1
|
Has C, Das SL. The Functionality of Membrane-Inserting Proteins and Peptides: Curvature Sensing, Generation, and Pore Formation. J Membr Biol 2023; 256:343-372. [PMID: 37650909 DOI: 10.1007/s00232-023-00289-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 08/04/2023] [Indexed: 09/01/2023]
Abstract
Proteins and peptides with hydrophobic and amphiphilic segments are responsible for many biological functions. The sensing and generation of membrane curvature are the functions of several protein domains or motifs. While some specific membrane proteins play an essential role in controlling the curvature of distinct intracellular membranes, others participate in various cellular processes such as clathrin-mediated endocytosis, where several proteins sort themselves at the neck of the membrane bud. A few membrane-inserting proteins form nanopores that permeate selective ions and water to cross the membrane. In addition, many natural and synthetic small peptides and protein toxins disrupt the membrane by inducing nonspecific pores in the membrane. The pore formation causes cell death through the uncontrolled exchange between interior and exterior cellular contents. In this article, we discuss the insertion depth and orientation of protein/peptide helices, and their role as a sensor and inducer of membrane curvature as well as a pore former in the membrane. We anticipate that this extensive review will assist biophysicists to gain insight into curvature sensing, generation, and pore formation by membrane insertion.
Collapse
Affiliation(s)
- Chandra Has
- Department of Chemical Engineering, GSFC University, Vadodara, 391750, Gujarat, India.
| | - Sovan Lal Das
- Physical and Chemical Biology Laboratory and Department of Mechanical Engineering, Indian Institute of Technology, Palakkad, 678623, Kerala, India
| |
Collapse
|
2
|
Sekar D, Dillmann C, Sirait-Fischer E, Fink AF, Zivkovic A, Baum N, Strack E, Klatt S, Zukunft S, Wallner S, Descot A, Olesch C, da Silva P, von Knethen A, Schmid T, Grösch S, Savai R, Ferreirós N, Fleming I, Ghosh S, Rothlin CV, Stark H, Medyouf H, Brüne B, Weigert A. Phosphatidylserine Synthase PTDSS1 Shapes the Tumor Lipidome to Maintain Tumor-Promoting Inflammation. Cancer Res 2022; 82:1617-1632. [DOI: 10.1158/0008-5472.can-20-3870] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 11/19/2021] [Accepted: 02/18/2022] [Indexed: 11/16/2022]
Abstract
Abstract
An altered lipidome in tumors may affect not only tumor cells themselves but also their microenvironment. In this study, a lipidomics screen reveals increased amounts of phosphatidylserine (PS), particularly ether-PS (ePS), in murine mammary tumors compared with normal tissue. PS was produced by phosphatidylserine synthase 1 (PTDSS1), and depletion of Ptdss1 from tumor cells in mice reduced ePS levels accompanied by stunted tumor growth and decreased tumor-associated macrophage (TAM) abundance. Ptdss1-deficient tumor cells exposed less PS during apoptosis, which was recognized by the PS receptor MERTK. Mammary tumors in macrophage-specific Mertk−/− mice showed similarly suppressed growth and reduced TAM infiltration. Transcriptomic profiles of TAMs from Ptdss1-knockdown tumors and Mertk−/− TAMs revealed that macrophage proliferation was reduced when the Ptdss1/Mertk pathway was targeted. Moreover, PTDSS1 expression correlated positively with TAM abundance but negatively with breast carcinoma patient survival. PTDSS1 thus may be a target to modify tumor-promoting inflammation.
Significance:
This study shows that inhibiting the production of ether-phosphatidylserine by targeting phosphatidylserine synthase PTDSS1 limits tumor-associated macrophage expansion and breast tumor growth.
Collapse
Affiliation(s)
- Divya Sekar
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany,
| | - Christina Dillmann
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany,
| | - Evelyn Sirait-Fischer
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany,
| | - Annika F. Fink
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany,
| | - Aleksandra Zivkovic
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Duesseldorf, Germany
| | - Natalie Baum
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Elisabeth Strack
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany,
| | - Stephan Klatt
- Institute of Vascular Signalling, Department of Molecular Medicine, Goethe-University Frankfurt, Germany
| | - Sven Zukunft
- Institute of Vascular Signalling, Department of Molecular Medicine, Goethe-University Frankfurt, Germany
| | - Stefan Wallner
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Arnaud Descot
- Georg-Speyer-Haus Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
| | - Catherine Olesch
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany,
| | - Priscila da Silva
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany,
| | - Andreas von Knethen
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany,
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt, Germany
| | - Tobias Schmid
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany,
| | - Sabine Grösch
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany
| | - Rajkumar Savai
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Frankfurt Cancer Institute, Goethe-University Frankfurt, Frankfurt, Germany
| | - Nerea Ferreirós
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany
| | - Ingrid Fleming
- Institute of Vascular Signalling, Department of Molecular Medicine, Goethe-University Frankfurt, Germany
- Cardio-Pulmonary Institute (CPI), Frankfurt, Germany
| | - Sourav Ghosh
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut
- Department of Pharmacology, School of Medicine, Yale University, New Haven, Connecticut
| | - Carla V. Rothlin
- Department of Pharmacology, School of Medicine, Yale University, New Haven, Connecticut
- Department of Immunobiology, School of Medicine, Yale University, New Haven, Connecticut
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Duesseldorf, Germany
| | - Hind Medyouf
- Georg-Speyer-Haus Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe-University Frankfurt, Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt, Frankfurt, Germany
| | - Bernhard Brüne
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany,
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe-University Frankfurt, Frankfurt, Germany
- Cardio-Pulmonary Institute (CPI), Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt, Frankfurt, Germany
| | - Andreas Weigert
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany,
- Frankfurt Cancer Institute, Goethe-University Frankfurt, Frankfurt, Germany
- Cardio-Pulmonary Institute (CPI), Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt, Frankfurt, Germany
| |
Collapse
|
3
|
Barboza T, Gomes T, da Costa Medeiros P, Ramos IP, Francischetti I, Monteiro RQ, Gutfilen B, de Souza SAL. Development of 131I-ixolaris as a theranostic agent: metastatic melanoma preclinical studies. Clin Exp Metastasis 2020; 37:489-497. [PMID: 32394234 DOI: 10.1007/s10585-020-10036-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 05/04/2020] [Indexed: 12/13/2022]
Abstract
Tissue factor (TF), a blood coagulation protein, plays an important role in tumor growth, invasion, and metastasis. Ixolaris, a tick-derived non-immunogenic molecule that binds to TF, has demonstrated in vivo inhibitory effect on murine models of melanoma, including primary growth and metastasis. This work aimed to: I) develop an efficient and stable labeling technique of ixolaris with Iodine-131(131I); II) compare the biodistribution of 131I and 131I-ixolaris in tumor-free and melanoma-bearing mice; III) evaluate whether 131I-ixolaris could serve as an antimetastatic agent. Ixolaris radioiodination was performed using iodogen, followed by liquid paper chromatography. Labeling stability and anticoagulant activity were measured. Imaging studies were performed after intravenous administration of free 131I or 131I-ixolaris in a murine melanoma model employing the B16-F10 cell line. Animals were divided in three experimental groups: the first experimental group, D0, received a single-dose of 9.25 MBq of 131I-ixolaris at the same day the animals were inoculated with melanoma cells. In the second group, D15, a single-dose of 9.25 MBq of 131I-ixolaris or free 131I was applied into mice on the fifteenth day after the tumor induction. The third group, D1-D15, received two therapeutic doses of 9.25 MBq of 131I-ixolaris or 131I. In vitro studies demonstrated that 131I-ixolaris is stable for up to 24 h and retains its inhibitory activity on blood coagulation. Biodistribution analysis and metastasis assays showed that all treatment regimens with 131I-ixolaris were effective, being the double-treatment (D1/D15) the most effective one. Remarkably, treatment with free 131I showed no anti-metastatic effect. 131I-ixolaris is a promising theranostic agent for metastatic melanoma.
Collapse
Affiliation(s)
- Thiago Barboza
- Departamento de Radiologia, Faculdade de Medicina, Laboratório de Marcação de Células E Moléculas, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Tainá Gomes
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Priscylla da Costa Medeiros
- Departamento de Radiologia, Faculdade de Medicina, Laboratório de Marcação de Células E Moléculas, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Isalira Peroba Ramos
- Centro Nacional de Bioimagem E Biologia Estrutural, Bloco M, Unidade 2, Centro de Ciências da Saúde, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Ivo Francischetti
- Laboratory of Malaria and Vector Research, NIAID, National Institutes of Health, Bethesda, USA
| | - Robson Q Monteiro
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Bianca Gutfilen
- Departamento de Radiologia, Faculdade de Medicina, Laboratório de Marcação de Células E Moléculas, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Sergio Augusto Lopes de Souza
- Departamento de Radiologia, Faculdade de Medicina, Laboratório de Marcação de Células E Moléculas, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brasil. .,Centro Nacional de Bioimagem E Biologia Estrutural, Bloco M, Unidade 2, Centro de Ciências da Saúde, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brasil.
| |
Collapse
|
4
|
Gauden AJ, McRobb LS, Lee VS, Subramanian S, Moutrie V, Zhao Z, Stoodley MA. Occlusion of Animal Model Arteriovenous Malformations Using Vascular Targeting. Transl Stroke Res 2019; 11:689-699. [PMID: 31802427 DOI: 10.1007/s12975-019-00759-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/22/2019] [Accepted: 11/19/2019] [Indexed: 01/24/2023]
Abstract
Brain arteriovenous malformations (AVMs) are a significant cause of intracerebral hemorrhage in children and young adults. Currently, one third of patients have no viable treatment options. Vascular targeting agents (VTAs) are being designed to deliver pro-thrombotic molecules to the abnormal AVM vessels for rapid occlusion and cure. This study assessed the efficacy of a pro-thrombotic VTA targeting phosphatidylserine (PS) in a radiation-primed AVM animal model. The model AVM was surgically created in rats by anastomosis of the left external jugular vein to the adjacent common carotid artery. After 6 weeks, the AVM was irradiated (20 Gy) using gamma knife surgery (GKS). A PS-targeting VTA was created by conjugation of annexin V with human thrombin and administered intravenously 3 weeks post-GKS or sham. Unconjugated thrombin was used as a non-targeting control. AVM thrombosis and occlusion was monitored 3 weeks later by angiography and histology. Preliminary experiments established a safe dose of active thrombin for systemic administration. Subsequently, a single dose of annexin V-thrombin conjugate (0.77 mg/kg) resulted in angiographic AVM occlusion in sham (75%) and irradiated (63%) animals, while non-targeted thrombin did not. Lowering the conjugate dose (0.38 mg/kg) decreased angiographic AVM occlusion in sham (13%) relative to irradiated (80%) animals (p = 0.03) as did delivery of two consecutive doses of 0.38 mg/kg, 2 days apart (sham (0%); irradiated (78%); p = 0.003). These findings demonstrate efficacy of the PS-targeting VTA and the feasibility of a vascular targeting approach for occlusion of high-flow AVMs. Targeting specificity can be enhanced by radiation-sensitization and VTA dose modification.
Collapse
Affiliation(s)
- Andrew J Gauden
- Department of Clinical Medicine, Faculty of Medicine and Health Sciences, Macquarie University, Neurosurgery Unit, Suite 201, 2 Technology Place, Sydney, NSW, 2109, Australia
| | - Lucinda S McRobb
- Department of Clinical Medicine, Faculty of Medicine and Health Sciences, Macquarie University, Neurosurgery Unit, Suite 201, 2 Technology Place, Sydney, NSW, 2109, Australia
| | - Vivienne S Lee
- Department of Clinical Medicine, Faculty of Medicine and Health Sciences, Macquarie University, Neurosurgery Unit, Suite 201, 2 Technology Place, Sydney, NSW, 2109, Australia
| | - Sinduja Subramanian
- Department of Clinical Medicine, Faculty of Medicine and Health Sciences, Macquarie University, Neurosurgery Unit, Suite 201, 2 Technology Place, Sydney, NSW, 2109, Australia
| | - Vaughan Moutrie
- Genesis Cancer Care, Macquarie University Hospital, Sydney, 2109, Australia
| | - Zhenjun Zhao
- Department of Clinical Medicine, Faculty of Medicine and Health Sciences, Macquarie University, Neurosurgery Unit, Suite 201, 2 Technology Place, Sydney, NSW, 2109, Australia
| | - Marcus A Stoodley
- Department of Clinical Medicine, Faculty of Medicine and Health Sciences, Macquarie University, Neurosurgery Unit, Suite 201, 2 Technology Place, Sydney, NSW, 2109, Australia.
| |
Collapse
|
5
|
Vaezi Z, Bortolotti A, Luca V, Perilli G, Mangoni ML, Khosravi-Far R, Bobone S, Stella L. Aggregation determines the selectivity of membrane-active anticancer and antimicrobial peptides: The case of killerFLIP. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1862:183107. [PMID: 31678022 DOI: 10.1016/j.bbamem.2019.183107] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 07/19/2019] [Accepted: 09/19/2019] [Indexed: 01/02/2023]
Abstract
Host defense peptides selectively kill bacterial and cancer cells (including those that are drug-resistant) by perturbing the permeability of their membranes, without being significantly toxic to the host. Coulombic interactions between these cationic and amphipathic peptides and the negatively charged membranes of pathogenic cells contribute to the selective toxicity. However, a positive charge is not sufficient for selectivity, which can be achieved only by a finely tuned balance of electrostatic and hydrophobic driving forces. A common property of amphipathic peptides is the formation of aggregated structures in solution, but the role of this phenomenon in peptide activity and selectivity has received limited attention. Our data on the anticancer peptide killerFLIP demonstrate that aggregation strongly increases peptide selectivity, by reducing the effective peptide hydrophobicity and thus the affinity towards membranes composed of neutral lipids (like the outer layer of healthy eukaryotic cell membranes). Aggregation is therefore a useful tool to modulate the selectivity of membrane active peptides and peptidomimetics.
Collapse
Affiliation(s)
- Zahra Vaezi
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Annalisa Bortolotti
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Vincenzo Luca
- Laboratory affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, piazzale Aldo Moro, 5, 00185 Rome, Italy
| | - Giulia Perilli
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Maria Luisa Mangoni
- Laboratory affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, piazzale Aldo Moro, 5, 00185 Rome, Italy
| | - Roya Khosravi-Far
- BiomaRx Inc, Cambridge, MA, USA; Department of Pathology, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Sara Bobone
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133 Rome, Italy.
| | - Lorenzo Stella
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133 Rome, Italy.
| |
Collapse
|
6
|
Rivel T, Ramseyer C, Yesylevskyy S. The asymmetry of plasma membranes and their cholesterol content influence the uptake of cisplatin. Sci Rep 2019; 9:5627. [PMID: 30948733 PMCID: PMC6449338 DOI: 10.1038/s41598-019-41903-w] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 03/18/2019] [Indexed: 12/20/2022] Open
Abstract
The composition of the plasma membrane of malignant cells is thought to influence the cellular uptake of cisplatin and to take part in developing resistance to this widespread anti-cancer drug. In this work we study the permeation of cisplatin through the model membranes of normal and cancer cells using molecular dynamics simulations. A special attention is paid to lipid asymmetry and cholesterol content of the membranes. The loss of lipid asymmetry, which is common for cancer cells, leads to a decrease in their permeability to cisplatin by one order of magnitude in comparison to the membranes of normal cells. The change in the cholesterol molar ratio from 0% to 33% also decreases the permeability of the membrane by approximately one order of magnitude. The permeability of pure DOPC membrane is 5-6 orders of magnitude higher than one of the membranes with realistic lipid composition, which makes it as an inadequate model for the studies of drug permeability.
Collapse
Affiliation(s)
- Timothée Rivel
- Laboratoire Chrono Environnement UMR CNRS 6249, Université de Bourgogne Franche-Comté, 16 route de Gray, 25030, Besançon, Cedex, France.
| | - Christophe Ramseyer
- Laboratoire Chrono Environnement UMR CNRS 6249, Université de Bourgogne Franche-Comté, 16 route de Gray, 25030, Besançon, Cedex, France
| | - Semen Yesylevskyy
- Laboratoire Chrono Environnement UMR CNRS 6249, Université de Bourgogne Franche-Comté, 16 route de Gray, 25030, Besançon, Cedex, France.,Department of Physics of Biological Systems, Institute of Physics of the National Academy of Sciences of Ukraine, Prospect Nauky 46, 03028, Kyiv, Ukraine
| |
Collapse
|
7
|
Hugo de Almeida V, Guimarães IDS, Almendra LR, Rondon AMR, Tilli TM, de Melo AC, Sternberg C, Monteiro RQ. Positive crosstalk between EGFR and the TF-PAR2 pathway mediates resistance to cisplatin and poor survival in cervical cancer. Oncotarget 2018; 9:30594-30609. [PMID: 30093972 PMCID: PMC6078136 DOI: 10.18632/oncotarget.25748] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 06/25/2018] [Indexed: 01/09/2023] Open
Abstract
Cisplatin-based chemoradiation is the standard treatment for cervical cancer, but chemosensitizing strategies are needed to improve patient survival. EGFR (Epidermal Growth Factor Receptor) is an oncogene overexpressed in cervical cancer that is involved in chemoresistance. Recent studies showed that EGFR upregulates multiple elements of the coagulation cascade, including tissue factor (TF) and the protease-activated receptors (PAR) 1 and 2. Moreover, many G protein-coupled receptors, including PARs, have been implicated in EGFR transactivation. However, the role of coagulation proteins in the progression of cervical cancer has been poorly investigated. Herein we employed cervical cancer cell lines and The Cancer Genome Atlas (TCGA) database to evaluate the role of EGFR, TF and PAR2 in chemoresistance. The SLIGKL-NH2 peptide (PAR2-AP) and coagulation factor VIIa (FVIIa) were used as PAR2 agonists, while cetuximab was used to inhibit EGFR. The more aggressive cell line CASKI showed higher expression levels of EGFR, TF and PAR2 than that of C33A. PAR2 transactivated EGFR, which further upregulated cyclooxygenase-2 (COX2) expression. PAR2-AP decreased cisplatin-induced apoptosis through an EGFR- and COX2-dependent mechanism. Furthermore, treatment of CASKI cells with EGF upregulated TF expression, while treatment with cetuximab decreased the TF protein levels. The RNA-seq data from 309 TCGA samples showed a strong positive correlation between EGFR and TF expression (P = 0.0003). In addition, the increased expression of EGFR, PAR2 or COX2 in cervical cancer patients was significantly correlated with poor overall survival. Taken together, our results suggest that EGFR and COX2 are effectors of the TF/FVIIa/PAR2 signaling pathway, promoting chemoresistance.
Collapse
Affiliation(s)
- Vitor Hugo de Almeida
- Instituto de Bioquímica Médica Leopoldo De Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,Divisão de Pesquisa Clínica e Desenvolvimento Tecnológico, Instituto Nacional de Câncer, Rio de Janeiro, RJ, Brazil
| | | | - Lucas R Almendra
- Instituto de Bioquímica Médica Leopoldo De Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Araci M R Rondon
- Instituto de Bioquímica Médica Leopoldo De Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Tatiana M Tilli
- Centro de Desenvolvimento Tecnológico em Saúde, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Andréia C de Melo
- Divisão de Pesquisa Clínica e Desenvolvimento Tecnológico, Instituto Nacional de Câncer, Rio de Janeiro, RJ, Brazil
| | - Cinthya Sternberg
- Divisão de Pesquisa Clínica e Desenvolvimento Tecnológico, Instituto Nacional de Câncer, Rio de Janeiro, RJ, Brazil.,Present address: Sociedade Brasileira de Oncologia Clínica (SBOC), Belo Horizonte, MG, Brazil
| | - Robson Q Monteiro
- Instituto de Bioquímica Médica Leopoldo De Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
8
|
Gao XL, Wang SS, Cao DB, Liu W. The role of plasma D-dimer levels for predicting lymph node and mediastinal lymph node involvement in non-small cell lung cancer. CLINICAL RESPIRATORY JOURNAL 2018; 12:2151-2156. [PMID: 29498801 DOI: 10.1111/crj.12786] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 01/26/2018] [Accepted: 02/23/2018] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Elevated plasma D-dimer levels have been suggested as a predictor of poor prognosis in NSCLC. But rare study showed the relationship between D-dimer levels and lymph node involvement. OBJECTIVES To evaluate the role of plasma D-dimer levels in predicting lymph node and mediastinal lymph node involvement in NSCLC. METHODS Preoperative plasma D-dimer levels were quantified in 253 NSCLC patients that underwent radical lung resection with systemic lymph node dissection. Patients were classified as lymph node negative (N0) versus lymph node positive (N1 + N2) and mediastinal lymph node negative (N0 + N1) versus mediastinal lymph node positive (N2). RESULTS Median plasma D-dimer level was significantly lower in Group N0 (94.0 μg/L) compared to Group N1 + N2 (177.0 μg/L) and in Group N0 + N1 (122.0 μg/L) compared to Group N2 (198.0 μg/L). Similar results were found in patients stratified by age, sex, smoking status and histological type, expect in patients with squamous carcinoma. The Receiver Operating Characteristic (ROC) curve for plasma D-dimer levels of N0 versus N1 + N2 showed an area under the curve (AUC) of 0.757 and when a cutoff value was 124.0 μg/L DDU, the sensitivity and specificity was 0.80 and 0.68. The ROC curve for plasma D-dimer levels of N0 + N1 versus N2 showed an AUC of 0.720 and when a cutoff value was 147.0 μg/L DDU, the sensitivity and specificity was 0.75 and 0.67. CONCLUSIONS Plasma D-dimer level has utility for predicting lymph node and mediastinal lymph node status in patients with operable NSCLC.
Collapse
Affiliation(s)
- Xin-Liang Gao
- Department of Thoracic Surgery, The First Hospital of Jilin University, Jilin Province, Changchun, 130021, People's Republic of China
| | - Si-Si Wang
- Department of Translational medicine, The First Hospital of Jilin University, Jilin Province, Changchun, 130021, People's Republic of China
| | - Dian-Bo Cao
- Department of Radiology, The First Hospital of Jilin University, Jilin Province, Changchun, 130021, People's Republic of China
| | - Wei Liu
- Department of Thoracic Surgery, The First Hospital of Jilin University, Jilin Province, Changchun, 130021, People's Republic of China
| |
Collapse
|
9
|
Muhsin-Sharafaldine MR, Saunderson SC, Dunn AC, Faed JM, Kleffmann T, McLellan AD. Procoagulant and immunogenic properties of melanoma exosomes, microvesicles and apoptotic vesicles. Oncotarget 2018; 7:56279-56294. [PMID: 27462921 PMCID: PMC5302914 DOI: 10.18632/oncotarget.10783] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 06/17/2016] [Indexed: 12/18/2022] Open
Abstract
Extracellular vesicles (EV) are lipid particles released from eukaryotic cells into the extracellular fluid. Depending on the cell type or mechanism of release, vesicles vary in form and function and exert distinct functions in coagulation and immunity. Tumor cells may constitutively shed vesicles known as exosomes or microvesicles (MV). Alternatively, apoptosis induces the release of apoptotic blebs or vesicles (ApoV) from the plasma membrane. EV have been implicated in thrombotic events (the second highest cause of death in cancer patients) and tumor vesicles contribute to the anti-cancer immune response. In this study, we utilized the well characterized B16 melanoma model to determine the molecular composition and procoagulant and immunogenic potential of exosomes, MV and ApoV. Distinct patterns of surface and cytoplasmic molecules (tetraspanins, integrins, heat shock proteins and histones) were expressed between the vesicle types. Moreover, in vitro coagulation assays revealed that membrane-derived vesicles, namely MV and ApoV, were more procoagulant than exosomes–with tissue factor and phosphatidylserine critical for procoagulant activity. Mice immunized with antigen-pulsed ApoV and challenged with B16 tumors were protected out to 60 days, while lower protection rates were afforded by MV and exosomes. Together the results demonstrate distinct phenotypic and functional differences between vesicle types, with important procoagulant and immunogenic functions emerging for membrane-derived MV and ApoV versus endosome-derived exosomes. This study highlights the potential of EV to contribute to the prothrombotic state, as well as to anti-cancer immunity.
Collapse
Affiliation(s)
| | - Sarah C Saunderson
- Department of Microbiology and Immunology, University of Otago, Dunedin, Otago, New Zealand
| | - Amy C Dunn
- Department of Microbiology and Immunology, University of Otago, Dunedin, Otago, New Zealand
| | - James M Faed
- Department of Pathology, University of Otago, Dunedin, Otago, New Zealand
| | - Torsten Kleffmann
- Centre for Protein Research, University of Otago, Dunedin, Otago, New Zealand
| | - Alexander D McLellan
- Department of Microbiology and Immunology, University of Otago, Dunedin, Otago, New Zealand.,Department of Microbiology and Immunology, Otago School of Medical Sciences, University of Otago, Dunedin, Otago, New Zealand
| |
Collapse
|
10
|
Lima L, Oliveira A, Campos L, Bonamino M, Chammas R, Werneck C, Vicente C, Barcinski M, Petersen L, Monteiro R. Malignant transformation in melanocytes is associated with increased production of procoagulant microvesicles. Thromb Haemost 2017; 106:712-23. [DOI: 10.1160/th11-03-0143] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Accepted: 06/30/2011] [Indexed: 01/08/2023]
Abstract
SummaryShedding of microvesicles (MVs) by cancer cells is implicated in a variety of biological effects, including the establishment of cancer-associated hypercoagulable states. However, the mechanisms underlying malignant transformation and the acquisition of procoagulant properties by tumour-derived MVs are poorly understood. Here we investigated the procoagulant and prothrombotic properties of MVs produced by a melanocyte-derived cell line (melan-a) as compared to its tumourigenic melanoma counterpart Tm1. Tumour cells exhibit a two-fold higher rate of MVs production as compared to melan-a. Melanoma MVs display greater procoagulant activity and elevated levels of the clotting initiator protein tissue factor (TF). On the other hand, tumour- and melanocyte- derived MVs expose similar levels of the procoagulant lipid phosphatidylserine, displaying identical abilities to support thrombin generation by the prothrombinase complex. By using an arterial thrombosis model, we observed that melanoma- but not melanocyte-derived MVs strongly accelerate thrombus formation in a TF-dependent manner, and accumulate at the site of vascular injury. Analysis of plasma obtained from melanoma-bearing mice showed the presence of MVs with a similar procoagulant pattern as compared to Tm1 MVs produced in vitro. Remarkably, flow-cytometric analysis demonstrated that 60% of ex vivo MVs are TF-positive and carry the melanoma-associated antigen, demonstrating its tumour origin. Altogether our data suggest that malignant transformation in melanocytes increases the production of procoagulant MVs, which may contribute for a variety of coagulation- related protumoural responses.
Collapse
|
11
|
De M, Ghosh S, Sen T, Shadab M, Banerjee I, Basu S, Ali N. A Novel Therapeutic Strategy for Cancer Using Phosphatidylserine Targeting Stearylamine-Bearing Cationic Liposomes. MOLECULAR THERAPY. NUCLEIC ACIDS 2017; 10:9-27. [PMID: 29499959 PMCID: PMC5723379 DOI: 10.1016/j.omtn.2017.10.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 10/26/2017] [Indexed: 02/07/2023]
Abstract
There is a pressing need for a ubiquitously expressed antigen or receptor on the tumor surface for successful mitigation of the deleterious side effects of chemotherapy. Phosphatidylserine (PS), normally constrained to the intracellular surface, is exposed on the external surface of tumors and most tumorigenic cell lines. Here we report that a novel PS-targeting liposome, phosphatidylcholine-stearylamine (PC-SA), induced apoptosis and showed potent anticancer effects as a single agent against a majority of cancer cell lines. We experimentally proved that this was due to a strong affinity for and direct interaction of these liposomes with PS. Complexation of the chemotherapeutic drugs doxorubicin and camptothecin in these vesicles demonstrated a manyfold enhancement in the efficacies of the drugs both in vitro and across three advanced tumor models without any signs of toxicity. Both free and drug-loaded liposomes were maximally confined to the tumor site with low tissue concentration. These data indicate that PC-SA is a unique and promising liposome that, alone and as a combination therapy, has anticancer potential across a wide range of cancer types.
Collapse
Affiliation(s)
- Manjarika De
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Sneha Ghosh
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Triparna Sen
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Md Shadab
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Indranil Banerjee
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Santanu Basu
- Department of Oncology, ESI Hospital, Kolkata, West Bengal, India
| | - Nahid Ali
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, Kolkata, West Bengal, India.
| |
Collapse
|
12
|
Zhao L, Thorsheim CL, Suzuki A, Stalker TJ, Min SH, Lian L, Fairn GD, Cockcroft S, Durham A, Krishnaswamy S, Abrams CS. Phosphatidylinositol transfer protein-α in platelets is inconsequential for thrombosis yet is utilized for tumor metastasis. Nat Commun 2017; 8:1216. [PMID: 29084966 PMCID: PMC5662573 DOI: 10.1038/s41467-017-01181-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 08/24/2017] [Indexed: 11/09/2022] Open
Abstract
Platelets are increasingly recognized for their contributions to tumor metastasis. Here, we show that the phosphoinositide signaling modulated by phosphatidylinositol transfer protein type α (PITPα), a protein which shuttles phosphatidylinositol between organelles, is essential for platelet-mediated tumor metastasis. PITPα-deficient platelets have reduced intracellular pools of phosphoinositides and an 80% reduction in IP3 generation upon platelet activation. Unexpectedly, mice lacking platelet PITPα form thrombi normally at sites of intravascular injuries. However, following intravenous injection of tumor cells, mice lacking PITPα develop fewer lung metastases due to a reduction of fibrin formation surrounding the tumor cells, rendering the metastases susceptible to mucosal immunity. These findings demonstrate that platelet PITPα-mediated phosphoinositide signaling is inconsequential for in vivo hemostasis, yet is critical for in vivo dissemination. Moreover, this demonstrates that signaling pathways within platelets may be segregated into pathways that are essential for thrombosis formation and pathways that are important for non-hemostatic functions.
Collapse
Affiliation(s)
- Liang Zhao
- Department of Medicine, School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Chelsea L Thorsheim
- Department of Medicine, School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Aae Suzuki
- Department of Medicine, School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Timothy J Stalker
- Department of Medicine, School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sang H Min
- Department of Medicine, School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Lurong Lian
- Department of Medicine, School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | | | | | - Amy Durham
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | | | - Charles S Abrams
- Department of Medicine, School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA. .,Department of Pathology, School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
13
|
Tumor-Derived Exosomes Induce the Formation of Neutrophil Extracellular Traps: Implications For The Establishment of Cancer-Associated Thrombosis. Sci Rep 2017; 7:6438. [PMID: 28743887 PMCID: PMC5526939 DOI: 10.1038/s41598-017-06893-7] [Citation(s) in RCA: 184] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 06/19/2017] [Indexed: 12/17/2022] Open
Abstract
Cancer patients are at an increased risk of developing thromboembolic complications. Several mechanisms have been proposed to explain cancer-associated thrombosis including the release of tumor-derived extracellular vesicles and the activation of host vascular cells. It was proposed that neutrophil extracellular traps (NETs) contribute to the prothrombotic phenotype in cancer. In this study, we evaluated the possible cooperation between tumor-derived exosomes and NETs in cancer-associated thrombosis. Female BALB/c mice were orthotopically injected with 4T1 breast cancer cells. The tumor-bearing animals exhibited increased levels of plasma DNA and myeloperoxidase in addition to significantly increased numbers of circulating neutrophils. Mice were subjected to either Rose Bengal/laser-induced venous thrombosis or ferric chloride-induced arterial thrombosis models. The tumor-bearing mice exhibited accelerated thrombus formation in both models compared to tumor-free animals. Treatment with recombinant human DNase 1 reversed the prothrombotic phenotype of tumor-bearing mice in both models. Remarkably, 4T1-derived exosomes induced NET formation in neutrophils from mice treated with granulocyte colony-stimulating factor (G-CSF). In addition, tumor-derived exosomes interacted with NETs under static conditions. Accordingly, the intravenous administration of 4T1-derived exosomes into G-CSF-treated mice significantly accelerated venous thrombosis in vivo. Taken together, our observations suggest that tumor-derived exosomes and neutrophils may act cooperatively in the establishment of cancer-associated thrombosis.
Collapse
|
14
|
Raoufi Rad N, McRobb LS, Zhao Z, Lee VS, Patel NJ, Qureshi AS, Grace M, McHattan JJ, Amal Raj JV, Duong H, Kashba SR, Stoodley MA. Phosphatidylserine Translocation after Radiosurgery in an Animal Model of Arteriovenous Malformation. Radiat Res 2017; 187:701-707. [PMID: 28414573 DOI: 10.1667/rr14646.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Phosphatidylserine (PS) is asymmetrically distributed across the plasma membrane, located predominantly on the inner leaflet in healthy cells. Translocation of PS to the outer leaflet makes it available as a target for biological therapies. We examined PS translocation after radiosurgery in an animal model of brain arteriovenous malformation (AVM). An arteriovenous fistula was created by end-to-side anastomosis of the left external jugular vein to the common carotid artery in 6-week-old, male Sprague Dawley rats. Six weeks after AVM creation, 15 rats underwent Gamma Knife stereotactic radiosurgery receiving a single 15 Gy dose to the margin of the fistula; 15 rats received sham treatment. Externalization of PS was examined by intravenous injection of a PS-specific near-infrared probe, PSVue-794, and in vivo fluorescence optical imaging at 1, 7, 21, 42, 63 and 84 days postirradiation. Fluorescent signaling indicative of PS translocation to the luminal cell surface accumulated in the AVM region, in both irradiated and nonirradiated animals, at all time points. Fluorescence was localized specifically to the AVM region and was not present in any other anatomical sites. Translocated PS increased over time in irradiated rats (P < 0.001) but not in sham-irradiated rats and this difference reached statistical significance at day 84 (P < 0.05). In summary, vessels within the mature rat AVM demonstrate elevated PS externalization compared to normal vessels. A single dose of ionizing radiation can increase PS externalization in a time-dependent manner. Strict localization of PS externalization within the AVM region suggests that stereotactic radiosurgery can serve as an effective priming agent and PS may be a suitable candidate for vascular-targeting approaches to AVM treatment.
Collapse
Affiliation(s)
- Newsha Raoufi Rad
- a Department of Clinical Medicine, Faculty of Medicine and Health Sciences, Macquarie University, New South Wales, Australia
| | - Lucinda S McRobb
- a Department of Clinical Medicine, Faculty of Medicine and Health Sciences, Macquarie University, New South Wales, Australia
| | - Zhenjun Zhao
- a Department of Clinical Medicine, Faculty of Medicine and Health Sciences, Macquarie University, New South Wales, Australia
| | - Vivienne S Lee
- a Department of Clinical Medicine, Faculty of Medicine and Health Sciences, Macquarie University, New South Wales, Australia
| | - Nirav J Patel
- a Department of Clinical Medicine, Faculty of Medicine and Health Sciences, Macquarie University, New South Wales, Australia
| | - Anas Sarwar Qureshi
- a Department of Clinical Medicine, Faculty of Medicine and Health Sciences, Macquarie University, New South Wales, Australia
| | - Michael Grace
- b Genesis Cancer Care, Macquarie University Hospital, New South Wales, Australia
| | | | - Jude V Amal Raj
- a Department of Clinical Medicine, Faculty of Medicine and Health Sciences, Macquarie University, New South Wales, Australia
| | - Hong Duong
- a Department of Clinical Medicine, Faculty of Medicine and Health Sciences, Macquarie University, New South Wales, Australia
| | - Saleh R Kashba
- a Department of Clinical Medicine, Faculty of Medicine and Health Sciences, Macquarie University, New South Wales, Australia.,d Department of Neurosurgery, Misurata Cancer Institute, Misurata University, Misurata, Libya
| | - Marcus A Stoodley
- a Department of Clinical Medicine, Faculty of Medicine and Health Sciences, Macquarie University, New South Wales, Australia
| |
Collapse
|
15
|
Wilms D, Andrä J. Comparison of patient-derived high and low phosphatidylserine-exposing colorectal carcinoma cells in their interaction with anti-cancer peptides. J Pept Sci 2017; 23:56-67. [PMID: 28066958 DOI: 10.1002/psc.2963] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 12/01/2016] [Accepted: 12/07/2016] [Indexed: 01/10/2023]
Abstract
Current cancer treatment is frequently compromised by severe adverse effects on healthy cells and tissues as well as by the increasing burden of (multi-)drug resistances. Some representatives of small, amphipathic peptides known as host defense peptides possess the potential to overcome these limitations and to evolve as future anti-cancer therapeutics. Peptide NK-2, derived from porcine NK-lysin, was originally discovered due to its broad-spectrum antimicrobial activities. Today, also potent anti-cancer activity is proven and accompanied by low toxicity towards normal human cells. The molecular basis underlying this target selectivity remains rather elusive. Nevertheless, it is presumptive that preferential peptide interactions with surface factors non-abundant on healthy human cells play a key role. Here, we investigated the cytotoxicity of peptide NK-2 and structurally improved anti-cancer variants thereof against two patient-derived colorectal cancer cell lines, exposing high and low levels of phosphatidylserine on their cell surfaces, respectively. Concluding from a range of in vitro tests involving cellular as well as lipid vesicle-based methods, it is proposed that the magnitude of the accessible membrane surface charge is not a primarily decisive factor for selective peptide interactions. Instead, it is suggested that the level of membrane surface-exposed phosphatidylserine is of crucial importance for the activity of peptide NK-2 and enhanced variants thereof in terms of their cancer cell selectivity, the overall efficacy, as well as the underlying mode of action and kinetics. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Dominik Wilms
- Faculty of Life Sciences, Department of Biotechnology, Hamburg University of Applied Sciences, Ulmenliet 20, D-21033, Hamburg, Germany
| | - Jörg Andrä
- Faculty of Life Sciences, Department of Biotechnology, Hamburg University of Applied Sciences, Ulmenliet 20, D-21033, Hamburg, Germany
| |
Collapse
|
16
|
Mechanistic insight into the procoagulant activity of tumor-derived apoptotic vesicles. Biochim Biophys Acta Gen Subj 2016; 1861:286-295. [PMID: 27864149 DOI: 10.1016/j.bbagen.2016.11.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 11/09/2016] [Accepted: 11/14/2016] [Indexed: 01/20/2023]
Abstract
BACKGROUND Chemotherapy induces the release of apoptotic vesicles (ApoV) from the tumor plasma membrane. Tumor ApoV may enhance the risk of thrombotic events in cancer patients undergoing chemotherapy. However, the relative contribution of ApoV to coagulation and the pathways involved remain poorly characterized. In addition, this study sets out to compare the procoagulant activity of chemotherapy-induced ApoV with their cell of origin and to determine the mechanisms of ApoV-induced coagulation. METHODS We utilized human and murine cancer cell lines and chemotherapeutic agents to determine the requirement for the coagulation factors (tissue factor; TF, FII, FV, FVII, FVIII, FIX and phosphatidylserine) in the procoagulant activity of ApoV. The role of previously identified ApoV-associated FV was determined in a FV functional assay. RESULTS ApoV were significantly more procoagulant per microgram of protein compared to parental living or dying tumor cells. In the phase to peak fibrin generation, procoagulant activity was dependent on phosphatidylserine, TF expression, FVII and the prothrombinase complex. However, the intrinsic coagulation factors FIX and FVIII were dispensable. ApoV-associated FV could not support coagulation in the absence of supplied, exogenous FV. CONCLUSIONS ApoV are significantly more procoagulant than their parental tumor cells. ApoV require the extrinsic tenase and prothrombinase complex to activate the early phase of coagulation. Endogenous FV identified on tumor ApoV is serum-derived and functional, but is non-essential for ApoV-mediated fibrin generation. GENERAL SIGNIFICANCE This study clarifies the mechanisms of procoagulant activity of vesicles released from dying tumor cells.
Collapse
|
17
|
Monteiro RQ, Lima LG, Gonçalves NP, DE Souza MRA, Leal AC, Demasi MAA, Sogayar MC, Carneiro-Lobo TC. Hypoxia regulates the expression of tissue factor pathway signaling elements in a rat glioma model. Oncol Lett 2016; 12:315-322. [PMID: 27347144 DOI: 10.3892/ol.2016.4593] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 04/22/2016] [Indexed: 11/06/2022] Open
Abstract
Hypoxia and necrosis are fundamental features of glioma, and their emergence is critical for the rapid biological progression of this fatal tumor. The presence of vaso-occlusive thrombus is higher in grade IV tumors [glioblastoma multiforme (GBM)] compared with lower grade tumors, suggesting that the procoagulant properties of the tumor contribute to its aggressive behavior, as well as the establishment of tumor hypoxia and necrosis. Tissue factor (TF), the primary cellular initiator of coagulation, is overexpressed in GBMs and likely favors a thrombotic microenvironment. Phosphatase and tensin homolog (PTEN) loss and hypoxia are two common alterations observed in glioma that may be responsible for TF upregulation. In the present study, ST1 and P7 rat glioma lines, with different levels of aggressiveness, were comparatively analyzed with the aim of identifying differences in procoagulant mechanisms. The results indicated that P7 cells display potent procoagulant activity compared with ST1 cells. Flow cytometric analysis showed less pronounced levels of TF in ST1 cells compared with P7 cells. Notably, P7 cells supported factor X (FX) activation via factor VIIa, whereas no significant FXa generation was observed in ST1 cells. Furthermore, the exposure of phosphatidylserine on the surface of P7 and ST1 cells was investigated. The results supported the assembly of prothrombinase complexes, accounting for the production of thrombin. Furthermore, reverse transcription-quantitative polymerase chain reaction showed that CoCl2 (known to induce a hypoxic-like stress) led to an upregulation of TF levels in P7 and ST1 cells. Therefore, increased TF expression in P7 cells was accompanied by increased TF procoagulant activity. In addition, hypoxia increased the shedding of procoagulant TF-bearing microvesicles in both cell lines. Finally, hypoxic stress induced by treatment with CoCl2 upregulated the expression of the PAR1 receptor in both P7 and ST1 cells. In addition to PAR1, P7, but not ST1 cells, expressed higher levels of PAR2 under hypoxic stress. Thus, modulating these molecular interactions may provide additional insights for the development of more efficient therapeutic strategies against aggressive glioma.
Collapse
Affiliation(s)
- Robson Q Monteiro
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - Luize G Lima
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil; Bone Marrow Transplantation Center, National Institute of Cancer, Rio de Janeiro, RJ 20230-130, Brazil
| | - Nathália P Gonçalves
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - Mayara R Arruda DE Souza
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - Ana C Leal
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - Marcos A Almeida Demasi
- Cell and Molecular Therapy Center (NUCEL-NETCEM), Internal Medicine Department, School of Medicine, University of São Paulo, São Paulo, SP 05360-120, Brazil
| | - Mari C Sogayar
- Cell and Molecular Therapy Center (NUCEL-NETCEM), Internal Medicine Department, School of Medicine, University of São Paulo, São Paulo, SP 05360-120, Brazil
| | - Tatiana C Carneiro-Lobo
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| |
Collapse
|
18
|
Alves ID, Carré M, Lavielle S. A Pathway Toward Tumor Cell-Selective CPPs? Methods Mol Biol 2016. [PMID: 26202276 DOI: 10.1007/978-1-4939-2806-4_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Despite the great potential of CPPs in therapeutics and diagnosis, their application still suffers from a non-negligible drawback: a complete lack of cell-type specificity. In the innumerous routes proposed for CPP cell entry there is common agreement that electrostatic interactions between cationic CPPs and anionic components in membranes, including lipids and glycosaminoglycans, play a crucial role. Tumor cells have been shown to overexpress certain glycosaminoglycans at the cell membrane surface and to possess a higher amount of anionic lipids in their outer leaflet when compared with healthy cells. Such molecules confer tumor cell membranes an enhanced anionic character, a property that could be exploited by CPPs to preferentially target these cells. Herein, these aspects are discussed in an attempt to confer CPPs certain selectivity toward cancer cells.
Collapse
Affiliation(s)
- Isabel D Alves
- Institute of Chemistry & Biology of Membranes & Nanoobjects (UMR5248 CBMN), CNRS, Institut Polytechnique Bordeaux, Universite Bordeaux, All. Geoffroy Saint-Hilaire, 33600, Pessac, France,
| | | | | |
Collapse
|
19
|
Kirstein JM, Hague MN, McGowan PM, Tuck AB, Chambers AF. Primary melanoma tumor inhibits metastasis through alterations in systemic hemostasis. J Mol Med (Berl) 2016; 94:899-910. [PMID: 27048169 DOI: 10.1007/s00109-016-1415-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/21/2016] [Accepted: 03/24/2016] [Indexed: 02/07/2023]
Abstract
Progression from a primary tumor to distant metastases requires extensive interactions between tumor cells and their microenvironment. The primary tumor is not only the source of metastatic cells but also can also modulate host responses to these cells, leading to an enhancement or inhibition of metastasis. Tumor-mediated stimulation of bone marrow can result in pre-metastatic niche formation and increased metastasis. However, a primary tumor can also inhibit metastasis through concomitant tumor resistance-inhibition of metastatic growth by existing tumor mass. Here, we report that the presence of a B16F10 primary tumor significantly restricted numbers and sizes of experimental lung metastases through reduction of circulating platelets and reduced formation of metastatic tumor cell-associated thrombi. Tumor-bearing mice displayed splenomegaly, correlated with primary tumor size and platelet count. Reduction in platelet numbers in tumor-bearing animals was responsible for metastatic inhibition, as restoration of platelet numbers using isolated platelets re-established both tumor cell-associated thrombus formation and experimental metastasis. Consumption of platelets due to a B16F10 primary tumor is a form of concomitant tumor resistance and demonstrates the systemic impact of a growing tumor. Understanding the interplay between primary tumors and metastases is essential, as clarification of concomitant tumor resistance mechanisms may allow inhibition of metastatic growth following tumor resection. Key messages Mice with a primary B16F10 tumor had reduced metastasis vs. mice without a primary tumor. Tumor-bearing mice had splenomegaly and fewer platelets and tumor-associated thrombi. Restoring platelets restored tumor-associated thrombi and increased metastasis. This work shows the impact that a primary tumor can have on systemic metastasis. Understanding these interactions may lead to improved ways to inhibit metastasis.
Collapse
Affiliation(s)
- Jennifer M Kirstein
- London Regional Cancer Program, London Health Sciences Centre, 790 Commissioners Road East, London, ON, N6A 4L6, Canada.,Department of Medical Biophysics, University of Western Ontario, London, ON, Canada
| | - M Nicole Hague
- London Regional Cancer Program, London Health Sciences Centre, 790 Commissioners Road East, London, ON, N6A 4L6, Canada
| | - Patricia M McGowan
- London Regional Cancer Program, London Health Sciences Centre, 790 Commissioners Road East, London, ON, N6A 4L6, Canada
| | - Alan B Tuck
- London Regional Cancer Program, London Health Sciences Centre, 790 Commissioners Road East, London, ON, N6A 4L6, Canada.,Department of Pathology and Laboratory Medicine, University of Western Ontario, London, ON, Canada.,Department of Oncology, University of Western Ontario, London, ON, Canada
| | - Ann F Chambers
- London Regional Cancer Program, London Health Sciences Centre, 790 Commissioners Road East, London, ON, N6A 4L6, Canada. .,Department of Medical Biophysics, University of Western Ontario, London, ON, Canada. .,Department of Pathology and Laboratory Medicine, University of Western Ontario, London, ON, Canada. .,Department of Oncology, University of Western Ontario, London, ON, Canada.
| |
Collapse
|
20
|
Riedl S, Leber R, Rinner B, Schaider H, Lohner K, Zweytick D. Human lactoferricin derived di-peptides deploying loop structures induce apoptosis specifically in cancer cells through targeting membranous phosphatidylserine. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:2918-31. [DOI: 10.1016/j.bbamem.2015.07.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 07/10/2015] [Accepted: 07/30/2015] [Indexed: 12/22/2022]
|
21
|
The phospholipid code: a key component of dying cell recognition, tumor progression and host-microbe interactions. Cell Death Differ 2015; 22:1893-905. [PMID: 26450453 DOI: 10.1038/cdd.2015.122] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 08/05/2015] [Accepted: 08/06/2015] [Indexed: 02/06/2023] Open
Abstract
A significant effort is made by the cell to maintain certain phospholipids at specific sites. It is well described that proteins involved in intracellular signaling can be targeted to the plasma membrane and organelles through phospholipid-binding domains. Thus, the accumulation of a specific combination of phospholipids, denoted here as the 'phospholipid code', is key in initiating cellular processes. Interestingly, a variety of extracellular proteins and pathogen-derived proteins can also recognize or modify phospholipids to facilitate the recognition of dying cells, tumorigenesis and host-microbe interactions. In this article, we discuss the importance of the phospholipid code in a range of physiological and pathological processes.
Collapse
|
22
|
Zenarruzabeitia O, Vitallé J, Eguizabal C, Simhadri VR, Borrego F. The Biology and Disease Relevance of CD300a, an Inhibitory Receptor for Phosphatidylserine and Phosphatidylethanolamine. THE JOURNAL OF IMMUNOLOGY 2015; 194:5053-60. [PMID: 25980030 DOI: 10.4049/jimmunol.1500304] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The CD300a inhibitory receptor belongs to the CD300 family of cell surface molecules that regulate a diverse array of immune cell processes. The inhibitory signal of CD300a depends on the phosphorylation of tyrosine residues embedded in ITIMs of the cytoplasmic tail. CD300a is broadly expressed on myeloid and lymphoid cells, and its expression is differentially regulated depending on the cell type. The finding that CD300a recognizes phosphatidylserine and phosphatidylethanolamine, two aminophospholipids exposed on the outer leaflet of dead and activated cells, has shed new light on its role in the modulation of immune functions and in its participation in the host response to several diseases states, such as infectious diseases, cancer, allergy, and chronic inflammatory diseases. This review summarizes the literature on CD300a expression, regulation, signaling pathways, and ligand interaction, as well as its role in fine tuning immune cell functions and its clinical relevance.
Collapse
Affiliation(s)
| | - Joana Vitallé
- Immunopathology Group, BioCruces Health Research Institute, Barakaldo 48903, Spain
| | - Cristina Eguizabal
- Cell Therapy and Stem Cell Group, Basque Center for Transfusion and Human Tissues, Galdakao 48960, Spain
| | - Venkateswara R Simhadri
- Division of Biotechnology Review and Research-I, Office of Biotechnology Products Review and Research, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993; and
| | - Francisco Borrego
- Immunopathology Group, BioCruces Health Research Institute, Barakaldo 48903, Spain; Ikerbasque, Basque Foundation for Science 48903, Bilbao, Spain
| |
Collapse
|
23
|
Blanco VM, Curry R, Qi X. SapC-DOPS nanovesicles: a novel targeted agent for the imaging and treatment of glioblastoma. Oncoscience 2015; 2:102-110. [PMID: 25859553 PMCID: PMC4381703 DOI: 10.18632/oncoscience.122] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 02/06/2015] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most common malignant primary brain tumor. Classified by the World Health Organization (WHO) as grade IV astrocytoma, GBMs are extremely aggressive, almost always recur, and despite our best efforts, remain incurable. This review describes the traditional treatment approaches that led to moderate successes in GBM patients, discusses standard imaging modalities, and presents data supporting the use of SapC-DOPS, a novel proteoliposomal formulation with tumoricidal activity, as a promising diagnostic imaging tool and an innovative anti-cancer agent against GBM.
Collapse
Affiliation(s)
- Víctor M. Blanco
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Richard Curry
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Xiaoyang Qi
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Division of Human Genetics, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
24
|
Rochael NC, Lima LG, Oliveira SMPD, Barcinski MA, Saraiva EM, Monteiro RQ, Pinto-da-Silva LH. Leishmania amazonensis exhibits phosphatidylserine-dependent procoagulant activity, a process that is counteracted by sandfly saliva. Mem Inst Oswaldo Cruz 2014; 108:679-85. [PMID: 24037188 PMCID: PMC3970692 DOI: 10.1590/0074-0276108062013002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 07/02/2013] [Indexed: 12/19/2022] Open
Abstract
Leishmania parasites expose phosphatidylserine (PS) on their
surface, a process that has been associated with regulation of host's immune
responses. In this study we demonstrate that PS exposure by metacyclic
promastigotes of Leishmania amazonensis favours blood
coagulation. L. amazonensis accelerates in vitro coagulation of
human plasma. In addition, L. amazonensis supports the assembly
of the prothrombinase complex, thus promoting thrombin formation. This process
was reversed by annexin V which blocks PS binding sites. During blood meal,
Lutzomyia longipalpis sandfly inject saliva in the bite
site, which has a series of pharmacologically active compounds that inhibit
blood coagulation. Since saliva and parasites are co-injected in the host during
natural transmission, we evaluated the anticoagulant properties of sandfly
saliva in counteracting the procoagulant activity of L.
amazonensis . Lu. longipalpis saliva reverses
plasma clotting promoted by promastigotes. It also inhibits thrombin formation
by the prothrombinase complex assembled either in phosphatidylcholine (PC)/PS
vesicles or in L. amazonensis . Sandfly saliva inhibits factor
X activation by the intrinsic tenase complex assembled on PC/PS vesicles and
blocks factor Xa catalytic activity. Altogether our results show that metacyclic
promastigotes of L. amazonensis are procoagulant due to PS
exposure. Notably, this effect is efficiently counteracted by sandfly
saliva.
Collapse
Affiliation(s)
- Natalia Cadaxo Rochael
- Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de JaneiroRJ, Brasil
| | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Malignant melanoma cells are known to have altered expressions of growth factors as compared with normal melanocytes. Thrombomodulin (TM) is a thrombin receptor on endothelial cells that converts thrombin from a procoagulant to an anticoagulant enzyme. TM expression is downregulated in tumor cells, and this phenomenon correlates with tumor cell invasiveness and a poor prognosis in patients with cancer. In this study, we evaluated TM expression in two human melanoma cell lines that are known to have either low (WM35) or high (A375) aggressive phenotypes. Analysis by quantitative real-time PCR (qPCR) showed that the mRNA expression of TM is modestly (WM35) or dramatically (A375) downregulated in melanoma cells, as compared with human primary melanocytes. TM expression levels inversely correlated with in-vitro migration properties of tumor cells. In addition, interleukin-8 expression also correlated with the degree of aggressiveness, as indicated by high expression levels of this cytokine in A375 cells. Overexpression of TM in A375 cells by transient transfection reversed their aggressive phenotype and dramatically decreased interleukin-8 expression by these cells. Taken together, these results suggest that downregulation of TM plays a crucial role in melanocyte transformation and melanoma progression.
Collapse
|
26
|
Fatal paraneoplastic embolisms in both circulations in a patient with poorly differentiated neuroendocrine tumour. Case Rep Vasc Med 2014; 2013:739427. [PMID: 24490097 PMCID: PMC3893835 DOI: 10.1155/2013/739427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 10/19/2013] [Indexed: 11/17/2022] Open
Abstract
Arterial embolism with lower limb ischemia is a rare manifestation of paraneoplastic hypercoagulability in cancer patients. We report a unique case of fatal thromboembolism involving both circulations associated with a poorly differentiated neuroendocrine tumor of the lung with rapid progress despite high doses of unfractioned heparin and review the current literature on anticoagulative regimen in tumour patients.
Collapse
|
27
|
Carneiro-Lobo TC, Lima MT, Mariano-Oliveira A, Dutra-Oliveira A, Oba-Shinjo SM, Marie SKN, Sogayar MC, Monteiro RQ. Expression of tissue factor signaling pathway elements correlates with the production of vascular endothelial growth factor and interleukin-8 in human astrocytoma patients. Oncol Rep 2013; 31:679-86. [PMID: 24297570 DOI: 10.3892/or.2013.2880] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 10/14/2013] [Indexed: 11/06/2022] Open
Abstract
The expression levels of tissue factor (TF), the clotting initiator protein, have been correlated with angiogenesis and the histological grade of malignancy in glioma patients. The pro-tumor function of TF is linked to a family of G protein-coupled receptors known as protease-activated receptors (PARs), which may be activated by blood coagulation proteases. Activation of PARs elicits a number of responses, including the expression of vascular endothelial growth factor (VEGF) and interleukin-8 (IL-8). In the present study, we analyzed the expression of TF signaling pathway elements (TF, PAR1 and PAR2) and evaluated their correlation with the expression of downstream products (VEGF and IL-8) in human astrocytoma patients. Quantitative PCR (qPCR) showed a significant increase in TF expression in grade IV (glioblastoma) tumors, which was inversely correlated with the expression of the tumor-suppressor PTEN. Immunohistochemistry and qPCR analyses demonstrated a highly significant elevation in the expression of PAR1, but not PAR2, in tumor samples from high-grade astrocytoma patients. The elevated VEGF expression levels detected in the high-grade astrocytoma samples were positively correlated with TF, PAR1 and PAR2 expression. In addition, IL-8 was significantly increased in glioblastoma patients and positively correlated with TF and PAR2 expression. Further in vitro assays employing the human glioma cell lines U87-MG and HOG demonstrated that a synthetic peptide PAR2 agonist stimulated VEGF and IL-8 production. Our findings suggest a role for TF signaling pathway elements in astrocytoma progression, particularly in glioblastoma. Therefore, TF/PAR signaling elements may be suitable targets for the development of new therapies for the treatment of aggressive glioma.
Collapse
Affiliation(s)
| | - Marina T Lima
- Biochemistry Department, Chemistry Institute, Cell and Molecular Therapy Center (NUCEL), University of São Paulo, SP, Brazil
| | | | | | - Sueli M Oba-Shinjo
- Department of Neurology, School of Medicine, University of São Paulo, SP, Brazil
| | - Suely K N Marie
- Department of Neurology, School of Medicine, University of São Paulo, SP, Brazil
| | - Mari C Sogayar
- Biochemistry Department, Chemistry Institute, Cell and Molecular Therapy Center (NUCEL), University of São Paulo, SP, Brazil
| | - Robson Q Monteiro
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, RJ, Brazil
| |
Collapse
|
28
|
Abstract
Several studies have suggested a role for blood coagulation proteins in tumour progression. Herein, we discuss (1) the activation of the blood clotting cascade in the tumour microenvironment and its impact on primary tumour growth; (2) the intravascular activation of blood coagulation and its impact on tumour metastasis and cancer-associated thrombosis; and (3) antitumour therapies that target blood-coagulation-associated proteins. Expression levels of the clotting initiator protein TF (tissue factor) have been correlated with tumour cell aggressiveness. Simultaneous TF expression and PS (phosphatidylserine) exposure by tumour cells promote the extravascular activation of blood coagulation. The generation of blood coagulation enzymes in the tumour microenvironment may trigger the activation of PARs (protease-activated receptors). In particular, PAR1 and PAR2 have been associated with many aspects of tumour biology. The procoagulant activity of circulating tumour cells favours metastasis, whereas the release of TF-bearing MVs (microvesicles) into the circulation has been correlated with cancer-associated thrombosis. Given the role of coagulation proteins in tumour progression, it has been proposed that they could be targets for the development of new antitumour therapies.
Collapse
|
29
|
Lankry D, Rovis TL, Jonjic S, Mandelboim O. The interaction between CD300a and phosphatidylserine inhibits tumor cell killing by NK cells. Eur J Immunol 2013; 43:2151-61. [PMID: 23640773 DOI: 10.1002/eji.201343433] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 03/24/2013] [Accepted: 04/29/2013] [Indexed: 01/01/2023]
Abstract
The activity of NK cells is controlled by inhibitory and activating receptors. The inhibitory receptors interact mostly with MHC class I proteins, however, inhibitory receptors such as CD300a, which bind to non-MHC class I ligands, also exist. Recently, it was discovered that phosphatidylserine (PS) is a ligand for CD300a and that the interaction between PS expressed on apoptotic cells and CD300a inhibits the uptake of apoptotic cells by phagocytic cells. Whether PS can inhibit NK-cell activity through CD300a is unknown. Here, we have generated specific antibodies directed against CD300a and we used these mAbs to demonstrate that various NK-cell clones express different levels of CD300a. We further demonstrated that both CD300a and its highly homologous molecule CD300c bind to the tumor cells equally well and that they recognize PS and additional unknown ligand(s) expressed by tumor cells. Finally, we showed that blocking the PS-CD300a interaction resulted in increased NK-cell killing of tumor cells. Collectively, we demonstrate a new tumor immune evasion mechanism that is mediated through the interaction between PS and CD300a and we suggest that CD300c, similarly to CD300a, also interacts with PS.
Collapse
Affiliation(s)
- Dikla Lankry
- The Lautenberg Center for General and Tumor Immunology, The BioMedical Research Institute, Hadassah Medical School, The Hebrew University, Jerusalem, Israel
| | | | | | | |
Collapse
|
30
|
Tas F, Ciftci R, Kilic L, Bilgin E, Keskin S, Sen F, Yildiz I, Yasasever V. Clinical and prognostic significance of coagulation assays in melanoma. Melanoma Res 2013; 22:368-75. [PMID: 22889867 DOI: 10.1097/cmr.0b013e328357be7c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The activation of coagulation and fibrinolysis is frequently found among cancer patients. Such tumors are considered to be associated with a higher risk of invasion, metastases, and eventually worse outcome. The aim of this study is to explore the clinical and prognostic value of blood coagulation tests for melanoma patients. Pretreatment blood coagulation tests including prothrombin time (PT), activated partial thromboplastin time (APTT), prothrombin activity (PTA), international normalized ratio (INR), D-dimer (DD), fibrinogen (F) levels, and platelet (PLT) counts were carried out. This prospective study included 61 melanoma patients [stage I-II (n=10), stage III (n=14), stage IV (n=37), M1c (n=26) disease], and 50 healthy controls. It included 34 (56%) men, median age 53 years, range 16-88 years. Over half of the patients (54%) were in the metastatic stage and most of them (70%) had M1c. The plasma level of pretreatment blood coagulation tests including DD, F, APTT, INR levels, and PLT counts showed a statistically significant difference between the patient and the control group (P<0.001 for all, but P=0.049 for INR). The levels of INR, DD, F, and PLT counts were higher and APTT was lower in the melanoma group, whereas the PT and PTA levels did not show any significant difference. There was a significant association between PT, PTA, INR, and PLT levels and the age of the patient. Patients with node metastasis in M0 disease had higher levels of PTA and PLT counts (P=0.002 and 0.048, respectively) and lower levels of PT and INR (P=0.056 and 0.046, respectively). The M1c patients tended to have higher plasma F levels (437 vs. 297 mg/dl, P=0.055) than M1a and M1b patients. The 1-year survival rate for all patients was 70%. In association with distant metastasis, advanced metastatic stage (M1c), elevated lactate dehydrogenase, and erythrocyte sedimentation rate, only elevated plasma F levels had a significantly adverse effect on survival among the coagulation parameters (P=0.031). The 1-year survival rates for patients with high and normal F levels were 58 and 88%, respectively. In conclusion, changes in the coagulation-fibrinolytic system are often present in melanoma and elevation in the plasma F level is associated with decreased survival.
Collapse
Affiliation(s)
- Faruk Tas
- Institute of Oncology, University of Istanbul, Istanbul, Turkey.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
de Oliveira ADS, Lima LG, Mariano-Oliveira A, Machado DE, Nasciutti LE, Andersen JF, Petersen LC, Francischetti IMB, Monteiro RQ. Inhibition of tissue factor by ixolaris reduces primary tumor growth and experimental metastasis in a murine model of melanoma. Thromb Res 2012; 130:e163-70. [PMID: 22683021 PMCID: PMC3424357 DOI: 10.1016/j.thromres.2012.05.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 05/05/2012] [Accepted: 05/22/2012] [Indexed: 02/08/2023]
Abstract
Melanoma is a highly metastatic cancer and there is strong evidence that the clotting initiator protein, tissue factor (TF), contributes to its aggressive pattern. TF inhibitors may attenuate primary tumor growth and metastasis. In this study, we evaluated the effect of ixolaris, a TF inhibitor, on a murine model of melanoma B16F10 cells. Enzymatic assays performed with B16F10 and human U87-MG tumor cells as the TF source showed that ixolaris inhibits the generation of FX in either murine, human or hybrid FVIIa/TF complexes. The effect of ixolaris on the metastatic potential was further estimated by intravenous injection of B16F10 cells in C57BL/6 mice. Ixolaris (250 μg/kg) dramatically decreased the number of pulmonary tumor nodules (4 ± 1 compared to 47 ± 10 in the control group). Furthermore, a significant decrease in tumor weights was observed in primary tumor growth assays in animals treated with ixolaris (250 μg/kg) from days 3 to 18 after a subcutaneous inoculation of melanoma cells. Remarkably, immunohistochemical analyses showed that inhibition of melanoma growth by ixolaris is accompanied by a significant downregulation of both vascular endothelial growth factor (VEGF) expression and microvascular density in the tumor mass. Our data demonstrate that ixolaris targets B16F10 cell-derived TF, resulting in the reduction of both the primary tumor growth and the metastatic potential of melanoma, as well as the inhibition of tumor angiogenesis. Therefore TF may be a potential target for the treatment of this aggressive malignancy.
Collapse
Affiliation(s)
| | - Luize G Lima
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Andréa Mariano-Oliveira
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Daniel E Machado
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luiz E Nasciutti
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - John F Andersen
- Vector Biology Section, National Institutes of Health, Bethesda, MD, USA
| | - Lars C Petersen
- Biopharmaceutical Research Unit, Novo Nordisk, Maalov, Denmark
| | | | - Robson Q Monteiro
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
32
|
|
33
|
Marchetti M, Diani E, ten Cate H, Falanga A. Characterization of the thrombin generation potential of leukemic and solid tumor cells by calibrated automated thrombography. Haematologica 2012; 97:1173-80. [PMID: 22419573 DOI: 10.3324/haematol.2011.055343] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Thrombin, the final enzyme of blood coagulation, is a multifunctional serine protease also involved in the progression of cancer. Tumor cells may activate blood coagulation proteases through the expression of procoagulant activities. However, specific information about the thrombin generation potential of malignant tissues is lacking. In this study we applied a single global coagulation test, the calibrated automated thrombogram assay, to characterize the specific procoagulant phenotypes of different tumor cells. DESIGN AND METHODS Malignant hematologic cells (i.e. NB4, HEL, and K562) or solid tumor cells (i.e. MCF-7 breast cancer and H69 small cell lung cells) were selected for the study. The calibrated automated thrombo-gram assay was performed in normal plasma and in plasma samples selectively deficient in factor VII, XII, IX or X, in the absence or presence of a specific anti-tissue factor antibody. Furthermore, cell tissue factor levels were characterized by measuring antigen, activity and mRNA expression. RESULTS In normal plasma, NB4 induced the highest thrombin generation, followed by MCF-7, H69, HEL, and K562 cells. The anti-tissue factor antibody, as well as deficiencies of factors VII, IX and XII affected the thrombin generation potential of malignant cells to different degrees, allowing differentiation of the two different pathways of blood clotting activation - by tissue factor or contact activation. The thrombin generation capacity of NB4 and MCF-7 cells was tissue factor-dependent, as it was highly sensitive to inhibition by anti-tissue factor antibody and factor VII deficiency, while the thrombin generation capacity of H69, HEL and K562 was contact activation-dependent, as no thrombin was generated by these cells in factor XII-deficient plasma. CONCLUSIONS This study demonstrates that the calibrated automated thrombogram assay is capable of quantifying, characterizing, and comparing the thrombin generation capacity of different tumor cells. This provides a useful tool for understanding the key factors determining the global pro-coagulant profile of tumors, which is important for addressing specific targeted therapy for the prevention of thrombosis and for cancer.
Collapse
Affiliation(s)
- Marina Marchetti
- Division of Immunohematology and Transfusion Medicine, Ospedali Riuniti di Bergamo, Bergamo, Italy
| | | | | | | |
Collapse
|
34
|
Chu AJ. Tissue factor, blood coagulation, and beyond: an overview. Int J Inflam 2011; 2011:367284. [PMID: 21941675 PMCID: PMC3176495 DOI: 10.4061/2011/367284] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 06/16/2011] [Accepted: 06/18/2011] [Indexed: 12/18/2022] Open
Abstract
Emerging evidence shows a broad spectrum of biological functions of tissue factor (TF). TF classical role in initiating the extrinsic blood coagulation and its direct thrombotic action in close relation to cardiovascular risks have long been established. TF overexpression/hypercoagulability often observed in many clinical conditions certainly expands its role in proinflammation, diabetes, obesity, cardiovascular diseases, angiogenesis, tumor metastasis, wound repairs, embryonic development, cell adhesion/migration, innate immunity, infection, pregnancy loss, and many others. This paper broadly covers seminal observations to discuss TF pathogenic roles in relation to diverse disease development or manifestation. Biochemically, extracellular TF signaling interfaced through protease-activated receptors (PARs) elicits cellular activation and inflammatory responses. TF diverse biological roles are associated with either coagulation-dependent or noncoagulation-mediated actions. Apparently, TF hypercoagulability refuels a coagulation-inflammation-thrombosis circuit in “autocrine” or “paracrine” fashions, which triggers a wide spectrum of pathophysiology. Accordingly, TF suppression, anticoagulation, PAR blockade, or general anti-inflammation offers an array of therapeutical benefits for easing diverse pathological conditions.
Collapse
Affiliation(s)
- Arthur J Chu
- Division of Biological and Physical Sciences, Delta State University, Cleveland, MS 38733, USA
| |
Collapse
|
35
|
Riedl S, Zweytick D, Lohner K. Membrane-active host defense peptides--challenges and perspectives for the development of novel anticancer drugs. Chem Phys Lipids 2011; 164:766-81. [PMID: 21945565 PMCID: PMC3220766 DOI: 10.1016/j.chemphyslip.2011.09.004] [Citation(s) in RCA: 303] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 09/07/2011] [Accepted: 09/08/2011] [Indexed: 12/22/2022]
Abstract
Although much progress has been achieved in the development of cancer therapies in recent decades, problems continue to arise particularly with respect to chemotherapy due to resistance to and low specificity of currently available drugs. Host defense peptides as effector molecules of innate immunity represent a novel strategy for the development of alternative anticancer drug molecules. These cationic amphipathic peptides are able to discriminate between neoplastic and non-neoplastic cells interacting specifically with negatively charged membrane components such as phosphatidylserine (PS), sialic acid or heparan sulfate, which differ between cancer and non-cancer cells. Furthermore, an increased number of microvilli has been found on cancer cells leading to an increase in cell surface area, which may in turn enhance their susceptibility to anticancer peptides. Thus, part of this review will be devoted to the differences in membrane composition of non-cancer and cancer cells with a focus on the exposure of PS on the outer membrane. Normally, surface exposed PS triggers apoptosis, which can however be circumvented by cancer cells by various means. Host defense peptides, which selectively target differences between cancer and non-cancer cell membranes, have excellent tumor tissue penetration and can thus reach the site of both primary tumor and distant metastasis. Since these molecules kill their target cells rapidly and mainly by perturbing the integrity of the plasma membrane, resistance is less likely to occur. Hence, a chapter will also describe studies related to the molecular mechanisms of membrane damage as well as alternative non-membrane related mechanisms. In vivo studies have demonstrated that host defense peptides display anticancer activity against a number of cancers such as e.g. leukemia, prostate, ascite and ovarian tumors, yet so far none of these peptides has made it on the market. Nevertheless, optimization of host defense peptides using various strategies to enhance further selectivity and serum stability is expected to yield novel anticancer drugs with improved properties in respect of cancer cell toxicity as well as reduced development of drug resistance.
Collapse
Affiliation(s)
- Sabrina Riedl
- Institute of Biophysics and Nanosystems Research, Austrian Academy of Sciences, Schmiedlstrasse 6, Graz, Austria
| | | | | |
Collapse
|
36
|
Gerotziafas GT, Galea V, Mbemba E, Khaterchi A, Sassi M, Baccouche H, Prengel C, van Dreden P, Hatmi M, Bernaudin JF, Elalamy I. Tissue factor over-expression by human pancreatic cancer cells BXPC3 is related to higher prothrombotic potential as compared to breast cancer cells MCF7. Thromb Res 2011; 129:779-86. [PMID: 21917301 DOI: 10.1016/j.thromres.2011.07.049] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 06/27/2011] [Accepted: 07/29/2011] [Indexed: 12/21/2022]
Abstract
Cancer histology influences the risk of venous thromboembolism and tissue factor (TF) is the key molecule in cancer-induced hypercoagulability. We investigated the relation between TF expression by pancreatic and breast cancer cells (BXPC3 and MCF7 respectively) and their capacity to trigger in vitro thrombin generation in normal human plasma. Flow cytometry and Western blot analysis for TF expression were performed using murine IgG1 monoclonal antibody against human TF. Real-time PCR for TFmRNA was also performed. Activity of TF expressed by cancer cells was measured with a specific chromogenic assay. Thrombin generation in PPP was assessed using calibrated automated thrombogram. Cancer cells were added to platelet poor plasma from healthy volunteers. In separate experiments cells were incubated with the anti-TF antibody at concentration that completely neutralized the activity of recombinant human TF on thrombin generation. BXPC3 cells expressed significantly higher amounts of functional TF as compared to MCF7 cells. Incubation of BXPC3 and MCF7 cells with PPP resulted in acceleration of the initiation phase of thrombin generation. BXPC3 cells manifested higher procoagulant potential than MCF7 cells. The incubation of BXPC3 or MCF7 cells with the anti-TF monoclonal antibody which resulted in reversal of their effect on thrombin generation. The present study establishes a link between the amount of TF expressed by cancer cells with their procoagulant activity. Both studied types of cancer cells trigger thrombin generation but they have different procoagulant potential. The procoagulant activity of BXPC3 and MCF7 cells is related to the amount of TF expressed. Kinetic parameters of thrombogram are the most relevant for the detection of the TF-dependent procoagulant activity of cancer cells. TF expression is one of the mechanisms by which cancer cells manifest their procoagulant potential but it is not the unique one. The present experimental model will allow the characterization the procoagulant fingerprint of cell lines from the same or different histological types of cancer.
Collapse
Affiliation(s)
- Grigoris T Gerotziafas
- ER2UPMC, Faculté de Médecine Pierre et Marie Curie, Université Paris VI, Hôpital Universitaire Tenon, Paris, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Ribeiro JMC, Valenzuela JG, Pham VM, Kleeman L, Barbian KD, Favreau AJ, Eaton DP, Aoki V, Hans-Filho G, Rivitti EA, Diaz LA. An insight into the sialotranscriptome of Simulium nigrimanum, a black fly associated with fogo selvagem in South America. Am J Trop Med Hyg 2010; 82:1060-75. [PMID: 20519601 DOI: 10.4269/ajtmh.2010.09-0769] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Pemphigus foliaceus is a life threatening skin disease that is associated with autoimmunity to desmoglein, a skin protein involved in the adhesion of keratinocytes. This disease is endemic in certain areas of South America, suggesting the mediation of environmental factors triggering autoimmunity. Among the possible environmental factors, exposure to bites of black flies, in particular Simulium nigrimanum has been suggested. In this work, we describe the sialotranscriptome of adult female S. nigrimanum flies. It reveals the complexity of the salivary potion of this insect, comprised by over 70 distinct genes within over 30 protein families, including several novel families, even when compared with the previously described sialotranscriptome of the autogenous black fly, S. vittatum. The uncovering of this sialotranscriptome provides a platform for testing pemphigus patient sera against recombinant salivary proteins from S. nigrimanum and for the discovery of novel pharmacologically active compounds.
Collapse
Affiliation(s)
- José M C Ribeiro
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Rockville, MA, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
de Meis E, Azambuja D, Ayres-Silva J, Zamboni M, Pinheiro V, Levy R, Monteiro R. Increased expression of tissue factor and protease-activated receptor-1 does not correlate with thrombosis in human lung adenocarcinoma. Braz J Med Biol Res 2010; 43:403-8. [DOI: 10.1590/s0100-879x2010007500017] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Accepted: 03/01/2010] [Indexed: 11/21/2022] Open
Affiliation(s)
- E. de Meis
- Instituto Nacional do Câncer; Instituto Nacional do Câncer
| | | | | | | | | | - R.A. Levy
- Universidade do Estado do Rio de Janeiro, Brazil
| | | |
Collapse
|