnkob
- Department of Clinical Immunology, Odense University Hospital, Odense, Denmark
- Centre for Cellular Immunotherapy of Haematological Cancer Odense (CITCO), Odense, Denmark
| | - Torben Barington
- Department of Clinical Immunology, Odense University Hospital, Odense, Denmark.
- Centre for Cellular Immunotherapy of Haematological Cancer Odense (CITCO), Odense, Denmark.
| |
Collapse
|
3
|
Ariail E, Biggs B, O'Flanagan R, Schneck JP. IL-7 Immunotherapies: Current Applications and Engineering Opportunities. Immunol Invest 2025:1-19. [PMID: 39981682 DOI: 10.1080/08820139.2025.2464055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
BACKGROUND IL-7 is a cytokine that plays a critical role in the development and proliferation of many different immune cells. IL-7 is notably important for the proper development and activity of T cells and B cells. Additionally, the cytokine plays a role in the function of natural killer cells and dendritic cells. Because of this innate biological activity, IL-7 has gained traction as a potential immunotherapy for multiple applications. METHODS We conducted a comprehensive literature review to explore the physiological role of IL-7 and current applications harnessing the biology of IL-7 as a therapeutic. We also investigated the ways in which IL-7 is being engineered to enhance its therapeutic potential. RESULTS Notably, IL-7 has demonstrated efficacy in adoptive cell therapy models and as a vaccine adjuvant. The cytokine has also been used as a treatment for sepsis and other chronic infections. To further enhance its therapeutic efficacy, IL-7 has been engineered by fusing the cytokine to antibody fragments or other bioactive or targeting molecules. These engineered IL-7 therapeutics seek to improve the cytokine's pharmacokinetic and immunological properties and reduce off-target effects. CONCLUSION IL-7 immunotherapies largely remain at the preclinical stage, but there is growing interest in IL-7's many therapeutic applications and increasing opportunities to further engineer the molecule for future clinical translation.
Collapse
Affiliation(s)
- Emily Ariail
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Benjamin Biggs
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Rowan O'Flanagan
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jonathan P Schneck
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
4
|
Shrestha N, Dee MJ, Chaturvedi P, Leclerc GM, Mathyer M, Dufour C, Arthur L, Becker-Hapak M, Foster M, McClain E, Pena NV, Kage K, Zhu X, George V, Liu B, Egan J, Echeverri C, Wang M, You L, Kong L, Li L, Berrien-Elliott MM, Cooper ML, Fehniger TA, Rhode PR, Wong HC. A "Prime and Expand" strategy using the multifunctional fusion proteins to generate memory-like NK cells for cell therapy. Cancer Immunol Immunother 2024; 73:179. [PMID: 38960949 PMCID: PMC11222348 DOI: 10.1007/s00262-024-03765-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/19/2024] [Indexed: 07/05/2024]
Abstract
Adoptive cellular therapy (ACT) using memory-like (ML) natural killer (NK) cells, generated through overnight ex vivo activation with IL-12, IL-15, and IL-18, has shown promise for treating hematologic malignancies. We recently reported that a multifunctional fusion molecule, HCW9201, comprising IL-12, IL-15, and IL-18 domains could replace individual cytokines for priming human ML NK cell programming ("Prime" step). However, this approach does not include ex vivo expansion, thereby limiting the ability to test different doses and schedules. Here, we report the design and generation of a multifunctional fusion molecule, HCW9206, consisting of human IL-7, IL-15, and IL-21 cytokines. We observed > 300-fold expansion for HCW9201-primed human NK cells cultured for 14 days with HCW9206 and HCW9101, an IgG1 antibody, recognizing the scaffold domain of HCW9206 ("Expand" step). This expansion was dependent on both HCW9206 cytokines and interactions of the IgG1 mAb with CD16 receptors on NK cells. The resulting "Prime and Expand" ML NK cells exhibited elevated metabolic capacity, stable epigenetic IFNG promoter demethylation, enhanced antitumor activity in vitro and in vivo, and superior persistence in NSG mice. Thus, the "Prime and Expand" strategy represents a simple feeder cell-free approach to streamline manufacturing of clinical-grade ML NK cells to support multidose and off-the-shelf ACT.
Collapse
Affiliation(s)
- Niraj Shrestha
- HCW Biologics Inc., 2929 N. Commerce Parkway, Miramar, FL, 33025, USA
| | - Michael J Dee
- HCW Biologics Inc., 2929 N. Commerce Parkway, Miramar, FL, 33025, USA
| | | | - Gilles M Leclerc
- HCW Biologics Inc., 2929 N. Commerce Parkway, Miramar, FL, 33025, USA
| | | | | | | | - Michelle Becker-Hapak
- Division of Oncology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Mark Foster
- Division of Oncology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Ethan McClain
- Division of Oncology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | | | - Karen Kage
- HCW Biologics Inc., 2929 N. Commerce Parkway, Miramar, FL, 33025, USA
| | - Xiaoyun Zhu
- HCW Biologics Inc., 2929 N. Commerce Parkway, Miramar, FL, 33025, USA
| | - Varghese George
- HCW Biologics Inc., 2929 N. Commerce Parkway, Miramar, FL, 33025, USA
| | - Bai Liu
- HCW Biologics Inc., 2929 N. Commerce Parkway, Miramar, FL, 33025, USA
| | - Jack Egan
- HCW Biologics Inc., 2929 N. Commerce Parkway, Miramar, FL, 33025, USA
| | | | - Meng Wang
- HCW Biologics Inc., 2929 N. Commerce Parkway, Miramar, FL, 33025, USA
| | - Lijing You
- HCW Biologics Inc., 2929 N. Commerce Parkway, Miramar, FL, 33025, USA
| | - Lin Kong
- HCW Biologics Inc., 2929 N. Commerce Parkway, Miramar, FL, 33025, USA
| | - Liying Li
- HCW Biologics Inc., 2929 N. Commerce Parkway, Miramar, FL, 33025, USA
| | - Melissa M Berrien-Elliott
- Division of Oncology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | | | - Todd A Fehniger
- Division of Oncology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Peter R Rhode
- HCW Biologics Inc., 2929 N. Commerce Parkway, Miramar, FL, 33025, USA
| | - Hing C Wong
- HCW Biologics Inc., 2929 N. Commerce Parkway, Miramar, FL, 33025, USA.
| |
Collapse
|
5
|
Forbes C, Nierkens S, Cornel AM. Thymic NK-Cells and Their Potential in Cancer Immunotherapy. Immunotargets Ther 2024; 13:183-194. [PMID: 38558927 PMCID: PMC10979679 DOI: 10.2147/itt.s441639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/20/2024] [Indexed: 04/04/2024] Open
Abstract
Natural killer (NK)-cells are innate immune cells with potent anti-tumor capacity, capable of recognizing target cells without prior exposure. For this reason, NK-cells are recognized as a useful source of cell therapy. Although most NK-cells are derived from the bone marrow (BM), a separate developmental pathway in the thymus also exists, producing so-called thymic NK-cells. Unlike conventional NK-cells, thymic NK (tNK)-cells have a combined capacity for cytokine production and a natural ability to kill tumor cells in the presence of NK-cell receptor stimulatory ligands. Furthermore, tNK-cells are reported to express CD3 subunits intracellularly, without the presence of a rearranged T-cell receptor (TCR). This unique feature may enable harnessing of these cells with a TCR to combine NK- and T-cell effector properties in one cell type. The development, phenotype, and function of tNK-cells, and potential as a cell therapy is, however, poorly explored. In this review, we provide an overview of current literature on both murine and human tNK-cells in comparison to conventional BM-derived NK-cells, and discuss the potential applications of this cellular subset in the context of cancer immunotherapy.
Collapse
Affiliation(s)
- Caitlyn Forbes
- Princess Máxima Center for Pediatric Oncology, Utrecht University, Utrecht, the Netherlands
| | - Stefan Nierkens
- Princess Máxima Center for Pediatric Oncology, Utrecht University, Utrecht, the Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Annelisa M Cornel
- Princess Máxima Center for Pediatric Oncology, Utrecht University, Utrecht, the Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
6
|
Hegewisch-Solloa E, Nalin AP, Freud AG, Mace EM. Deciphering the localization and trajectory of human natural killer cell development. J Leukoc Biol 2023; 114:487-506. [PMID: 36869821 DOI: 10.1093/jleuko/qiad027] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/07/2023] [Accepted: 02/12/2023] [Indexed: 03/05/2023] Open
Abstract
Innate immune cells represent the first line of cellular immunity, comprised of both circulating and tissue-resident natural killer cells and innate lymphoid cells. These innate lymphocytes arise from a common CD34+ progenitor that differentiates into mature natural killer cells and innate lymphoid cells. The successive stages in natural killer cell maturation are characterized by increased lineage restriction and changes to phenotype and function. Mechanisms of human natural killer cell development have not been fully elucidated, especially the role of signals that drive the spatial localization and maturation of natural killer cells. Cytokines, extracellular matrix components, and chemokines provide maturation signals and influence the trafficking of natural killer cell progenitors to peripheral sites of differentiation. Here we present the latest advances in our understanding of natural killer and innate lymphoid cell development in peripheral sites, including secondary lymphoid tissues (i.e. tonsil). Recent work in the field has provided a model for the spatial distribution of natural killer cell and innate lymphoid cell developmental intermediates in tissue and generated further insights into the developmental niche. In support of this model, future studies using multifaceted approaches seek to fully map the developmental trajectory of human natural killer cells and innate lymphoid cells in secondary lymphoid tissues.
Collapse
Affiliation(s)
- Everardo Hegewisch-Solloa
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, 630 W 168th St. New York, NY 10032, USA
| | - Ansel P Nalin
- Biomedical Sciences Graduate Program, Medical Scientist Training Program, Comprehensive Cancer Center and The James Cancer Hospital and Solove Research Institute, The Ohio State University, 460 W 10th Ave. Columbus, OH 43210, USA
| | - Aharon G Freud
- Department of Pathology, Comprehensive Cancer Center and The James Cancer Hospital and Solove Research Institute, The Ohio State University, 460 W 12th Ave. Columbus, OH 43210, USA
| | - Emily M Mace
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, 630 W 168th St. New York, NY 10032, USA
| |
Collapse
|
7
|
Bourayou E, Golub R. Inflammatory-driven NK cell maturation and its impact on pathology. Front Immunol 2022; 13:1061959. [PMID: 36569860 PMCID: PMC9780665 DOI: 10.3389/fimmu.2022.1061959] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/24/2022] [Indexed: 12/13/2022] Open
Abstract
NK cells are innate lymphocytes involved in a large variety of contexts and are crucial in the immunity to intracellular pathogens as well as cancer due to their ability to kill infected or malignant cells. Thus, they harbor a strong potential for clinical and therapeutic use. NK cells do not require antigen exposure to get activated; their functional response is rather based on a balance between inhibitory/activating signals and on the diversity of germline-encoded receptors they express. In order to reach optimal functional status, NK cells go through a step-wise development in the bone marrow before their egress, and dissemination into peripheral organs via the circulation. In this review, we summarize bone marrow NK cell developmental stages and list key factors involved in their differentiation before presenting newly discovered and emerging factors that regulate NK cell central and peripheral maturation. Lastly, we focus on the impact inflammatory contexts themselves can have on NK cell development and functional maturation.
Collapse
Affiliation(s)
- Elsa Bourayou
- Institut Pasteur, Université Paris Cité, INSERM U1223, Lymphocyte and Immunity Unit, Paris, France
| | - Rachel Golub
- Institut Pasteur, Université Paris Cité, INSERM U1223, Lymphocyte and Immunity Unit, Paris, France
| |
Collapse
|
8
|
Coupet CA, Dubois C, Evlachev A, Kehrer N, Baldazza M, Hofman S, Vierboom M, Martin P, Inchauspe G. Intravenous injection of a novel viral immunotherapy encoding human interleukin-7 in nonhuman primates is safe and increases absolute lymphocyte count. Hum Vaccin Immunother 2022; 18:2133914. [PMID: 36315906 PMCID: PMC9746448 DOI: 10.1080/21645515.2022.2133914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Persistence of an immunosuppression, affecting both the innate and adaptive arms of the immune system, plays a role in sepsis patients' morbidity and late mortality pointing to the need for broad and effective immune interventions. MVA-hIL-7-Fc is a non-replicative recombinant Modified Vaccinia virus Ankara encoding the human interleukin-7 fused to human IgG2 Fc fragment. We have shown in murine sepsis models the capacity of this new virotherapy to stimulate both arms of the immune system and increase survival. Herein, an exploratory study in nonhuman primates was performed following a single intravenous injection of the MVA-hIL-7-Fc used at the clinical dose to assess its safety and biological activities. Four cynomolgus macaques were followed for 3 weeks post-injection (p.i), without observed acute adverse reactions. Circulating hIL-7-Fc was detected during the first 3-5 days p.i with a detection peaking at 12 h p.i. IL-7 receptor engagement and downstream signal transduction were detected in T cells demonstrating functionality of the expressed IL-7. Expansion of blood lymphocytes, mainly CD4 and CD8 naïve and central memory T cells, was observed on day 7 p.i. together with a transient increase of Ki67 expression on T lymphocytes. In addition, we observed an increase in circulating B and NK cells as well as monocytes were albeit with different kinetics and levels. This study indicates that a vectorized IL-7-Fc, injected by intravenous route at a relevant clinical dose in a large animal model, is active without adverse reactions supporting the clinical development of this novel virotherapy for treatment of sepsis patients.
Collapse
Affiliation(s)
| | | | | | - Nadine Kehrer
- Infectious Diseases Department, Transgene SA, Lyon, France
| | - Marie Baldazza
- Infectious Diseases Department, Transgene SA, Lyon, France
| | - Sam Hofman
- Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Michel Vierboom
- Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Perrine Martin
- Infectious Diseases Department, Transgene SA, Lyon, France
| | - Geneviève Inchauspe
- Infectious Diseases Department, Transgene SA, Lyon, France,CONTACT Geneviève Inchauspe Infectious Diseases department, Transgene SA, 317 Avenue Jean Jaures, Lyon69007, France
| |
Collapse
|
9
|
Presence of Natural Killer B Cells in Simian Immunodeficiency Virus-Infected Colon That Have Properties and Functions Similar to Those of Natural Killer Cells and B Cells but Are a Distinct Cell Population. J Virol 2022; 96:e0023522. [PMID: 35311549 PMCID: PMC9006943 DOI: 10.1128/jvi.00235-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
There is low-level but significant mucosal inflammation in the gastrointestinal tract secondary to human immunodeficiency virus (HIV) infection that has long-term consequences for the infected host. This inflammation most likely originates from the immune response that appears as a consequence of HIV. Here, we show in an animal model of HIV that the chronically SIV-infected gut contains cytotoxic natural killer B cells that produce inflammatory cytokines and proliferate during infection.
Collapse
|
10
|
Huang J, Long Z, Jia R, Wang M, Zhu D, Liu M, Chen S, Zhao X, Yang Q, Wu Y, Zhang S, Tian B, Mao S, Ou X, Sun D, Gao Q, Cheng A. The Broad Immunomodulatory Effects of IL-7 and Its Application In Vaccines. Front Immunol 2021; 12:680442. [PMID: 34956167 PMCID: PMC8702497 DOI: 10.3389/fimmu.2021.680442] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 11/24/2021] [Indexed: 12/30/2022] Open
Abstract
Interleukin-7 (IL-7) is produced by stromal cells, keratinocytes, and epithelial cells in host tissues or tumors and exerts a wide range of immune effects mediated by the IL-7 receptor (IL-7R). IL-7 is primarily involved in regulating the development of B cells, T cells, natural killer cells, and dendritic cells via the JAK-STAT, PI3K-Akt, and MAPK pathways. This cytokine participates in the early generation of lymphocyte subsets and maintain the survival of all lymphocyte subsets; in particular, IL-7 is essential for orchestrating the rearrangement of immunoglobulin genes and T-cell receptor genes in precursor B and T cells, respectively. In addition, IL-7 can aid the activation of immune cells in anti-virus and anti-tumor immunity and plays important roles in the restoration of immune function. These biological functions of IL-7 make it an important molecular adjuvant to improve vaccine efficacy as it can promote and extend systemic immune responses against pathogens by prolonging lymphocyte survival, enhancing effector cell activity, and increasing antigen-specific memory cell production. This review focuses on the biological function and mechanism of IL-7 and summarizes its contribution towards improved vaccine efficacy. We hope to provide a thorough overview of this cytokine and provide strategies for the development of the future vaccines.
Collapse
Affiliation(s)
- Juan Huang
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Zhiyao Long
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xinxin Zhao
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Ying Wu
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Sai Mao
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xumin Ou
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Di Sun
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Qun Gao
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
11
|
Chen D, Tang TX, Deng H, Yang XP, Tang ZH. Interleukin-7 Biology and Its Effects on Immune Cells: Mediator of Generation, Differentiation, Survival, and Homeostasis. Front Immunol 2021; 12:747324. [PMID: 34925323 PMCID: PMC8674869 DOI: 10.3389/fimmu.2021.747324] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
Interleukin-7 (IL-7), a molecule known for its growth-promoting effects on progenitors of B cells, remains one of the most extensively studied cytokines. It plays a vital role in health maintenance and disease prevention, and the congenital deficiency of IL-7 signaling leads to profound immunodeficiency. IL-7 contributes to host defense by regulating the development and homeostasis of immune cells, including T lymphocytes, B lymphocytes, and natural killer (NK) cells. Clinical trials of recombinant IL-7 have demonstrated safety and potent immune reconstitution effects. In this article, we discuss IL-7 and its functions in immune cell development, drawing on a substantial body of knowledge regarding the biology of IL-7. We aim to answer some remaining questions about IL-7, providing insights essential for designing new strategies of immune intervention.
Collapse
Affiliation(s)
- Deng Chen
- Division of Trauma and Surgical Critical Care, Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ting-Xuan Tang
- Class 1901, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Hai Deng
- Division of Trauma and Surgical Critical Care, Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang-Ping Yang
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhao-Hui Tang
- Division of Trauma and Surgical Critical Care, Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
12
|
Yan M, Yang Y, Zhou Y, Yu C, Li R, Gong W, Zheng J. Interleukin-7 aggravates myocardial ischaemia/reperfusion injury by regulating macrophage infiltration and polarization. J Cell Mol Med 2021; 25:9939-9952. [PMID: 34581005 PMCID: PMC8572772 DOI: 10.1111/jcmm.16335] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/23/2020] [Accepted: 12/28/2020] [Indexed: 12/24/2022] Open
Abstract
Interleukin (IL)‐7 is known to enhance the macrophages cytotoxic activity and that macrophages play a pivotal role in the development and progression of myocardial ischaemia/reperfusion (I/R) injury. However, the effects of IL‐7 on macrophages infiltration and polarization in myocardial I/R injury are currently unclear. This study aimed to evaluate the effects of the IL‐7 expression on myocardial I/R injury and their relationship with macrophages. The data showed that IL‐7 expression in mouse heart tissue increases following I/R injury and that IL‐7 knockout or anti‐IL‐7 antibody treatment significantly improve I/R injury, including reduction in myocardial infarction area, a serum troponin T level decreases and an improvement in cardiac function. On the other hand, recombinant IL‐7 (rIL‐7) supplementation induces opposite effects and the anti‐IL‐7 antibody significantly reduces the cardiomyocyte apoptosis and macrophage infiltration. rIL‐7 cannot directly cause apoptosis, but it can induce cardiomyocyte apoptosis through macrophages, in addition to increase the macrophages migration in vitro. Anti‐IL‐7 antibody affects the cytokine production in T helper (Th) 1 and Th2 cells and also promotes the macrophages differentiation to M2 macrophages. However, anti‐IL‐7 antibody does not reduce the M1 macrophage number, and it only increases the ratio of M2/M1 macrophages in mice heart tissues after I/R injury. Taking together, these data reveal that IL‐7 plays an intensifying role in myocardial I/R injury by promoting cardiomyocyte apoptosis through the regulation of macrophage infiltration and polarization.
Collapse
Affiliation(s)
- Mengwen Yan
- Department of Cardiology, China-Japan Friendship Hospital, Beijing, China
| | - Yaliu Yang
- Department of Cardiology, China-Japan Friendship Hospital, Beijing, China
| | - Ying Zhou
- Department of Cardiology, China-Japan Friendship Hospital, Beijing, China
| | - Changan Yu
- Central Laboratory of Cardiovascular Disease, China-Japan Friendship Hospital, Beijing, China
| | - Rui Li
- Department of Health Care, China-Japan Freindship Hospital, Ministry of Health, Beijing, China
| | - Wei Gong
- Emergency and Critical Care Center, Beijing Anzhen Hospital Capital Medical University, Beijing, China.,Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, China
| | - Jingang Zheng
- Department of Cardiology, China-Japan Friendship Hospital, Beijing, China.,Department of Cardiology, China-Japan Friendship School of Clinical Medicine, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.,Department of Cardiology, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| |
Collapse
|
13
|
Meijerink N, van den Biggelaar RHGA, van Haarlem DA, Stegeman JA, Rutten VPMG, Jansen CA. A detailed analysis of innate and adaptive immune responsiveness upon infection with Salmonella enterica serotype Enteritidis in young broiler chickens. Vet Res 2021; 52:109. [PMID: 34404469 PMCID: PMC8369617 DOI: 10.1186/s13567-021-00978-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 07/15/2021] [Indexed: 12/31/2022] Open
Abstract
Salmonella enterica serotype Enteritidis (SE) is a zoonotic pathogen which causes foodborne diseases in humans as well as severe disease symptoms in young chickens. More insight in innate and adaptive immune responses of chickens to SE infection is needed to understand elimination of SE. Seven-day-old broiler chickens were experimentally challenged with SE and numbers and responsiveness of innate and adaptive immune cells as well as antibody titers were assessed. SE was observed in the ileum and spleen of SE-infected chickens at 7 days post-infection (dpi). At 1 dpi numbers of intraepithelial cytotoxic CD8+ T cells were significantly increased alongside numerically increased intraepithelial IL-2Rα+ and 20E5+ natural killer (NK) cells at 1 and 3 dpi. At both time points, activation of intraepithelial and splenic NK cells was significantly enhanced. At 7 dpi in the spleen, presence of macrophages and expression of activation markers on dendritic cells were significantly increased. At 21 dpi, SE-induced proliferation of splenic CD4+ and CD8+ T cells was observed and SE-specific antibodies were detected in sera of all SE-infected chickens. In conclusion, SE results in enhanced numbers and activation of innate cells and we hypothesized that in concert with subsequent specific T cell and antibody responses, reduction of SE is achieved. A better understanding of innate and adaptive immune responses important in the elimination of SE will aid in developing immune-modulation strategies, which may increase resistance to SE in young broiler chickens.
Collapse
Affiliation(s)
- Nathalie Meijerink
- Department Biomolecular Health Sciences, Division Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Robin H G A van den Biggelaar
- Department Biomolecular Health Sciences, Division Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Daphne A van Haarlem
- Department Biomolecular Health Sciences, Division Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - J Arjan Stegeman
- Department Population Health Sciences, Division Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Victor P M G Rutten
- Department Biomolecular Health Sciences, Division Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.,Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Christine A Jansen
- Department Biomolecular Health Sciences, Division Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands. .,Department of Animal Sciences, Cell Biology and Immunology Group, Wageningen University and Research, Wageningen, The Netherlands.
| |
Collapse
|
14
|
Schwichtenberg SC, Wisgalla A, Schroeder-Castagno M, Alvarez-González C, Schlickeiser S, Siebert N, Bellmann-Strobl J, Wernecke KD, Paul F, Dörr J, Infante-Duarte C. Fingolimod Therapy in Multiple Sclerosis Leads to the Enrichment of a Subpopulation of Aged NK Cells. Neurotherapeutics 2021; 18:1783-1797. [PMID: 34244929 PMCID: PMC8608997 DOI: 10.1007/s13311-021-01078-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2021] [Indexed: 02/04/2023] Open
Abstract
Fingolimod is an approved oral treatment for relapsing-remitting multiple sclerosis (RRMS) that modulates agonistically the sphingosin-1-phosphate receptor (S1PR), inhibiting thereby the egress of lymphocytes from the lymph nodes. In this interventional prospective clinical phase IV trial, we longitudinally investigated the impact of fingolimod on frequencies of NK cell subpopulations by flow cytometry in 17 RRMS patients at baseline and 1, 3, 6, and 12 months after treatment initiation. Clinical outcome was assessed by the Expanded Disability Status Scale (EDSS) and annualized relapse rates (ARR). Over the study period, median EDSS remained stable from month 3 to month 12, and ARR decreased compared to ARR in the 24 months prior treatment. Treatment was paralleled by an increased frequency of circulating NK cells, due primarily to an increase in CD56dimCD94low mature NK cells, while the CD56bright fraction and CD127+ innate lymphoid cells (ILCs) decreased over time. An unsupervised clustering algorithm further revealed that a particular fraction of NK cells defined by the expression of CD56dimCD16++KIR+/-NKG2A-CD94-CCR7+/-CX3CR1+/-NKG2C-NKG2D+NKp46-DNAM1++CD127+ increased during treatment. This specific phenotype might reflect a status of aged, fully differentiated, and less functional NK cells. Our study confirms that fingolimod treatment affects both NK cells and ILC. In addition, our study suggests that treatment leads to the enrichment of a specific NK cell subset characterized by an aged phenotype. This might limit the anti-microbial and anti-tumour NK cell activity in fingolimod-treated patients.
Collapse
Affiliation(s)
- Svenja C Schwichtenberg
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin and Berlin Institute of Health, Institute for Medical Immunology, Campus Virchow Klinikum, Augustenburger Platz 1 (Südstr. 2/Föhrer Str. 15), 13353, Berlin, Germany
| | - Anne Wisgalla
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin and Berlin Institute of Health, Institute for Medical Immunology, Campus Virchow Klinikum, Augustenburger Platz 1 (Südstr. 2/Föhrer Str. 15), 13353, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin and Berlin Institute of Health, Institute for "Psychiatrie Und Medizinische Klinik M.S. Psychosomatik,", Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Maria Schroeder-Castagno
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin and Berlin Institute of Health, Institute for Medical Immunology, Campus Virchow Klinikum, Augustenburger Platz 1 (Südstr. 2/Föhrer Str. 15), 13353, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin and Berlin Institute of Health, Neurocure Cluster of Excellence, Campus Mitte, Sauerbruchweg 5, 10117, Berlin, Germany
| | - Cesar Alvarez-González
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin and Berlin Institute of Health, Institute for Medical Immunology, Campus Virchow Klinikum, Augustenburger Platz 1 (Südstr. 2/Föhrer Str. 15), 13353, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin and Berlin Institute of Health, Neurocure Cluster of Excellence, Campus Mitte, Sauerbruchweg 5, 10117, Berlin, Germany
| | - Stephan Schlickeiser
- BIH Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Campus Virchow Klinikum, Föhrer Str. 15, 13353, Berlin, Germany
| | - Nadja Siebert
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin and Berlin Institute of Health, Neurocure Cluster of Excellence, Campus Mitte, Sauerbruchweg 5, 10117, Berlin, Germany
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine & Charité - Universitätsmedizin Berlin, Robert-Rössle-Straße 10, 13125, Berlin, Germany
| | - Judith Bellmann-Strobl
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin and Berlin Institute of Health, Neurocure Cluster of Excellence, Campus Mitte, Sauerbruchweg 5, 10117, Berlin, Germany
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine & Charité - Universitätsmedizin Berlin, Robert-Rössle-Straße 10, 13125, Berlin, Germany
| | - Klaus-Dieter Wernecke
- Charité - Universitätsmedizin Berlin and CRO SOSTANA GmbH, Wildensteiner Straße 27, 10318, Berlin, Germany
| | - Friedemann Paul
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin and Berlin Institute of Health, Neurocure Cluster of Excellence, Campus Mitte, Sauerbruchweg 5, 10117, Berlin, Germany
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine & Charité - Universitätsmedizin Berlin, Robert-Rössle-Straße 10, 13125, Berlin, Germany
| | - Jan Dörr
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin and Berlin Institute of Health, Neurocure Cluster of Excellence, Campus Mitte, Sauerbruchweg 5, 10117, Berlin, Germany
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine & Charité - Universitätsmedizin Berlin, Robert-Rössle-Straße 10, 13125, Berlin, Germany
- Current Affiliation: Multiple Sclerosis Center, Oberhavel Kliniken, Marwitzer Straße 91, 16761, Hennigsdorf, Germany
| | - Carmen Infante-Duarte
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin and Berlin Institute of Health, Institute for Medical Immunology, Campus Virchow Klinikum, Augustenburger Platz 1 (Südstr. 2/Föhrer Str. 15), 13353, Berlin, Germany.
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine & Charité - Universitätsmedizin Berlin, Robert-Rössle-Straße 10, 13125, Berlin, Germany.
| |
Collapse
|
15
|
Kielsen K, Oostenbrink LVE, von Asmuth EGJ, Jansen-Hoogendijk AM, van Ostaijen-Ten Dam MM, Ifversen M, Heilmann C, Schilham MW, van Halteren AGS, Bredius RGM, Lankester AC, Jol-van der Zijde CM, van Tol MJD, Müller K. IL-7 and IL-15 Levels Reflect the Degree of T Cell Depletion during Lymphopenia and Are Associated with an Expansion of Effector Memory T Cells after Pediatric Hematopoietic Stem Cell Transplantation. THE JOURNAL OF IMMUNOLOGY 2021; 206:2828-2838. [PMID: 34108260 DOI: 10.4049/jimmunol.2001077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 03/22/2021] [Indexed: 11/19/2022]
Abstract
Differentially and functionally distinct T cell subsets are involved in the development of complications after allogeneic hematopoietic stem cell transplantation (HSCT), but little is known about factors regulating their recovery after HSCT. In this study, we investigated associations between immune-regulating cytokines, T cell differentiation, and clinical outcomes. We included 80 children undergoing allogeneic HSCT for acute leukemia using bone marrow or peripheral blood stem cells grafted from a matched sibling or unrelated donor. Cytokines (IL-7, IL-15, IL-18, SCF, IL-6, IL-2, and TNF-α) and active anti-thymocyte globulin (ATG) levels were longitudinally measured along with extended T cell phenotyping. The cytokine profiles showed a temporary rise in IL-7 and IL-15 during lymphopenia, which was strongly dependent on exposure to active ATG. High levels of IL-7 and IL-15 from graft infusion to day +30 were predictive of slower T cell recovery during the first 2 mo post-HSCT; however, because of a major expansion of memory T cell stages, only naive T cells remained decreased after 3 mo (p < 0.05). No differential effect was seen on polarization of CD4+ T cells into Th1, Th2, or Th17 cells or regulatory T cells. Low levels of IL-7 and IL-15 at day +14 were associated with acute graft-versus-host disease grades II-IV in ATG-treated patients (p = 0.0004 and p = 0.0002, respectively). Children with IL-7 levels comparable to healthy controls at day +14 post-HSCT were less likely to develop EBV reactivation posttransplant. These findings suggest that quantification of IL-7 and IL-15 may be useful as biomarkers in assessing the overall T cell depletion and suggest a potential for predicting complications after HSCT.
Collapse
Affiliation(s)
- Katrine Kielsen
- Hematopoietic Stem Cell Transplantation and Primary Immune Deficiency, Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; .,Institute for Inflammation Research, Department of Rheumatology and Spine Disease, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; and
| | - Lisa V E Oostenbrink
- Laboratory of Pediatric Immunology, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, the Netherlands
| | - Erik G J von Asmuth
- Laboratory of Pediatric Immunology, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, the Netherlands
| | - Anja M Jansen-Hoogendijk
- Laboratory of Pediatric Immunology, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, the Netherlands
| | - Monique M van Ostaijen-Ten Dam
- Laboratory of Pediatric Immunology, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, the Netherlands
| | - Marianne Ifversen
- Hematopoietic Stem Cell Transplantation and Primary Immune Deficiency, Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Carsten Heilmann
- Hematopoietic Stem Cell Transplantation and Primary Immune Deficiency, Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Marco W Schilham
- Laboratory of Pediatric Immunology, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, the Netherlands
| | - Astrid G S van Halteren
- Laboratory of Pediatric Immunology, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, the Netherlands
| | - Robbert G M Bredius
- Laboratory of Pediatric Immunology, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, the Netherlands
| | - Arjan C Lankester
- Laboratory of Pediatric Immunology, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, the Netherlands
| | - Cornelia M Jol-van der Zijde
- Laboratory of Pediatric Immunology, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, the Netherlands
| | - Maarten J D van Tol
- Laboratory of Pediatric Immunology, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, the Netherlands
| | - Klaus Müller
- Hematopoietic Stem Cell Transplantation and Primary Immune Deficiency, Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark.,Institute for Inflammation Research, Department of Rheumatology and Spine Disease, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; and
| |
Collapse
|
16
|
Shokouhifar A, Anani Sarab G, Yazdanifar M, Fereidouni M, Nouri M, Ebrahimi M. Overcoming the UCB HSCs -Derived NK cells Dysfunction through Harnessing RAS/MAPK, IGF-1R and TGF-β Signaling Pathways. Cancer Cell Int 2021; 21:298. [PMID: 34098947 PMCID: PMC8185927 DOI: 10.1186/s12935-021-01983-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 05/13/2021] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The natural killer (NK) cells differentiated from umbilical cord blood (UCB) hematopoietic stem cells (HSCs) may be more suitable for cell-based immunotherapy compared to the NK cells from adult donors. This is due to the possibility to choose alloreactive donors and potentially more robust in vivo expansion. However, the cytotoxicity of UCB-HSC-derived NK cells against cancer cells might be suboptimal. To overcome this obstacle, we attempted to generate NK cells with potent antitumor activity by targeting RAS/MAPK, IGF-1R and TGF-β signaling pathways using IL-15, IGF-1 and SIS3 respectively. METHODS The CD34 + cells were isolated from human UCB mononuclear cells through magnetic activation cell sorting (MACS) with purity of (≥ 90%) and were subjected to differentiate into NK cells. After 21 days of induction with SFTG36 (SCF, FLt-3L, TPO, GM-CSF, IL-3 and IL-6), IS721 (IGF-1, SIS3, IL-7 and IL-21) and IL-15/Hsp70 media, NK cells phenotypes were studied and their cytotoxicity against K562 human erythroleukemia cells and SKOV3 ovarian carcinoma cells was analyzed. RESULTS The NK cells induced in SFTG36/IS721 medium were selected for activation due to their higher expression of CD56 + 16 + CD3 - (93.23% ± 0.75) and mean fluorescence intensity (MFI) of NKG2D + (168.66 ± 20.00) and also a higher fold expansion potential (11.893 ± 1.712) compared to the other groups. These cells once activated with IL-15, demonstrated a higher cytotoxicity against K562 (≥ 90%; P ≤ 0.001) and SKOV3 tumor cells (≥ 65%; P ≤ 0.001) compared to IL-15/Hsp70-activated NK cells. CONCLUSIONS The differentiation of ex vivo expanded CD34 + cells through manipulation of RAS/MAPK, IGF-1R and TGF-β signaling pathways is an efficient approach for generating functional NK cells that can be used for cancer immunotherapy.
Collapse
Affiliation(s)
- Alireza Shokouhifar
- Department of Molecular Medicine, Genomic Research Center, Birjand University of Medical Sciences, Birjand, Iran
- Cellular & Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Gholamreza Anani Sarab
- Cellular & Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.
| | - Mahboubeh Yazdanifar
- Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Mohammad Fereidouni
- Cellular & Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Masoumeh Nouri
- R&D Department, Royan Stem Cell Technology Co, Tehran, Iran
| | - Marzieh Ebrahimi
- Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, USA.
| |
Collapse
|
17
|
Sun S, Huang C, Leng D, Chen C, Zhang T, Lei KC, Zhang XD. Gene fusion of IL7 involved in the regulation of idiopathic pulmonary fibrosis. Ther Adv Respir Dis 2021; 15:1753466621995045. [PMID: 33878985 PMCID: PMC8064517 DOI: 10.1177/1753466621995045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Idiopathic pulmonary fibrosis (IPF) is a rare form of immune-mediated interstitial lung disease characterized by progressive pulmonary fibrosis and scarring. The pathogenesis of IPF is still unclear. Gene fusion events exist universally during transcription and show alternated patterns in a variety of lung diseases. Therefore, the comprehension of the function of gene fusion in IPF might shed light on IPF pathogenesis research and facilitate treatment development. Methods: In this study, we included 91 transcriptome datasets from the National Center for Biotechnology Information (NCBI), including 52 IPF patients and 39 healthy controls. We detected fusion events in these datasets and probed gene fusion-associated differential gene expression and functional pathways. To obtain robust results, we corrected the batch bias across different projects. Results: We identified 1550 gene fusion events in all transcriptomes and studied the possible impacts of IL7 = AC083837.1 gene fusion. The two genes locate adjacently in chromosome 8 and share the same promoters. Their fusion is associated with differential expression of 282 genes enriched in six Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and 35 functional gene sets. Gene ontology (GO) enrichment analysis shows that IL7 = AC083837.1 gene fusion is associated with the enrichment of 187 gene sets. The co-expression network of interleukin-7 (IL7) indicates that decreased IL7 expression is associated with many pathways that regulate IPF progress. Conclusion: Based on the results, we conclude that IL7 = AC083837.1 gene fusion might exacerbate fibrosis in IPF via enhancing activities of natural killer cell-mediated cytotoxicity, skin cell apoptosis, and vessel angiogenesis, the interaction of which contributes to the development of fibrosis and the deterioration of respiratory function of IPF patients. Our work unveils the possible roles of gene fusion in regulating IPF and demonstrates that gene fusion investigation is a valid approach in probing immunologic mechanisms and searching potential therapeutic targets for treating IPF. The reviews of this paper are available via the supplemental material section.
Collapse
Affiliation(s)
- Shixue Sun
- CRDA, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Chen Huang
- CRDA, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Dongliang Leng
- CRDA, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Chang Chen
- CRDA, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Teng Zhang
- CRDA, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Kuan Cheok Lei
- CRDA, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Xiaohua Douglas Zhang
- CRDA, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR, China
| |
Collapse
|
18
|
Perera Molligoda Arachchige AS. Human NK cells: From development to effector functions. Innate Immun 2021; 27:212-229. [PMID: 33761782 PMCID: PMC8054151 DOI: 10.1177/17534259211001512] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 02/19/2021] [Indexed: 12/11/2022] Open
Abstract
NK cells are the major lymphocyte subset of the innate immune system that mediates antiviral and anti-tumor responses. It is well established that they develop mechanisms to distinguish self from non-self during the process of NK cell education. Unlike T and B cells, natural killer cells lack clonotypic receptors and are activated after recognizing their target via germline-encoded receptors through natural cytotoxicity, cytokine stimulation, and Ab-dependent cellular cytotoxicity. Subsequently, they utilize cytotoxic granules, death receptor ligands, and cytokines to perform their effector functions. In this review, we provide a general overview of human NK cells, as opposed to murine NK cells, discussing their ontogeny, maturation, receptor diversity, types of responses, and effector functions. Furthermore, we also describe recent advances in human NK cell biology, including tissue-resident NK cell populations, NK cell memory, and novel approaches used to target NK cells in cancer immunotherapy.
Collapse
|
19
|
Lu T, Chen L, Mansour AG, Yu MJ, Brooks N, Teng KY, Li Z, Zhang J, Barr T, Yu J, Caligiuri MA. Cbl-b Is Upregulated and Plays a Negative Role in Activated Human NK Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 206:677-685. [PMID: 33419766 PMCID: PMC8184061 DOI: 10.4049/jimmunol.2000177] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022]
Abstract
The E3 ubiquitin ligase Cbl-b has been characterized as an intracellular checkpoint in T cells; however, the function of Cbl-b in primary human NK cells, an innate immune anti-tumor effector cell, is not well defined. In this study, we show that the expression of Cbl-b is significantly upregulated in primary human NK cells activated by IL-15, IL-2, and the human NK cell-sensitive tumor cell line K562 that lacks MHC class I expression. Pretreatment with JAK or AKT inhibitors prior to IL-15 stimulation reversed Cbl-b upregulation. Downregulation of Cbl-b resulted in significant increases in granzyme B and perforin expression, IFN-γ production, and cytotoxic activity against tumor cells. Collectively, we demonstrate upregulation of Cbl-b and its inhibitory effects in IL-15/IL-2/K562-activated human NK cells, suggesting that Cbl-b plays a negative feedback role in human NK cells.
Collapse
Affiliation(s)
- Ting Lu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA 91010
| | - Li Chen
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA 91010
| | - Anthony G Mansour
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA 91010
| | - Melissa J Yu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA 91010
| | - Noah Brooks
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA 91010
| | - Kun-Yu Teng
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA 91010
| | - Zhenlong Li
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA 91010
| | - Jianying Zhang
- Department of Computational and Quantitative Medicine, City of Hope National Medical Center, Duarte, CA 91010
| | - Tasha Barr
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA 91010
| | - Jianhua Yu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA 91010
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, CA 91010
- Department of Immuno-Oncology, Duarte, CA 91010; and
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010
| | - Michael A Caligiuri
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA 91010;
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, CA 91010
- Department of Immuno-Oncology, Duarte, CA 91010; and
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010
| |
Collapse
|
20
|
Bednarz-Misa I, Bromke MA, Krzystek-Korpacka M. Interleukin (IL)-7 Signaling in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1290:9-49. [PMID: 33559853 DOI: 10.1007/978-3-030-55617-4_2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Interleukin (IL)-7 plays an important immunoregulatory role in different types of cells. Therefore, it attracts researcher's attention, but despite the fact, many aspects of its modulatory action, as well as other functionalities, are still poorly understood. The review summarizes current knowledge on the interleukin-7 and its signaling cascade in context of cancer development. Moreover, it provides a cancer-type focused description of the involvement of IL-7 in solid tumors, as well as hematological malignancies.The interleukin has been discovered as a growth factor crucial for the early lymphocyte development and supporting the growth of malignant cells in certain leukemias and lymphomas. Therefore, its targeting has been explored as a treatment modality in hematological malignancies, while the unique ability to expand lymphocyte populations selectively and without hyperinflammation has been used in experimental immunotherapies in patients with lymphopenia. Ever since the early research demonstrated a reduced growth of solid tumors in the presence of IL-7, the interleukin application in boosting up the anticancer immunity has been investigated. However, a growing body of evidence indicative of IL-7 upregulation in carcinomas, facilitating tumor growth and metastasis and aiding drug-resistance, is accumulating. It therefore becomes increasingly apparent that the response to the IL-7 stimulus strongly depends on cell type, their developmental stage, and microenvironmental context. The interleukin exerts its regulatory action mainly through phosphorylation events in JAK/STAT and PI3K/Akt pathways, while the significance of MAPK pathway seems to be limited to solid tumors. Given the unwavering interest in IL-7 application in immunotherapy, a better understanding of interleukin role, source in tumor microenvironment, and signaling pathways, as well as the identification of cells that are likely to respond should be a research priority.
Collapse
Affiliation(s)
- Iwona Bednarz-Misa
- Department of Medical Biochemistry, Wroclaw Medical University, Wroclaw, Poland
| | - Mariusz A Bromke
- Department of Medical Biochemistry, Wroclaw Medical University, Wroclaw, Poland
| | | |
Collapse
|
21
|
Su Y, Chen D, Yuan D, Lausted C, Choi J, Dai CL, Voillet V, Duvvuri VR, Scherler K, Troisch P, Baloni P, Qin G, Smith B, Kornilov SA, Rostomily C, Xu A, Li J, Dong S, Rothchild A, Zhou J, Murray K, Edmark R, Hong S, Heath JE, Earls J, Zhang R, Xie J, Li S, Roper R, Jones L, Zhou Y, Rowen L, Liu R, Mackay S, O'Mahony DS, Dale CR, Wallick JA, Algren HA, Zager MA, Wei W, Price ND, Huang S, Subramanian N, Wang K, Magis AT, Hadlock JJ, Hood L, Aderem A, Bluestone JA, Lanier LL, Greenberg PD, Gottardo R, Davis MM, Goldman JD, Heath JR. Multi-Omics Resolves a Sharp Disease-State Shift between Mild and Moderate COVID-19. Cell 2020; 183:1479-1495.e20. [PMID: 33171100 PMCID: PMC7598382 DOI: 10.1016/j.cell.2020.10.037] [Citation(s) in RCA: 427] [Impact Index Per Article: 85.4] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/16/2020] [Accepted: 10/22/2020] [Indexed: 12/29/2022]
Abstract
We present an integrated analysis of the clinical measurements, immune cells, and plasma multi-omics of 139 COVID-19 patients representing all levels of disease severity, from serial blood draws collected during the first week of infection following diagnosis. We identify a major shift between mild and moderate disease, at which point elevated inflammatory signaling is accompanied by the loss of specific classes of metabolites and metabolic processes. Within this stressed plasma environment at moderate disease, multiple unusual immune cell phenotypes emerge and amplify with increasing disease severity. We condensed over 120,000 immune features into a single axis to capture how different immune cell classes coordinate in response to SARS-CoV-2. This immune-response axis independently aligns with the major plasma composition changes, with clinical metrics of blood clotting, and with the sharp transition between mild and moderate disease. This study suggests that moderate disease may provide the most effective setting for therapeutic intervention.
Collapse
Affiliation(s)
- Yapeng Su
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Daniel Chen
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Dan Yuan
- Institute for Systems Biology, Seattle, WA 98109, USA; Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| | | | - Jongchan Choi
- Institute for Systems Biology, Seattle, WA 98109, USA
| | | | - Valentin Voillet
- Cape Town HVTN Immunology Laboratory, Hutchinson Centre Research Institute of South Africa, NPC (HCRISA), Cape Town 8001, South Africa; Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | | | | | | | - Guangrong Qin
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Brett Smith
- Institute for Systems Biology, Seattle, WA 98109, USA
| | | | | | - Alex Xu
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Jing Li
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Shen Dong
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Alissa Rothchild
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Jing Zhou
- Isoplexis Corporation, Branford, CT 06405, USA
| | - Kim Murray
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Rick Edmark
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Sunga Hong
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - John E Heath
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - John Earls
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Rongyu Zhang
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Jingyi Xie
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Sarah Li
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Ryan Roper
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Lesley Jones
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Yong Zhou
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Lee Rowen
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Rachel Liu
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Sean Mackay
- Isoplexis Corporation, Branford, CT 06405, USA
| | - D Shane O'Mahony
- Swedish Center for Research and Innovation, Swedish Medical Center, Seattle, WA 98109, USA; Providence St. Joseph Health, Renton, WA 98057, USA
| | - Christopher R Dale
- Swedish Center for Research and Innovation, Swedish Medical Center, Seattle, WA 98109, USA; Providence St. Joseph Health, Renton, WA 98057, USA
| | - Julie A Wallick
- Swedish Center for Research and Innovation, Swedish Medical Center, Seattle, WA 98109, USA; Providence St. Joseph Health, Renton, WA 98057, USA
| | - Heather A Algren
- Swedish Center for Research and Innovation, Swedish Medical Center, Seattle, WA 98109, USA; Providence St. Joseph Health, Renton, WA 98057, USA
| | - Michael A Zager
- Center for Data Visualization, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | - Wei Wei
- Institute for Systems Biology, Seattle, WA 98109, USA
| | | | - Sui Huang
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Naeha Subramanian
- Institute for Systems Biology, Seattle, WA 98109, USA; Department of Global Heath, and Department of Immunology, University of Washington, Seattle, WA 98109, USA
| | - Kai Wang
- Institute for Systems Biology, Seattle, WA 98109, USA
| | | | | | - Leroy Hood
- Institute for Systems Biology, Seattle, WA 98109, USA; Providence St. Joseph Health, Renton, WA 98057, USA
| | - Alan Aderem
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Jeffrey A Bluestone
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Lewis L Lanier
- Department of Microbiology and Immunology, University of California, San Francisco, and Parker Institute for Cancer Immunotherapy, San Francisco, CA 94143, USA
| | - Philip D Greenberg
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Departments of Immunology and Medicine, University of Washington, Seattle, WA 98109, USA
| | - Raphael Gottardo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Department of Statistics, University of Washington, Seattle, WA 98195, USA
| | - Mark M Davis
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; The Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jason D Goldman
- Swedish Center for Research and Innovation, Swedish Medical Center, Seattle, WA 98109, USA; Providence St. Joseph Health, Renton, WA 98057, USA; Division of Allergy & Infectious Diseases, University of Washington, Seattle, WA 98109, USA.
| | - James R Heath
- Institute for Systems Biology, Seattle, WA 98109, USA; Department of Bioengineering, University of Washington, Seattle, WA 98105, USA.
| |
Collapse
|
22
|
Abstract
Natural killer (NK) cells are innate lymphocytes specialized in immune surveillance against tumors and infections. To reach their optimal functional status, NK cells must undergo a process of maturation from immature to mature NK cells. Genetically modified mice, as well as in vivo and in vitro NK cell differentiation assays, have begun to reveal the landscape of the regulatory network involved in NK cell maturation, in which a balance of cytokine signaling pathways leads to an optimal coordination of transcription factor activity. An increased understanding of NK cell maturation will greatly promote the development and application of NK cell-based clinical therapy. Thus, in this review, we summarize the dynamics of NK cell maturation, describe recently identified factors involved in the regulation of the NK cell maturation process, including cytokines and transcription factors, and discuss the importance of NK cell maturation in health and disease.
Collapse
Affiliation(s)
- Jiacheng Bi
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xuefu Wang
- Anhui Provincial Laboratory of Inflammatory and Immunity Disease, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, China
| |
Collapse
|
23
|
Bullenkamp J, Mengoni V, Kaur S, Chhetri I, Dimou P, Astroulakis ZMJ, Kaski JC, Dumitriu IE. Interleukin-7 and interleukin-15 drive CD4+CD28null T lymphocyte expansion and function in patients with acute coronary syndrome. Cardiovasc Res 2020; 117:1935-1948. [PMID: 32647892 PMCID: PMC8262639 DOI: 10.1093/cvr/cvaa202] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 06/02/2020] [Accepted: 07/02/2020] [Indexed: 02/07/2023] Open
Abstract
AIMS Inflammation has important roles in atherosclerosis. CD4+CD28null (CD28null) T cells are a specialized T lymphocyte subset that produce inflammatory cytokines and cytotoxic molecules. CD28null T cells expand preferentially in patients with acute coronary syndrome (ACS) rather than stable angina and are barely detectable in healthy subjects. Importantly, ACS patients with CD28null T-cell expansion have increased risk for recurrent acute coronary events and poor prognosis, compared to ACS patients in whom this cell subset does not expand. The mechanisms regulating CD28null T-cell expansion in ACS remain elusive. We therefore investigated the role of cytokines in CD28null T-cell expansion in ACS. METHODS AND RESULTS High-purity sorted CD4+ T cells from ACS patients were treated with a panel of cytokines (TNF-α, IL-1β, IL-6, IL-7, and IL-15), and effects on the number, phenotype, and function of CD28null T cells were analysed and compared to the control counterpart CD28+ T-cell subset. IL-7- and IL-15-induced expansion of CD28null T cells from ACS patients, while inflammatory cytokines TNF-α, IL-1β, and IL-6 did not. The mechanisms underlying CD28null T-cell expansion by IL-7/IL-15 were preferential activation and proliferation of CD28null T cells compared to control CD28+ T cells. Additionally, IL-7/IL-15 markedly augmented CD28null T-cell cytotoxic function and interferon-γ production. Further mechanistic analyses revealed differences in baseline expression of component chains of IL-7/IL-15 receptors (CD127 and CD122) and increased baseline STAT5 phosphorylation in CD28null T cells from ACS patients compared to the control CD28+ T-cell subset. Notably, we demonstrate that CD28null T-cell expansion was significantly inhibited by Tofacitinib, a selective JAK1/JAK3 inhibitor that blocks IL-7/IL-15 signalling. CONCLUSION Our novel data show that IL-7 and IL-15 drive the expansion and function of CD28null T cells from ACS patients suggesting that IL-7/IL-15 blockade may prevent expansion of these cells and improve patient outcomes.
Collapse
Affiliation(s)
- Jessica Bullenkamp
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, Cranmer Terrace, London SW17 0RE, UK.,Cardiology Clinical Academic Group, St George's University Hospitals NHS Foundation Trust, Blackshaw Road, London SW17 0QT, UK
| | - Veronica Mengoni
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, Cranmer Terrace, London SW17 0RE, UK.,Cardiology Clinical Academic Group, St George's University Hospitals NHS Foundation Trust, Blackshaw Road, London SW17 0QT, UK
| | - Satdip Kaur
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, Cranmer Terrace, London SW17 0RE, UK.,Cardiology Clinical Academic Group, St George's University Hospitals NHS Foundation Trust, Blackshaw Road, London SW17 0QT, UK
| | - Ismita Chhetri
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, Cranmer Terrace, London SW17 0RE, UK.,Cardiology Clinical Academic Group, St George's University Hospitals NHS Foundation Trust, Blackshaw Road, London SW17 0QT, UK
| | - Paraskevi Dimou
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, Cranmer Terrace, London SW17 0RE, UK.,Cardiology Clinical Academic Group, St George's University Hospitals NHS Foundation Trust, Blackshaw Road, London SW17 0QT, UK
| | - Zoë M J Astroulakis
- Cardiology Clinical Academic Group, St George's University Hospitals NHS Foundation Trust, Blackshaw Road, London SW17 0QT, UK
| | - Juan Carlos Kaski
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, Cranmer Terrace, London SW17 0RE, UK.,Cardiology Clinical Academic Group, St George's University Hospitals NHS Foundation Trust, Blackshaw Road, London SW17 0QT, UK
| | - Ingrid E Dumitriu
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, Cranmer Terrace, London SW17 0RE, UK.,Cardiology Clinical Academic Group, St George's University Hospitals NHS Foundation Trust, Blackshaw Road, London SW17 0QT, UK
| |
Collapse
|
24
|
Transcriptional Regulation of Natural Killer Cell Development and Functions. Cancers (Basel) 2020; 12:cancers12061591. [PMID: 32560225 PMCID: PMC7352776 DOI: 10.3390/cancers12061591] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/30/2020] [Accepted: 06/13/2020] [Indexed: 02/08/2023] Open
Abstract
Natural killer (NK) cells are the major lymphocyte subset of the innate immune system. Their ability to mediate anti-tumor cytotoxicity and produce cytokines is well-established. However, the molecular mechanisms associated with the development of human or murine NK cells are not fully understood. Knowledge is being gained about the environmental cues, the receptors that sense the cues, signaling pathways, and the transcriptional programs responsible for the development of NK cells. Specifically, a complex network of transcription factors (TFs) following microenvironmental stimuli coordinate the development and maturation of NK cells. Multiple TFs are involved in the development of NK cells in a stage-specific manner. In this review, we summarize the recent advances in the understandings of TFs involved in the regulation of NK cell development, maturation, and effector function, in the aspects of their mechanisms, potential targets, and functions.
Collapse
|
25
|
Themeli M, Chhatta A, Boersma H, Prins HJ, Cordes M, de Wilt E, Farahani AS, Vandekerckhove B, van der Burg M, Hoeben RC, Staal FJT, Mikkers HMM. iPSC-Based Modeling of RAG2 Severe Combined Immunodeficiency Reveals Multiple T Cell Developmental Arrests. Stem Cell Reports 2020; 14:300-311. [PMID: 31956083 PMCID: PMC7013232 DOI: 10.1016/j.stemcr.2019.12.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 12/12/2019] [Accepted: 12/17/2019] [Indexed: 12/31/2022] Open
Abstract
RAG2 severe combined immune deficiency (RAG2-SCID) is a lethal disorder caused by the absence of functional T and B cells due to a differentiation block. Here, we generated induced pluripotent stem cells (iPSCs) from a RAG2-SCID patient to study the nature of the T cell developmental blockade. We observed a strongly reduced capacity to differentiate at every investigated stage of T cell development, from early CD7−CD5− to CD4+CD8+. The impaired differentiation was accompanied by an increase in CD7−CD56+CD33+ natural killer (NK) cell-like cells. T cell receptor D rearrangements were completely absent in RAG2SCID cells, whereas the rare T cell receptor B rearrangements were likely the result of illegitimate rearrangements. Repair of RAG2 restored the capacity to induce T cell receptor rearrangements, normalized T cell development, and corrected the NK cell-like phenotype. In conclusion, we succeeded in generating an iPSC-based RAG2-SCID model, which enabled the identification of previously unrecognized disorder-related T cell developmental roadblocks. RAG2-SCID cells show impaired differentiation at several stages of T cell development RAG2-SCID T and NK cells fail to undergo legitimate RAG-driven TCR rearrangements RAG2-SCID cells exhibit a skewed differentiation toward NK cell-like cells RAG2-SCID phenotype is rescued by gene correction
Collapse
Affiliation(s)
- Maria Themeli
- Department of Hematology, Amsterdam UMC, Location VUmc, Cancer Center Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - Amiet Chhatta
- Department of Immunohematology & Blood Transfusion, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
| | - Hester Boersma
- Department of Cell & Chemical Biology, Leiden University Medical Center, Leiden 2300 RC, The Netherlands
| | - Henk Jan Prins
- Department of Hematology, Amsterdam UMC, Location VUmc, Cancer Center Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - Martijn Cordes
- Department of Immunohematology & Blood Transfusion, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
| | - Edwin de Wilt
- Department of Clinical Genetics, Leiden University Medical Center, Leiden 2333 ZC, The Netherlands
| | - Aïda Shahrabi Farahani
- Department of Hematology, Amsterdam UMC, Location VUmc, Cancer Center Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - Bart Vandekerckhove
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Gent 9000, Belgium
| | - Mirjam van der Burg
- Department of Immunology, Erasmus Medical Center, Rotterdam 3015 GE, The Netherlands
| | - Rob C Hoeben
- Department of Cell & Chemical Biology, Leiden University Medical Center, Leiden 2300 RC, The Netherlands
| | - Frank J T Staal
- Department of Immunohematology & Blood Transfusion, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
| | - Harald M M Mikkers
- Department of Cell & Chemical Biology, Leiden University Medical Center, Leiden 2300 RC, The Netherlands; LUMC hiPSC Hotel, Leiden University Medical Center, Leiden 2333 ZC, The Netherlands.
| |
Collapse
|
26
|
Gotthardt D, Trifinopoulos J, Sexl V, Putz EM. JAK/STAT Cytokine Signaling at the Crossroad of NK Cell Development and Maturation. Front Immunol 2019; 10:2590. [PMID: 31781102 PMCID: PMC6861185 DOI: 10.3389/fimmu.2019.02590] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 10/18/2019] [Indexed: 01/14/2023] Open
Abstract
Natural Killer (NK) cells are cytotoxic lymphocytes of the innate immune system and play a critical role in anti-viral and anti-tumor responses. NK cells develop in the bone marrow from hematopoietic stem cells (HSCs) that differentiate through common lymphoid progenitors (CLPs) to NK lineage-restricted progenitors (NKPs). The orchestrated action of multiple cytokines is crucial for NK cell development and maturation. Many of these cytokines such as IL-2, IL-7, IL-12, IL-15, IL-21, IL-27, and interferons (IFNs) signal via the Janus Kinase / Signal Transducer and Activator of Transcription (JAK/STAT) pathway. We here review the current knowledge about these cytokines and the downstream signaling involved in the development and maturation of conventional NK cells and their close relatives, innate lymphoid cells type 1 (ILC1). We further discuss the role of suppressor of cytokine signaling (SOCS) proteins in NK cells and highlight their potential for therapeutic application.
Collapse
Affiliation(s)
- Dagmar Gotthardt
- Department for Biomedical Sciences, Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Jana Trifinopoulos
- Department for Biomedical Sciences, Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Veronika Sexl
- Department for Biomedical Sciences, Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Eva Maria Putz
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| |
Collapse
|
27
|
Cytokine Storm Combined with Humoral Immune Response Defect in Fatal Hemorrhagic Fever with Renal Syndrome Case, Tatarstan, Russia. Viruses 2019; 11:v11070601. [PMID: 31269734 PMCID: PMC6669480 DOI: 10.3390/v11070601] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/28/2019] [Accepted: 06/29/2019] [Indexed: 12/21/2022] Open
Abstract
Hemorrhagic fever with renal syndrome (HFRS) is endemic in Tatarstan, where thousands of cases are registered annually. Puumalaorthohantavirus is commonly detected in human case samples as well as in captured bank voles, the rodent hosts. The pathogenesis of HFRS is still not well described, although the cytokine storm hypothesis is largely accepted. In this study, we present a comprehensive analysis of a fatal HFRS case compared with twenty four non-fatal cases where activation of the humoral and cellular immune responses, pro-inflammatory cytokines and disturbed blood coagulation were detected using immunological, histological, genetic and clinical approaches. Multiple organ failure combined with disseminated intravascular coagulation syndrome and acute renal failure was the cause of death. Decreased Interleukin (IL)-7 and increased IL-18, chemokine (C-C motif) ligand (CCL)-5, stem cell growth factor (SCGF)-b and tumor necrosis factor-beta (TNF-β) serum levels were found, supporting the cytokine storm hypothesis of hantavirus pathogenesis.
Collapse
|
28
|
Judge CJ, Kostadinova L, Sherman KE, Butt AA, Falck-Ytter Y, Funderburg NT, Landay AL, Lederman MM, Sieg SF, Sandberg JK, Anthony DD. CD56 bright NK IL-7Rα expression negatively associates with HCV level, and IL-7-induced NK function is impaired during HCV and HIV infections. J Leukoc Biol 2017; 102:171-184. [PMID: 28400540 DOI: 10.1189/jlb.5a1116-456r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 03/12/2017] [Accepted: 03/15/2017] [Indexed: 12/13/2022] Open
Abstract
Several lines of evidence support the concept that NK cells play an important role in control of hepatitis C virus (HCV) infection via cytokine secretion and cytotoxicity. IL-7 is a homeostatic cytokine with a role in T cell development, activation, proliferation, and cytokine secretion. The IL-7Rα chain [cluster of differentiation (CD)127] is expressed on NK cells, with greatest abundance on the CD56brightCD16dim/- (CD56bright) subset. Here, we measured CD127 expression on CD56bright, CD56dimCD16+ (CD56dim), or CD56negCD16+ (CD56neg) NK cell subsets of 25 uninfected donors (UD); 34 chronic HCV-infected, treatment-naïve; 25 HIV-infected, virally suppressed on antiretroviral therapy (ART); and 42 HCV-HIV-coinfected subjects on ART. Interestingly, CD127 expression on CD56bright NK cells negatively correlated with HCV plasma levels in HCV monoinfection and HCV-HIV coinfection. IL-7 induced CD69 expression, as well as IFN-γ production, in CD56bright NK cells and also enhanced the IFN-α-induced CD69 expression on these cells. The latter was impaired in HIV infection. Furthermore, IL-7 induced B cell lymphoma 2 (BCL-2) expression and cell cycling of CD56bright NK cells, and this effect was impaired in HCV- and HIV-infected subjects. Whereas IL-7-stimulated CD56bright NK cell degranulation appeared intact in all cohorts, we observed impaired IL-7-activated NK cell cytolytic function in HCV- and HIV-infected subjects. Finally, IL-7-induced phosphorylation of STAT-5 (pSTAT-5) signaling was impaired in NK cells of subjects with chronic viral infection, and this was reversible upon 6 mo of viral suppression with IFN-free HCV therapy. These results implicate that IL-7-dependent NK cell activation and effector function may be other host immune surveillance mechanisms that are impaired in viral infections.
Collapse
Affiliation(s)
- Chelsey J Judge
- Department of Pathology, Cleveland VA Medical Center, Case Western Reserve University, Cleveland, Ohio, USA.,Department of Medicine, University Hospitals Case Medical Center and Center for AIDS Research (CFAR), Case Western Reserve University, Cleveland, Ohio, USA
| | - Lenche Kostadinova
- Department of Medicine, University Hospitals Case Medical Center and Center for AIDS Research (CFAR), Case Western Reserve University, Cleveland, Ohio, USA
| | - Kenneth E Sherman
- Department of Medicine, University of Cincinnati Medical Center, Cincinnati, Ohio, USA
| | - Adeel A Butt
- Weill Cornell Medical College, New York, New York, USA.,Hamad Healthcare Quality Institute and Hamad Medical Corporation, Doha, Qatar
| | - Yngve Falck-Ytter
- Department of Pathology, Cleveland VA Medical Center, Case Western Reserve University, Cleveland, Ohio, USA.,Department of Medicine, University Hospitals Case Medical Center and Center for AIDS Research (CFAR), Case Western Reserve University, Cleveland, Ohio, USA
| | - Nicholas T Funderburg
- School of Health and Rehabilitation, Division of Medical Laboratory Science, The Ohio State University, Columbus, Ohio, USA
| | - Alan L Landay
- Rush University Medical Center, Chicago, Illinois, USA: and
| | - Michael M Lederman
- Department of Medicine, University Hospitals Case Medical Center and Center for AIDS Research (CFAR), Case Western Reserve University, Cleveland, Ohio, USA
| | - Scott F Sieg
- Department of Medicine, University Hospitals Case Medical Center and Center for AIDS Research (CFAR), Case Western Reserve University, Cleveland, Ohio, USA
| | - Johan K Sandberg
- Center for Infection Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Donald D Anthony
- Department of Pathology, Cleveland VA Medical Center, Case Western Reserve University, Cleveland, Ohio, USA; .,Department of Medicine, University Hospitals Case Medical Center and Center for AIDS Research (CFAR), Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
29
|
Gotthardt D, Sexl V. STATs in NK-Cells: The Good, the Bad, and the Ugly. Front Immunol 2017; 7:694. [PMID: 28149296 PMCID: PMC5241313 DOI: 10.3389/fimmu.2016.00694] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 12/28/2016] [Indexed: 01/05/2023] Open
Abstract
Natural killer (NK)-cells are major players in the fight against viral infections and transformed cells, but there is increasing evidence attributing a disease-promoting role to NK-cells. Cytokines present in the tumor microenvironment shape NK-cell maturation, function, and effector responses. Many cytokines signal via the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway that is also frequently altered and constitutively active in a broad range of tumor cells. As a consequence, there are currently major efforts to develop therapeutic strategies to target this pathway. Therefore, it is of utmost importance to understand the role and contributions of JAK-STAT molecules in NK-cell biology-only this knowledge will allow us to predict effects of JAK-STAT inhibition for NK-cell functions and to successfully apply precision medicine. We will review the current knowledge on the role of JAK-STAT signaling for NK-cell functions and discuss conditions involved in the switch from NK-cell tumor surveillance to disease promotion.
Collapse
Affiliation(s)
- Dagmar Gotthardt
- Department for Biomedical Sciences, Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Vienna, Austria
| | - Veronika Sexl
- Department for Biomedical Sciences, Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
30
|
Pessina S, Cantini G, Kapetis D, Cazzato E, Di Ianni N, Finocchiaro G, Pellegatta S. The multidrug-resistance transporter Abcc3 protects NK cells from chemotherapy in a murine model of malignant glioma. Oncoimmunology 2016; 5:e1108513. [PMID: 27467914 PMCID: PMC4910710 DOI: 10.1080/2162402x.2015.1108513] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 10/08/2015] [Accepted: 10/10/2015] [Indexed: 10/24/2022] Open
Abstract
Abcc3, a member of the ATP-binding cassette transporter superfamily, plays a role in multidrug resistance. Here, we found that Abcc3 is highly expressed in blood-derived NK cells but not in CD8(+) T cells. In GL261 glioma-bearing mice treated with the alkylating agent temozolomide (TMZ) for 5 d, an early increased frequency of NK cells was observed. We also found that Abcc3 is strongly upregulated and functionally active in NK cells from mice treated with TMZ compared to controls. We demonstrate that Abcc3 is critical for NK cell survival during TMZ administration; more importantly, Akt, involved in lymphocyte survival, is phosphorylated only in NK cells expressing Abcc3. The resistance of NK cells to chemotherapy was accompanied by increased migration and homing in the brain at early time points. Cytotoxicity, evaluated by IFNγ production and specific lytic activity against GL261 cells, increased peripherally in the later phases, after conclusion of TMZ treatment. Intra-tumor increase of the NK effector subset as well as in IFNγ, granzymes and perforin-1 expression, were found early and persisted over time, correlating with a profound modulation on glioma microenvironment induced by TMZ. Our findings reveal an important involvement of Abcc3 in NK cell resistance to chemotherapy and have important clinical implications for patients treated with chemo-immunotherapy.
Collapse
Affiliation(s)
| | | | - Dimos Kapetis
- Unit of Bioinformatics, Fondazione I.R.C.C.S. Istituto Neurologico C Besta, Milan, Italy
| | | | | | | | | |
Collapse
|
31
|
Mehling M, Burgener AV, Brinkmann V, Bantug GR, Dimeloe S, Hoenger G, Kappos L, Hess C. Tissue Distribution Dynamics of Human NK Cells Inferred from Peripheral Blood Depletion Kinetics after Sphingosine-1-Phosphate Receptor Blockade. Scand J Immunol 2015; 82:460-6. [DOI: 10.1111/sji.12347] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 07/29/2015] [Indexed: 01/02/2023]
Affiliation(s)
- M. Mehling
- Immunobiology Laboratory/Department of Biomedicine and Medical Outpatient Division; University Hospital Basel; Basel Switzerland
- Department of Neurology; University Hospital Basel; Basel Switzerland
| | - A.-V. Burgener
- Immunobiology Laboratory/Department of Biomedicine and Medical Outpatient Division; University Hospital Basel; Basel Switzerland
| | - V. Brinkmann
- Department of Autoimmunity, Transplantation & Inflammation; Novartis Institutes for BioMedical Research; Basel Switzerland
| | - G. R. Bantug
- Immunobiology Laboratory/Department of Biomedicine and Medical Outpatient Division; University Hospital Basel; Basel Switzerland
| | - S. Dimeloe
- Immunobiology Laboratory/Department of Biomedicine and Medical Outpatient Division; University Hospital Basel; Basel Switzerland
| | - G. Hoenger
- Immunobiology Laboratory/Department of Biomedicine and Medical Outpatient Division; University Hospital Basel; Basel Switzerland
| | - L. Kappos
- Department of Neurology; University Hospital Basel; Basel Switzerland
| | - C. Hess
- Immunobiology Laboratory/Department of Biomedicine and Medical Outpatient Division; University Hospital Basel; Basel Switzerland
| |
Collapse
|
32
|
Burke SD, Seaward AVC, Ramshaw H, Smith GN, Virani S, Croy BA, Lima PDA. Homing receptor expression is deviated on CD56+ blood lymphocytes during pregnancy in Type 1 diabetic women. PLoS One 2015; 10:e0119526. [PMID: 25793768 PMCID: PMC4368780 DOI: 10.1371/journal.pone.0119526] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 01/14/2015] [Indexed: 12/01/2022] Open
Abstract
Type 1 Diabetes Mellitus (T1DM) is characterized by an augmented pro-inflammatory immune state. This contributes to the increased risk for gestational complications observed in T1DM mothers. In normal pregnancies, critical immunological changes occur, including the massive recruitment of lymphocytes, particularly CD56bright NK cells, into early decidua basalis and a 2nd trimester shift towards Type 2 immunity. Decidual CD56bright NK cells arise at least partly from circulating progenitors expressing adhesion molecules SELL and ITGA4 and the chemokine receptors CXCR3 and CXCR4. In vitro studies show that T1DM reduces interactions between blood CD56+ NK cells and decidual endothelial cells by reducing SELL and ITGA4-based interactions. To address the mechanisms by which specific lymphocyte subsets may be recruited from the circulation during pregnancy and whether these mechanisms are altered in T1DM, flow cytometry was used to examine eight peripheral blood lymphocyte subsets (Type 1 (IL18R1+) and Type 2 (IL1RL1+) CD56bright NK, CD56dim NK, NKT and T cells) from control and T1DM women. Blood was collected serially over pregnancy and postpartum, and lymphocytes were compared for expression of homing receptors SELL, ITGA4, CXCR3, and CXCR4. The decline of Type 1/Type 2 immune cells in normal pregnancy was driven by an increase in Type 2 cells that did not occur in T1DM. CD56bright NK cells from control women had the highest expression of all four receptors with greatest expression in 2nd trimester. At this time, these receptors were expressed at very low levels by CD56bright NK cells from TIDM patients. Type 1/Type 2 NKT cell ratios were not influenced by either pregnancy or TIDM. Our results suggest that T1DM alters immunological balances during pregnancy with its greatest impact on CD56bright NK cells. This implicates CD56bright NK cells in diabetic pregnancy complications.
Collapse
Affiliation(s)
- Suzanne D. Burke
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
| | - Alexandra V. C. Seaward
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
| | - Heather Ramshaw
- Department of Obstetrics and Gynecology, Queen’s University, Kingston, Ontario, Canada
| | - Graeme N. Smith
- Department of Obstetrics and Gynecology, Queen’s University, Kingston, Ontario, Canada
| | - Sophia Virani
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
| | - Barbara A. Croy
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
| | - Patricia D. A. Lima
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
- * E-mail:
| |
Collapse
|
33
|
Nayar S, Dasgupta P, Galustian C. Extending the lifespan and efficacies of immune cells used in adoptive transfer for cancer immunotherapies-A review. Oncoimmunology 2015; 4:e1002720. [PMID: 26155387 DOI: 10.1080/2162402x.2014.1002720] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 12/19/2014] [Accepted: 12/20/2014] [Indexed: 12/19/2022] Open
Abstract
Cells used in adoptive cell-transfer immunotherapies against cancer include dendritic cells (DCs), natural-killer cells, and CD8+ T-cells. These cells may have limited efficacy due to their lifespan, activity, and immunosuppressive effects of tumor cells. Therefore, increasing longevity and activity of these cells may boost their efficacy. Four cytokines that can extend immune effector-cell longevity are IL-2, IL-7, IL-21, and IL-15. This review will discuss current knowledge on effector-cell lifespans and the mechanisms by which IL-2, IL-7, IL-15, and IL-21 can extend effector-cell longevity. We will also discuss how lifespan and efficacy of these cells can be regulated to allow optimal clinical benefits.
Collapse
Affiliation(s)
- Sandeep Nayar
- MRC Centre for Transplantation; Kings College London; Guys Hospital ; London, UK
| | - Prokar Dasgupta
- MRC Centre for Transplantation; Kings College London; Guys Hospital ; London, UK
| | - Christine Galustian
- MRC Centre for Transplantation; Kings College London; Guys Hospital ; London, UK
| |
Collapse
|
34
|
Su N, Shi SX, Zhu X, Borazanci A, Shi FD, Gan Y. Interleukin-7 expression and its effect on natural killer cells in patients with multiple sclerosis. J Neuroimmunol 2014; 276:180-6. [PMID: 25218211 DOI: 10.1016/j.jneuroim.2014.08.618] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 07/16/2014] [Accepted: 08/14/2014] [Indexed: 10/24/2022]
Abstract
Decreased NK cell numbers and impairment of NK cell function are reported in patients with multiple sclerosis (MS). Interleukin-7 (IL-7) is a member of the common gamma-chain (γc) cytokine superfamily that has well documented roles in lymphocyte development and homeostasis. The interleukin-7 receptor α chain (IL-7Rα) gene was identified as a top non-major histocompatibility complex-linked risk locus for MS. The objective of this study was to test biological function of IL-7/IL-7Rα on NK cells in MS patients. We observed markedly lower IL-7 levels in MS sera, and relatively higher IL-7Rα expression in NK cells of MS. Upon IL-7 stimulation, IL-7Rα on NK cells from MS patients was significantly down-regulated compared with healthy controls (HCs). IL-7 induced a higher increase of IFN-γ production in CD56(bright) NK cells and a pronounced enhancement of cytotoxicity in NK cells from MS. IL-7 did not impact the proliferation of NK cells differently in MS and HC. In contrast, IL-7 promoted a higher survival of CD56(bright) NK cells in MS and inhibited their apoptosis by increasing Bcl-2 expression, but had no effect on CD56(dim) NK cell survival in MS. In conclusion, MS patients have lower serum IL-7 and a higher membrane IL-7Rα expression on CD56(bright) NK cells. The skew at the IL-7 and IL-7Rα level influences functional responsiveness of NK cells in MS.
Collapse
Affiliation(s)
- Ning Su
- Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013, United States; Department of Neurology and Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Samuel X Shi
- Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013, United States
| | - Xiaodong Zhu
- Department of Neurology and Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Aimee Borazanci
- Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013, United States
| | - Fu-Dong Shi
- Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013, United States; Department of Neurology and Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, China.
| | - Yan Gan
- Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013, United States.
| |
Collapse
|
35
|
Payne KK, Bear HD, Manjili MH. Adoptive cellular therapy of cancer: exploring innate and adaptive cellular crosstalk to improve anti-tumor efficacy. Future Oncol 2014; 10:1779-94. [DOI: 10.2217/fon.14.97] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
ABSTRACT The mammalian immune system has evolved to produce multi-tiered responses consisting of both innate and adaptive immune cells collaborating to elicit a functional response to a pathogen or neoplasm. Immune cells possess a shared ancestry, suggestive of a degree of coevolution that has resulted in optimal functionality as an orchestrated and highly collaborative unit. Therefore, the development of therapeutic modalities that harness the immune system should consider the crosstalk between cells of the innate and adaptive immune systems in order to elicit the most effective response. In this review, the authors will discuss the success achieved using adoptive cellular therapy in the treatment of cancer, recent trends that focus on purified T cells, T cells with genetically modified T-cell receptors and T cells modified to express chimeric antigen receptors, as well as the use of unfractionated immune cell reprogramming to achieve optimal cellular crosstalk upon infusion for adoptive cellular therapy.
Collapse
Affiliation(s)
- Kyle K Payne
- Department of Microbiology & Immunology, Virginia Commonwealth University, Massey Cancer Center, Richmond, VA 23298, USA
| | - Harry D Bear
- Department of Microbiology & Immunology, Virginia Commonwealth University, Massey Cancer Center, Richmond, VA 23298, USA
- Department of Surgery, Virginia Commonwealth University, Massey Cancer Center, Richmond, VA 23298, USA
| | - Masoud H Manjili
- Department of Microbiology & Immunology, Virginia Commonwealth University, Massey Cancer Center, Richmond, VA 23298, USA
| |
Collapse
|
36
|
Fu B, Tian Z, Wei H. Subsets of human natural killer cells and their regulatory effects. Immunology 2014; 141:483-9. [PMID: 24303897 DOI: 10.1111/imm.12224] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 10/29/2013] [Accepted: 11/21/2013] [Indexed: 12/17/2022] Open
Abstract
Human natural killer (NK) cells have distinct functions as NK(tolerant) , NK(cytotoxic) and NK(regulatory) cells and can be divided into different subsets based on the relative expression of the surface markers CD27 and CD11b. CD27⁺ NK cells, which are abundant cytokine producers, are numerically in the minority in human peripheral blood but constitute the large population of NK cells in cord blood, spleen, tonsil and decidua tissues. Recent data suggest that these NK cells may have immunoregulatory properties under certain conditions. In this review, we will focus on these new NK cell subsets and discuss how regulatory NK cells may serve as rheostats or sentinels in controlling inflammation and maintaining immune homeostasis in various organs.
Collapse
Affiliation(s)
- Binqing Fu
- Institute of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, China; Hefei National Laboratory for Physical Sciences at Microscale, Hefei, China
| | | | | |
Collapse
|
37
|
Pradier A, Tabone‐Eglinger S, Huber V, Bosshard C, Rigal E, Wehrle‐Haller B, Roosnek E. Peripheral bloodCD56brightNKcells respond to stem cell factor and adhere to its membrane‐bound form after upregulation of c‐kit. Eur J Immunol 2013; 44:511-20. [DOI: 10.1002/eji.201343868] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 09/02/2013] [Accepted: 10/14/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Amandine Pradier
- Division of HematologyDepartment of Internal MedicineGeneva University Hospitals and University of Geneva Switzerland
| | - Severine Tabone‐Eglinger
- Department of Cell Physiology and MetabolismGeneva Medical SchoolUniversity of Geneva Geneva Switzerland
| | - Vincent Huber
- Division of HematologyDepartment of Internal MedicineGeneva University Hospitals and University of Geneva Switzerland
| | - Carine Bosshard
- Division of HematologyDepartment of Internal MedicineGeneva University Hospitals and University of Geneva Switzerland
| | - Emmanuel Rigal
- Division of HematologyDepartment of Internal MedicineGeneva University Hospitals and University of Geneva Switzerland
| | - Bernhard Wehrle‐Haller
- Department of Cell Physiology and MetabolismGeneva Medical SchoolUniversity of Geneva Geneva Switzerland
| | - Eddy Roosnek
- Division of HematologyDepartment of Internal MedicineGeneva University Hospitals and University of Geneva Switzerland
| |
Collapse
|
38
|
Impact of polyclonal anti-CD3/CD28-coated magnetic bead expansion methods on T cell proliferation, differentiation and function. Int Immunopharmacol 2013; 15:129-37. [DOI: 10.1016/j.intimp.2012.10.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 08/20/2012] [Accepted: 10/05/2012] [Indexed: 01/08/2023]
|
39
|
Cordeau M, Herblot S, Charrier E, Audibert F, Cordeiro P, Harnois M, Duval M. Defects in CD54 and CD86 Up-regulation by Plasmacytoid Dendritic Cells During Pregnancy. Immunol Invest 2012; 41:497-506. [DOI: 10.3109/08820139.2012.682243] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
40
|
A "crossomics" study analysing variability of different components in peripheral blood of healthy caucasoid individuals. PLoS One 2012; 7:e28761. [PMID: 22253695 PMCID: PMC3257221 DOI: 10.1371/journal.pone.0028761] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 11/14/2011] [Indexed: 01/12/2023] Open
Abstract
Background Different immunotherapy approaches for the treatment of cancer and autoimmune diseases are being developed and tested in clinical studies worldwide. Their resulting complex experimental data should be properly evaluated, therefore reliable normal healthy control baseline values are indispensable. Methodology/Principal Findings To assess intra- and inter-individual variability of various biomarkers, peripheral blood of 16 age and gender equilibrated healthy volunteers was sampled on 3 different days within a period of one month. Complex “crossomics” analyses of plasma metabolite profiles, antibody concentrations and lymphocyte subset counts as well as whole genome expression profiling in CD4+T and NK cells were performed. Some of the observed age, gender and BMI dependences are in agreement with the existing knowledge, like negative correlation between sex hormone levels and age or BMI related increase in lipids and soluble sugars. Thus we can assume that the distribution of all 39.743 analysed markers is well representing the normal Caucasoid population. All lymphocyte subsets, 20% of metabolites and less than 10% of genes, were identified as highly variable in our dataset. Conclusions/Significance Our study shows that the intra-individual variability was at least two-fold lower compared to the inter-individual one at all investigated levels, showing the importance of personalised medicine approach from yet another perspective.
Collapse
|
41
|
Complex regulation of human NKG2D-DAP10 cell surface expression: opposing roles of the γc cytokines and TGF-β1. Blood 2011; 118:3019-27. [PMID: 21816829 DOI: 10.1182/blood-2011-04-346825] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Natural killer (NK) cells help protect the host against viral infections and tumors. NKG2D is a vital activating receptor, also expressed on subsets of T cells, whose ligands are up-regulated by cells in stress. Ligation of NKG2D leads to phosphorylation of the associated DAP10 adaptor protein, thereby activating immune cells. Understanding how the expression of NKG2D-DAP10 is regulated has implications for immunotherapy. We show that IL-2 and TGF-β1 oppositely regulate NKG2D-DAP10 expression by NK cells. IL-2 stimulation increases NKG2D surface expression despite a decrease in NKG2D mRNA levels. Stimulation with IL-2 results in a small increase of DAP10 mRNA and a large up-regulation of DAP10 protein synthesis, indicating that IL-2-mediated effects are mostly posttranscriptional. Newly synthesized DAP10 undergoes glycosylation that is required for DAP10 association with NKG2D and stabilization of NKG2D expression. TGF-β1 has an opposite and dominant effect to IL-2. TGF-β1 treatment decreases DAP10, as its presence inhibits the association of RNA polymerase II with the DAP10 promoter, but not NKG2D mRNA levels. This leads to the down-regulation of DAP10 expression and, as a consequence, NKG2D protein as well. Finally, we show that other γ(c) cytokines act similarly to IL-2 in up-regulating DAP10 expression and NKG2D-DAP10 surface expression.
Collapse
|