1
|
Xiao Q, He S, Wang C, Zhou Y, Zeng C, Liu J, Liu T, Li T, Quan X, Wang L, Zhai L, Liu Y, Li J, Zhang X, Liu Y. Deep Thought on the HIV Cured Cases: Where Have We Been and What Lies Ahead? Biomolecules 2025; 15:378. [PMID: 40149913 PMCID: PMC11940578 DOI: 10.3390/biom15030378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/26/2025] [Accepted: 03/03/2025] [Indexed: 03/29/2025] Open
Abstract
Antiretroviral therapy (ART) can effectively suppress the replication of human immunodeficiency virus (HIV), but it cannot completely eradicate the virus. The persistent existence of the HIV reservoir is a major obstacle in the quest for a cure. To date, there have been a total of seven cured cases of HIV worldwide. These patients all cleared HIV while undergoing allogeneic stem cell transplantation (allo-HSCT) for hematological malignancies. However, in these cases, the specific mechanism by which allo-HSCT leads to the eradication of HIV remains unclear, so it is necessary to conduct an in-depth analysis. Due to the difficulty in obtaining donors and the risks associated with transplantation, this treatment method is not applicable to all HIV patients. There is still a need to explore new treatment strategies. In recent years, emerging therapies such as neutralizing antibody immunotherapy, chimeric antigen receptor T cell (CAR-T) therapy, gene editing, and antiviral therapies targeting the reservoir have attracted wide attention due to their ability to effectively inhibit HIV replication. This article first elaborates on the nature of the HIV reservoir, then deeply explores the treatment modalities and potential success factors of HIV cured cases, and finally discusses the current novel treatment methods, hoping to provide comprehensive and feasible strategies for achieving the cure of HIV.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Xiaomei Zhang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Yao Liu
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing 400030, China
| |
Collapse
|
2
|
Happe M, Lynch RM, Fichtenbaum CJ, Heath SL, Koletar SL, Landovitz RJ, Presti RM, Santana-Bagur JL, Tressler RL, Holman LA, Novik L, Roa JC, Rothwell RS, Strom L, Wang J, Hu Z, Conan-Cibotti M, Bhatnagar AM, Dwyer B, Ko SH, Belinky F, Namboodiri AM, Pandey JP, Carroll R, Basappa M, Serebryannyy L, Narpala SR, Lin BC, McDermott AB, Boritz EA, Capparelli EV, Coates EE, Koup RA, Ledgerwood JE, Mascola JR, Chen GL, Tebas P. Virologic effects of broadly neutralizing antibodies VRC01LS and VRC07-523LS on chronic HIV-1 infection. JCI Insight 2025; 10:e181496. [PMID: 39989458 PMCID: PMC11949028 DOI: 10.1172/jci.insight.181496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 01/13/2025] [Indexed: 02/25/2025] Open
Abstract
BACKGROUNDHIV-1-specific broadly neutralizing monoclonal antibodies (bNAbs) have emerged as promising interventions with the potential to effectively treat and prevent HIV-1 infections. We conducted a phase I clinical trial evaluating the potent CD4-binding site-specific (CD4bs-specific) bNAbs VRC01LS and VRC07-523LS in people with HIV-1 (PWH) not receiving antiretroviral therapy (ART).METHODSParticipants received a single intravenous 40 mg/kg dose of either VRC01LS (n = 7) or VRC07-523LS (n = 9) and did not initiate ART for a minimum of 14 days. The primary study objective was to evaluate safety and tolerability; the secondary study objectives were to evaluate pharmacokinetics (PK) and the impact of administered bNAbs on viral loads (VL) and CD4+ T cell counts in the absence of ART.RESULTSThis trial enrolled 16 PWH aged 20 to 57 years. Both bNAbs were safe and well tolerated. Mild local reactogenicity was only reported in participants who received VRC07-523LS, while both bNAbs were associated with mild systemic symptoms. Maximum serum concentrations (Cmax) following VRC01LS or VRC07-523LS were 1,566 ± 316 and 1,295 ± 376 μg/mL, respectively. VRC07-523LS administration significantly decreased VL in 8 out of 9 participants, with an average decline of 1.7 ± 0.8 log10 copies/mL within 14 days after administration. In contrast, VRC01LS administration resulted in a smaller average decline (0.8 ± 0.8 log10 copies/mL), and 3 out of 7 participants showedno change in VL. Postinfusion maximum decline in VL correlated with post hoc baseline in vitro viral susceptibility results for both bNAbs.CONCLUSIONThe results of this trial support inclusion of potent CD4bs-specific bNAbs, such as VRC07-523LS, into next-generation treatment regimens for HIV-1.TRIAL REGISTRATIONClinicalTrials.gov NCT02840474.FUNDINGNational Institute of Allergy and Infectious Diseases (NIAID)/NIH (grants UM1 AI068634, UM1 AI068636, UM1 AI106701, UM1AI069424, UM1AI069501, UM1AI69415, UM1AI069534, UM1AI69494); the Intramural Research Program of the NIAID/NIH; National Center for Advancing Translational Sciences/NIH (grants UM1TR004548, UL1TR001881, and UL1TR001878); and the National Cancer Institute/NIH (contract 75N91019D00024).
Collapse
Affiliation(s)
- Myra Happe
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Rebecca M. Lynch
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington, DC, USA
| | | | - Sonya L. Heath
- Division of Infectious Diseases, University of Alabama, Birmingham, Alabama, USA
| | - Susan L. Koletar
- Division of Infectious Diseases, The Ohio State University, Columbus, Ohio, USA
| | - Raphael J. Landovitz
- Division of Infectious Diseases, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Rachel M. Presti
- Division of Infectious Diseases, Washington University, St. Louis, Missouri, USA
| | | | - Randall L. Tressler
- Division of AIDS, National Institute of Allergy and Infectious Diseases, Rockville, Maryland, USA
| | - LaSonji A. Holman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Laura Novik
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Jhoanna C. Roa
- AIDS Network Coordinating Center, DLH Corporation, Bethesda, Maryland, USA
| | - Ro Shauna Rothwell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Larisa Strom
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Jing Wang
- Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Zonghui Hu
- Biostatistics Research Branch, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Michelle Conan-Cibotti
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Anjali M. Bhatnagar
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington, DC, USA
| | - Bridget Dwyer
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington, DC, USA
| | - Sung Hee Ko
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Frida Belinky
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Aryan M. Namboodiri
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Janardan P. Pandey
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Robin Carroll
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Manjula Basappa
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Leonid Serebryannyy
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Sandeep R. Narpala
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Bob C. Lin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Adrian B. McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Eli A. Boritz
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Edmund V. Capparelli
- School of Medicine and Skaggs School of Pharmacy and Pharmaceutical Sciences, UCSD, La Jolla, California, USA
| | - Emily E. Coates
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Richard A. Koup
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Julie E. Ledgerwood
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - John R. Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Grace L. Chen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Pablo Tebas
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
3
|
O'Hagan D, Shandilya S, Hopkins LJ, Hahn PA, Fuchs SP, Martinez-Navio JM, Alpert MD, Gardner MR, Desrosiers RC, Gao G, Lifson JD, Farzan M, Ardeshir A, Martins MA. In vivo evolution of env in SHIV-AD8 EO-infected rhesus macaques after AAV-vectored delivery of eCD4-Ig. Mol Ther 2025; 33:560-579. [PMID: 39673132 PMCID: PMC11853013 DOI: 10.1016/j.ymthe.2024.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/28/2024] [Accepted: 12/10/2024] [Indexed: 12/16/2024] Open
Abstract
eCD4-immunoglobulin (Ig) is an HIV entry inhibitor that mimics the engagement of both CD4 and CCR5 with the HIV envelope (Env) protein, a property that imbues it with remarkable potency and breadth. However, env is exceptionally genetically malleable and can evolve to escape a wide variety of entry inhibitors. Here we document the evolution of partial eCD4-Ig resistance in SHIV-AD8EO-infected rhesus macaques (RMs) treated with adeno-associated virus vectors encoding eCD4-Ig. In one RM, setpoint viremia plateaued at 1,000 vRNA copies/mL, despite concomitant serum concentrations of eCD4-Ig in the 60-110 μg/mL range, implying that the virus had gained partial eCD4-Ig resistance. Env mutations occurring prominently in this animal were cloned and further characterized. Three of these mutations (R315G, A436T, and G471E) were sufficient to confer substantial resistance to eCD4-Ig-mediated neutralization onto the parental Env, accompanied by a marked loss of viral fitness. This resistance was not driven by decreased CD4 affinity, subverted sulfopeptide mimicry, changes to co-receptor tropism, or by a gain of CD4 independence. Rather, our data argue that the Env evolving in this animal attained eCD4-Ig resistance by decreasing triggerability, stabilizing the triggered state, and changing the nature of its relationship to the host CD4.
Collapse
Affiliation(s)
- Daniel O'Hagan
- Department of Immunology and Microbiology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL 33458, USA
| | - Siddhartha Shandilya
- Department of Immunology and Microbiology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL 33458, USA
| | - Lincoln J Hopkins
- California National Primate Research Center, University of California, Davis, Davis, CA 95616, USA
| | - Patricia A Hahn
- Department of Immunology and Microbiology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL 33458, USA; The Skaggs Graduate School, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Sebastian P Fuchs
- University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | | | | | - Mathew R Gardner
- Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | | | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory, Frederick, MD 21702, USA
| | - Michael Farzan
- Boston Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Amir Ardeshir
- Tulane National Primate Research Center, Tulane University, Covington, LA 70433, USA
| | - Mauricio A Martins
- Department of Immunology and Microbiology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL 33458, USA.
| |
Collapse
|
4
|
Edupuganti S, Hurt CB, Stephenson KE, Huang Y, Paez CA, Yu C, Yen C, Hanscom B, He Z, Miner MD, Gamble T, Heptinstall J, Seaton KE, Domin E, Lin BC, McKee K, Doria-Rose N, Regenold S, Spiegel H, Anderson M, McClosky N, Zhang L, Piwowar-Manning E, Ackerman ME, Pensiero M, Dye BJ, Landovitz RJ, Mayer K, Siegel M, Sobieszczyk M, Walsh SR, Gama L, Barouch DH, Montefiori DC, Tomaras GD. Safety, tolerability, pharmacokinetics, and neutralisation activities of the anti-HIV-1 monoclonal antibody PGT121.414.LS administered alone and in combination with VRC07-523LS in adults without HIV in the USA (HVTN 136/HPTN 092): a first-in-human, open-label, randomised controlled phase 1 trial. Lancet HIV 2025; 12:e13-e25. [PMID: 39667379 PMCID: PMC11795396 DOI: 10.1016/s2352-3018(24)00247-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 09/06/2024] [Accepted: 09/16/2024] [Indexed: 12/14/2024]
Abstract
BACKGROUND Multiple broadly neutralising monoclonal antibodies (mAbs) are in development for HIV-1 prevention. The aim of this trial was to test the PGT121.414.LS and VRC07-523LS mAbs for safety and pharmacokinetics in adults. METHODS In this first-in-human phase 1 trial (HVTN 136/HPTN 092), adults without HIV were enrolled at six university-affiliated clinical research sites in the USA. Part A evaluated escalating single intravenous doses or subcutaneous infusion of PGT121.414.LS, in four groups: 3 mg/kg intravenous (treatment group 1; n=3), 10 mg/kg intravenous (treatment group 2; n=4), 30 mg/kg intravenous (treatment group 3; n=3), and 5 mg/kg subcutaneous (treatment group 4; n=3). Part B evaluated repeated sequential intravenous administrations of 20 mg/kg PGT121.414.LS plus 20 mg/kg VRC07-523LS (treatment group 5; n=10) and sequential subcutaneous administrations of 5 mg/kg PGT121.414.LS plus 5 mg/kg VRC07-523LS (treatment group 6; n=10) on days 0, 112, and 224. Participants in treatment groups 1 and 2 were enrolled sequentially, with participants enrolled and randomly assigned to treatment groups 3 and 4 after a review of safety data. Participants in treatment groups 5 and 6 were randomly assigned in blocks after a review of safety data from treatment groups 1-4. The primary endpoints were safety and tolerability of mAbs, serum concentrations and pharmacokinetics of mAbs, and serum neutralising activity, assessed in participants who received all scheduled product administrations. Serum concentrations of each mAb were measured via a multiplex assay, and neutralisation activity against multiple HIV viruses was measured via the TZM-bl assay. Serum concentrations were estimated via an open, two-compartment model with first-order elimination from the central compartment. This study was registered with ClinicalTrials.gov (NCT04212091) and has been completed. FINDINGS Between Nov 10, 2020, and Oct 5, 2021, we enrolled 33 participants without HIV: median age was 31 years (range 22-48); 19 were assigned female sex at birth and 11 were assigned male sex at birth. Three participants and four participants were sequentially assigned to treatment groups 1 and 2, respectively, and, after safety review, six participants were randomly assigned to treatment groups 3 (n=3) and 4 (n=3); after safety review, 20 participants were randomly assigned to treatment groups 5 (n=10) and 6 (n=10). Intravenous and subcutaneous infusions were safe and well tolerated, without serious adverse events or dose-limiting toxicities. Dose escalation of PGT121.414.LS from 3 mg/kg to 30 mg/kg (intravenous) resulted in a dose-proportional increase in serum concentration of PGT121.414.LS, whether administered alone or in combination with VRC07-523LS. The estimated elimination half-life of PGT121.414.LS was 71 days (95% CI 66-75), three times that of its parental form, PGT121. The estimated subcutaneous (vs intravenous) bioavailability of PGT121.414.LS was 86·1% (95% CI 64·0-95·5). Neutralisation activities were greater in the higher-dose and dual combination intravenous groups than in the subcutaneous administration groups. INTERPRETATION These findings support further evaluation of PGT121.414.LS in combination with other mAbs for HIV-1 prevention. FUNDING US National Institute of Allergy and Infectious Diseases and US National Institutes of Health.
Collapse
MESH Headings
- Humans
- Female
- Male
- Adult
- HIV-1/drug effects
- HIV-1/immunology
- HIV Antibodies/administration & dosage
- HIV Antibodies/adverse effects
- HIV Infections/drug therapy
- HIV Infections/immunology
- Antibodies, Neutralizing
- Middle Aged
- Antibodies, Monoclonal/pharmacokinetics
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/adverse effects
- United States
- Broadly Neutralizing Antibodies
- Young Adult
- Antibodies, Monoclonal, Humanized/pharmacokinetics
- Antibodies, Monoclonal, Humanized/administration & dosage
- Antibodies, Monoclonal, Humanized/adverse effects
Collapse
Affiliation(s)
- Srilatha Edupuganti
- Department of Medicine, Division of Infectious Diseases, Emory University, Atlanta, GA, USA.
| | - Christopher B Hurt
- Institute for Global Health and Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kathryn E Stephenson
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Yunda Huang
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Department of Global Health, University of Washington, Seattle, WA, USA
| | - Carmen A Paez
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Chenchen Yu
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Catherine Yen
- National Institute of Allergy and Infectious Diseases, Rockville, MD, USA
| | - Brett Hanscom
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Zonglin He
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Maurine D Miner
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Theresa Gamble
- FHI 360, HPTN Leadership and Operations Center, Durham, NC, USA
| | | | | | | | - Bob C Lin
- National Institute of Allergy and Infectious Diseases, Rockville, MD, USA
| | - Krisha McKee
- National Institute of Allergy and Infectious Diseases, Rockville, MD, USA
| | - Nicole Doria-Rose
- National Institute of Allergy and Infectious Diseases, Rockville, MD, USA
| | - Stephanie Regenold
- National Institute of Allergy and Infectious Diseases, Rockville, MD, USA
| | | | - Maija Anderson
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Nadia McClosky
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Lily Zhang
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | | | | | - Michael Pensiero
- National Institute of Allergy and Infectious Diseases, Rockville, MD, USA
| | - Bonnie J Dye
- FHI 360, HPTN Leadership and Operations Center, Durham, NC, USA
| | | | - Kenneth Mayer
- Fenway Health, Harvard Medical School, Boston, MA, USA
| | - Marc Siegel
- George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | | | - Stephen R Walsh
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Lucio Gama
- National Institute of Allergy and Infectious Diseases, Rockville, MD, USA
| | - Dan H Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | | |
Collapse
|
5
|
Wang J, Wang Y, Zhang H, Ma H, Wang Q, Wang L, Fan Y, Tian X, Mei X, Zhang Z, Wang S, Yang Z. Evaluation of protective efficacy of recombinant Toxoplasma gondii DDX39 protein vaccine against acute and chronic T. gondii infection in mice. Acta Trop 2024; 260:107442. [PMID: 39461580 DOI: 10.1016/j.actatropica.2024.107442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/18/2024] [Accepted: 10/23/2024] [Indexed: 10/29/2024]
Abstract
Toxoplasma gondii, a pervasive parasite responsible for toxoplasmosis, poses significant health risks to humans and animals. In this study, we investigated the immunogenicity and protective efficacy of the recombinant T. gondii DDX39 protein formulated with ISA201 adjuvant (rTgDDX39) as a candidate vaccine against toxoplasmosis. The full-length of TgDDX39 gene was successfully amplified, cloned into the pET-30a vector, and expressed in BL21 (DE3) competent cells, which was purified and identified as a 57.1 kDa protein via sodium dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Western blot analysis confirmed that rTgDDX39 was specifically recognized by serum from T. gondii-infected mice. Furthermore, immunization of rats with rTgDDX39 generated antiserum that could specifically recognize the native TgDDX39 protein in T. gondii tachyzoite lysates. Immunofluorescence assay revealed that TgDDX39 was primarily located in the nucleus and perinuclear region of tachyzoites. Our vaccination strategy significantly increased T cell proliferation, with CD4+T cells rising by 21.9% and CD8+T cells by 57.8% by the sixth week compared to the adjuvant control group. Additionally, high titers of anti-rTgDDX39 IgG antibodies were detected in vaccinated mice, with a notable induction of IgG1 and IgG2a isotypes, and IgG1/IgG2a > 1 suggests a Th2-biased immune response. Furthermore, in vitro and in vivo assays demonstrated that polyclonal antibodies raised against rTgDDX39 could inhibit the proliferation of T. gondii RH tachyzoites, highlighting the potential of these antibodies to neutralize this parasite effectively. This study provides compelling evidence of the immunogenicity and protective efficacy of rTgDDX39, supporting its potential as a potential candidate vaccine against toxoplasmosis. The protective efficacy of the vaccine was evaluated in mice challenged with acute (RH) and chronic (PRU) strains of T. gondii, showing a survival time extended to 17 days in the acute model, compared to 13.5 and 14 days in the control groups, and a significant 34% reduction in cyst burden in the chronic model. Additionally, the survival rate in the PRU-infected mice increased from 15 to 20% in the control groups to 45% in the vaccinated group. In vitro and in vivo assays demonstrated that polyclonal antibodies raised against rTgDDX39 could inhibit the proliferation of T. gondii RH tachyzoites, highlighting the potential of these antibodies to neutralize the parasite effectively. This study provides compelling evidence of the immunogenicity and protective efficacy of rTgDDX39, supporting its potential as a candidate vaccine against toxoplasmosis.
Collapse
MESH Headings
- Animals
- Toxoplasma/immunology
- Toxoplasma/genetics
- Protozoan Vaccines/immunology
- Protozoan Vaccines/genetics
- Mice
- Antibodies, Protozoan/blood
- Antibodies, Protozoan/immunology
- Protozoan Proteins/immunology
- Protozoan Proteins/genetics
- Female
- Recombinant Proteins/immunology
- Recombinant Proteins/genetics
- Toxoplasmosis/prevention & control
- Toxoplasmosis/immunology
- Toxoplasmosis, Animal/prevention & control
- Toxoplasmosis, Animal/immunology
- Mice, Inbred BALB C
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/administration & dosage
- Rats
- Antigens, Protozoan/immunology
- Antigens, Protozoan/genetics
- Disease Models, Animal
- DEAD-box RNA Helicases/immunology
- DEAD-box RNA Helicases/genetics
- Adjuvants, Immunologic/administration & dosage
Collapse
Affiliation(s)
- Jinghui Wang
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Yuanfeng Wang
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Haina Zhang
- Department of Rehabilitation, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Hangbin Ma
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Qiangqiang Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Longkang Wang
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Youke Fan
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Xiaowei Tian
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Xuefang Mei
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Zhenchao Zhang
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Shuai Wang
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China.
| | - Zhenke Yang
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China.
| |
Collapse
|
6
|
Binkley A, Zimmerman M, Maguire C. Expanding Treatment Opportunities: Reviewing the Current State of Injectable Antiretrovirals for Treatment of HIV. Infect Dis Ther 2024; 13:2475-2488. [PMID: 39417932 PMCID: PMC11582110 DOI: 10.1007/s40121-024-01062-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024] Open
Abstract
Antiretroviral therapy has evolved significantly over the last 20-30 years, from requiring multiple tablets multiple times per day to single-tablet regimens and most recently, in 2021, long-acting injectable antiretrovirals. These long-acting antiretrovirals have expanded the treatment options for individuals with HIV who may have difficulty adhering to daily oral medications, difficulty taking oral medications, and/or individuals with multidrug-resistant HIV. This article reviews the currently available long-acting injectable antiretrovirals, including cabotegravir/rilpivirine, lenacapavir, and ibalizumab. The available data supporting these agents and current place in therapy will be discussed. Data supporting the use of additional long-acting injectable agents, broadly neutralizing antibodies, currently in the pipeline will be reviewed as well.
Collapse
Affiliation(s)
- Amanda Binkley
- Department of Pharmacy, Penn Presbyterian Medical Center, Philadelphia, USA.
| | - Matty Zimmerman
- Department of Pharmacy, Penn Presbyterian Medical Center, Philadelphia, USA
| | - Christina Maguire
- Department of Pharmacy, Penn Presbyterian Medical Center, Philadelphia, USA
| |
Collapse
|
7
|
Grant-McAuley W, Morgenlander WR, Ruczinski I, Kammers K, Laeyendecker O, Hudelson SE, Thakar M, Piwowar-Manning E, Clarke W, Breaud A, Ayles H, Bock P, Moore A, Kosloff B, Shanaube K, Meehan SA, van Deventer A, Fidler S, Hayes R, Larman HB, Eshleman SH. Identification of antibody targets associated with lower HIV viral load and viremic control. PLoS One 2024; 19:e0305976. [PMID: 39288118 PMCID: PMC11407625 DOI: 10.1371/journal.pone.0305976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/09/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND High HIV viral loads (VL) are associated with increased morbidity, mortality, and on-going transmission. HIV controllers maintain low VLs in the absence of antiretroviral therapy (ART). We previously used a massively multiplexed antibody profiling assay (VirScan) to compare antibody profiles in HIV controllers and persons living with HIV (PWH) who were virally suppressed on ART. In this report, we used VirScan to evaluate whether antibody reactivity to specific HIV targets and broad reactivity across the HIV genome was associated with VL and controller status 1-2 years after infection. METHODS Samples were obtained from participants who acquired HIV infection in a community-randomized trial in Africa that evaluated an integrated strategy for HIV prevention (HPTN 071 PopART). Controller status was determined using VL and antiretroviral (ARV) drug data obtained at the seroconversion visit and 1 year later. Viremic controllers had VLs <2,000 copies/mL at both visits; non-controllers had VLs >2,000 copies/mL at both visits. Both groups had no ARV drugs detected at either visit. VirScan testing was performed at the second HIV-positive visit (1-2 years after HIV infection). RESULTS The study cohort included 13 viremic controllers and 64 non-controllers. We identified ten clusters of homologous peptides that had high levels of antibody reactivity (three in gag, three in env, two in integrase, one in protease, and one in vpu). Reactivity to 43 peptides (eight unique epitopes) in six of these clusters was associated with lower VL; reactivity to six of the eight epitopes was associated with HIV controller status. Higher aggregate antibody reactivity across the eight epitopes (more epitopes targeted, higher mean reactivity across all epitopes) and across the HIV genome was also associated with lower VL and controller status. CONCLUSIONS We identified HIV antibody targets associated with lower VL and HIV controller status 1-2 years after infection. Robust aggregate responses to these targets and broad antibody reactivity across the HIV genome were also associated with lower VL and controller status. These findings provide novel insights into the relationship between humoral immunity and viral containment that could help inform the design of antibody-based approaches for reducing HIV VL.
Collapse
Affiliation(s)
- Wendy Grant-McAuley
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - William R. Morgenlander
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Ingo Ruczinski
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Kai Kammers
- Quantitative Sciences Division, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Oliver Laeyendecker
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Sarah E. Hudelson
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Manjusha Thakar
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Estelle Piwowar-Manning
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - William Clarke
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Autumn Breaud
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Helen Ayles
- Zambart, University of Zambia School of Public Health, Lusaka, Zambia
- Clinical Research Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Peter Bock
- Desmond Tutu TB Center, Department of Paediatrics and Child Health, Stellenbosch University, Stellenbosch, Western Cape, South Africa
| | - Ayana Moore
- FHI 360, Durham, North Carolina, United States of America
| | - Barry Kosloff
- Zambart, University of Zambia School of Public Health, Lusaka, Zambia
- Clinical Research Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Kwame Shanaube
- Zambart, University of Zambia School of Public Health, Lusaka, Zambia
| | - Sue-Ann Meehan
- Desmond Tutu TB Center, Department of Paediatrics and Child Health, Stellenbosch University, Stellenbosch, Western Cape, South Africa
| | - Anneen van Deventer
- Desmond Tutu TB Center, Department of Paediatrics and Child Health, Stellenbosch University, Stellenbosch, Western Cape, South Africa
| | - Sarah Fidler
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Richard Hayes
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - H. Benjamin Larman
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Susan H. Eshleman
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | | |
Collapse
|
8
|
Walimbwa SI, Maly P, Kafkova LR, Raska M. Beyond glycan barriers: non-cognate ligands and protein mimicry approaches to elicit broadly neutralizing antibodies for HIV-1. J Biomed Sci 2024; 31:83. [PMID: 39169357 PMCID: PMC11337606 DOI: 10.1186/s12929-024-01073-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/12/2024] [Indexed: 08/23/2024] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) vaccine immunogens capable of inducing broadly neutralizing antibodies (bNAbs) remain obscure. HIV-1 evades immune responses through enormous diversity and hides its conserved vulnerable epitopes on the envelope glycoprotein (Env) by displaying an extensive immunodominant glycan shield. In elite HIV-1 viremic controllers, glycan-dependent bNAbs targeting conserved Env epitopes have been isolated and are utilized as vaccine design templates. However, immunological tolerance mechanisms limit the development of these antibodies in the general population. The well characterized bNAbs monoclonal variants frequently exhibit extensive levels of somatic hypermutation, a long third heavy chain complementary determining region, or a short third light chain complementarity determining region, and some exhibit poly-reactivity to autoantigens. This review elaborates on the obstacles to engaging and manipulating the Env glycoprotein as an effective immunogen and describes an alternative reverse vaccinology approach to develop a novel category of bNAb-epitope-derived non-cognate immunogens for HIV-1 vaccine design.
Collapse
Affiliation(s)
- Stephen Ian Walimbwa
- Department of Immunology, University Hospital Olomouc, Zdravotníků 248/7, 77900, Olomouc, Czech Republic.
| | - Petr Maly
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, Průmyslová 595, 252 50, Vestec, Czech Republic
| | - Leona Raskova Kafkova
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hněvotínská 3, 779 00, Olomouc, Czech Republic
| | - Milan Raska
- Department of Immunology, University Hospital Olomouc, Zdravotníků 248/7, 77900, Olomouc, Czech Republic.
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hněvotínská 3, 779 00, Olomouc, Czech Republic.
| |
Collapse
|
9
|
Mahomed S. Broadly neutralizing antibodies for HIV prevention: a comprehensive review and future perspectives. Clin Microbiol Rev 2024; 37:e0015222. [PMID: 38687039 PMCID: PMC11324036 DOI: 10.1128/cmr.00152-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024] Open
Abstract
SUMMARYThe human immunodeficiency virus (HIV) epidemic remains a formidable global health concern, with 39 million people living with the virus and 1.3 million new infections reported in 2022. Despite anti-retroviral therapy's effectiveness in pre-exposure prophylaxis, its global adoption is limited. Broadly neutralizing antibodies (bNAbs) offer an alternative strategy for HIV prevention through passive immunization. Historically, passive immunization has been efficacious in the treatment of various diseases ranging from oncology to infectious diseases. Early clinical trials suggest bNAbs are safe, tolerable, and capable of reducing HIV RNA levels. Although challenges such as bNAb resistance have been noted in phase I trials, ongoing research aims to assess the additive or synergistic benefits of combining multiple bNAbs. Researchers are exploring bispecific and trispecific antibodies, and fragment crystallizable region modifications to augment antibody efficacy and half-life. Moreover, the potential of other antibody isotypes like IgG3 and IgA is under investigation. While promising, the application of bNAbs faces economic and logistical barriers. High manufacturing costs, particularly in resource-limited settings, and logistical challenges like cold-chain requirements pose obstacles. Preliminary studies suggest cost-effectiveness, although this is contingent on various factors like efficacy and distribution. Technological advancements and strategic partnerships may mitigate some challenges, but issues like molecular aggregation remain. The World Health Organization has provided preferred product characteristics for bNAbs, focusing on optimizing their efficacy, safety, and accessibility. The integration of bNAbs in HIV prophylaxis necessitates a multi-faceted approach, considering economic, logistical, and scientific variables. This review comprehensively covers the historical context, current advancements, and future avenues of bNAbs in HIV prevention.
Collapse
Affiliation(s)
- Sharana Mahomed
- Centre for the AIDS
Programme of Research in South Africa (CAPRISA), Doris Duke Medical
Research Institute, Nelson R Mandela School of Medicine, University of
KwaZulu-Natal, Durban,
South Africa
| |
Collapse
|
10
|
Mastrangelo A, Gama L, Cinque P. Strategies to target the central nervous system HIV reservoir. Curr Opin HIV AIDS 2024; 19:133-140. [PMID: 38457227 DOI: 10.1097/coh.0000000000000847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
PURPOSE OF THE REVIEW The central nervous system (CNS) is an hotspot for HIV persistence and may be a major obstacle to overcome for curative strategies. The peculiar anatomical, tissular and cellular characteristics of the HIV reservoir in the CNS may need to be specifically addressed to achieve a long-term HIV control without ART. In this review, we will discuss the critical challenges that currently explored curative strategies may face in crossing the blood-brain barrier (BBB), targeting latent HIV in brain-resident myeloid reservoirs, and eliminating the virus without eliciting dangerous neurological adverse events. RECENT FINDINGS Latency reversing agents (LRA), broadly neutralizing monoclonal antibodies (bNabs), chimeric antigen receptor (CAR) T-cells, and adeno-associated virus 9-vectored gene-therapies cross the BBB with varying efficiency. Although brain penetration is poor for bNAbs, viral vectors for in vivo gene-editing, certain LRAs, and CAR T-cells may reach the cerebral compartment more efficiently. All these approaches, however, may encounter difficulties in eliminating HIV-infected perivascular macrophages and microglia. Safety, including local neurological adverse effects, may also be a concern, especially if high doses are required to achieve optimal brain penetration and efficient brain cell targeting. SUMMARY Targeting the CNS remains a potential problem for the currently investigated HIV curing strategies. In vivo evidence on CNS effectiveness is limited for most of the investigated strategies, and additional studies should be focused on evaluating the interplay between the cerebral HIV reservoir and treatment aiming to achieve an ART-free cure.
Collapse
Affiliation(s)
- Andrea Mastrangelo
- Department of Allergy and Clinical Immunology, Centre Hopitalier Universitaire Vaudoise (CHUV), Lausanne, Switzerland
| | - Lucio Gama
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, USA
| | - Paola Cinque
- Unit of Infectious Diseases and Neurovirology Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy
| |
Collapse
|
11
|
Zhou J, Wang L, Liu X, Gai Y, Dong M, Wang C, Ali MM, Ye M, Yu X, Hu L. Glycan-Imprinted Nanoparticle as Artificial Neutralizing Antibody for Efficient HIV-1 Recognition and Inhibition. NANO LETTERS 2024; 24:4423-4432. [PMID: 38568019 DOI: 10.1021/acs.nanolett.4c00142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
The HIV-1 envelope is a heavily glycosylated class 1 trimeric fusion protein responsible for viral entry into CD4+ immune cells. Developing neutralizing antibodies against the specific envelope glycans is an alternative method for antiviral therapies. This work presents the first-ever development and characterization of artificial neutralizing antibodies using molecular imprinting technology to recognize and bind to the envelope protein of HIV-1. The prepared envelope glycan-imprinted nanoparticles (GINPs) can successfully prevent HIV-1 from infecting target cells by shielding the glycans on the envelope protein. In vitro experiments showed that GINPs have strong affinity toward HIV-1 (Kd = 36.7 ± 2.2 nM) and possess high anti-interference and specificity. GINPs demonstrate broad inhibition activity against both tier 1 and tier 2 HIV-1 strains with a pM-level IC50 and exhibit a significant inhibitory effect on long-term viral replication by more than 95%. The strategy provides a promising method for the inhibition and therapy of HIV-1 infection.
Collapse
Affiliation(s)
- Juntao Zhou
- Center for Supramolecular Chemical Biology, National Engineering Laboratory of AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin 130012, China
| | - Libian Wang
- Center for Supramolecular Chemical Biology, National Engineering Laboratory of AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin 130012, China
| | - Xiaoyan Liu
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian, Liaoning 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanxin Gai
- Center for Supramolecular Chemical Biology, National Engineering Laboratory of AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin 130012, China
| | - Mingming Dong
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian, Liaoning 116023, China
| | - Chu Wang
- Center for Supramolecular Chemical Biology, National Engineering Laboratory of AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin 130012, China
| | - Muhammad Mujahid Ali
- Center for Supramolecular Chemical Biology, National Engineering Laboratory of AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin 130012, China
| | - Mingliang Ye
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian, Liaoning 116023, China
| | - Xianghui Yu
- Center for Supramolecular Chemical Biology, National Engineering Laboratory of AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin 130012, China
| | - Lianghai Hu
- Center for Supramolecular Chemical Biology, National Engineering Laboratory of AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin 130012, China
| |
Collapse
|
12
|
Van de Perre P, Scarlatti G, Moore PL, Molès J, Nagot N, Tylleskär T, Gray G, Goga A. Preventing breast milk HIV transmission using broadly neutralizing monoclonal antibodies: One size does not fit all. Immun Inflamm Dis 2024; 12:e1216. [PMID: 38533917 PMCID: PMC10966915 DOI: 10.1002/iid3.1216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/28/2024] Open
Abstract
Passive immunoprophylaxis with broadly neutralizing monoclonal antibodies (bNAbs) could be a game changer in the prevention of human immunodeficiency virus (HIV) acquisition. The prevailing view is that available resources should be focused on identifying a fixed combination of at least three bNAbs for universal use in therapeutic and preventive protocols, regardless of target populations or routes of transmission. HIV transmission through breastfeeding is unique: it involves free viral particles and cell‐associated virus from breast milk and, in the case of acute/recent maternal infection, a viral population with restricted Env diversity. HIV transmission through breastfeeding in high incidence/prevalence areas could potentially be eliminated by subcutaneous administration to all newborns of one or two long‐acting bNAbs with extended breadth, high potency, and effector properties (ADCC, phagocytosis) against circulating HIV strains.
Collapse
Affiliation(s)
- Philippe Van de Perre
- Pathogenesis and Control of Chronic and Emerging Infections, INSERM, Etablissement Français du Sang, CHU MontpellierUniversity of MontpellierMontpellierFrance
| | | | - Penny L. Moore
- MRC Antibody Immunity Research Unit, School of PathologyUniversity of the WitwatersrandJohannesburgSouth Africa
- National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS)JohannesburgSouth Africa
| | - Jean‐Pierre Molès
- Pathogenesis and Control of Chronic and Emerging Infections, INSERM, Etablissement Français du Sang, CHU MontpellierUniversity of MontpellierMontpellierFrance
| | - Nicolas Nagot
- Pathogenesis and Control of Chronic and Emerging Infections, INSERM, Etablissement Français du Sang, CHU MontpellierUniversity of MontpellierMontpellierFrance
| | - Thorkild Tylleskär
- Department of Global Public Health and Primary Care, Centre for International HealthUniversity of BergenBergenNorway
| | - Glenda Gray
- South African Medical Research CouncilCape TownSouth Africa
| | - Ameena Goga
- South African Medical Research CouncilCape TownSouth Africa
- Department of Paediatrics and Child HealthUniversity of PretoriaPretoriaSouth Africa
| |
Collapse
|
13
|
Mavigner M, Chahroudi A. Broadly neutralizing antibodies: "The next thing" to treat children with HIV? Sci Transl Med 2023; 15:eadi0293. [PMID: 37406135 DOI: 10.1126/scitranslmed.adi0293] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Monthly treatment with two neutralizing antibodies maintained HIV suppression in almost half of children who received early antiretroviral treatment (Shapiro et al.).
Collapse
Affiliation(s)
- Maud Mavigner
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
- Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta and Emory University, Atlanta, GA 30322, USA
| | - Ann Chahroudi
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
- Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta and Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
14
|
Shapiro RL, Ajibola G, Maswabi K, Hughes M, Nelson BS, Niesar A, Holme MP, Powis KM, Sakoi M, Batlang O, Moyo S, Mohammed T, Maphorisa C, Bennett K, Hu Z, Giguel F, Reeves JD, Reeves MA, Gao C, Yu X, Ackerman ME, McDermott A, Cooper M, Caskey M, Gama L, Jean-Philippe P, Yin DE, Capparelli EV, Lockman S, Makhema J, Kuritzkes DR, Lichterfeld M. Broadly neutralizing antibody treatment maintained HIV suppression in children with favorable reservoir characteristics in Botswana. Sci Transl Med 2023; 15:eadh0004. [PMID: 37406137 PMCID: PMC10683791 DOI: 10.1126/scitranslmed.adh0004] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/26/2023] [Indexed: 07/07/2023]
Abstract
Broadly neutralizing antibodies (bNAbs) may provide an alternative to standard antiretroviral treatment (ART) for controlling HIV-1 replication and may have immunotherapeutic effects against HIV-1 reservoirs. We conducted a prospective clinical trial with two HIV-1 bNAbs (VRC01LS and 10-1074) in children (n = 25) who had previously initiated small-molecule ART treatment before 7 days of age and who continued treatment for at least 96 weeks. Both bNAbs were dosed intravenously every 4 weeks, overlapping with ART for at least 8 weeks and then continued for up to 24 weeks or until detectable viremia of HIV-1 RNA rose above 400 copies per milliliter in the absence of ART. Eleven (44%) children maintained HIV-1 RNA below 400 copies per milliliter through 24 weeks of bNAb-only treatment; 14 (56%) had detectable viremia above 400 copies per milliliter at a median of 4 weeks. Archived HIV-1 provirus susceptible to 10-1074, lower birth HIV-1 DNA reservoir in peripheral blood mononuclear cells, sustained viral suppression throughout early life, and combined negative qualitative HIV-1 DNA polymerase chain reaction and negative HIV-1 serology at entry were associated with maintaining suppression on bNAbs alone. This proof-of-concept study suggests that bNAbs may represent a promising treatment modality for infants and children living with HIV-1. Future studies using newer bNAb combinations with greater breadth and potency are warranted.
Collapse
Affiliation(s)
- Roger L. Shapiro
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health; Boston, MA 02115, USA
- Botswana Harvard Health Partnership; Gaborone, Botswana
| | | | | | - Michael Hughes
- Department of Biostatistics, Harvard T.H. Chan School of Public Health; Boston, MA 02115, USA
| | - Bryan S. Nelson
- Department of Biostatistics, Harvard T.H. Chan School of Public Health; Boston, MA 02115, USA
| | - Aischa Niesar
- Ragon Institute of MGH, MIT and Harvard; Cambridge, MA 02139, USA
| | - Molly Pretorius Holme
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health; Boston, MA 02115, USA
| | - Kathleen M. Powis
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health; Boston, MA 02115, USA
- Botswana Harvard Health Partnership; Gaborone, Botswana
- Departments of Internal Medicine and Pediatrics, Massachusetts General Hospital; Boston, MA 02114, USA
| | - Maureen Sakoi
- Botswana Harvard Health Partnership; Gaborone, Botswana
| | | | - Sikhulile Moyo
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health; Boston, MA 02115, USA
- Botswana Harvard Health Partnership; Gaborone, Botswana
| | | | | | - Kara Bennett
- Bennett Statistical Consulting, Inc.; Ballston Lake, NY 12019, USA
| | - Zixin Hu
- Division of Infectious Diseases, Brigham and Women’s Hospital; Boston, MA 02115, USA
| | - Francoise Giguel
- Division of Infectious Diseases, Brigham and Women’s Hospital; Boston, MA 02115, USA
| | | | - Michael A. Reeves
- Labcorp-Monogram Biosciences, Inc.; South San Francisco, CA 94080, USA
| | - Ce Gao
- Ragon Institute of MGH, MIT and Harvard; Cambridge, MA 02139, USA
| | - Xu Yu
- Ragon Institute of MGH, MIT and Harvard; Cambridge, MA 02139, USA
| | | | | | - Marlene Cooper
- Frontier Science and Technology Research Foundation, Inc.; Amherst, NY 14226, USA
| | | | - Lucio Gama
- Vaccine Research Center; Bethesda, MD 20892, USA
| | - Patrick Jean-Philippe
- National Institute of Allergy and Infectious Diseases, National Institutes of Health; Rockville, MD 20892, USA
| | - Dwight E. Yin
- National Institute of Allergy and Infectious Diseases, National Institutes of Health; Rockville, MD 20892, USA
| | - Edmund V. Capparelli
- Department of Pediatrics, University of California San Diego; La Jolla, CA 92037, USA
| | - Shahin Lockman
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health; Boston, MA 02115, USA
- Botswana Harvard Health Partnership; Gaborone, Botswana
- Division of Infectious Diseases, Brigham and Women’s Hospital; Boston, MA 02115, USA
| | - Joseph Makhema
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health; Boston, MA 02115, USA
- Botswana Harvard Health Partnership; Gaborone, Botswana
| | - Daniel R. Kuritzkes
- Division of Infectious Diseases, Brigham and Women’s Hospital; Boston, MA 02115, USA
| | - Mathias Lichterfeld
- Ragon Institute of MGH, MIT and Harvard; Cambridge, MA 02139, USA
- Division of Infectious Diseases, Brigham and Women’s Hospital; Boston, MA 02115, USA
| |
Collapse
|
15
|
Seaton KE, Huang Y, Karuna S, Heptinstall JR, Brackett C, Chiong K, Zhang L, Yates NL, Sampson M, Rudnicki E, Juraska M, deCamp AC, Edlefsen PT, Mullins JI, Williamson C, Rossenkhan R, Giorgi EE, Kenny A, Angier H, Randhawa A, Weiner JA, Rojas M, Sarzotti-Kelsoe M, Zhang L, Sawant S, Ackerman ME, McDermott AB, Mascola JR, Hural J, McElrath MJ, Andrew P, Hidalgo JA, Clark J, Laher F, Orrell C, Frank I, Gonzales P, Edupuganti S, Mgodi N, Corey L, Morris L, Montefiori D, Cohen MS, Gilbert PB, Tomaras GD. Pharmacokinetic serum concentrations of VRC01 correlate with prevention of HIV-1 acquisition. EBioMedicine 2023; 93:104590. [PMID: 37300931 PMCID: PMC10363420 DOI: 10.1016/j.ebiom.2023.104590] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND The phase 2b proof-of-concept Antibody Mediated Prevention (AMP) trials showed that VRC01, an anti-HIV-1 broadly neutralising antibody (bnAb), prevented acquisition of HIV-1 sensitive to VRC01. To inform future study design and dosing regimen selection of candidate bnAbs, we investigated the association of VRC01 serum concentration with HIV-1 acquisition using AMP trial data. METHODS The case-control sample included 107 VRC01 recipients who acquired HIV-1 and 82 VRC01 recipients who remained without HIV-1 during the study. We measured VRC01 serum concentrations with a qualified pharmacokinetic (PK) Binding Antibody Multiplex Assay. We employed nonlinear mixed effects PK modelling to estimate daily-grid VRC01 concentrations. Cox regression models were used to assess the association of VRC01 concentration at exposure and baseline body weight, with the hazard of HIV-1 acquisition and prevention efficacy as a function of VRC01 concentration. We also compared fixed dosing vs. body weight-based dosing via simulations. FINDINGS Estimated VRC01 concentrations in VRC01 recipients without HIV-1 were higher than those in VRC01 recipients who acquired HIV-1. Body weight was inversely associated with HIV-1 acquisition among both placebo and VRC01 recipients but did not modify the prevention efficacy of VRC01. VRC01 concentration was inversely correlated with HIV-1 acquisition, and positively correlated with prevention efficacy of VRC01. Simulation studies suggest that fixed dosing may be comparable to weight-based dosing in overall predicted prevention efficacy. INTERPRETATION These findings suggest that bnAb serum concentration may be a useful marker for dosing regimen selection, and operationally efficient fixed dosing regimens could be considered for future trials of HIV-1 bnAbs. FUNDING Was provided by the National Institutes of Health, National Institute of Allergy and Infectious Diseases (NIAID) (UM1 AI068614, to the HIV Vaccine Trials Network [HVTN]; UM1 AI068635, to the HVTN Statistical Data and Management Center [SDMC], Fred Hutchinson Cancer Center [FHCC]; 2R37 054165 to the FHCC; UM1 AI068618, to HVTN Laboratory Center, FHCC; UM1 AI068619, to the HPTN Leadership and Operations Center; UM1 AI068613, to the HIV Prevention Trials Network [HPTN] Laboratory Center; UM1 AI068617, to the HPTN SDMC; and P30 AI027757, to the Center for AIDS Research, Duke University (AI P30 AI064518) and University of Washington (P30 AI027757) Centers for AIDS Research; R37AI054165 from NIAID to the FHCC; and OPP1032144 CA-VIMC Bill & Melinda Gates Foundation.
Collapse
Affiliation(s)
- Kelly E Seaton
- Duke Center for Human Systems Immunology, Departments of Surgery, Immunology, Molecular Genetics and Microbiology, Durham, NC, 27710, USA.
| | - Yunda Huang
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA; Department of Global Health, University of Washington, Seattle, WA, 98195, USA.
| | - Shelly Karuna
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Jack R Heptinstall
- Duke Center for Human Systems Immunology, Departments of Surgery, Immunology, Molecular Genetics and Microbiology, Durham, NC, 27710, USA
| | - Caroline Brackett
- Duke Center for Human Systems Immunology, Departments of Surgery, Immunology, Molecular Genetics and Microbiology, Durham, NC, 27710, USA
| | - Kelvin Chiong
- Duke Center for Human Systems Immunology, Departments of Surgery, Immunology, Molecular Genetics and Microbiology, Durham, NC, 27710, USA
| | - Lily Zhang
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Nicole L Yates
- Duke Center for Human Systems Immunology, Departments of Surgery, Immunology, Molecular Genetics and Microbiology, Durham, NC, 27710, USA
| | - Mark Sampson
- Duke Center for Human Systems Immunology, Departments of Surgery, Immunology, Molecular Genetics and Microbiology, Durham, NC, 27710, USA
| | - Erika Rudnicki
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Michal Juraska
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Allan C deCamp
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Paul T Edlefsen
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - James I Mullins
- Department of Global Health, University of Washington, Seattle, WA, 98195, USA; Departments of Microbiology and Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Carolyn Williamson
- Division of Medical Virology, Institute of Infectious Disease & Molecular Medicine, University of Cape Town and National Health Laboratory Service, South Africa
| | - Raabya Rossenkhan
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Elena E Giorgi
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Avi Kenny
- Department of Biostatistics, University of Washington, Seattle, WA, 98195, USA
| | - Heather Angier
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - April Randhawa
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Joshua A Weiner
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
| | - Michelle Rojas
- Duke Center for Human Systems Immunology, Departments of Surgery, Immunology, Molecular Genetics and Microbiology, Durham, NC, 27710, USA
| | - Marcella Sarzotti-Kelsoe
- Duke Center for Human Systems Immunology, Departments of Surgery, Immunology, Molecular Genetics and Microbiology, Durham, NC, 27710, USA
| | - Lu Zhang
- Duke Center for Human Systems Immunology, Departments of Surgery, Immunology, Molecular Genetics and Microbiology, Durham, NC, 27710, USA
| | - Sheetal Sawant
- Duke Center for Human Systems Immunology, Departments of Surgery, Immunology, Molecular Genetics and Microbiology, Durham, NC, 27710, USA
| | | | | | | | - John Hural
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - M Julianna McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | | | | | - Jesse Clark
- Department of Medicine, Division of Infectious Disease and Department of Family Medicine in the David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Fatima Laher
- Perinatal HIV Research Unit (PHRU), Wits Health Consortium, Soweto, Johannesburg, South Africa
| | - Catherine Orrell
- Desmond Tutu Health Foundation, University of Cape Town (Institute of Infectious Disease and Molecular Medicine, and Department of Medicine), Observatory, 7925, Cape Town, South Africa
| | - Ian Frank
- Penn Center for AIDS Research, Infectious Disease Division, University of Pennsylvania, 3400 Civic Center Boulevard Building 421, Philadelphia, PA, 19104, USA
| | - Pedro Gonzales
- Asociacion Civil Impacta Salud y Educación, San Miguel Clinical Research Center, Lima, Peru
| | - Srilatha Edupuganti
- Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA, USA
| | - Nyaradzo Mgodi
- University of Zimbabwe-University of California San Francisco (UZ-UCSF) Collaborative Research Programme, Harare, Zimbabwe, South Africa
| | - Lawrence Corey
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA; Departments of Medicine and Laboratory Medicine, University of Washington, Seattle, WA, 98195, USA; Division of Medical Virology, University of Cape Town, Anzio Road, Observatory, 7925, Cape Town, South Africa
| | - Lynn Morris
- National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, 2192, South Africa; Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2000, South Africa; Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, Durban, 4041, South Africa
| | - David Montefiori
- Duke Center for Human Systems Immunology, Departments of Surgery, Immunology, Molecular Genetics and Microbiology, Durham, NC, 27710, USA
| | - Myron S Cohen
- Institute of Global Health and Infectious Diseases, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Peter B Gilbert
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA; Departments of Microbiology and Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Georgia D Tomaras
- Duke Center for Human Systems Immunology, Departments of Surgery, Immunology, Molecular Genetics and Microbiology, Durham, NC, 27710, USA.
| |
Collapse
|
16
|
Frattari GS, Caskey M, Søgaard OS. Broadly neutralizing antibodies for HIV treatment and cure approaches. Curr Opin HIV AIDS 2023; 18:157-163. [PMID: 37144579 DOI: 10.1097/coh.0000000000000802] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
PURPOSE OF REVIEW In recent years, clinical trials have explored broadly neutralizing antibodies (bNAbs) as treatment and cure of HIV. Here, we summarize the current knowledge, review the latest clinical studies, and reflect on the potential role of bNAbs in future applications in HIV treatment and cure strategies. RECENT FINDINGS In most individuals who switch from standard antiretroviral therapy to bNAb treatment, combinations of at least two bNAbs effectively suppress viremia. However, sensitivity of archived proviruses to bNAb neutralization and maintaining adequate bNAb plasma levels are key determinants of the therapeutic effect. Combinations of bNAbs with injectable small-molecule antiretrovirals are being developed as long-acting treatment regimens that may require as little as two annual administrations to maintain virological suppression. Further, interventions that combine bNAbs with immune modulators or therapeutic vaccines are under investigation as HIV curative strategies. Interestingly, administration of bNAbs during the early or viremic stage of infection appears to enhance host immune responses against HIV. SUMMARY While accurately predicting archived resistant mutations has been a significant challenge for bNAb-based treatments, combinations of potent bNAbs against nonoverlapping epitopes may help overcome this issue. As a result, multiple long-acting HIV treatment and cure strategies involving bNAbs are now being investigated.
Collapse
Affiliation(s)
- Giacomo Schmidt Frattari
- Department of Infectious Diseases, Aarhus University Hospital
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Marina Caskey
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York, USA
| | - Ole Schmeltz Søgaard
- Department of Infectious Diseases, Aarhus University Hospital
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|