1
|
Mickens KL, Dillon SM, Guo K, Thompson AN, Barrett BS, Wood C, Kechris K, Santiago ML, Wilson CC. Death and survival of gut CD4 T cells following HIV-1 infection ex vivo. PNAS NEXUS 2024; 3:pgae486. [PMID: 39780917 PMCID: PMC11707799 DOI: 10.1093/pnasnexus/pgae486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 10/09/2024] [Indexed: 01/11/2025]
Abstract
The gastrointestinal tract is ground zero for the massive and sustained CD4 T cell depletion during acute HIV-1 infection. To date, the molecular mechanisms governing this fundamental pathogenic process remain unclear. HIV-1 infection in the gastrointestinal tract is associated with chronic inflammation due to a disrupted epithelial barrier that results in microbial translocation. Here, we utilized the lamina propria aggregate culture model to demonstrate that the profound induction of granzyme B by bacteria in primary gut CD4 T cells ex vivo significantly contributes to HIV-1-mediated CD4 T cell death. Counterintuitively, a substantial fraction of gut granzyme B+ CD4 T cells harboring high levels of HIV-1 infection survive via a pathway linked to CD120b/TNFR2. Our findings underscore previously undescribed mechanisms governing the death and survival of gut CD4 T cells during HIV-1 infection that could inform strategies to counter HIV-1 pathogenesis and persistence in this critical tissue compartment.
Collapse
Affiliation(s)
- Kaylee L Mickens
- Division of Infectious Diseases, Department of Medicine, University of Colorado School of Medicine, 12700 E 19th Ave, Mail Stop B168, Aurora, CO 80045, USA
- Department of Immunology and Microbiology, University of Colorado School of Medicine, 12800 E 19th Avenue, Mail Stop 8333, Aurora, CO 80045, USA
| | - Stephanie M Dillon
- Division of Infectious Diseases, Department of Medicine, University of Colorado School of Medicine, 12700 E 19th Ave, Mail Stop B168, Aurora, CO 80045, USA
| | - Kejun Guo
- Division of Infectious Diseases, Department of Medicine, University of Colorado School of Medicine, 12700 E 19th Ave, Mail Stop B168, Aurora, CO 80045, USA
| | - Ashley N Thompson
- Division of Infectious Diseases, Department of Medicine, University of Colorado School of Medicine, 12700 E 19th Ave, Mail Stop B168, Aurora, CO 80045, USA
- Department of Immunology and Microbiology, University of Colorado School of Medicine, 12800 E 19th Avenue, Mail Stop 8333, Aurora, CO 80045, USA
| | - Bradley S Barrett
- Division of Infectious Diseases, Department of Medicine, University of Colorado School of Medicine, 12700 E 19th Ave, Mail Stop B168, Aurora, CO 80045, USA
| | - Cheyret Wood
- Department of Biostatistics and Informatics, Center for Innovative Design and Analysis, 13001 E 17th Place, Mail Stop B119, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Katerina Kechris
- Department of Biostatistics and Informatics, Center for Innovative Design and Analysis, 13001 E 17th Place, Mail Stop B119, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Mario L Santiago
- Division of Infectious Diseases, Department of Medicine, University of Colorado School of Medicine, 12700 E 19th Ave, Mail Stop B168, Aurora, CO 80045, USA
- Department of Immunology and Microbiology, University of Colorado School of Medicine, 12800 E 19th Avenue, Mail Stop 8333, Aurora, CO 80045, USA
| | - Cara C Wilson
- Division of Infectious Diseases, Department of Medicine, University of Colorado School of Medicine, 12700 E 19th Ave, Mail Stop B168, Aurora, CO 80045, USA
- Department of Immunology and Microbiology, University of Colorado School of Medicine, 12800 E 19th Avenue, Mail Stop 8333, Aurora, CO 80045, USA
| |
Collapse
|
2
|
Elmahdi R, Kochhar GS, Iversen AT, Allin KH, Dulai PS, Desai A, Jess T. Development of Inflammatory Bowel Disease in HIV Patients: A Danish Cohort Study (1983-2018) With American Validation (1999-2018). GASTRO HEP ADVANCES 2022; 1:1114-1121. [PMID: 36531445 PMCID: PMC9757766 DOI: 10.1016/j.gastha.2022.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/08/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND AIMS Human immunodeficiency virus (HIV) infection is associated with several immune-mediated disorders. However, the risk of inflammatory bowel disease (IBD) in people living with HIV (PLWH) remains unclear. We aimed to assess the risk of IBD among PLWH using a nationwide, population-based Danish cohort and to validate findings in a large American insurance-based database. METHODS Using Danish registries (1983-2018), we identified 8995 PLWH and age- and sex-matched them to 449,750 HIV-negative individuals. Cox regression analysis was undertaken to calculate hazard ratios (HRs) with 95% confidence intervals (CIs) for IBD diagnosis. Results were stratified by sex, age, and year of HIV diagnosis. Using an American insurance-based cohort, Explorys (1999-2018), we assessed the prevalence odds ratio (OR) and 95% CI of IBD diagnosis in PLWH compared with HIV-negative individuals. RESULTS IBD diagnosis among PLWH in Denmark was increased (HR: 2.25, 95% CI: 1.78-2.83) compared with matched HIV-negative individuals. This was seen for both Crohn's disease (HR: 2.25, 95% CI: 1.47-3.44) and ulcerative colitis (HR: 2.24, 95% CI: 1.70-2.96) and in male (HR: 2.75, 95% CI: 2.15-3.52) but not female (HR: 0.93, 95% CI: 0.48-1.79) PLWH. Explorys analysis also showed an increased odds of IBD diagnoses among PLWH (OR: 1.41; 95% CI: 1.35-1.49). CONCLUSION This study finds an increased risk of IBD diagnosis among PLWH in both a Danish and US cohort, highlighting a need to consider IBD in PLWH with new-onset gastrointestinal symptoms. Further research into the role of antiretroviral therapy in this relationship is required.
Collapse
Affiliation(s)
- Rahma Elmahdi
- Department of Clinical Medicine, Center for the Molecular Prediction of Inflammatory Bowel Disease (PREDICT), Aalborg University, Copenhagen, Denmark
- Department for Lung and Infectious Disease Medicine, Nordsjællands Hospital, Hillerød, Denmark
| | - Gursimran S. Kochhar
- Division of Gastroenterology, Allegheny Health Network, Pittsburgh, Pennsylvania
| | - Aske T. Iversen
- Department of Clinical Medicine, Center for the Molecular Prediction of Inflammatory Bowel Disease (PREDICT), Aalborg University, Copenhagen, Denmark
| | - Kristine H. Allin
- Department of Clinical Medicine, Center for the Molecular Prediction of Inflammatory Bowel Disease (PREDICT), Aalborg University, Copenhagen, Denmark
- Department of Gastroenterology & Hepatology, Aalborg University Hospital, Aalborg, Denmark
| | - Parambir S. Dulai
- Division of Gastroenterology, University of California San Diego, La Jolla, California
| | - Aakash Desai
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Tine Jess
- Department of Clinical Medicine, Center for the Molecular Prediction of Inflammatory Bowel Disease (PREDICT), Aalborg University, Copenhagen, Denmark
- Department of Gastroenterology & Hepatology, Aalborg University Hospital, Aalborg, Denmark
| |
Collapse
|
3
|
CXCR3 Expression Pattern on CD4+ T Cells and IP-10 Levels with Regard to the HIV-1 Reservoir in the Gut-Associated Lymphatic Tissue. Pathogens 2022; 11:pathogens11040483. [PMID: 35456158 PMCID: PMC9027803 DOI: 10.3390/pathogens11040483] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/07/2022] [Accepted: 04/12/2022] [Indexed: 12/10/2022] Open
Abstract
(1) Background: The gut-associated lymphatic tissue (GALT) represents the largest lymphoid organ, and is considered to be the largest HIV reservoir. The exact size of the GALT reservoir remains unclear. Several markers, such as the chemokine receptor CXCR3 and its pro-inflammatory ligand IP-10, have been proposed to define the size of HIV reservoirs in the peripheral blood (PB). However, little is known about the role of CXCR3 and IP-10 within the GALT. (2) Methods: We compared the CXCR3 expression, IP-10 levels, and cell-associated HIV DNA of distinct memory CD4+ T cell subsets from the terminal ileum (TI), PB and rectum (RE) of 18 HIV+ patients with antiretroviral therapy (ART), 6 HIV+ treatment-naive patients and 16 healthy controls. (3) Results: While the relative distributions of CD4+ T cell subsets were similar in PB, TI and RE, HIV DNA and CXCR3 expression were markedly increased and IP-10 levels were decreased in TI when compared to PB. No significant correlation was found between the CXCR3 expression and memory CD4+ T cell subsets, IP-10 levels and the HIV DNA amounts measured in PB, TI or RE. (4) Conclusions: During a chronic HIV-1 infection, neither CXCR3 nor IP-10 are indicative of the size of the viral reservoir in the GALT (TI and RE).
Collapse
|
4
|
The V2 loop of HIV gp120 delivers costimulatory signals to CD4 + T cells through Integrin α 4β 7 and promotes cellular activation and infection. Proc Natl Acad Sci U S A 2020; 117:32566-32573. [PMID: 33288704 DOI: 10.1073/pnas.2011501117] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Acute HIV infection is characterized by rapid viral seeding of immunologic inductive sites in the gut followed by the severe depletion of gut CD4+ T cells. Trafficking of α4β7-expressing lymphocytes to the gut is mediated by MAdCAM, the natural ligand of α4β7 that is expressed on gut endothelial cells. MAdCAM signaling through α4β7 costimulates CD4+ T cells and promotes HIV replication. Similar to MAdCAM, the V2 domain of the gp120 HIV envelope protein binds to α4β7 In this study, we report that gp120 V2 shares with MAdCAM the capacity to signal through α4β7 resulting in CD4+ T cell activation and proliferation. As with MAdCAM-mediated costimulation, cellular activation induced by gp120 V2 is inhibited by anti-α4β7 monoclonal antibodies (mAbs). It is also inhibited by anti-V2 domain antibodies including nonneutralizing mAbs that recognize an epitope in V2 that has been linked to reduced risk of acquisition in the RV144 vaccine trial. The capacity of the V2 domain of gp120 to mediate signaling through α4β7 likely impacts early events in HIV infection. The capacity of nonneutralizing V2 antibodies to block this activity reveals a previously unrecognized mechanism whereby such antibodies might impact HIV transmission and pathogenesis.
Collapse
|
5
|
Pollock J, Kaul R. How integral is the α4β7 integrin to HIV transmission? EBioMedicine 2020; 63:103148. [PMID: 33278799 PMCID: PMC7718447 DOI: 10.1016/j.ebiom.2020.103148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 11/13/2020] [Indexed: 11/30/2022] Open
Affiliation(s)
- James Pollock
- Departments of Immunology (JP, RK), University of Toronto, Canada
| | - Rupert Kaul
- Departments of Immunology (JP, RK), University of Toronto, Canada; Departments of Medicine (RK), University of Toronto, Canada.
| |
Collapse
|
6
|
Abstract
PURPOSE OF REVIEW Trafficking of lymphocytes into and between gut inductive and effector sites of the gut tissues is regulated by integrin α4β7. Recent findings that describe the central role of α4β7 CD4 T cells in HIV pathogenesis, and the possibility of targeting these cells to prevent or treat HIV infection will be reviewed. RECENT FINDINGS Recent reports indicate that the frequency of α4β7 CD4 T cells is directly correlated with the risk of HIV acquisition and CD4 T-cell decline post infection. MAdCAM -mediated signaling through α4β7, in the presence of retinoic acid, supports viral replication in recently activated naïve CD4 T cells. Treatment of HIV-infected patients with vedolizumab, an α4β7 antagonist, is well tolerated, and reduces the size and number of lymphoid aggregates in gut associated lymphoid tissues. SUMMARY Integrin α4β7 underlies one of the principal mechanisms that CD4 T cells employ to traffic to the gut. It also defines a subset of cells that play a significant role in HIV transmission and pathogenesis. Understanding how α4β7 facilitates gut homing may provide insight into key aspects of HIV transmission, pathogenesis, and the formation of viral reservoirs. Targeting α4β7 may have utility in the prevention and treatment of HIV infection.
Collapse
|
7
|
Uzzan M, Tokuyama M, Rosenstein AK, Tomescu C, SahBandar IN, Ko HM, Leyre L, Chokola A, Kaplan-Lewis E, Rodriguez G, Seki A, Corley MJ, Aberg J, La Porte A, Park EY, Ueno H, Oikonomou I, Doron I, Iliev ID, Chen BK, Lui J, Schacker TW, Furtado GC, Lira SA, Colombel JF, Horowitz A, Lim JK, Chomont N, Rahman AH, Montaner LJ, Ndhlovu LC, Mehandru S. Anti-α4β7 therapy targets lymphoid aggregates in the gastrointestinal tract of HIV-1-infected individuals. Sci Transl Med 2019; 10:10/461/eaau4711. [PMID: 30282696 DOI: 10.1126/scitranslmed.aau4711] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 09/11/2018] [Indexed: 12/12/2022]
Abstract
Gut homing CD4+ T cells expressing the integrin α4β7 are early viral targets and contribute to HIV-1 pathogenesis, likely by seeding the gastrointestinal (GI) tract with HIV. Although simianized anti-α4β7 monoclonal antibodies have shown promise in preventing or attenuating the disease course of simian immunodeficiency virus in nonhuman primate studies, the mechanisms of drug action remain elusive. We present a cohort of individuals with mild inflammatory bowel disease and concomitant HIV-1 infection receiving anti-α4β7 treatment. By sampling the immune inductive and effector sites of the GI tract, we have discovered that anti-α4β7 therapy led to a significant and unexpected attenuation of lymphoid aggregates, most notably in the terminal ileum. Given that lymphoid aggregates serve as important sanctuary sites for maintaining viral reservoirs, their attrition by anti-α4β7 therapy has important implications for HIV-1 therapeutics and eradication efforts and defines a rational basis for the use of anti-α4β7 therapy in HIV-1 infection.
Collapse
Affiliation(s)
- Mathieu Uzzan
- Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Minami Tokuyama
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Adam K Rosenstein
- Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Ivo N SahBandar
- Department of Tropical Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| | - Huaibin M Ko
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Louise Leyre
- Centre de recherche du Centre hospitalier de l'Université de Montréal and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montréal, Québec H2X 0A9, Canada
| | - Anupa Chokola
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Emma Kaplan-Lewis
- Division of Infectious Disease, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Gabriela Rodriguez
- Division of Infectious Disease, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Akihiro Seki
- Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Michael J Corley
- Department of Tropical Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| | - Judith Aberg
- Division of Infectious Disease, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Annalena La Porte
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Division of Infectious Disease, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Eun-Young Park
- Department of Tropical Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| | - Hideki Ueno
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ioannis Oikonomou
- Division of Gastroenterology, Rush University, Chicago, IL 60612, USA
| | - Itai Doron
- Gastroenterology and Hepatology Divison, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Iliyan D Iliev
- Gastroenterology and Hepatology Divison, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Benjamin K Chen
- Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Division of Infectious Disease, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jennifer Lui
- Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Timothy W Schacker
- Department of Medicine, Medical School, University of Minnesota, Minneapolis, MN 55455, USA
| | - Glaucia C Furtado
- Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sergio A Lira
- Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jean-Frederic Colombel
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Amir Horowitz
- Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jean K Lim
- Division of Infectious Disease, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nicolas Chomont
- Centre de recherche du Centre hospitalier de l'Université de Montréal and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montréal, Québec H2X 0A9, Canada
| | - Adeeb H Rahman
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Lishomwa C Ndhlovu
- Department of Tropical Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| | - Saurabh Mehandru
- Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA. .,Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
8
|
Lertjuthaporn S, Cicala C, Van Ryk D, Liu M, Yolitz J, Wei D, Nawaz F, Doyle A, Horowitch B, Park C, Lu S, Lou Y, Wang S, Pan R, Jiang X, Villinger F, Byrareddy SN, Santangelo PJ, Morris L, Wibmer CK, Biris K, Mason RD, Gorman J, Hiatt J, Martinelli E, Roederer M, Fujikawa D, Gorini G, Franchini G, Arakelyan A, Ansari AA, Pattanapanyasat K, Kong XP, Fauci AS, Arthos J. Select gp120 V2 domain specific antibodies derived from HIV and SIV infection and vaccination inhibit gp120 binding to α4β7. PLoS Pathog 2018; 14:e1007278. [PMID: 30153309 PMCID: PMC6130882 DOI: 10.1371/journal.ppat.1007278] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 09/10/2018] [Accepted: 08/12/2018] [Indexed: 01/16/2023] Open
Abstract
The GI tract is preferentially targeted during acute/early HIV-1 infection. Consequent damage to the gut plays a central role in HIV pathogenesis. The basis for preferential targeting of gut tissues is not well defined. Recombinant proteins and synthetic peptides derived from HIV and SIV gp120 bind directly to integrin α4β7, a gut-homing receptor. Using both cell-surface expressed α4β7 and a soluble α4β7 heterodimer we demonstrate that its specific affinity for gp120 is similar to its affinity for MAdCAM (its natural ligand). The gp120 V2 domain preferentially engages extended forms of α4β7 in a cation -sensitive manner and is inhibited by soluble MAdCAM. Thus, V2 mimics MAdCAM in the way that it binds to α4β7, providing HIV a potential mechanism to discriminate between functionally distinct subsets of lymphocytes, including those with gut-homing potential. Furthermore, α4β7 antagonists developed for the treatment of inflammatory bowel diseases, block V2 binding to α4β7. A 15-amino acid V2 -derived peptide is sufficient to mediate binding to α4β7. It includes the canonical LDV/I α4β7 binding site, a cryptic epitope that lies 7-9 amino acids amino terminal to the LDV/I, and residues K169 and I181. These two residues were identified in a sieve analysis of the RV144 vaccine trial as sites of vaccine -mediated immune pressure. HIV and SIV V2 mAbs elicited by both vaccination and infection that recognize this peptide block V2-α4β7 interactions. These mAbs recognize conformations absent from the β- barrel presented in a stabilized HIV SOSIP gp120/41 trimer. The mimicry of MAdCAM-α4β7 interactions by V2 may influence early events in HIV infection, particularly the rapid seeding of gut tissues, and supports the view that HIV replication in gut tissue is a central feature of HIV pathogenesis.
Collapse
Affiliation(s)
- Sakaorat Lertjuthaporn
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Claudia Cicala
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Donald Van Ryk
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Matthew Liu
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Jason Yolitz
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Danlan Wei
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Fatima Nawaz
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Allison Doyle
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Brooke Horowitch
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Chung Park
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Shan Lu
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - Yang Lou
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - Shixia Wang
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - Ruimin Pan
- Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY, United States of America
| | - Xunqing Jiang
- Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY, United States of America
| | - Francois Villinger
- New Iberia Research Center and Department of Biology, University of Louisiana at Lafayette, Lafayette, LA, United States of America
| | - Siddappa N. Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - Philip J. Santangelo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States of America
| | - Lynn Morris
- Center for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Congella, South Africa
| | - Constantinos Kurt Wibmer
- Center for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Kristin Biris
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Rosemarie D. Mason
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Jason Gorman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Joseph Hiatt
- Microbiology and Immunology, University of California, San Francisco, CA, United States of America
| | - Elena Martinelli
- Center for Biomedical Research, Population Council, New York, NY, United States of America
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Dai Fujikawa
- Animal Models and Vaccine Section, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Giacomo Gorini
- Animal Models and Vaccine Section, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Genoveffa Franchini
- Animal Models and Vaccine Section, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Anush Arakelyan
- Section on Intercellular Interactions, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States of America
| | - Aftab A. Ansari
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Kovit Pattanapanyasat
- Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Xiang-Peng Kong
- Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY, United States of America
| | - Anthony S. Fauci
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - James Arthos
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| |
Collapse
|
9
|
Arthos J, Cicala C, Nawaz F, Byrareddy SN, Villinger F, Santangelo PJ, Ansari AA, Fauci AS. The Role of Integrin α 4β 7 in HIV Pathogenesis and Treatment. Curr HIV/AIDS Rep 2018; 15:127-135. [PMID: 29478152 PMCID: PMC5882766 DOI: 10.1007/s11904-018-0382-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW Acute HIV infection is characterized by high-level viral replication throughout the body's lymphoid system, particularly in gut-associated lymphoid tissues resulting in damage to structural components of gut tissue. This damage is irreversible and believed to contribute to the development of immune deficiencies. Antiretroviral therapy (ART) does not restore gut structure and function. Studies in macaques point to an alternative treatment strategy that may ameliorate gut damage. Integrin α4β7 mediates the homing of lymphocytes to gut tissues. Vedolizumab, a monoclonal antibody (mAb) antagonist of α4β7, has demonstrated efficacy and has been approved for the treatment of inflammatory bowel disease in humans. Here, we describe our current knowledge, and the gaps in our understanding, of the role of α4β7 in HIV pathogenesis and treatment. RECENT FINDINGS When administered to macaques prior to infection, a nonhuman primate analogue of vedolizumab prevents transmission of SIV. In combination with ART, this mAb facilitates durable virologic control following treatment interruption. Targeting α4β7 represents a novel therapeutic approach to prevent and treat HIV infection.
Collapse
Affiliation(s)
- James Arthos
- Laboratory of Immunoregulation, National Institutes of Allergy & Infectious Diseases, National Institutes of Health, 10 Center Drive Rm 6A08, Bethesda, MD, 20814, USA.
| | - Claudia Cicala
- Laboratory of Immunoregulation, National Institutes of Allergy & Infectious Diseases, National Institutes of Health, 10 Center Drive Rm 6A08, Bethesda, MD, 20814, USA
| | - Fatima Nawaz
- Laboratory of Immunoregulation, National Institutes of Allergy & Infectious Diseases, National Institutes of Health, 10 Center Drive Rm 6A08, Bethesda, MD, 20814, USA
| | - Siddappa N Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Francois Villinger
- New Iberia Research Center, University of Louisiana Lafayette, Lafayette, LA, 70560, USA
| | - Philip J Santangelo
- Walter H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30680, USA
| | - Aftab A Ansari
- Department of Pathology & Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Anthony S Fauci
- Laboratory of Immunoregulation, National Institutes of Allergy & Infectious Diseases, National Institutes of Health, 10 Center Drive Rm 6A08, Bethesda, MD, 20814, USA
| |
Collapse
|
10
|
Yoder AC, Guo K, Dillon SM, Phang T, Lee EJ, Harper MS, Helm K, Kappes JC, Ochsenbauer C, McCarter MD, Wilson CC, Santiago ML. The transcriptome of HIV-1 infected intestinal CD4+ T cells exposed to enteric bacteria. PLoS Pathog 2017; 13:e1006226. [PMID: 28241075 PMCID: PMC5344538 DOI: 10.1371/journal.ppat.1006226] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 03/09/2017] [Accepted: 02/08/2017] [Indexed: 01/01/2023] Open
Abstract
Global transcriptome studies can help pinpoint key cellular pathways exploited by viruses to replicate and cause pathogenesis. Previous data showed that laboratory-adapted HIV-1 triggers significant gene expression changes in CD4+ T cell lines and mitogen-activated CD4+ T cells from peripheral blood. However, HIV-1 primarily targets mucosal compartments during acute infection in vivo. Moreover, early HIV-1 infection causes extensive depletion of CD4+ T cells in the gastrointestinal tract that herald persistent inflammation due to the translocation of enteric microbes to the systemic circulation. Here, we profiled the transcriptome of primary intestinal CD4+ T cells infected ex vivo with transmitted/founder (TF) HIV-1. Infections were performed in the presence or absence of Prevotella stercorea, a gut microbe enriched in the mucosa of HIV-1-infected individuals that enhanced both TF HIV-1 replication and CD4+ T cell death ex vivo. In the absence of bacteria, HIV-1 triggered a cellular shutdown response involving the downregulation of HIV-1 reactome genes, while perturbing genes linked to OX40, PPAR and FOXO3 signaling. However, in the presence of bacteria, HIV-1 did not perturb these gene sets or pathways. Instead, HIV-1 enhanced granzyme expression and Th17 cell function, inhibited G1/S cell cycle checkpoint genes and triggered downstream cell death pathways in microbe-exposed gut CD4+ T cells. To gain insights on these differential effects, we profiled the gene expression landscape of HIV-1-uninfected gut CD4+ T cells exposed to bacteria. Microbial exposure upregulated genes involved in cellular proliferation, MAPK activation, Th17 cell differentiation and type I interferon signaling. Our findings reveal that microbial exposure influenced how HIV-1 altered the gut CD4+ T cell transcriptome, with potential consequences for HIV-1 susceptibility, cell survival and inflammation. The HIV-1- and microbe-altered pathways unraveled here may serve as a molecular blueprint to gain basic insights in mucosal HIV-1 pathogenesis.
Collapse
Affiliation(s)
- Alyson C. Yoder
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States of America
| | - Kejun Guo
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States of America
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO, United States of America
| | - Stephanie M. Dillon
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States of America
| | - Tzu Phang
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States of America
- The Cancer Center, University of Colorado School of Medicine, Aurora, CO, United States of America
| | - Eric J. Lee
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States of America
| | - Michael S. Harper
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States of America
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States of America
| | - Karen Helm
- The Cancer Center, University of Colorado School of Medicine, Aurora, CO, United States of America
| | - John C. Kappes
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America
- Center for AIDS Research, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Christina Ochsenbauer
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America
- Center for AIDS Research, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Martin D. McCarter
- Department of Surgery, University of Colorado School of Medicine, Aurora, CO, United States of America
| | - Cara C. Wilson
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States of America
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO, United States of America
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States of America
- * E-mail: (MLS); (CCW)
| | - Mario L. Santiago
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States of America
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO, United States of America
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States of America
- * E-mail: (MLS); (CCW)
| |
Collapse
|
11
|
Zaunders J, Danta M, Bailey M, Mak G, Marks K, Seddiki N, Xu Y, Templeton DJ, Cooper DA, Boyd MA, Kelleher AD, Koelsch KK. CD4 + T Follicular Helper and IgA + B Cell Numbers in Gut Biopsies from HIV-Infected Subjects on Antiretroviral Therapy Are Similar to HIV-Uninfected Individuals. Front Immunol 2016; 7:438. [PMID: 27822211 PMCID: PMC5075890 DOI: 10.3389/fimmu.2016.00438] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 10/04/2016] [Indexed: 01/09/2023] Open
Abstract
Background Disruption of gastrointestinal tract epithelial and immune barriers contribute to microbial translocation, systemic inflammation, and progression of HIV-1 infection. Antiretroviral therapy (ART) may lead to reconstitution of CD4+ T cells in gut-associated lymphoid tissue (GALT), but its impact on humoral immunity within GALT is unclear. Therefore, we studied CD4+ subsets, including T follicular helper cells (Tfh), as well as resident B cells that have switched to IgA production, in gut biopsies, from HIV+ subjects on suppressive ART compared to HIV-negative controls (HNC). Methods Twenty-three HIV+ subjects on ART and 22 HNC undergoing colonoscopy were recruited to the study. Single-cell suspensions were prepared from biopsies from left colon (LC), right colon (RC), and terminal ileum (TI). T and B lymphocyte subsets, as well as EpCAM+ epithelial cells, were accurately enumerated by flow cytometry, using counting beads. Results No significant differences in the number of recovered epithelial cells were observed between the two subject groups. However, the median TI CD4+ T cell count/106 epithelial cells was 2.4-fold lower in HIV+ subjects versus HNC (19,679 versus 47,504 cells; p = 0.02). Similarly, median LC CD4+ T cell counts were reduced in HIV+ subjects (8,358 versus 18,577; p = 0.03) but were not reduced in RC. Importantly, we found no significant differences in Tfh or IgA+ B cell counts at either site between HIV+ subjects and HNC. Further analysis showed no difference in CD4+, Tfh, or IgA+ B cell counts between subjects who commenced ART in primary compared to chronic HIV-1 infection. Despite the decrease in total CD4 T cells, we could not identify a selective decrease of other key subsets of CD4+ T cells, including CCR5+ cells, CD127+ long-term memory cells, CD103+ tissue-resident cells, or CD161+ cells (surrogate marker for Th17), but there was a slight increase in the proportion of T regulatory cells. Conclusion While there were lower absolute CD4+ counts in the TI and LC in HIV+ subjects on ART, they were not associated with significantly reduced Tfh cell counts or IgA+ B cells, suggesting that this important vanguard of adaptive immune defense against luminal microbial products is normalized following ART.
Collapse
Affiliation(s)
- John Zaunders
- St Vincent's Centre for Applied Medical Research, St Vincent's Hospital, Sydney, NSW, Australia; The Kirby Institute, The University of New South Wales, Sydney, NSW, Australia
| | - Mark Danta
- St Vincent's Hospital, Clinical School , Sydney, NSW , Australia
| | - Michelle Bailey
- The Kirby Institute, The University of New South Wales , Sydney, NSW , Australia
| | - Gerald Mak
- St Vincent's Hospital, Clinical School , Sydney, NSW , Australia
| | - Katherine Marks
- St Vincent's Centre for Applied Medical Research, St Vincent's Hospital , Sydney, NSW , Australia
| | - Nabila Seddiki
- Equipe 16, INSERM U955, Créteil, France; Faculté de médecine, Université Paris Est, Créteil, France; Vaccine Research Institute (VRI), Créteil, France
| | - Yin Xu
- The Kirby Institute, The University of New South Wales , Sydney, NSW , Australia
| | - David J Templeton
- The Kirby Institute, The University of New South Wales, Sydney, NSW, Australia; RPA Sexual Health, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - David A Cooper
- St Vincent's Centre for Applied Medical Research, St Vincent's Hospital, Sydney, NSW, Australia; The Kirby Institute, The University of New South Wales, Sydney, NSW, Australia
| | - Mark A Boyd
- The Kirby Institute, The University of New South Wales , Sydney, NSW , Australia
| | - Anthony D Kelleher
- St Vincent's Centre for Applied Medical Research, St Vincent's Hospital, Sydney, NSW, Australia; The Kirby Institute, The University of New South Wales, Sydney, NSW, Australia
| | - Kersten K Koelsch
- The Kirby Institute, The University of New South Wales , Sydney, NSW , Australia
| |
Collapse
|
12
|
Chéret A, Bacchus-Souffan C, Avettand-Fenoël V, Mélard A, Nembot G, Blanc C, Samri A, Sáez-Cirión A, Hocqueloux L, Lascoux-Combe C, Allavena C, Goujard C, Valantin MA, Leplatois A, Meyer L, Rouzioux C, Autran B. Combined ART started during acute HIV infection protects central memory CD4+ T cells and can induce remission. J Antimicrob Chemother 2015; 70:2108-20. [PMID: 25900157 DOI: 10.1093/jac/dkv084] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 03/13/2015] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Therapeutic control of HIV replication reduces the size of the viral reservoir, particularly among central memory CD4+ T cells, and this effect might be accentuated by early treatment. METHODS We examined the effect of ART initiated at the time of the primary HIV infection (early ART), lasting 2 and 6 years in 11 and 10 patients, respectively, on the HIV reservoir in peripheral resting CD4+ T cells, sorted into naive (TN), central memory (TCM), transitional memory (TTM) and effector memory (TEM) cells, by comparison with 11 post-treatment controllers (PTCs). RESULTS Between baseline and 2 years, CD4+ T cell subset numbers increased markedly (P < 0.004) and HIV DNA levels decreased in all subsets (P < 0.009). TTM cells represented the majority of reservoir cells at both timepoints, T cell activation status normalized and viral diversity remained stable over time. The HIV reservoir was smaller after 6 years of early ART than after 2 years (P < 0.019), and did not differ between PTCs and patients treated for 6 years. One patient, who had low reservoir levels in all T cell subsets after 2 years of treatment similar to the levels in PTCs, spontaneously controlled viral replication during 18 months off treatment. CONCLUSIONS Early prolonged ART thus limits the size of the HIV reservoir, protects long-lived cells from persistent infection and may enhance post-treatment control.
Collapse
Affiliation(s)
- Antoine Chéret
- EA 7327 Paris-Descartes University, Sorbonne Paris-Cité, Virology Laboratory, Necker Enfants-Malades Hospital, Paris, France Infectious Diseases Department, Dron Hospital, Tourcoing, France
| | - Charline Bacchus-Souffan
- Pierre & Marie Curie University Paris VI, INSERM UMR-S 945 Immunity & Infection, Pitié-Salpêtrière Hospital, Paris, France
| | - Veronique Avettand-Fenoël
- EA 7327 Paris-Descartes University, Sorbonne Paris-Cité, Virology Laboratory, Necker Enfants-Malades Hospital, Paris, France Infectious Diseases Department, Dron Hospital, Tourcoing, France
| | - Adeline Mélard
- EA 7327 Paris-Descartes University, Sorbonne Paris-Cité, Virology Laboratory, Necker Enfants-Malades Hospital, Paris, France Infectious Diseases Department, Dron Hospital, Tourcoing, France
| | - Georges Nembot
- Epidemiology and Public Health Department, Inserm U1018, AP-HP, Le Kremlin-Bicêtre Hospital, University Paris Sud, Le Kremlin-Bicêtre, France
| | - Catherine Blanc
- CyPS Flow Cytometry Platform, Pierre & Marie Curie University, Pitié-Salpêtrière Hospital, Paris, France
| | - Assia Samri
- Pierre & Marie Curie University Paris VI, INSERM UMR-S 945 Immunity & Infection, Pitié-Salpêtrière Hospital, Paris, France
| | - Asier Sáez-Cirión
- Pasteur Institute, Regulation of Retroviral Infections Unit, Paris, France
| | | | | | | | - Cécile Goujard
- Internal Medicine Department, AP-HP, Le Kremlin-Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Marc Antoine Valantin
- Infectious Diseases Department, AP-HP, Pitié-Salpêtrière Hospital, University Paris XII, Paris, France
| | - Anne Leplatois
- Infectious Diseases Department, l'Archet Hospital, Nice, France
| | - Laurence Meyer
- Epidemiology and Public Health Department, Inserm U1018, AP-HP, Le Kremlin-Bicêtre Hospital, University Paris Sud, Le Kremlin-Bicêtre, France
| | - Christine Rouzioux
- EA 7327 Paris-Descartes University, Sorbonne Paris-Cité, Virology Laboratory, Necker Enfants-Malades Hospital, Paris, France Infectious Diseases Department, Dron Hospital, Tourcoing, France
| | - Brigitte Autran
- Pierre & Marie Curie University Paris VI, INSERM UMR-S 945 Immunity & Infection, Pitié-Salpêtrière Hospital, Paris, France
| | | |
Collapse
|
13
|
The use of BLT humanized mice to investigate the immune reconstitution of the gastrointestinal tract. J Immunol Methods 2014; 410:28-33. [PMID: 24952245 DOI: 10.1016/j.jim.2014.06.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 04/14/2014] [Accepted: 06/10/2014] [Indexed: 02/07/2023]
Abstract
The gastrointestinal (GI) track represents an important battlefield where pathogens first try to gain entry into a host. It is also a universe where highly diverse and ever changing inhabitants co-exist in an exceptional equilibrium without parallel in any other organ system of the body. The gut as an organ has its own well-developed and fully functional immune organization that is similar and yet different in many important ways to the rest of the immune system. Both a compromised and an overactive immune system in the gut can have dire and severe consequences to human health. It has therefore been of great interest to develop animal models that recapitulate key aspects of the human condition to better understand the interplay of the host immune system with its friends and its foes. However, reconstitution of the GI tract in humanized mice has been difficult and highly variable in different systems. A better molecular understanding of the development of the gut immune system in mice has provided critical cues that have been recently used to develop novel humanized mouse models that fully recapitulate the genesis and key functions of the gut immune system of humans. Of particular interest is the presence of human gut-associated lymphoid tissue (GALT) aggregates in the gut of NOD/SCID BLT humanized mice that demonstrate the faithful development of bona fide human plasma cells capable of migrating to the lamina propria and producing human IgA1 and IgA2.
Collapse
|
14
|
Abstract
Most infants born to human immunodeficiency virus (HIV)-infected women escape HIV infection. Infants evade infection despite an immature immune system and, in the case of breastfeeding, prolonged repetitive exposure. If infants become infected, the course of their infection and response to treatment differs dramatically depending upon the timing (in utero, intrapartum, or during breastfeeding) and potentially the route of their infection. Perinatally acquired HIV infection occurs during a critical window of immune development. HIV's perturbation of this dynamic process may account for the striking age-dependent differences in HIV disease progression. HIV infection also profoundly disrupts the maternal immune system upon which infants rely for protection and immune instruction. Therefore, it is not surprising that infants who escape HIV infection still suffer adverse effects. In this review, we highlight the unique aspects of pediatric HIV transmission and pathogenesis with a focus on mechanisms by which HIV infection during immune ontogeny may allow discovery of key elements for protection and control from HIV.
Collapse
|
15
|
Shollenberger LM, Bui CT, Paterson Y, Nyhoff L, Harn DA. HIV-1 vaccine-specific responses induced by Listeria vector vaccines are maintained in mice subsequently infected with a model helminth parasite, Schistosoma mansoni. Vaccine 2013; 31:5651-8. [PMID: 24120546 DOI: 10.1016/j.vaccine.2013.09.067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 08/30/2013] [Accepted: 09/27/2013] [Indexed: 01/07/2023]
Abstract
In areas co-endemic for helminth parasites and HIV/AIDS, infants are often administered vaccines prior to infection with immune modulatory helminth parasites. Systemic Th2 biasing and immune suppression caused by helminth infection reduces cell-mediated responses to vaccines such as tetanus toxoid and BCG. Therefore, we asked if infection with helminthes post-vaccination, alters already established vaccine induced immune responses. In our model, mice are vaccinated against HIV-1 Gag using a Listeria vaccine vector (Lm-Gag) in a prime-boost manner, then infected with the human helminth parasite Schistosoma mansoni. This allows us to determine if established vaccine responses are maintained or altered after helminth infection. Our second objective asked if helminth infection post-vaccination alters the recipient's ability to respond to a second boost. Here we compared responses between uninfected mice, schistosome infected mice, and infected mice that were given an anthelminthic, which occurred coincident with the boost or four weeks prior, as well as comparing to un-boosted mice. We report that HIV-1 vaccine-specific responses generated by Listeria vector HIV-1 vaccines are maintained following subsequent chronic schistosome infection, providing further evidence that Listeria vector vaccines induce potent vaccine-specific responses that can withstand helminth infection. We also were able to demonstrate that administration of a second Listeria boost, which markedly enhanced the immune response, was minimally impacted by schistosome infection, or anthelminthic therapy. Surprisingly, we also observed enhanced antibody responses to HIV Gag in vaccinated mice subsequently infected with schistosomes.
Collapse
Affiliation(s)
- Lisa M Shollenberger
- Department of Infectious Diseases, College of Veterinary Medicine and the Center for Tropical and Emerging Global Diseases, University of Georgia, 501 DW Brooks Drive, Athens, GA 30602-7387, USA.
| | | | | | | | | |
Collapse
|
16
|
McBride K, Xu Y, Bailey M, Seddiki N, Suzuki K, Murray JM, Gao Y, Yan C, Cooper DA, Kelleher AD, Koelsch KK, Zaunders J. The majority of HIV type 1 DNA in circulating CD4+ T lymphocytes is present in non-gut-homing resting memory CD4+ T cells. AIDS Res Hum Retroviruses 2013; 29:1330-9. [PMID: 23971972 DOI: 10.1089/aid.2012.0351] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Memory CD4(+) T lymphocytes in peripheral blood that express integrins α4ß7 preferentially recirculate through gut-associated lymphoid tissue (GALT), a proposed site of significant HIV-1 replication. Tregs and activated CD4(+) T cells in GALT could also be particularly susceptible to infection. We therefore hypothesized that infection of these subsets of memory CD4(+) T cells may contribute disproportionately to the HIV-1 reservoir. A cross-sectional study of CD4(+) T cell subsets of memory CD45RO(+) cells in peripheral blood mononuclear cells (PBMCs) was conducted using leukapheresis from eight subjects with untreated chronic HIV-1 infection. Real-time polymerase chain reaction (PCR) was used to quantify total and integrated HIV-1 DNA levels from memory CD4(+) T cells sorted into integrin β7(+) vs. β7(-), CD25(+)CD127(low) Treg vs. CD127(high), and activated CD38(+) vs. CD38(-). More than 80% of total HIV-1 DNA was found to reside in the integrin β7-negative non-gut-homing subset of CD45RO(+) memory CD4(+) T cells. Less than 10% was found in highly purified Tregs or CD38(+) activated memory cells. Similarly, integrated HIV-1 DNA copies were found to be more abundant in resting non-gut-homing memory CD4(+) T cells (76%) than in their activated counterparts (23%). Our investigations showed that the majority of both total and integrated HIV-1 DNA was found within non-gut-homing resting CD4(+) T cells.
Collapse
Affiliation(s)
- Kristin McBride
- The Kirby Institute for Infection and Immunity in Society, University of New South Wales, Sydney, Australia
| | - Yin Xu
- The Kirby Institute for Infection and Immunity in Society, University of New South Wales, Sydney, Australia
| | - Michelle Bailey
- The Kirby Institute for Infection and Immunity in Society, University of New South Wales, Sydney, Australia
| | - Nabila Seddiki
- The Kirby Institute for Infection and Immunity in Society, University of New South Wales, Sydney, Australia
| | - Kazuo Suzuki
- St. Vincent's Centre for Applied Medical Research, St. Vincent's Hospital, Sydney, Australia
| | - John M. Murray
- Department of Mathematics, University of New South Wales, Sydney, Australia
| | - Yuan Gao
- St. Vincent's Centre for Applied Medical Research, St. Vincent's Hospital, Sydney, Australia
| | - Celine Yan
- St. Vincent's Centre for Applied Medical Research, St. Vincent's Hospital, Sydney, Australia
| | - David A. Cooper
- The Kirby Institute for Infection and Immunity in Society, University of New South Wales, Sydney, Australia
- St. Vincent's Centre for Applied Medical Research, St. Vincent's Hospital, Sydney, Australia
| | - Anthony D. Kelleher
- The Kirby Institute for Infection and Immunity in Society, University of New South Wales, Sydney, Australia
- St. Vincent's Centre for Applied Medical Research, St. Vincent's Hospital, Sydney, Australia
| | - Kersten K. Koelsch
- The Kirby Institute for Infection and Immunity in Society, University of New South Wales, Sydney, Australia
- St. Vincent's Centre for Applied Medical Research, St. Vincent's Hospital, Sydney, Australia
| | - John Zaunders
- St. Vincent's Centre for Applied Medical Research, St. Vincent's Hospital, Sydney, Australia
| |
Collapse
|
17
|
Shollenberger LM, Bui C, Paterson Y, Allen K, Harn D. Successful vaccination of immune suppressed recipients using Listeria vector HIV-1 vaccines in helminth infected mice. Vaccine 2013; 31:2050-6. [PMID: 23470236 DOI: 10.1016/j.vaccine.2013.02.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 01/22/2013] [Accepted: 02/19/2013] [Indexed: 10/27/2022]
Abstract
Vaccines for HIV, malaria and TB remain high priorities, especially for sub-Saharan populations. The question is: will vaccines currently in development for these diseases function in populations that have a high prevalence of helminth infection? Infection with helminth parasites causes immune suppression and a CD4+ Th2 skewing of the immune system, thereby impairing Th1-type vaccine efficacy. In this study, we conduct HIV vaccine trials in mice with and without chronic helminth infection to mimic the human vaccine recipient populations in Sub-Saharan Africa and other helminth parasite endemic regions of the world, as there is large overlap in global prevalence for HIV and helminth infection. Here, we demonstrate that Listeria monocytogenes functions as a vaccine vector to drive robust and functional HIV-specific cellular immune responses, irrespective of chronic helminth infection. This observation represents a significant advance in the field of vaccine research and underscores the concept that vaccines in the developmental pipeline should be effective in the target populations.
Collapse
Affiliation(s)
- Lisa M Shollenberger
- Department of Infectious Diseases and Center for Tropical and Emerging Global Diseases, University of Georgia, 501 DW Brooks Drive, Athens, GA 30602-7387, USA.
| | | | | | | | | |
Collapse
|
18
|
Malzahn J, Shen C, Caruso L, Ghosh P, Sankapal SR, Barratt-Boyes S, Gupta P, Chen Y. Effect of early anti-retroviral therapy on the pathogenic changes in mucosal tissues of SIV infected rhesus macaques. Virol J 2012; 9:269. [PMID: 23150992 PMCID: PMC3570381 DOI: 10.1186/1743-422x-9-269] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 11/12/2012] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND The gastrointestinal tissue plays an important role in the pathogenesis of HIV/SIV infection and serves as a viral reservoir in infected individuals under antiretroviral therapy (ART). However, the effect of ART administration in the very early stage of infection on HIV/SIV replication and pathogenesis in gastrointestinal tissue has not been fully studied. In this current study, rhesus monkeys infected with SIV were treated with ART starting at day 7 post-infection. The effect of early ART on SIV replication and infection-related pathogenic changes in mucosal tissues of the infected monkeys was examined. METHODS Nuclear acids were extracted from snap frozen ileum and colon tissues and mesentery lymph nodes from SIV infected monkeys with or without ART. SIV RNA and DNA loads as well as levels of CD3, CD4 and cytokine mRNA were measured by PCR and RT PCR from the isolated nuclear acids. Tissue sections were stained by immuno-fluorescence labeled antibodies for CD3 and CD4. RESULTS Without ART treatment, these monkeys underwent a mild SIV infection with low viral loads and slightly decreased CD4+ T cell counts in peripheral blood. In ART treated monkeys, SIV RNA loads were undetectable in blood with normal CD4+ T cell counts, however, SIV RNA and DNA were detected in the intestinal tissues and mesentery lymph nodes although the levels were lower than those in untreated monkeys. The levels of CD3 and CD4 positive cells in the tissues were similar between the infected untreated monkeys and infected ART treated monkeys based on RT-PCR and immune-fluorescence staining of the tissue sections. Furthermore, compatible levels of IL-6, TNF-a, IL-1b and MyD88 mRNAs were detected in most of intestinal tissues and mesentery lymph nodes of infected ART treated and infected untreated monkeys. CONCLUSIONS These results suggest that early ART administration could not effectively inhibit SIV replication in intestinal tissues and mesentery lymph nodes and could not reduce the immune activation induced by SIV infection in the intestinal tissues.
Collapse
Affiliation(s)
- Jessica Malzahn
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Kersh EN, Luo W, Zheng Q, Adams DR, Hanson D, Youngpairoj AS, Cong ME, Butler K, Hendry RM, McNicholl JM, Heneine W, Garcia-Lerma JG. Reduced inflammation and CD4 loss in acute SHIV infection during oral pre-exposure prophylaxis. J Infect Dis 2012; 206:770-9. [PMID: 22740713 DOI: 10.1093/infdis/jis422] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The impact of pre-exposure prophylaxis (PrEP) with antiretrovirals on breakthrough HIV or SHIV infection is not fully documented. We addressed the hypothesis that SHIV(SF162P3) infection despite active PrEP results in altered early immune parameters, compared with untreated infection. METHODS Eleven rhesus macaques were infected during repeated, rectal, low-dose SHIV(SF162P3) exposures while receiving concurrent oral PrEP (Truvada [n = 2] or GS7340 [n = 4]) or as untreated controls (n = 5). We measured SHIV RNA, inflammatory cytokines, CD4 cells, and SHIV-specific and memory T cells until 20 weeks after peak viremia. RESULTS SHIV infection during PrEP resulted in 100-fold lower peak viremia and lower IL-15, IL-18, and IL-1Ra levels, compared with controls (P < .05; Wilcoxon rank-sum test). Unlike controls, PrEP-treated macaques showed no significant CD4 cell count reduction during acute infection and developed more SHIV-specific central memory T cells, relative to controls. After in vivo CD8 cell depletion, viral load increased to similar levels, indicating that CD8 cells were critical for viral control in both groups. CONCLUSIONS PrEP with antiretrovirals has beneficial effects on early SHIV infection even when infection is not prevented. Although long-term immune control could not be examined in this SHIV infection model, our results suggest that PrEP results in improved early disease parameters in breakthrough infections.
Collapse
Affiliation(s)
- Ellen N Kersh
- Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Zhou J, Neff CP, Liu X, Zhang J, Li H, Smith DD, Swiderski P, Aboellail T, Huang Y, Du Q, Liang Z, Peng L, Akkina R, Rossi JJ. Systemic administration of combinatorial dsiRNAs via nanoparticles efficiently suppresses HIV-1 infection in humanized mice. Mol Ther 2011; 19:2228-38. [PMID: 21952167 DOI: 10.1038/mt.2011.207] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
We evaluated the in vivo efficacy of structurally flexible, cationic PAMAM dendrimers as a small interfering RNA (siRNA) delivery system in a Rag2(-)/-γc-/- (RAG-hu) humanized mouse model for HIV-1 infection. HIV-infected humanized Rag2-/-γc-/- mice (RAG-hu) were injected intravenously (i.v.) with dendrimer-siRNA nanoparticles consisting of a cocktail of dicer substrate siRNAs (dsiRNAs) targeting both viral and cellular transcripts. We report in this study that the dendrimer-dsiRNA treatment suppressed HIV-1 infection by several orders of magnitude and protected against viral induced CD4(+) T-cell depletion. We also demonstrated that follow-up injections of the dendrimer-cocktailed dsiRNAs following viral rebound resulted in complete inhibition of HIV-1 titers. Biodistribution studies demonstrate that the dendrimer-dsiRNAs preferentially accumulate in peripheral blood mononuclear cells (PBMCs) and liver and do not exhibit any discernable toxicity. These data demonstrate for the first time efficacious combinatorial delivery of anti-host and -viral siRNAs for HIV-1 treatment in vivo. The dendrimer delivery approach therefore represents a promising method for systemic delivery of combinations of siRNAs for treatment of HIV-1 infection.
Collapse
Affiliation(s)
- Jiehua Zhou
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, City of Hope, Duarte, California 91010, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
The human immunodeficiency virus displays a narrow tropism for CD4+ mononuclear cells, and activated CD4+ T lymphocytes are the main target. When these cells are depleted by viral replication, bystander apoptosis and increased cell turnover mediated by immune activation, there is a progressive immunodeficiency (i.e., AIDS). Despite this specific cell tropism, HIV-infected persons demonstrate pathology in nearly every organ system. This article reviews current understanding of tissue-specific HIV-1 infection in the CNS, the genital tract, and gastrointestinal-associated lymphoid tissue.
Collapse
Affiliation(s)
- Maile Ay Karris
- University of California, San Diego, Division of Infectious Diseases, Stein Clinical Research Bldg MC 0679, 9500 Gilman Drive, La Jolla, CA 92037, USA
| | | |
Collapse
|
22
|
Selmi C, Leung PSC, Fischer L, German B, Yang CY, Kenny TP, Cysewski GR, Gershwin ME. The effects of Spirulina on anemia and immune function in senior citizens. Cell Mol Immunol 2011; 8:248-54. [PMID: 21278762 DOI: 10.1038/cmi.2010.76] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Anemia and immunological dysfunction (i.e. immunosenescence) are commonly found in older subjects and nutritional approaches are sought to counteract these phenomena. Spirulina is a filamentous and multicellular bule-green alga capable of reducing inflammation and also manifesting antioxidant effects. We hypothesized that Spirulina may ameliorate anemia and immunosenescence in senior citizens with a history of anemia. We enrolled 40 volunteers of both sexes with an age of 50 years or older who had no history of major chronic diseases. Participants took a Spirulina supplementation for 12 weeks and were administered comprehensive dietary questionnaires to determine their nutritional regimen during the study. Complete cell count (CCC) and indoleamine 2,3-dioxygenase (IDO) enzyme activity, as a sign of immune function, were determined at baseline and weeks 6 and 12 of supplementation. Thirty study participants completed the entire study and the data obtained were analyzed. Over the 12-week study period, there was a steady increase in average values of mean corpuscular hemoglobin in subjects of both sexes. In addition, mean corpuscular volume and mean corpuscular hemoglobin concentration also increased in male participants. Older women appeared to benefit more rapidly from Spirulina supplements. Similarly, the majority of subjects manifested increased IDO activity and white blood cell count at 6 and 12 weeks of Spirulina supplementation. Spirulina may ameliorate anemia and immunosenescence in older subjects. We encourage large human studies to determine whether this safe supplement could prove beneficial in randomized clinical trials.
Collapse
Affiliation(s)
- Carlo Selmi
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, Davis, CA 95616, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Dillon SM, Rogers LM, Howe R, Hostetler LA, Buhrman J, McCarter MD, Wilson CC. Human intestinal lamina propria CD1c+ dendritic cells display an activated phenotype at steady state and produce IL-23 in response to TLR7/8 stimulation. THE JOURNAL OF IMMUNOLOGY 2010; 184:6612-21. [PMID: 20483758 DOI: 10.4049/jimmunol.1000041] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Intestinal dendritic cells (DCs) play key roles in mediating tolerance to commensal flora and inflammatory responses against mucosal pathogens. The mechanisms by which intestinal "conditioning" influences human DC responses to microbial stimuli remain poorly understood. Infections with viruses, such as HIV-1, that target mucosal tissue result in intestinal epithelial barrier breakdown and increased translocation of commensal bacteria into the lamina propria (LP). It is unclear whether innate LP DC responses to concurrent viral and bacterial stimuli influence mucosal HIV-1 pathogenesis. In this study, direct ex vivo phenotype and in vitro constitutive cytokine production of CD1c+ DCs in human intestinal LP were compared with those in peripheral blood (PB). To evaluate innate responses to viral and bacterial stimuli, intracellular cytokine production by LP and PB DCs following stimulation with ligands for TLRs 2, 4, 5, and 7/8 was evaluated. At steady state, LP CD1c+ DCs expressed higher levels of activation markers (CD40, CD83, CD86, HLA-DR, and CCR7) than did PB CD1c+ DCs, and higher frequencies of LP CD1c+ DCs constitutively produced IL-6 and -10 and TNF-alpha. LP DCs had blunted cytokine responses to TLR4 ligand and TLR5 ligand stimulation relative to PB DCs, yet similarly produced IL-10 in response to TLR2 ligand. Only synthetic TLR7/8 ligand, a mimic of viral ssRNA, induced IL-23 production by LP CD1c+ DCs, and this proinflammatory cytokine response was synergistically enhanced following combined TLR7/8 and TLR4 stimulation. These findings highlight a potential mechanism by which viruses like HIV-1 may subvert homeostatic mechanisms and induce inflammation in the intestinal mucosa.
Collapse
Affiliation(s)
- Stephanie M Dillon
- Department of Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Antiviral therapy during primary simian immunodeficiency virus infection fails to prevent acute loss of CD4+ T cells in gut mucosa but enhances their rapid restoration through central memory T cells. J Virol 2008; 82:4016-27. [PMID: 18272585 DOI: 10.1128/jvi.02164-07] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Gut-associated lymphoid tissue (GALT) is an early target of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) and a site for severe CD4+ T-cell depletion. Although antiretroviral therapy (ART) is effective in suppressing HIV replication and restoring CD4+ T cells in peripheral blood, restoration in GALT is delayed. The role of restored CD4+ T-cell help in GALT during ART and its impact on antiviral CD8+ T-cell responses have not been investigated. Using the SIV model, we investigated gut CD4+ T-cell restoration in infected macaques, initiating ART during either the primary stage (1 week postinfection), prior to acute CD4+ cell loss (PSI), or during the chronic stage at 10 weeks postinfection (CSI). ART led to viral suppression in GALT and peripheral blood mononuclear cells of PSI and CSI animals at comparable levels. CSI animals had incomplete CD4+ T-cell restoration in GALT. In PSI animals, ART did not prevent acute CD4+ T-cell loss by 2 weeks postinfection in GALT but supported rapid and complete CD4+ T-cell restoration thereafter. This correlated with an accumulation of central memory CD4+ T cells and better suppression of inflammation. Restoration of CD4+ T cells in GALT correlated with qualitative changes in SIV gag-specific CD8+ T-cell responses, with a dominance of interleukin-2-producing responses in PSI animals, while both CSI macaques and untreated SIV-infected controls were dominated by gamma interferon responses. Thus, central memory CD4+ T-cell levels and qualitative antiviral CD8+ T-cell responses, independent of viral suppression, were the immune correlates of gut mucosal immune restoration during ART.
Collapse
|