1
|
Migueles SA, Nettere DM, Gavil NV, Wang LT, Toulmin SA, Kelly EP, Ward AJ, Lin S, Thompson SA, Peterson BA, Abdeen CS, Sclafani CR, Pryal PF, Leach BG, Ludwig AK, Rogan DC, Przygonska PA, Cattani A, Imamichi H, Sachs A, Cafri G, Huang NN, Patamawenu A, Liang CJ, Hallahan CW, Kambach DM, Han EX, Coupet T, Chen J, Moir SL, Chun TW, Coates EE, Ledgerwood J, Schmidt J, Taillandier-Coindard M, Michaux J, Pak H, Bassani-Sternberg M, Frahm N, McElrath MJ, Connors M. HIV vaccines induce CD8 + T cells with low antigen receptor sensitivity. Science 2023; 382:1270-1276. [PMID: 38096385 DOI: 10.1126/science.adg0514] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 11/03/2023] [Indexed: 12/18/2023]
Abstract
Current HIV vaccines designed to stimulate CD8+ T cells have failed to induce immunologic control upon infection. The functions of vaccine-induced HIV-specific CD8+ T cells were investigated here in detail. Cytotoxic capacity was significantly lower than in HIV controllers and was not a consequence of low frequency or unaccumulated functional cytotoxic proteins. Low cytotoxic capacity was attributable to impaired degranulation in response to the low antigen levels present on HIV-infected targets. The vaccine-induced T cell receptor (TCR) repertoire was polyclonal and transduction of these TCRs conferred the same reduced functions. These results define a mechanism accounting for poor antiviral activity induced by these vaccines and suggest that an effective CD8+ T cell response may require a vaccination strategy that drives further TCR clonal selection.
Collapse
Affiliation(s)
- Stephen A Migueles
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Danielle M Nettere
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Noah V Gavil
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Lawrence T Wang
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sushila A Toulmin
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Elizabeth P Kelly
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Addison J Ward
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Siying Lin
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sarah A Thompson
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Bennett A Peterson
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Cassidy S Abdeen
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Carina R Sclafani
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Patrick F Pryal
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Benjamin G Leach
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Amanda K Ludwig
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Daniel C Rogan
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Paulina A Przygonska
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Angela Cattani
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Hiromi Imamichi
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Abraham Sachs
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Gal Cafri
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ning-Na Huang
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Andy Patamawenu
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - C Jason Liang
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Claire W Hallahan
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | - Susan L Moir
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Tae-Wook Chun
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Emily E Coates
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Julie Ledgerwood
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Julien Schmidt
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Marie Taillandier-Coindard
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Justine Michaux
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - HuiSong Pak
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Michal Bassani-Sternberg
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Nicole Frahm
- Vaccine and Infectious Disease Division and the HIV Vaccine Trials Network, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - M Juliana McElrath
- Vaccine and Infectious Disease Division and the HIV Vaccine Trials Network, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Mark Connors
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
2
|
Design and in vitro delivery of HIV-1 multi-epitope DNA and peptide constructs using novel cell-penetrating peptides. Biotechnol Lett 2019; 41:1283-1298. [PMID: 31531750 DOI: 10.1007/s10529-019-02734-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 09/15/2019] [Indexed: 12/15/2022]
Abstract
OBJECTIVES Developing an effective HIV vaccine that stimulates the humoral and cellular immune responses is still challenging because of the diversity of HIV-1 virus, polymorphism of human HLA and lack of a suitable delivery system. RESULTS Using bioinformatics tools, we designed a DNA construct encoding multiple epitopes. These epitopes were highly conserved within prevalent HIV-1 subtypes and interacted with prevalent class I and II HLAs in Iran and the world. The designed DNA construct included Nef60-84, Nef126-144, Vpr34-47, Vpr60-75, Gp16030-53, Gp160308-323 and P248-151 epitopes (i.e., nef-vpr-gp160-p24 DNA) which was cloned into pET-24a(+) and pEGFP-N1 vectors. The recombinant polyepitope peptide (rNef-Vpr-Gp160-P24; ~ 32 kDa) was successfully generated in E. coli expression system. The pEGFP-nef-vpr-gp160-p24 and rNef-Vpr-Gp160-P24 polyepitope peptide were delivered into HEK-293 T cells using cell-penetrating peptides (CPPs). The MPG and HR9 CPPs, as well as the novel LDP-NLS and CyLoP-1 CPPs, were utilized for DNA and peptide delivery into the cells, respectively. SEM results confirmed the formation of stable MPG/pEGFP-N1-nef-vpr-gp160-p24, HR9/pEGFP-N1-nef-vpr-gp160-p24, LDP-NLS/rNef-Vpr-Gp160-P24 and CyLoP-1/rNef-Vpr-Gp160-P24 nanoparticles with a diameter of < 200 nm through non-covalent bonds. MTT assay results indicated that these nanoparticles did not have any major toxicity in vitro. Fluorescence microscopy, flow cytometry and western blot data demonstrated that these CPPs could significantly deliver the DNA and peptide constructs into HEK-293 T cells. CONCLUSION The use of these CPPs can be considered as an approach in HIV vaccine development for in vitro and in vivo delivery of DNA and peptide constructs into mammalian cells.
Collapse
|
3
|
Germain RN. Will Systems Biology Deliver Its Promise and Contribute to the Development of New or Improved Vaccines? What Really Constitutes the Study of "Systems Biology" and How Might Such an Approach Facilitate Vaccine Design. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a033308. [PMID: 29038120 DOI: 10.1101/cshperspect.a033308] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A dichotomy exists in the field of vaccinology about the promise versus the hype associated with application of "systems biology" approaches to rational vaccine design. Some feel it is the only way to efficiently uncover currently unknown parameters controlling desired immune responses or discover what elements actually mediate these responses. Others feel that traditional experimental, often reductionist, methods for incrementally unraveling complex biology provide a more solid way forward, and that "systems" approaches are costly ways to collect data without gaining true insight. Here I argue that both views are inaccurate. This is largely because of confusion about what can be gained from classical experimentation versus statistical analysis of large data sets (bioinformatics) versus methods that quantitatively explain emergent properties of complex assemblies of biological components, with the latter reflecting what was previously called "physiology." Reductionist studies will remain essential for generating detailed insight into the functional attributes of specific elements of biological systems, but such analyses lack the power to provide a quantitative and predictive understanding of global system behavior. But by employing (1) large-scale screening methods for discovery of unknown components and connections in the immune system (omics), (2) statistical analysis of large data sets (bioinformatics), and (3) the capacity of quantitative computational methods to translate these individual components and connections into models of emergent behavior (systems biology), we will be able to better understand how the overall immune system functions and to determine with greater precision how to manipulate it to produce desired protective responses.
Collapse
Affiliation(s)
- Ronald N Germain
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
4
|
Yang Y, Sun W, Guo J, Zhao G, Sun S, Yu H, Guo Y, Li J, Jin X, Du L, Jiang S, Kou Z, Zhou Y. In silico design of a DNA-based HIV-1 multi-epitope vaccine for Chinese populations. Hum Vaccin Immunother 2015; 11:795-805. [PMID: 25839222 DOI: 10.1080/21645515.2015.1012017] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The development of an HIV-1 vaccine that is capable of inducing effective and broadly cross-reactive humoral and cellular immune responses remains a challenging task because of the extensive diversity of HIV-1, the difference of virus subtypes (clades) in different geographical regions, and the polymorphism of human leukocyte antigens (HLA). We performed an in silico design of 3 DNA vaccines, designated pJW4303-MEG1, pJW4303-MEG2 and pJW4303-MEG3, encoding multi-epitopes that are highly conserved within the HIV-1 subtypes most prevalent in China and can be recognized through HLA alleles dominant in China. The pJW4303-MEG1-encoded protein consisted of one Th epitope in Env, and one, 2, and 6 epitopes in Pol, Env, and Gag proteins, respectively, with a GGGS linker sequence between epitopes. The pJW4303-MEG2-encoded protein contained similar epitopes in a different order, but with the same linker as pJW4303-MEG1. The pJW4303-MEG3-encoded protein contained the same epitopes in the same order as that of pJW4303-MEG2, but with a different linker sequence (AAY). To evaluate immunogenicity, mice were immunized intramuscularly with these DNA vaccines. Both pJW4303-MEG1 and pJW4303-MEG2 vaccines induced equally potent humoral and cellular immune responses in the vaccinated mice, while pJW4303-MEG3 did not induce immune responses. These results indicate that both epitope and linker sequences are important in designing effective epitope-based vaccines against HIV-1 and other viruses.
Collapse
Affiliation(s)
- Yi Yang
- a State Key Laboratory of Pathogen and Biosecurity ; Beijing Institute of Microbiology and Epidemiology ; Beijing , China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Abstract
Limited understanding of correlates of protection from HIV transmission hinders development of an efficacious vaccine. D. J. M. Lewis and colleagues (J. Virol. 88:11648-11657, 2014, doi:10.1128/JVI.01621-14) now report that vaginal immunization with an HIVgp140 vaccine linked to the 70-kDa heat shock protein downregulated the human immunodeficiency virus (HIV) coreceptor CCR5 (chemokine [C-C motif] receptor 5) and increased expression of the HIV resistance factor APOBEC3G (apolipoprotein B mRNA-editing, enzyme-catalytic, polypeptide-like 3G), in women. These effects correlated with HIV suppression ex vivo. Thus, vaccine-induced innate responses not only facilitate adaptive immunity-they may prove to be critical for preventing HIV transmission.
Collapse
|
6
|
Peptide Dose and/or Structure in Vaccines as a Determinant of T Cell Responses. Vaccines (Basel) 2014; 2:537-48. [PMID: 26344744 PMCID: PMC4494221 DOI: 10.3390/vaccines2030537] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 05/13/2014] [Accepted: 06/05/2014] [Indexed: 01/12/2023] Open
Abstract
While T cells recognise the complex of peptide and major histocompatibility complex (MHC) at the cell surface, changes in the dose and/or structure of the peptide component can have profound effects on T cell activation and function. In addition, the repertoire of T cells capable of responding to any given peptide is variable, but broader than a single clone. Consequently, peptide parameters that affect the interaction between T cells and peptide/MHC have been shown to select particular T cell clones for expansion and this impacts on clearance of disease. T cells with high functional avidity are selected on low doses of peptide, while low avidity T cells are favoured in high peptide concentrations. Altering the structure of the peptide ligand can also influence the selection and function of peptide-specific T cell clones. In this review, we will explore the evidence that the choice of peptide dose or the structure of the peptide are critical parameters in an effective vaccine designed to activate T cells.
Collapse
|
7
|
Abstract
Reverse genetics systems allow artificial generation of non-segmented and segmented negative-sense RNA viruses, like influenza viruses, entirely from cloned cDNA. Since the introduction of reverse genetics systems over a decade ago, the ability to generate ‘designer’ influenza viruses in the laboratory has advanced both basic and applied research, providing a powerful tool to investigate and characterise host–pathogen interactions and advance the development of novel therapeutic strategies. The list of applications for reverse genetics has expanded vastly in recent years. In this review, we discuss the development and implications of this technique, including the recent controversy surrounding the generation of a transmissible H5N1 influenza virus. We will focus on research involving the identification of viral protein function, development of live-attenuated influenza virus vaccines, host–pathogen interactions, immunity and the generation of recombinant influenza virus vaccine vectors for the prevention and treatment of infectious diseases and cancer.
Collapse
|
8
|
Demberg T, Robert-Guroff M. Controlling the HIV/AIDS epidemic: current status and global challenges. Front Immunol 2012; 3:250. [PMID: 22912636 PMCID: PMC3418522 DOI: 10.3389/fimmu.2012.00250] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 07/27/2012] [Indexed: 12/21/2022] Open
Abstract
This review provides an overview of the current status of the global HIV pandemic and strategies to bring it under control. It updates numerous preventive approaches including behavioral interventions, male circumcision (MC), pre- and post-exposure prophylaxis (PREP and PEP), vaccines, and microbicides. The manuscript summarizes current anti-retroviral treatment options, their impact in the western world, and difficulties faced by emerging and resource-limited nations in providing and maintaining appropriate treatment regimens. Current clinical and pre-clinical approaches toward a cure for HIV are described, including new drug compounds that target viral reservoirs and gene therapy approaches aimed at altering susceptibility to HIV infection. Recent progress in vaccine development is summarized, including novel approaches and new discoveries.
Collapse
Affiliation(s)
- Thorsten Demberg
- Vaccine Branch, Section on Immune Biology of Retroviral Infection, National Cancer Institute, National Institutes of Health Bethesda, MD, USA
| | | |
Collapse
|
9
|
Ignatowicz L, Mazurek J, Leepiyasakulchai C, Sköld M, Hinkula J, Källenius G, Pawlowski A. Mycobacterium tuberculosis infection interferes with HIV vaccination in mice. PLoS One 2012; 7:e41205. [PMID: 22848444 PMCID: PMC3406616 DOI: 10.1371/journal.pone.0041205] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 06/18/2012] [Indexed: 01/28/2023] Open
Abstract
Tuberculosis (TB) has emerged as the most prominent bacterial disease found in human immunodeficiency virus (HIV)-positive individuals worldwide. Due to high prevalence of asymptomatic Mycobacterium tuberculosis (Mtb) infections, the future HIV vaccine in areas highly endemic for TB will often be administrated to individuals with an ongoing Mtb infection. The impact of concurrent Mtb infection on the immunogenicity of a HIV vaccine candidate, MultiHIV DNA/protein, was investigated in mice. We found that, depending on the vaccination route, mice infected with Mtb before the administration of the HIV vaccine showed impairment in both the magnitude and the quality of antibody and T cell responses to the vaccine components p24Gag and gp160Env. Mice infected with Mtb prior to intranasal HIV vaccination exhibited reduced p24Gag-specific serum IgG and IgA, and suppressed gp160Env-specific serum IgG as compared to respective titers in uninfected HIV-vaccinated controls. Importantly, in Mtb-infected mice that were HIV-vaccinated by the intramuscular route the virus neutralizing activity in serum was significantly decreased, relative to uninfected counterparts. In addition mice concurrently infected with Mtb had fewer p24Gag-specific IFN-γ-expressing T cells and multifunctional T cells in their spleens. These results suggest that Mtb infection might interfere with the outcome of prospective HIV vaccination in humans.
Collapse
Affiliation(s)
- Lech Ignatowicz
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Jolanta Mazurek
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | | | - Markus Sköld
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Jorma Hinkula
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Gunilla Källenius
- Department of Clinical Science and Education, Karolinska Institutet, Stockholm, Sweden
| | - Andrzej Pawlowski
- Department of Clinical Science and Education, Karolinska Institutet, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to describe a critical need of the HIV research community for a globally accessible database of HIV vaccine responses that stores data from multiple assay platforms in the form of lists of correlates of immune protection and vaccine efficacy. This is not a detailed review but a first step toward developing a dialogue among investigators and funding organizations to build upon existing resources to efficiently develop a HIV vaccine response and correlates database. We also discuss examples of databases that complement our needs and could be integrated into our proposed database requirements. RECENT FINDINGS Several vaccine-related databases that store information at the study level currently exist, however, at the present time, a correlates of immune protection database does not exist. SUMMARY Here, we discuss the scientific climate surrounding HIV vaccine development with the evolution of systems biology approaches, the problems at hand for analyzing and harmonizing datasets generated from preclinical and clinical studies, and the curation and accessibility of useful information to model outcomes. We also compare key database requirements of a few existing globally accessible databases and provide several illustrative correlate database submission and utilization examples.
Collapse
|
11
|
Overcoming limitations in the systems vaccinology approach: a pathway for accelerated HIV vaccine development. Curr Opin HIV AIDS 2012; 7:58-63. [PMID: 22156843 DOI: 10.1097/coh.0b013e32834ddd31] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW There remains a pressing need for an efficacious vaccine to combat HIV. The burgeoning fields of systems biology and innate immunity, as harnessed in systems vaccinology, promise to accelerate the discovery process and meet this need. RECENT FINDINGS The tools of systems biology are increasingly employed to define innate immune responses to vaccination and thereby unmask early signaling events that control induced adaptive immunity. These studies involve a wide array of measurements, including transcriptomics and proteomics, and a wide array of biological systems, from in-vitro stimulated murine innate immune cells to whole blood collected from vaccinated human donors. Each measurement and each system offers unique insights as well as special limitations and challenges. SUMMARY A holistic consideration of the models available for intensive HIV systems vaccinology analysis identifies a suite of interlocking opportunities and constraints. Although the murine system enables detailed mechanistic analysis, vaccine efficacy cannot be assessed in this model. Systems analysis of blood donated by vaccinated humans permits identification of immunogenicity signatures and biomarkers, but deriving direct mechanisms from these indirect measurements is precarious. The goals of HIV systems vaccinology may be best met by judicious integration of in vitro, in vivo (murine and nonhuman primate), and human clinical analyses.
Collapse
|
12
|
Janbazian L, Price DA, Canderan G, Filali-Mouhim A, Asher TE, Ambrozak DR, Scheinberg P, Boulassel MR, Routy JP, Koup RA, Douek DC, Sekaly RP, Trautmann L. Clonotype and repertoire changes drive the functional improvement of HIV-specific CD8 T cell populations under conditions of limited antigenic stimulation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2012; 188:1156-67. [PMID: 22210916 PMCID: PMC3262882 DOI: 10.4049/jimmunol.1102610] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Persistent exposure to cognate Ag leads to the functional impairment and exhaustion of HIV-specific CD8 T cells. Ag withdrawal, attributable either to antiretroviral treatment or the emergence of epitope escape mutations, causes HIV-specific CD8 T cell responses to wane over time. However, this process does not continue to extinction, and residual CD8 T cells likely play an important role in the control of HIV replication. In this study, we conducted a longitudinal analysis of clonality, phenotype, and function to define the characteristics of HIV-specific CD8 T cell populations that persist under conditions of limited antigenic stimulation. Ag decay was associated with dynamic changes in the TCR repertoire, increased expression of CD45RA and CD127, decreased expression of programmed death-1, and the emergence of polyfunctional HIV-specific CD8 T cells. High-definition analysis of individual clonotypes revealed that the Ag loss-induced gain of function within HIV-specific CD8 T cell populations could be attributed to two nonexclusive mechanisms: 1) functional improvement of persisting clonotypes; and 2) recruitment of particular clonotypes endowed with superior functional capabilities.
Collapse
Affiliation(s)
- Loury Janbazian
- Laboratory of Immunology, Department of Microbiology and Immunology, Université de Montréal, Montreal, H2X 1P1, Canada
| | - David A. Price
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Institute of InfectionandImmunity, Cardiff University School of Medicine, Cardiff, CF14 4XN, Wales, UK
| | - Glenda Canderan
- Vaccine and Gene Therapy Institute - Florida (VGTI-FL), Port Saint Lucie, FL 34987, USA
| | - Abdelali Filali-Mouhim
- Laboratory of Immunology, Department of Microbiology and Immunology, Université de Montréal, Montreal, H2X 1P1, Canada
| | - Tedi E. Asher
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - David R. Ambrozak
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Phillip Scheinberg
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mohamad Rachid Boulassel
- Division of Hematology, Royal Victoria Hospital, McGill University Health Centre, Montreal, H3A 1A1, Canada
| | - Jean-Pierre Routy
- Division of Hematology, Royal Victoria Hospital, McGill University Health Centre, Montreal, H3A 1A1, Canada
| | - Richard A. Koup
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel C. Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rafick-Pierre Sekaly
- Laboratory of Immunology, Department of Microbiology and Immunology, Université de Montréal, Montreal, H2X 1P1, Canada
- Vaccine and Gene Therapy Institute - Florida (VGTI-FL), Port Saint Lucie, FL 34987, USA
- Faculty of Medicine, Department of Microbiology and Immunology, McGill University, Montreal, H3A 2B4, Canada
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33101, USA
| | - Lydie Trautmann
- Vaccine and Gene Therapy Institute - Florida (VGTI-FL), Port Saint Lucie, FL 34987, USA
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33101, USA
| |
Collapse
|
13
|
Currier JR, Robb ML, Michael NL, Marovich MA. Defining epitope coverage requirements for T cell-based HIV vaccines: theoretical considerations and practical applications. J Transl Med 2011; 9:212. [PMID: 22152192 PMCID: PMC3284408 DOI: 10.1186/1479-5876-9-212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 12/08/2011] [Indexed: 11/16/2022] Open
Abstract
Background HIV vaccine development must address the genetic diversity and plasticity of the virus that permits the presentation of diverse genetic forms to the immune system and subsequent escape from immune pressure. Assessment of potential HIV strain coverage by candidate T cell-based vaccines (whether natural sequence or computationally optimized products) is now a critical component in interpreting candidate vaccine suitability. Methods We have utilized an N-mer identity algorithm to represent T cell epitopes and explore potential coverage of the global HIV pandemic using natural sequences derived from candidate HIV vaccines. Breadth (the number of T cell epitopes generated) and depth (the variant coverage within a T cell epitope) analyses have been incorporated into the model to explore vaccine coverage requirements in terms of the number of discrete T cell epitopes generated. Results We show that when multiple epitope generation by a vaccine product is considered a far more nuanced appraisal of the potential HIV strain coverage of the vaccine product emerges. By considering epitope breadth and depth several important observations were made: (1) epitope breadth requirements to reach particular levels of vaccine coverage, even for natural sequence-based vaccine products is not necessarily an intractable problem for the immune system; (2) increasing the valency (number of T cell epitope variants present) of vaccine products dramatically decreases the epitope requirements to reach particular coverage levels for any epidemic; (3) considering multiple-hit models (more than one exact epitope match with an incoming HIV strain) places a significantly higher requirement upon epitope breadth in order to reach a given level of coverage, to the point where low valency natural sequence based products would not practically be able to generate sufficient epitopes. Conclusions When HIV vaccine sequences are compared against datasets of potential incoming viruses important metrics such as the minimum epitope count required to reach a desired level of coverage can be easily calculated. We propose that such analyses can be applied early in the planning stages and during the execution phase of a vaccine trial to explore theoretical and empirical suitability of a vaccine product to a particular epidemic setting.
Collapse
|