1
|
Bauer A, Lindemuth E, Marino FE, Krause R, Joy J, Docken SS, Mallick S, McCormick K, Holt C, Georgiev I, Felber B, Keele BF, Veazey R, Davenport MP, Li H, Shaw GM, Bar KJ. Adaptation of a transmitted/founder simian-human immunodeficiency virus for enhanced replication in rhesus macaques. PLoS Pathog 2023; 19:e1011059. [PMID: 37399208 PMCID: PMC10348547 DOI: 10.1371/journal.ppat.1011059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 07/14/2023] [Accepted: 06/21/2023] [Indexed: 07/05/2023] Open
Abstract
Transmitted/founder (TF) simian-human immunodeficiency viruses (SHIVs) express HIV-1 envelopes modified at position 375 to efficiently infect rhesus macaques while preserving authentic HIV-1 Env biology. SHIV.C.CH505 is an extensively characterized virus encoding the TF HIV-1 Env CH505 mutated at position 375 shown to recapitulate key features of HIV-1 immunobiology, including CCR5-tropism, a tier 2 neutralization profile, reproducible early viral kinetics, and authentic immune responses. SHIV.C.CH505 is used frequently in nonhuman primate studies of HIV, but viral loads after months of infection are variable and typically lower than those in people living with HIV. We hypothesized that additional mutations besides Δ375 might further enhance virus fitness without compromising essential components of CH505 Env biology. From sequence analysis of SHIV.C.CH505-infected macaques across multiple experiments, we identified a signature of envelope mutations associated with higher viremia. We then used short-term in vivo mutational selection and competition to identify a minimally adapted SHIV.C.CH505 with just five amino acid changes that substantially improve virus replication fitness in macaques. Next, we validated the performance of the adapted SHIV in vitro and in vivo and identified the mechanistic contributions of selected mutations. In vitro, the adapted SHIV shows improved virus entry, enhanced replication on primary rhesus cells, and preserved neutralization profiles. In vivo, the minimally adapted virus rapidly outcompetes the parental SHIV with an estimated growth advantage of 0.14 days-1 and persists through suppressive antiretroviral therapy to rebound at treatment interruption. Here, we report the successful generation of a well-characterized, minimally adapted virus, termed SHIV.C.CH505.v2, with enhanced replication fitness and preserved native Env properties that can serve as a new reagent for NHP studies of HIV-1 transmission, pathogenesis, and cure.
Collapse
Affiliation(s)
- Anya Bauer
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Emily Lindemuth
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Francesco Elia Marino
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Ryan Krause
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jaimy Joy
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | | | - Suvadip Mallick
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Kevin McCormick
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Clinton Holt
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Ivelin Georgiev
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Barbara Felber
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Maryland, United States of America
| | - Brandon F. Keele
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Ronald Veazey
- Department of Pathology and Laboratory Medicine, Tulane School of Medicine, New Orleans, Louisiana, United States of America
| | | | - Hui Li
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Departments of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - George M. Shaw
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Departments of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Katharine J. Bar
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
2
|
Amin O, Powers J, Bricker KM, Chahroudi A. Understanding Viral and Immune Interplay During Vertical Transmission of HIV: Implications for Cure. Front Immunol 2021; 12:757400. [PMID: 34745130 PMCID: PMC8566974 DOI: 10.3389/fimmu.2021.757400] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/27/2021] [Indexed: 11/13/2022] Open
Abstract
Despite the significant progress that has been made to eliminate vertical HIV infection, more than 150,000 children were infected with HIV in 2019, emphasizing the continued need for sustainable HIV treatment strategies and ideally a cure for children. Mother-to-child-transmission (MTCT) remains the most important route of pediatric HIV acquisition and, in absence of prevention measures, transmission rates range from 15% to 45% via three distinct routes: in utero, intrapartum, and in the postnatal period through breastfeeding. The exact mechanisms and biological basis of these different routes of transmission are not yet fully understood. Some infants escape infection despite significant virus exposure, while others do not, suggesting possible maternal or fetal immune protective factors including the presence of HIV-specific antibodies. Here we summarize the unique aspects of HIV MTCT including the immunopathogenesis of the different routes of transmission, and how transmission in the antenatal or postnatal periods may affect early life immune responses and HIV persistence. A more refined understanding of the complex interaction between viral, maternal, and fetal/infant factors may enhance the pursuit of strategies to achieve an HIV cure for pediatric populations.
Collapse
Affiliation(s)
- Omayma Amin
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Jenna Powers
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Katherine M. Bricker
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Ann Chahroudi
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
- Center for Childhood Infections and Vaccines of Children’s Healthcare of Atlanta and Emory University, Atlanta, GA, United States
| |
Collapse
|
3
|
Brese RL, Gonzalez-Perez MP, Koch M, O'Connell O, Luzuriaga K, Somasundaran M, Clapham PR, Dollar JJ, Nolan DJ, Rose R, Lamers SL. Ultradeep single-molecule real-time sequencing of HIV envelope reveals complete compartmentalization of highly macrophage-tropic R5 proviral variants in brain and CXCR4-using variants in immune and peripheral tissues. J Neurovirol 2018; 24:439-453. [PMID: 29687407 PMCID: PMC7281851 DOI: 10.1007/s13365-018-0633-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 02/28/2018] [Accepted: 03/19/2018] [Indexed: 01/07/2023]
Abstract
Despite combined antiretroviral therapy (cART), HIV+ patients still develop neurological disorders, which may be due to persistent HIV infection and selective evolution in brain tissues. Single-molecule real-time (SMRT) sequencing technology offers an improved opportunity to study the relationship among HIV isolates in the brain and lymphoid tissues because it is capable of generating thousands of long sequence reads in a single run. Here, we used SMRT sequencing to generate ~ 50,000 high-quality full-length HIV envelope sequences (> 2200 bp) from seven autopsy tissues from an HIV+/cART+ subject, including three brain and four non-brain sites. Sanger sequencing was used for comparison with SMRT data and to clone functional pseudoviruses for in vitro tropism assays. Phylogenetic analysis demonstrated that brain-derived HIV was compartmentalized from HIV outside the brain and that the variants from each of the three brain tissues grouped independently. Variants from all peripheral tissues were intermixed on the tree but independent of the brain clades. Due to the large number of sequences, a clustering analysis at three similarity thresholds (99, 99.5, and 99.9%) was also performed. All brain sequences clustered exclusive of any non-brain sequences at all thresholds; however, frontal lobe sequences clustered independently of occipital and parietal lobes. Translated sequences revealed potentially functional differences between brain and non-brain sequences in the location of putative N-linked glycosylation sites (N-sites), V1 length, V3 charge, and the number of V4 N-sites. All brain sequences were predicted to use the CCR5 co-receptor, while most non-brain sequences were predicted to use CXCR4 co-receptor. Tropism results were confirmed by in vitro infection assays. The study is the first to use a SMRT sequencing approach to study HIV compartmentalization in tissues and supports other reports of limited trafficking between brain and non-brain sequences during cART. Due to the long sequence length, we could observe changes along the entire envelope gene, likely caused by differential selective pressure in the brain that may contribute to neurological disease.
Collapse
Affiliation(s)
- Robin L Brese
- Program in Molecular Medicine, University of Massachusetts Medical School, Biotech 2, 373 Plantation Street, Worcester, MA, 01605, USA
| | - Maria Paz Gonzalez-Perez
- Program in Molecular Medicine, University of Massachusetts Medical School, Biotech 2, 373 Plantation Street, Worcester, MA, 01605, USA
| | - Matthew Koch
- Program in Molecular Medicine, University of Massachusetts Medical School, Biotech 2, 373 Plantation Street, Worcester, MA, 01605, USA
| | - Olivia O'Connell
- Program in Molecular Medicine, University of Massachusetts Medical School, Biotech 2, 373 Plantation Street, Worcester, MA, 01605, USA
| | - Katherine Luzuriaga
- Program in Molecular Medicine, University of Massachusetts Medical School, Biotech 2, 373 Plantation Street, Worcester, MA, 01605, USA
| | - Mohan Somasundaran
- Program in Molecular Medicine, University of Massachusetts Medical School, Biotech 2, 373 Plantation Street, Worcester, MA, 01605, USA
| | - Paul R Clapham
- Program in Molecular Medicine, University of Massachusetts Medical School, Biotech 2, 373 Plantation Street, Worcester, MA, 01605, USA
| | | | - David J Nolan
- Bioinfoexperts, LLC, 718 Bayou Ln, Thibodaux, LA, 70301, USA
| | - Rebecca Rose
- Bioinfoexperts, LLC, 718 Bayou Ln, Thibodaux, LA, 70301, USA.
| | | |
Collapse
|
4
|
Yolitz J, Schwing C, Chang J, Van Ryk D, Nawaz F, Wei D, Cicala C, Arthos J, Fauci AS. Signal peptide of HIV envelope protein impacts glycosylation and antigenicity of gp120. Proc Natl Acad Sci U S A 2018; 115:2443-2448. [PMID: 29463753 PMCID: PMC5877976 DOI: 10.1073/pnas.1722627115] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The HIV-1 envelope protein (Env) of early-replicating viruses encodes several distinct transmission signatures. One such signature involves a reduced number of potential N-linked glycosylation sites (PNGs). This transmission signature underscores the importance of posttranslational modifications in the fitness of early-replicating isolates. An additional signature in Env involves the overrepresentation of basic amino acid residues at a specific position in the Env signal peptide (SP). In this report, we investigated the potential impact of this SP signature on gp120 glycosylation and antigenicity. Two recombinant gp120s were constructed, one derived from an isolate that lacks this signature and a second from an early-replicating isolate that includes this signature. Chimeric gp120s were also constructed in which the two SPs were swapped between the isolates. All four gp120s were probed with glycan-, structure- and receptor- specific probes in a surface plasmon resonance binding assay. We found that the SP of Env influences qualitative aspects of Env glycosylation that in turn affect the antigenicity of Env in a major way. The SP impacts the affinity of Env for DC-SIGN, a lectin receptor expressed on dendritic cells that is believed to play a role in mucosal transmission. Additionally, affinity for the monoclonal antibodies 17b and A32, which recognize a CD4-induced, open conformation of Env is also altered. These results demonstrate that natural variation in the SP of HIV Env can significantly impact the antigenicity of mature gp120. Thus, the SP is likely subject to antibody-mediated immune pressure.
Collapse
Affiliation(s)
- Jason Yolitz
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
- National Institutes of Health-Johns Hopkins University Graduate Partnership Program, National Institutes of Health, Bethesda, MD 20892
| | - Catherine Schwing
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Julia Chang
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Donald Van Ryk
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Fatima Nawaz
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Danlan Wei
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Claudia Cicala
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - James Arthos
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Anthony S Fauci
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892;
| |
Collapse
|
5
|
Subtype-Specific Differences in Gag-Protease-Driven Replication Capacity Are Consistent with Intersubtype Differences in HIV-1 Disease Progression. J Virol 2017; 91:JVI.00253-17. [PMID: 28424286 DOI: 10.1128/jvi.00253-17] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 03/30/2017] [Indexed: 11/20/2022] Open
Abstract
There are marked differences in the spread and prevalence of HIV-1 subtypes worldwide, and differences in clinical progression have been reported. However, the biological reasons underlying these differences are unknown. Gag-protease is essential for HIV-1 replication, and Gag-protease-driven replication capacity has previously been correlated with disease progression. We show that Gag-protease replication capacity correlates significantly with that of whole isolates (r = 0.51; P = 0.04), indicating that Gag-protease is a significant contributor to viral replication capacity. Furthermore, we investigated subtype-specific differences in Gag-protease-driven replication capacity using large well-characterized cohorts in Africa and the Americas. Patient-derived Gag-protease sequences were inserted into an HIV-1 NL4-3 backbone, and the replication capacities of the resulting recombinant viruses were measured in an HIV-1-inducible reporter T cell line by flow cytometry. Recombinant viruses expressing subtype C Gag-proteases exhibited substantially lower replication capacities than those expressing subtype B Gag-proteases (P < 0.0001); this observation remained consistent when representative Gag-protease sequences were engineered into an HIV-1 subtype C backbone. We identified Gag residues 483 and 484, located within the Alix-binding motif involved in virus budding, as major contributors to subtype-specific replicative differences. In East African cohorts, we observed a hierarchy of Gag-protease-driven replication capacities, i.e., subtypes A/C < D < intersubtype recombinants (P < 0.0029), which is consistent with reported intersubtype differences in disease progression. We thus hypothesize that the lower Gag-protease-driven replication capacity of subtypes A and C slows disease progression in individuals infected with these subtypes, which in turn leads to greater opportunity for transmission and thus increased prevalence of these subtypes.IMPORTANCE HIV-1 subtypes are unevenly distributed globally, and there are reported differences in their rates of disease progression and epidemic spread. The biological determinants underlying these differences have not been fully elucidated. Here, we show that HIV-1 Gag-protease-driven replication capacity correlates with the replication capacity of whole virus isolates. We further show that subtype B displays a significantly higher Gag-protease-mediated replication capacity than does subtype C, and we identify a major genetic determinant of these differences. Moreover, in two independent East African cohorts we demonstrate a reproducible hierarchy of Gag-protease-driven replicative capacity, whereby recombinants exhibit the greatest replication, followed by subtype D, followed by subtypes A and C. Our data identify Gag-protease as a major determinant of subtype differences in disease progression among HIV-1 subtypes; furthermore, we propose that the poorer viral replicative capacity of subtypes A and C may paradoxically contribute to their more efficient spread in sub-Saharan Africa.
Collapse
|
6
|
Rathore U, Saha P, Kesavardhana S, Kumar AA, Datta R, Devanarayanan S, Das R, Mascola JR, Varadarajan R. Glycosylation of the core of the HIV-1 envelope subunit protein gp120 is not required for native trimer formation or viral infectivity. J Biol Chem 2017; 292:10197-10219. [PMID: 28446609 DOI: 10.1074/jbc.m117.788919] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 04/26/2017] [Indexed: 01/05/2023] Open
Abstract
The gp120 subunit of the HIV-1 envelope (Env) protein is heavily glycosylated at ∼25 glycosylation sites, of which ∼7-8 are located in the V1/V2 and V3 variable loops and the others in the remaining core gp120 region. Glycans partially shield Env from recognition by the host immune system and also are believed to be indispensable for proper folding of gp120 and for viral infectivity. Previous attempts to alter glycosylation sites in Env typically involved mutating the glycosylated asparagine residues to structurally similar glutamines or alanines. Here, we confirmed that such mutations at multiple glycosylation sites greatly diminish viral infectivity and result in significantly reduced binding to both neutralizing and non-neutralizing antibodies. Therefore, using an alternative approach, we combined evolutionary information with structure-guided design and yeast surface display to produce properly cleaved HIV-1 Env variants that lack all 15 core gp120 glycans, yet retain conformational integrity and multiple-cycle viral infectivity and bind to several broadly neutralizing antibodies (bNAbs), including trimer-specific antibodies and a germline-reverted version of the bNAb VRC01. Our observations demonstrate that core gp120 glycans are not essential for folding, and hence their likely primary role is enabling immune evasion. We also show that our glycan removal approach is not strain restricted. Glycan-deficient Env derivatives can be used as priming immunogens because they should engage and activate a more divergent set of germlines than fully glycosylated Env. In conclusion, these results clarify the role of core gp120 glycosylation and illustrate a general method for designing glycan-free folded protein derivatives.
Collapse
Affiliation(s)
- Ujjwal Rathore
- From the Molecular Biophysics Unit, Indian Institute of Science, 560012 Bangalore, India
| | - Piyali Saha
- From the Molecular Biophysics Unit, Indian Institute of Science, 560012 Bangalore, India
| | - Sannula Kesavardhana
- From the Molecular Biophysics Unit, Indian Institute of Science, 560012 Bangalore, India
| | - Aditya Arun Kumar
- From the Molecular Biophysics Unit, Indian Institute of Science, 560012 Bangalore, India
| | - Rohini Datta
- From the Molecular Biophysics Unit, Indian Institute of Science, 560012 Bangalore, India
| | | | - Raksha Das
- From the Molecular Biophysics Unit, Indian Institute of Science, 560012 Bangalore, India
| | - John R Mascola
- the Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, Maryland 20814, and
| | - Raghavan Varadarajan
- From the Molecular Biophysics Unit, Indian Institute of Science, 560012 Bangalore, India, .,the Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, 560064 Bangalore, India
| |
Collapse
|
7
|
Abstract
It is clear that antibodies can play a pivotal role in preventing the transmission of HIV-1 and large efforts to identify an effective antibody-based vaccine to quell the epidemic. Shortly after HIV-1 was discovered as the cause of AIDS, the search for epitopes recognized by neutralizing antibodies became the driving strategy for an antibody-based vaccine. Neutralization escape variants were discovered shortly thereafter, and, after almost three decades of investigation, it is now known that autologous neutralizing antibody responses and their selection of neutralization resistant HIV-1 variants can lead to broadly neutralizing antibodies in some infected individuals. This observation drives an intensive effort to identify a vaccine to elicit broadly neutralizing antibodies. In contrast, there has been less systematic study of antibody specificities that must rely mainly or exclusively on other protective mechanisms, although non-human primate (NHP) studies as well as the RV144 vaccine trial indicate that non-neutralizing antibodies can contribute to protection. Here we propose a novel strategy to identify new epitope targets recognized by these antibodies for which viral escape is unlikely or impossible.
Collapse
Affiliation(s)
- George K Lewis
- Division of Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Marzena Pazgier
- Division of Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Anthony L DeVico
- Division of Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
8
|
Yuan Z, Ma F, Demers AJ, Wang D, Xu J, Lewis MG, Li Q. Characterization of founder viruses in very early SIV rectal transmission. Virology 2016; 502:97-105. [PMID: 28027479 DOI: 10.1016/j.virol.2016.12.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 12/13/2016] [Accepted: 12/18/2016] [Indexed: 01/03/2023]
Abstract
A better understanding of HIV-1 transmission is critical for developing preventative strategies. To that end, we analyzed 524 full-length env sequences of SIVmac251 at 6 and 10 days post intrarectal infection of rhesus macaques. There was no tissue compartmentalization of founder viruses across plasma, rectal and distal lymphatic tissues for most animals; however one animal has evidence of virus tissue compartmentalization. Despite identical viral inoculums, founder viruses were animal-specific, primarily derived from rare variants in the inoculum, and have a founder virus signature that can distinguish dominant founder variants from minor founder or untransmitted variants in the inoculum. Importantly, the sequences of post-transmission defective viruses were phylogenetically associated with competent viral variants in the inoculum and were mainly converted from competent viral variants by frameshift rather than APOBEC mediated mutations, suggesting the converting the transmitted viruses into defective viruses through frameshift mutation is an important component of rectal transmission bottleneck. SIGNIFICANCE Anorectal receptive intercourse is a common route of HIV-1 transmission and a better understanding of the transmission mechanisms is critical for developing HIV-1 preventative strategies. Here, we report that there is no tissue compartmentalization of founder viruses during very early rectal transmission of SIV in the majority of rhesus macaques and founder viruses are preferentially derived from rare variant in the inoculum. We also found that founder viruses are animal-specific despite identical viral inoculums. After viruses cross the mucosal barriers, the host further reduces viral diversity by converting some of the transmitted functional viruses into defective viruses through frameshift rather than APOBEC derived mutations. To our knowledge, this is the first study of founder viruses at multiple tissue sites during very early rectal transmission.
Collapse
Affiliation(s)
- Zhe Yuan
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Fangrui Ma
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Andrew J Demers
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Dong Wang
- Dow AgroSciences, LLC, Indianapolis, IN, USA
| | - Jianqing Xu
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | | | - Qingsheng Li
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA.
| |
Collapse
|
9
|
Paxton WA. Why Are Some HIV-1 Subtypes More "Wimpy" at Causing Disease? EBioMedicine 2016; 13:27-28. [PMID: 28005534 PMCID: PMC5264308 DOI: 10.1016/j.ebiom.2016.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 10/18/2016] [Indexed: 11/24/2022] Open
Affiliation(s)
- William A Paxton
- Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, L69 7BE, UK.
| |
Collapse
|
10
|
Zeng H, Li T, Wang Y, Sun B, Yang R. The Epidemic Dynamics of Four Major Lineages of HIV-1 CRF01_AE Strains After Their Introduction into China. AIDS Res Hum Retroviruses 2016; 32:420-6. [PMID: 26830205 DOI: 10.1089/aid.2015.0212] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The epidemic of HIV-1 CRF01_AE in China was driven by multiple lineages of HIV-1 viruses introduced in the 1990s and increasing; it is important to investigate their epidemic status in China. In this study, we download all available CRF01_AE sequences (n = 2,931) from China and their associated epidemiological information in the Los Alamos HIV database for our analysis to explore their epidemic status in China. The results showed there were 11 distinct clusters of CRF01_AE strains in China, and 4 major clusters that accounted for 80.0% (1,793/2,241) of Chinese CRF01_AE strains in total had led a real epidemic. Clusters 1 and 2 were epidemic among heterosexuals and injecting drug users in southern and southwestern China, while Clusters 3 and 4 were predominant among homosexuals in eastern and central China and northeastern China, respectively. HIV-1 CRF01_AE strains detected in heterosexuals had the most complex characteristic, underscoring its important role in the occurrence of multiple CRF01_AE lineages. Furthermore, epidemic history reconstruction analysis using the birth-death susceptible-infected-removed package revealed that the four clusters had gone through varying epidemic stages. Clusters 2 and 3 were near the peak of the local epidemic, while Clusters 1 and 4 were just in the very early stage of their epidemic. The epidemic status of CRF01_AE clusters in the future is mainly determined by the effect of prevention and control. Our study provides new insights into the understanding of the epidemic dynamics of CRF01_AE in China.
Collapse
Affiliation(s)
- Haiyan Zeng
- Research Group of HIV Molecular Epidemiology and Virology, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People's Republic of China
- Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangzhou, People's Republic of China
| | - Tingting Li
- Research Group of HIV Molecular Epidemiology and Virology, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Yan Wang
- Research Group of HIV Molecular Epidemiology and Virology, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Binlian Sun
- Research Group of HIV Molecular Epidemiology and Virology, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Rongge Yang
- Research Group of HIV Molecular Epidemiology and Virology, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People's Republic of China
| |
Collapse
|
11
|
Broadly Neutralizing Antibody Responses in a Large Longitudinal Sub-Saharan HIV Primary Infection Cohort. PLoS Pathog 2016; 12:e1005369. [PMID: 26766578 PMCID: PMC4713061 DOI: 10.1371/journal.ppat.1005369] [Citation(s) in RCA: 204] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 12/07/2015] [Indexed: 11/19/2022] Open
Abstract
Broadly neutralizing antibodies (bnAbs) are thought to be a critical component of a protective HIV vaccine. However, designing vaccines immunogens able to elicit bnAbs has proven unsuccessful to date. Understanding the correlates and immunological mechanisms leading to the development of bnAb responses during natural HIV infection is thus critical to the design of a protective vaccine. The IAVI Protocol C program investigates a large longitudinal cohort of primary HIV-1 infection in Eastern and South Africa. Development of neutralization was evaluated in 439 donors using a 6 cross-clade pseudo-virus panel predictive of neutralization breadth on larger panels. About 15% of individuals developed bnAb responses, essentially between year 2 and year 4 of infection. Statistical analyses revealed no influence of gender, age or geographical origin on the development of neutralization breadth. However, cross-clade neutralization strongly correlated with high viral load as well as with low CD4 T cell counts, subtype-C infection and HLA-A*03(-) genotype. A correlation with high overall plasma IgG levels and anti-Env IgG binding titers was also found. The latter appeared not associated with higher affinity, suggesting a greater diversity of the anti-Env responses in broad neutralizers. Broadly neutralizing activity targeting glycan-dependent epitopes, largely the N332-glycan epitope region, was detected in nearly half of the broad neutralizers while CD4bs and gp41-MPER bnAb responses were only detected in very few individuals. Together the findings suggest that both viral and host factors are critical for the development of bnAbs and that the HIV Env N332-glycan supersite may be a favorable target for vaccine design.
Collapse
|
12
|
Association between gp120 envelope V1V2 and V4V5 variable loop profiles in a defined HIV-1 transmission cluster. AIDS 2015; 29:1161-71. [PMID: 26035318 DOI: 10.1097/qad.0000000000000692] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Variations in the HIV-1 gp120 Env variable loop sequences correlate with virus phenotypes associated with transmission and/or disease progression. We aimed to identify whether signature sequences could be identified in the gp120 Env between acute infection and chronic infection viruses obtained from a group of individuals infected with closely related viruses. METHODS To analyse acute infection versus chronic infection viruses, we studied a transmission cluster of 11 individuals, in which six presented during acute infection and five during chronic infection. Multiple HIV-1 gp120 Env clones were sequenced from each patient with predicted amino acid sequences compared between the groups. RESULTS Cluster analysis of V1V5 Env sequences (n = 215) identified that acute infection viruses had lower potential N-linked glycosylation site (PNGS) densities than viruses from chronic infection, with a higher amino acid length/PNGS ratio. We found a negative correlation between the V1V2 and V4V5 regions for both amino acid length (Pearson P < 0.01) and PNGS numbers (Pearson P < 0.01) during HIV-1 transmission. This association was lost following seroconversion. These findings were confirmed by analysing sequences from the Los Alamos database that were selected and grouped according to timing of transmission. This included acute infection sequences collected 0-10 days (n = 400) and chronic infection sequences 0.5-3 years postseroconversion (n = 394). CONCLUSION Our observations are consistent with a structural association between the V1V2 and V4V5 gp120 regions that is lost following viral transmission. These structural considerations should be taken into consideration when devising HIV-1 immunogens aimed at inducing protective antibody responses targeting transmitted viruses.
Collapse
|
13
|
Musich T, O'Connell O, Gonzalez-Perez MP, Derdeyn CA, Peters PJ, Clapham PR. HIV-1 non-macrophage-tropic R5 envelope glycoproteins are not more tropic for entry into primary CD4+ T-cells than envelopes highly adapted for macrophages. Retrovirology 2015; 12:25. [PMID: 25809903 PMCID: PMC4373511 DOI: 10.1186/s12977-015-0141-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 01/15/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Non-mac-tropic HIV-1 R5 viruses are predominantly transmitted and persist in immune tissue even in AIDS patients who carry highly mac-tropic variants in the brain. Non-mac-tropic R5 envelopes (Envs) require high CD4 levels for infection contrasting with highly mac-tropic Envs, which interact more efficiently with CD4 and mediate infection of macrophages that express low CD4. Non-mac-tropic R5 Envs predominantly target T-cells during transmission and in immune tissue where they must outcompete mac-tropic variants. Here, we investigated whether Env+ pseudoviruses bearing transmitted/founder (T/F), early and late disease non-mac-tropic R5 envelopes mediated more efficient infection of CD4+ T-cells compared to those with highly mac-tropic Envs. RESULTS Highly mac-tropic Envs mediated highest infectivity for primary T-cells, Jurkat/CCR5 cells, myeloid dendritic cells, macrophages, and HeLa TZM-bl cells, although this was most dramatic on macrophages. Infection of primary T-cells mediated by all Envs was low. However, infection of T-cells was greatly enhanced by increasing virus attachment with DEAE dextran and spinoculation, which enhanced the three Env+ virus groups to similar extents. Dendritic cell capture of viruses and trans-infection also greatly enhanced infection of primary T-cells. In trans-infection assays, non-mac-tropic R5 Envs were preferentially enhanced and those from late disease mediated levels of T-cell infection that were equivalent to those mediated by mac-tropic Envs. CONCLUSIONS Our results demonstrate that T/F, early or late disease non-mac-tropic R5 Envs do not preferentially mediate infection of primary CD4+ T-cells compared to highly mac-tropic Envs from brain tissue. We conclude that non-macrophage-tropism of HIV-1 R5 Envs in vitro is determined predominantly by a reduced capacity to target myeloid cells via low CD4 rather than a specific adaptation for T-cells entry that precludes macrophage infection.
Collapse
|
14
|
Xu H, Wang X, Veazey RS. Simian Immunodeficiency Virus Infection and Mucosal Immunity. Mucosal Immunol 2015. [DOI: 10.1016/b978-0-12-415847-4.00076-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
15
|
Immunogen design for HIV-1 and influenza. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:1891-1906. [PMID: 24892211 DOI: 10.1016/j.bbapap.2014.05.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 05/23/2014] [Accepted: 05/26/2014] [Indexed: 12/12/2022]
Abstract
Vaccines provide the most cost effective defense against pathogens. Although vaccines have been designed for a number of viral diseases, a vaccine against HIV-1 still remains elusive. In contrast, while there are excellent influenza vaccines, these need to be changed every few years because of antigenic drift and shift. The recent discovery of a large number of broadly neutralizing antibodies (bNAbs) and structural characterization of the conserved epitopes targeted by them presents an opportunity for structure based HIV-1 and influenza A vaccine design. We discuss strategies to design immunogens either targeting a particular antigenic region or focusing on native structure stabilization. This article is part of a Special Issue entitled: Recent advances in molecular engineering of antibody.
Collapse
|
16
|
Virion attachment and entry: HIV gp120 Env biotinylation, gp120 Env, or integrin ligand-binding assay. Methods Mol Biol 2014; 1087:3-12. [PMID: 24158809 DOI: 10.1007/978-1-62703-670-2_1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The HIV-1 entry receptors are CD4 and a chemokine receptor (CCR5 or CXCR4). In addition it has recently been demonstrated that HIV-1 gp120 binds to and signals through integrin α4β7, the gut-homing receptor (Arthos et al., Nat Immunol 9(3):301-309, 2008). Integrin α4β7 is not an entry receptor for HIV-1, although it can facilitate virion attachment to target cells (Arthos et al., Nat Immunol 9(3):301-309, 2008; Cicala et al., Proc Natl Acad Sci U S A 106:20877-20882, 2009). Recombinant HIV-1 gp120s bind to integrin α4β7 in a manner similar to its natural ligands (MAdCAM-1, V-CAM-1, fibronectin) (Andrew et al., J Immunol 153:3847-3861, 1994). gp120-α4β7 interactions are detected in a manner similar to assays developed for the natural ligands of α4β7. In this chapter we describe a method for the analysis of integrin-gp120 binding via a cell-based binding assay. In vitro ligand-integrin affinity can be modified by the presence of divalent cations (Mn(2+), Mg(2+), Ca(2+)) (Leitinger et al., Leitinger Biochim Biophys Acta 1498:91-98, 2000). Here we describe a protocol to detect biotinylated recombinant HIV-1 gp120 binding to integrin α4β7 in both primary cells and cell lines expressing the gut-homing receptor.
Collapse
|
17
|
HIV-1 autologous antibody neutralization associates with mother to child transmission. PLoS One 2013; 8:e69274. [PMID: 23874931 PMCID: PMC3714266 DOI: 10.1371/journal.pone.0069274] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 06/06/2013] [Indexed: 01/07/2023] Open
Abstract
The HIV-1 characteristics associated with mother to child transmission (MTCT) are still poorly understood and if known would indicate where intervention strategies should be targeted. In contrast to horizontally infected individuals, exposed infants possess inherited antibodies (Abs) from their mother with the potential to protect against infection. We investigated the HIV-1 gp160 envelope proteins from seven transmitting mothers (TM) whose children were infected either during gestation or soon after delivery and from four non-transmitting mothers (NTM) with similar viral loads and CD4 counts. Using pseudo-typed viruses we tested gp160 envelope glycoproteins for TZM-bl infectivity, CD4 and CCR5 interactions, DC-SIGN capture and transfer and neutralization with an array of common neutralizing Abs (NAbs) (2F5, 2G12, 4E10 and b12) as well as mother and infant plasma. We found no viral correlates associated with HIV-1 MTCT nor did we find differences in neutralization with the panel of NAbs. We did, however, find that TM possessed significantly higher plasma neutralization capacities than NTM (P = 0.002). Furthermore, we found that in utero (IU) TM had a higher neutralization capacity than mothers transmitting either peri-partum (PP) or via breastfeeding (BF) (P = 0.002). Plasma from children infected IU neutralized viruses carrying autologous gp160 viral envelopes as well as those from their corresponding mothers whilst plasma from children infected PP and/or BF demonstrated poor neutralizing capacity. Our results demonstrate heightened autologous NAb responses against gp120/gp41 can associate with a greater risk of HIV-1 MTCT and more specifically in those infants infected IU. Although the number of HIV-1 transmitting pairs is low our results indicate that autologous NAb responses in mothers and infants do not protect against MTCT and may in fact be detrimental when considering IU HIV-1 transmissions.
Collapse
|
18
|
Quantitative and qualitative differences in the T cell response to HIV in uninfected Ugandans exposed or unexposed to HIV-infected partners. J Virol 2013; 87:9053-63. [PMID: 23760253 DOI: 10.1128/jvi.00721-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
HIV-exposed and yet persistently uninfected individuals have been an intriguing, repeated observation in multiple studies, but uncertainty persists on the significance and implications of this in devising protective strategies against HIV. We carried out a cross-sectional analysis of exposed uninfected partners in a Ugandan cohort of heterosexual serodiscordant couples (37.5% antiretroviral therapy naive) comparing their T cell responses to HIV peptides with those of unexposed uninfected individuals. We used an objective definition of exposure and inclusion criteria, blinded ex vivo and cultured gamma interferon (IFN-γ) enzyme-linked immunospot assays, and multiparameter flow cytometry and intracellular cytokine staining to investigate the features of the HIV-specific response in exposed versus unexposed uninfected individuals. A response rate to HIV was detectable in unexposed uninfected (5.7%, 95% confidence interval [CI] = 3.3 to 8.1%) and, at a significantly higher level (12.5%, 95% CI = 9.7 to 15.4%, P = 0.0004), in exposed uninfected individuals. The response rate to Gag was significantly higher in exposed uninfected (10/50 [20.%]) compared to unexposed uninfected (1/35 [2.9%]) individuals (P = 0.0004). The magnitude of responses was also greater in exposed uninfected individuals but not statistically significant. The average number of peptide pools recognized was significantly higher in exposed uninfected subjects than in unexposed uninfected subjects (1.21 versus 0.47; P = 0.0106). The proportion of multifunctional responses was different in the two groups, with a higher proportion of single cytokine responses, mostly IFN-γ, in unexposed uninfected individuals compared to exposed uninfected individuals. Our findings demonstrate both quantitative and qualitative differences in T cell reactivity to HIV between HESN (HIV exposed seronegative) and HUSN (HIV unexposed seronegative) subject groups but do not discriminate as to whether they represent markers of exposure or of protection against HIV infection.
Collapse
|
19
|
Wang Y, Rawi R, Wilms C, Heider D, Yang R, Hoffmann D. A small set of succinct signature patterns distinguishes Chinese and non-Chinese HIV-1 genomes. PLoS One 2013; 8:e58804. [PMID: 23527028 PMCID: PMC3602349 DOI: 10.1371/journal.pone.0058804] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Accepted: 02/06/2013] [Indexed: 11/18/2022] Open
Abstract
The epidemiology of HIV-1 in China has unique features that may have led to unique viral strains. We therefore tested the hypothesis that it is possible to find distinctive patterns in HIV-1 genomes sampled in China. Using a rule inference algorithm we could indeed extract from sequences of the third variable loop (V3) of HIV-1 gp120 a set of 14 signature patterns that with 89% accuracy distinguished Chinese from non-Chinese sequences. These patterns were found to be specific to HIV-1 subtype, i.e. sequences complying with pattern 1 were of subtype B, pattern 2 almost exclusively covered sequences of subtype 01_AE, etc. We then analyzed the first of these signature patterns in depth, namely that L and W at two V3 positions are specifically occurring in Chinese sequences of subtype B/B' (3% false positives). This pattern was found to be in agreement with the phylogeny of HIV-1 of subtype B inside and outside of China. We could neither reject nor convincingly confirm that the pattern is stabilized by immune escape. For further interpretation of the signature pattern we used the recently developed measure of Direct Information, and in this way discovered evidence for physical interactions between V2 and V3. We conclude by a discussion of limitations of signature patterns, and the applicability of the approach to other genomic regions and other countries.
Collapse
Affiliation(s)
- Yan Wang
- Research Group Bioinformatics, Center for Medical Biology, University of Duisburg-Essen, Essen, Germany
- AIDS and HIV Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, P. R. China
| | - Reda Rawi
- Research Group Bioinformatics, Center for Medical Biology, University of Duisburg-Essen, Essen, Germany
| | - Christoph Wilms
- Research Group Bioinformatics, Center for Medical Biology, University of Duisburg-Essen, Essen, Germany
| | - Dominik Heider
- Research Group Bioinformatics, Center for Medical Biology, University of Duisburg-Essen, Essen, Germany
| | - Rongge Yang
- AIDS and HIV Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, P. R. China
- * E-mail: (RY); (DH)
| | - Daniel Hoffmann
- Research Group Bioinformatics, Center for Medical Biology, University of Duisburg-Essen, Essen, Germany
- * E-mail: (RY); (DH)
| |
Collapse
|
20
|
Mota TM, Murray JM, Center RJ, Purcell DFJ, McCaw JM. Application of a case-control study design to investigate genotypic signatures of HIV-1 transmission. Retrovirology 2012; 9:54. [PMID: 22731404 PMCID: PMC3419081 DOI: 10.1186/1742-4690-9-54] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 06/25/2012] [Indexed: 12/03/2022] Open
Abstract
Background The characterization of HIV-1 transmission strains may inform the design of an effective vaccine. Shorter variable loops with fewer predicted glycosites have been suggested as signatures enriched in envelope sequences derived during acute HIV-1 infection. Specifically, a transmission-linked lack of glycosites within the V1 and V2 loops of gp120 provides greater access to an α4β7 binding motif, which promotes the establishment of infection. Also, a histidine at position 12 in the leader sequence of Env has been described as a transmission signature that is selected against during chronic infection. The purpose of this study is to measure the association of the presence of an α4β7 binding motif, the number of N-linked glycosites, the length of the variable loops, and the prevalence of histidine at position 12 with HIV-1 transmission. A case–control study design was used to measure the prevalence of these variables between subtype B and C transmission sequences and frequency-matched randomly-selected sequences derived from chronically infected controls. Results Subtype B transmission strains had shorter V3 regions than chronic strains (p = 0.031); subtype C transmission strains had shorter V1 loops than chronic strains (p = 0.047); subtype B transmission strains had more V3 loop glycosites (p = 0.024) than chronic strains. Further investigation showed that these statistically significant results were unlikely to be biologically meaningful. Also, there was no difference observed in the prevalence of a histidine at position 12 among transmission strains and controls of either subtype. Conclusions Although a genetic bottleneck is observed after HIV-1 transmission, our results indicate that summary characteristics of Env hypothesised to be important in transmission are not divergent between transmission and chronic strains of either subtype. The success of a transmission strain to initiate infection may be a random event from the divergent pool of donor viral sequences. The characteristics explored through this study are important, but may not function as genotypic signatures of transmission as previously described.
Collapse
Affiliation(s)
- Talia M Mota
- Department of Microbiology and Immunology, University of Melbourne, Parkville, VIC 3010, Australia
| | | | | | | | | |
Collapse
|
21
|
Kishko M, Somasundaran M, Brewster F, Sullivan JL, Clapham PR, Luzuriaga K. Genotypic and functional properties of early infant HIV-1 envelopes. Retrovirology 2011; 8:67. [PMID: 21843318 PMCID: PMC3189118 DOI: 10.1186/1742-4690-8-67] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Accepted: 08/15/2011] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Understanding the properties of HIV-1 variants that are transmitted from women to their infants is crucial to improving strategies to prevent transmission. In this study, 162 full-length envelope (env) clones were generated from plasma RNA obtained from 5 HIV-1 Clade B infected mother-infant pairs. Following extensive genotypic and phylogenetic analyses, 35 representative clones were selected for functional studies. RESULTS Infant quasispecies were highly homogeneous and generally represented minor maternal variants, consistent with transmission across a selective bottleneck. Infant clones did not differ from the maternal in env length, or glycosylation. All infant variants utilized the CCR5 co-receptor, but were not macrophage tropic. Relatively high levels (IC₅₀ ≥ 100 μg/ml) of autologous maternal plasma IgG were required to neutralize maternal and infant viruses; however, all infant viruses were neutralized by pooled sera from HIV-1 infected individuals, implying that they were not inherently neutralization-resistant. All infant viruses were sensitive to the HIV-1 entry inhibitors Enfuvirtide and soluble CD4; none were resistant to Maraviroc. Sensitivity to human monoclonal antibodies 4E10, 2F5, b12 and 2G12 varied. CONCLUSIONS This study provides extensive characterization of the genotypic and functional properties of HIV-1 env shortly after transmission. We present the first detailed comparisons of the macrophage tropism of infant and maternal env variants and their sensitivity to Maraviroc, the only CCR5 antagonist approved for therapeutic use. These findings may have implications for improving approaches to prevent mother-to-child HIV-1 transmission.
Collapse
Affiliation(s)
- Michael Kishko
- Graduate School of Biomedical Sciences, University of Massachusetts Medical School, Worcester, MA, USA
| | - Mohan Somasundaran
- Department of Pediatrics, University of Massachusetts Medical School, Worcester, MA, USA
| | - Frank Brewster
- Department of Pediatrics, University of Massachusetts Medical School, Worcester, MA, USA
| | - John L Sullivan
- Department of Pediatrics, University of Massachusetts Medical School, Worcester, MA, USA
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Paul R Clapham
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Katherine Luzuriaga
- Department of Pediatrics, University of Massachusetts Medical School, Worcester, MA, USA
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
22
|
Chopera DR, Wright JK, Brockman MA, Brumme ZL. Immune-mediated attenuation of HIV-1. Future Virol 2011; 6:917-928. [PMID: 22393332 DOI: 10.2217/fvl.11.68] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Immune escape mutations selected by human leukocyte antigen class I-restricted CD8(+) cytotoxic T lymphocytes (CTLs) can result in biologically and clinically relevant costs to HIV-1 replicative fitness. This phenomenon may be exploited to design an HIV-1 vaccine capable of stimulating effective CTL responses against highly conserved, mutationally constrained viral regions, where immune escape could occur only at substantial functional costs. Such a vaccine might 'channel' HIV-1 evolution towards a less-fit state, thus lowering viral load set points, attenuating the infection course and potentially reducing the risk of transmission. A major barrier to this approach, however, is the accumulation of immune escape variants at the population level, possibly leading to the loss of immunogenic CTL epitopes and diminished vaccine-induced cellular immune responses as the epidemic progresses. Here, we review the evidence supporting CTL-driven replicative defects in HIV-1 and consider the implications of this work for CTL-based vaccines designed to attenuate the infection course.
Collapse
|
23
|
English S, Katzourakis A, Bonsall D, Flanagan P, Duda A, Fidler S, Weber J, McClure M, Phillips R, Frater J. Phylogenetic analysis consistent with a clinical history of sexual transmission of HIV-1 from a single donor reveals transmission of highly distinct variants. Retrovirology 2011; 8:54. [PMID: 21736738 PMCID: PMC3161944 DOI: 10.1186/1742-4690-8-54] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Accepted: 07/07/2011] [Indexed: 01/27/2023] Open
Abstract
Background To combat the pandemic of human immunodeficiency virus 1 (HIV-1), a successful vaccine will need to cope with the variability of transmissible viruses. Human hosts infected with HIV-1 potentially harbour many viral variants but very little is known about viruses that are likely to be transmitted, or even if there are viral characteristics that predict enhanced transmission in vivo. We show for the first time that genetic divergence consistent with a single transmission event in vivo can represent several years of pre-transmission evolution. Results We describe a highly unusual case consistent with a single donor transmitting highly related but distinct HIV-1 variants to two individuals on the same evening. We confirm that the clustering of viral genetic sequences, present within each recipient, is consistent with the history of a single donor across the viral env, gag and pol genes by maximum likelihood and Bayesian Markov Chain Monte Carlo based phylogenetic analyses. Based on an uncorrelated, lognormal relaxed clock of env gene evolution calibrated with other datasets, the time since the most recent common ancestor is estimated as 2.86 years prior to transmission (95% confidence interval 1.28 to 4.54 years). Conclusion Our results show that an effective design for a preventative vaccine will need to anticipate extensive HIV-1 diversity within an individual donor as well as diversity at the population level.
Collapse
Affiliation(s)
- Suzanne English
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, Oxford University, South Parks Road, Oxford, OX1 3SY, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Kourtis AP, Amedee AM, Bulterys M, Danner S, Van Dyke R, O'Sullivan MJ, Maupin R, Jamieson DJ. Various viral compartments in HIV-1-infected mothers contribute to in utero transmission of HIV-1. AIDS Res Hum Retroviruses 2011; 27:421-7. [PMID: 21034247 DOI: 10.1089/aid.2010.0160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Perinatal HIV transmission occurs in utero or intrapartum. The mechanisms and timing of transmission are not clearly understood. To compare the genetic sequences of the V3 envelope region of infant's plasma HIV to that of the mother's plasma, peripheral blood mononuclear cells (PBMC) and vaginal secretions, and correlate with timing of transmission. All 3 infants had a positive HIV PCR in the first days of life, thus classified as in utero infections. In the first mother-infant pair, two different variants were present in the infant, one correlating with maternal PBMC virus and highly homologous to virus from vaginal secretions and the other identical to sequences in maternal plasma. In the second pair, the infant plasma virus was similar to that of maternal PBMC. In the third pair, the cord blood and infant plasma virus were highly similar to maternal vaginal virus. The presence of more than one HIV variant from the maternal blood and from the vaginal compartment in the cord blood of infants presumably infected in utero could point to more than one episode of transmission or, alternatively, to transmission of PBMC virus.
Collapse
Affiliation(s)
- Athena P. Kourtis
- Division of Reproductive Health, National Center for Chronic Disease Prevention and Health Promotion, Atlanta, Georgia
| | - Angela Martin Amedee
- Department of Microbiology, Immunology, and Parisitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Marc Bulterys
- Global AIDS Program, Center for Global Health, CDC, Beijing, China
- Division of HIV/AIDS Prevention, National Center for HIV, Viral Hepatitis, STD and Tuberculosis Prevention, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia
| | - Susan Danner
- Division of HIV/AIDS Prevention, National Center for HIV, Viral Hepatitis, STD and Tuberculosis Prevention, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia
| | - Russell Van Dyke
- Department of Pediatrics, Tulane University Health Sciences Center, New Orleans, Louisiana
| | | | - Robert Maupin
- Department of Microbiology, Immunology, and Parisitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Denise J. Jamieson
- Division of Reproductive Health, National Center for Chronic Disease Prevention and Health Promotion, Atlanta, Georgia
| |
Collapse
|
25
|
Ariën KK, Jespers V, Vanham G. HIV sexual transmission and microbicides. Rev Med Virol 2011; 21:110-33. [PMID: 21412935 DOI: 10.1002/rmv.684] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 01/25/2011] [Accepted: 01/26/2011] [Indexed: 12/12/2022]
Abstract
Pathogens often rely on the contacts between hosts for transmission. Most viruses have adapted their transmission mechanisms to defined behaviours of their host(s) and have learned to exploit these for their own propagation. Some viruses, such as HIV, the human papillomavirus (HPV), HSV-2 and HCV, cause sexually transmitted infections (STIs). Understanding the transmission of particular viral variants and comprehending the early adaptation and evolution is fundamental to eventually inhibiting sexual transmission of HIV. Here, we review the current understanding of the mechanisms of sexual transmission and the biology of the transmitted HIV. Next, we present a timely overview of candidate microbicides, including past, ongoing and future clinical trials of HIV topical microbicides.
Collapse
Affiliation(s)
- Kevin K Ariën
- Virology Unit, Department of Microbiology, Institute of Tropical Medicine, Antwerpen, Belgium.
| | | | | |
Collapse
|
26
|
Nawaz F, Cicala C, Van Ryk D, Block KE, Jelicic K, McNally JP, Ogundare O, Pascuccio M, Patel N, Wei D, Fauci AS, Arthos J. The genotype of early-transmitting HIV gp120s promotes α (4) β(7)-reactivity, revealing α (4) β(7) +/CD4+ T cells as key targets in mucosal transmission. PLoS Pathog 2011; 7:e1001301. [PMID: 21383973 PMCID: PMC3044691 DOI: 10.1371/journal.ppat.1001301] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Accepted: 01/19/2011] [Indexed: 12/24/2022] Open
Abstract
Mucosal transmission of HIV is inefficient. The virus must breach physical barriers before it infects mucosal CD4+ T cells. Low-level viral replication occurs initially in mucosal CD4+ T cells, but within days high-level replication occurs in Peyer's patches, the gut lamina propria and mesenteric lymph nodes. Understanding the early events in HIV transmission may provide valuable information relevant to the development of an HIV vaccine. The viral quasispecies in a donor contracts through a genetic bottleneck in the recipient, such that, in low-risk settings, infection is frequently established by a single founder virus. Early-transmitting viruses in subtypes A and C mucosal transmission tend to encode gp120s with reduced numbers of N-linked glycosylation sites at specific positions throughout the V1-V4 domains, relative to typical chronically replicating isolates in the donor quasispecies. The transmission advantage gained by the absence of these N-linked glycosylation sites is unknown. Using primary α4β7+/CD4+ T cells and a flow-cytometry based steady-state binding assay we show that the removal of transmission-associated N-linked glycosylation sites results in large increases in the specific reactivity of gp120 for integrin- α4β7. High-affinity for integrin α4β7, although not found in many gp120s, was observed in early-transmitting gp120s that we analyzed. Increased α4β7 affinity is mediated by sequences encoded in gp120 V1/V2. α4β7-reactivity was also influenced by N-linked glycosylation sites located in C3/V4. These results suggest that the genetic bottleneck that occurs after transmission may frequently involve a relative requirement for the productive infection of α4β7+/CD4+ T cells. Early-transmitting gp120s were further distinguished by their dependence on avidity-effects to interact with CD4, suggesting that these gp120s bear unusual structural features not present in many well-characterized gp120s derived from chronically replicating viruses. Understanding the structural features that characterize early-transmitting gp120s may aid in the design of an effective gp120-based subunit vaccine. In the first days following sexual transmission, HIV replication occurs initially at relatively low levels in mucosal tissues because of a paucity of CD4+ T cell targets for the virus to infect. After a period of days, virus accesses specific gut tissues that are enriched in activated CD4+ T cells, where near-exponential replication ensues. The period of time before HIV accesses gut tissues represents a window of opportunity where a microbicide, pre-exposure and/or post-exposure antiretroviral prophylaxis or a vaccine-induced immune response could block infection. We previously reported that the HIV envelope protein gp120 binds to integrin α4β7 on the surface of CD4+ T cells. α4β7 mediates the homing of CD4+ T cells into the gut tissues where HIV can replicate exponentially. Here we report that the genotypic features that distinguish viruses isolated within the first month after infection, termed early-transmitting isolates, promote increased steady-state reactivity with α4β7. This property likely provides these viruses with enhanced transmission-fitness. These results suggest that the infection of α4β7+/CD4+ T cells can play an important role early in HIV transmission. These findings have potentially important implications in the design of interventions to block the mucosal transmission of HIV.
Collapse
Affiliation(s)
- Fatima Nawaz
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- New York University School of Medicine Sackler Institute of Graduate Biomedical Sciences, New York, New York, United States of America
| | - Claudia Cicala
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Donald Van Ryk
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Katharine E. Block
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Katija Jelicic
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jonathan P. McNally
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Olajumoke Ogundare
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Massimiliano Pascuccio
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Nikita Patel
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Danlan Wei
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Anthony S. Fauci
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - James Arthos
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
27
|
Cicala C, Arthos J, Fauci AS. HIV-1 envelope, integrins and co-receptor use in mucosal transmission of HIV. J Transl Med 2011; 9 Suppl 1:S2. [PMID: 21284901 PMCID: PMC3105502 DOI: 10.1186/1479-5876-9-s1-s2] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
It is well established that HIV-1 infection typically involves an interaction between the viral envelope protein gp120/41 and the CD4 molecule followed by a second interaction with a chemokine receptor, usually CCR5 or CXCR4. In the early stages of an HIV-1 infection CCR5 using viruses (R5 viruses) predominate. In some viral subtypes there is a propensity to switch to CXCR4 usage (X4 viruses). The receptor switch occurs in ~ 40% of the infected individuals and is associated with faster disease progression. This holds for subtypes B and D, but occurs less frequently in subtypes A and C. There are several hypotheses to explain the preferential transmission of R5 viruses and the mechanisms that lead to switching of co-receptor usage; however, there is no definitive explanation for either. One important consideration regarding transmission is that signaling by R5 gp120 may facilitate transmission of R5 viruses by inducing a permissive environment for HIV replication. In the case of sexual transmission, infection by HIV requires the virus to breach the mucosal barrier to gain access to the immune cell targets that it infects; however, the immediate events that follow HIV exposure at genital mucosal sites are not well understood. Upon transmission, the HIV quasispecies that is replicating in an infected donor contracts through a “genetic bottleneck”, and often infection results from a single infectious event. Many details surrounding this initial infection remain unresolved. In mucosal tissues, CD4+ T cells express high levels of CCR5, and a subset of these CD4+/CCR5high cells express the integrin α4β7, the gut homing receptor. CD4+/CCR5high/ α4β7high T cells are highly susceptible to infection by HIV-1 and are ideal targets for an efficient productive infection at the point of transmission. In this context we have demonstrated that the HIV-1 envelope protein gp120 binds to α4β7 on CD4+ T cells. On CD4+/CCR5high/ α4β7high T cells, α4β7 is closely associated with CD4 and CCR5. Furthermore, α4β7 is ~3 times the size of CD4 on the cell surface, that makes it a prominent receptor for an efficient virus capture. gp120-α4β7 interactions mediate the activation of the adhesion-associated integrin LFA-1. LFA-1 facilitates the formation of virological synapses and cell-to-cell spread of HIV-1. gp120 binding to α4β7 is mediated by a tripeptide located in the V1/V2 domain of gp120. Of note, the V1/V2 domain of gp120 has been linked to variations in transmission fitness among viral isolates raising the intriguing possibility that gp120-α4β7 interactions may be linked to transmission fitness. Although many details remain unresolved, we hypothesize that gp120-α4β7 interactions play an important role in the very early events following sexual transmission of HIV and may have important implication in the design of vaccine strategies for the prevention of acquisition of HIV infection
Collapse
Affiliation(s)
- Claudia Cicala
- Laboratory of Immunoregulation National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
28
|
Abstract
More than 400,000 children were infected with (HIV-1) worldwide in 2008, or more than 1000 children per day. Mother-to-child transmission (MTCT) of HIV-1 is the most important mode of HIV acquisition in infants and children. MTCT of HIV-1 can occur in utero, intrapartum, and postnatally through breastfeeding. Great progress has been made in preventing such transmission, through the use of antiretroviral prophylactic regimens to the mother during gestation and labor and delivery and to either mother or infant during breast feeding. The timing and mechanisms of transmission, however, are multifactorial and remain incompletely understood. This article summarizes what is known about the pathogenetic mechanisms and routes of MTCT of HIV-1, and includes virologic, immunologic, genetic, and mucosal aspects of transmission.
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW This review summarizes research literature regarding mucosal immunity to HIV and simian immunodeficiency virus (SIV), with an emphasis on work published within the past 18 months. RECENT FINDINGS Notable recent studies have focused on the pivotal events occurring within mucosal tissues during acute HIV/SIV infection that serve to establish a balance between detrimental immune activation and beneficial adaptive responses. In cervicovaginal mucosa, an early inflammatory response leads to recruitment of susceptible target cells. At this acute stage, the in-vivo ratio between CD8 effector cells and infected CD4 T-cells may be critical for limiting viral dissemination. Acute infection is also accompanied by loss of germinal center architecture and T/B cell apoptosis in Peyer's patches of the gastrointestinal tract. During chronic infection, mucosal CD8 T-cells may play a role in immune control, as suggested by studies of elite controllers. SUMMARY Mucosal tissues serve as the major portal of entry for HIV, and house a majority of the body's lymphocytes, including CD4 T-cells that are targets for infection. Recent studies have focused renewed attention on events occurring immediately after transmission, and underscore the concept that the balance between inflammation and protective immunity is established by host responses in mucosal tissues.
Collapse
|
30
|
Arnott A, Jardine D, Wilson K, Gorry PR, Merlin K, Grey P, Law MG, Dax EM, Kelleher AD, Smith DE, McPhee DA, and the Pulse Study Team. High viral fitness during acute HIV-1 infection. PLoS One 2010; 5. [PMID: 20844589 PMCID: PMC2936565 DOI: 10.1371/journal.pone.0012631] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Accepted: 08/07/2010] [Indexed: 11/26/2022] Open
Abstract
Several clinical studies have shown that, relative to disease progression, HIV-1 isolates that are less fit are also less pathogenic. The aim of the present study was to investigate the relationship between viral fitness and control of viral load (VL) in acute and early HIV-1 infection. Samples were obtained from subjects participating in two clinical studies. In the PULSE study, antiretroviral therapy (ART) was initiated before, or no later than six months following seroconversion. Subjects then underwent multiple structured treatment interruptions (STIs). The PHAEDRA study enrolled and monitored a cohort of individuals with documented evidence of primary infection. The subset chosen were individuals identified no later than 12 months following seroconversion to HIV-1, who were not receiving ART. The relative fitness of primary isolates obtained from study participants was investigated ex vivo. Viral DNA production was quantified using a novel real time PCR assay. Following intermittent ART, the fitness of isolates obtained from 5 of 6 PULSE subjects decreased over time. In contrast, in the absence of ART the fitness of paired isolates obtained from 7 of 9 PHAEDRA subjects increased over time. However, viral fitness did not correlate with plasma VL. Most unexpected was the high relative fitness of isolates obtained at Baseline from PULSE subjects, before initiating ART. It is widely thought that the fitness of strains present during the acute phase is low relative to strains present during chronic HIV-1 infection, due to the bottleneck imposed upon transmission. The results of this study provide evidence that the relative fitness of strains present during acute HIV-1 infection may be higher than previously thought. Furthermore, that viral fitness may represent an important clinical parameter to be considered when deciding whether to initiate ART during early HIV-1 infection.
Collapse
Affiliation(s)
- Alicia Arnott
- National Serology Reference Laboratory, St Vincent’s Institute, Melbourne, Victoria, Australia
- Department of Microbiology, Monash University, Melbourne, Victoria, Australia
| | - Darren Jardine
- National Serology Reference Laboratory, St Vincent’s Institute, Melbourne, Victoria, Australia
| | - Kim Wilson
- National Serology Reference Laboratory, St Vincent’s Institute, Melbourne, Victoria, Australia
| | - Paul R. Gorry
- Burnet Institute, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, Australia
- Department of Medicine, Monash University, Melbourne, Victoria, Australia
| | - Kate Merlin
- National Centre in HIV Epidemiology and Clinical Research, University of New South Wales, Sydney, New South Wales, Australia
| | - Patricia Grey
- National Centre in HIV Epidemiology and Clinical Research, University of New South Wales, Sydney, New South Wales, Australia
| | - Matthew G. Law
- National Centre in HIV Epidemiology and Clinical Research, University of New South Wales, Sydney, New South Wales, Australia
| | - Elizabeth M. Dax
- National Serology Reference Laboratory, St Vincent’s Institute, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, Australia
| | - Anthony D. Kelleher
- National Centre in HIV Epidemiology and Clinical Research, University of New South Wales, Sydney, New South Wales, Australia
- St. Vincent’s Centre for Applied Medical Research, Sydney, New South Wales, Australia
| | - Don E. Smith
- National Centre in HIV Epidemiology and Clinical Research, University of New South Wales, Sydney, New South Wales, Australia
| | - Dale A. McPhee
- National Serology Reference Laboratory, St Vincent’s Institute, Melbourne, Victoria, Australia
- Department of Microbiology, Monash University, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, Australia
- * E-mail:
| | | |
Collapse
|
31
|
Binley JM, Ban YEA, Crooks ET, Eggink D, Osawa K, Schief WR, Sanders RW. Role of complex carbohydrates in human immunodeficiency virus type 1 infection and resistance to antibody neutralization. J Virol 2010; 84:5637-55. [PMID: 20335257 PMCID: PMC2876609 DOI: 10.1128/jvi.00105-10] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Accepted: 03/15/2010] [Indexed: 11/20/2022] Open
Abstract
Complex N-glycans flank the receptor binding sites of the outer domain of HIV-1 gp120, ostensibly forming a protective "fence" against antibodies. Here, we investigated the effects of rebuilding this fence with smaller glycoforms by expressing HIV-1 pseudovirions from a primary isolate in a human cell line lacking N-acetylglucosamine transferase I (GnTI), the enzyme that initiates the conversion of oligomannose N-glycans into complex N-glycans. Thus, complex glycans, including those that surround the receptor binding sites, are replaced by fully trimmed oligomannose stumps. Conversely, the untrimmed oligomannoses of the silent domain of gp120 are likely to remain unchanged. For comparison, we produced a mutant virus lacking a complex N-glycan of the V3 loop (N301Q). Both variants exhibited increased sensitivities to V3 loop-specific monoclonal antibodies (MAbs) and soluble CD4. The N301Q virus was also sensitive to "nonneutralizing" MAbs targeting the primary and secondary receptor binding sites. Endoglycosidase H treatment resulted in the removal of outer domain glycans from the GnTI- but not the parent Env trimers, and this was associated with a rapid and complete loss in infectivity. Nevertheless, the glycan-depleted trimers could still bind to soluble receptor and coreceptor analogs, suggesting a block in post-receptor binding conformational changes necessary for fusion. Collectively, our data show that the antennae of complex N-glycans serve to protect the V3 loop and CD4 binding site, while N-glycan stems regulate native trimer conformation, such that their removal can lead to global changes in neutralization sensitivity and, in extreme cases, an inability to complete the conformational rearrangements necessary for infection.
Collapse
Affiliation(s)
- James M Binley
- Torrey Pines Institute for Molecular Studies, 3550 General Atomics Court, San Diego, CA 92121, USA.
| | | | | | | | | | | | | |
Collapse
|
32
|
Zhang H, Rola M, West JT, Tully DC, Kubis P, He J, Kankasa C, Wood C. Functional properties of the HIV-1 subtype C envelope glycoprotein associated with mother-to-child transmission. Virology 2010; 400:164-74. [PMID: 20096914 PMCID: PMC2844456 DOI: 10.1016/j.virol.2009.12.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Revised: 11/16/2009] [Accepted: 12/14/2009] [Indexed: 01/19/2023]
Abstract
Understanding the properties of viruses capable of establishing infection during perinatal transmission of HIV-1 is critical for designing effective means of limiting transmission. We previously demonstrated that the newly transmitted viruses (in infant) were more fit in growth, as imparted by their envelope glycoproteins, than those in their corresponding mothers. Here, we further characterized the viral envelope glycoproteins from six mother-infant transmission pairs and determined whether any specific envelope functions correlate with HIV-1 subtype C perinatal transmission. We found that most newly transmitted viruses were less susceptible to neutralization by their maternal plasma compared to contemporaneous maternal viruses. However, the newly transmitted variants were sensitive to neutralization by pooled heterologous plasma but in general were resistant to IgG1 b12. Neither Env processing nor incorporation efficiency was predictive of viral transmissibility. These findings provide further insight into the characteristics of perinatally transmissible HIV-1 and may have implications for intervention approaches.
Collapse
Affiliation(s)
- Hong Zhang
- Nebraska Center for Virology, University of Nebraska, Lincoln, NE
- The School of Biological Sciences, University of Nebraska, Lincoln, NE
| | - Marzena Rola
- Nebraska Center for Virology, University of Nebraska, Lincoln, NE
- The School of Biological Sciences, University of Nebraska, Lincoln, NE
| | - John T. West
- University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Damien C. Tully
- Nebraska Center for Virology, University of Nebraska, Lincoln, NE
- The School of Biological Sciences, University of Nebraska, Lincoln, NE
| | - Piotr Kubis
- Nebraska Center for Virology, University of Nebraska, Lincoln, NE
- The School of Biological Sciences, University of Nebraska, Lincoln, NE
| | - Jun He
- Nebraska Center for Virology, University of Nebraska, Lincoln, NE
- The School of Biological Sciences, University of Nebraska, Lincoln, NE
| | - Chipepo Kankasa
- Department of Pediatrics, University Teaching Hospital, Lusaka, Zambia
| | - Charles Wood
- Nebraska Center for Virology, University of Nebraska, Lincoln, NE
- The School of Biological Sciences, University of Nebraska, Lincoln, NE
| |
Collapse
|