1
|
Yuan L, Liu Z, Zhang X, Wei F, Guo S, Guo N, Liu L, Ma Z, Ji Y, Wang R, Lu X, Li Z, Xia W, Wu H, Zhang T, Su B. Development of a droplet digital polymerase chain reaction assay for the sensitive detection of total and integrated HIV-1 DNA. Chin Med J (Engl) 2024; 137:729-736. [PMID: 38433332 PMCID: PMC10950186 DOI: 10.1097/cm9.0000000000003081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Indexed: 03/05/2024] Open
Abstract
BACKGROUND Total human immunodeficiency virus (HIV) DNA and integrated HIV DNA are widely used markers of HIV persistence. Droplet digital polymerase chain reaction (ddPCR) can be used for absolute quantification without needing a standard curve. Here, we developed duplex ddPCR assays to detect and quantify total HIV DNA and integrated HIV DNA. METHODS The limit of detection, dynamic ranges, sensitivity, and reproducibility were evaluated by plasmid constructs containing both the HIV long terminal repeat (LTR) and human CD3 gene (for total HIV DNA) and ACH-2 cells (for integrated HIV DNA). Forty-two cases on stable suppressive antiretroviral therapy (ART) were assayed in total HIV DNA and integrated HIV DNA. Correlation coefficient analysis was performed on the data related to DNA copies and cluster of differentiation 4 positive (CD4 + ) T-cell counts, CD8 + T-cell counts and CD4/CD8 T-cell ratio, respectively. The assay linear dynamic range and lower limit of detection (LLOD) were also assessed. RESULTS The assay could detect the presence of HIV-1 copies 100% at concentrations of 6.3 copies/reaction, and the estimated LLOD of the ddPCR assay was 4.4 HIV DNA copies/reaction (95% confidence intervals [CI]: 3.6-6.5 copies/reaction) with linearity over a 5-log 10 -unit range in total HIV DNA assay. For the integrated HIV DNA assay, the LLOD was 8.0 copies/reaction (95% CI: 5.8-16.6 copies/reaction) with linearity over a 3-log 10 -unit range. Total HIV DNA in CD4 + T cells was positively associated with integrated HIV DNA ( r = 0.76, P <0.0001). Meanwhile, both total HIV DNA and integrated HIV DNA in CD4 + T cells were inversely correlated with the ratio of CD4/CD8 but positively correlated with the CD8 + T-cell counts. CONCLUSIONS This ddPCR assay can quantify total HIV DNA and integrated HIV DNA efficiently with robustness and sensitivity. It can be readily adapted for measuring HIV DNA with non-B clades, and it could be beneficial for testing in clinical trials.
Collapse
Affiliation(s)
- Lin Yuan
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Zhiying Liu
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Xin Zhang
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Feili Wei
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Shan Guo
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Na Guo
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Lifeng Liu
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Zhenglai Ma
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Yunxia Ji
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Rui Wang
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Xiaofan Lu
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Zhen Li
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Wei Xia
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Hao Wu
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Tong Zhang
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Bin Su
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| |
Collapse
|
2
|
Pascucci GR, Morrocchi E, Pighi C, Rotili A, Neri A, Medri C, Olivieri G, Sanna M, Rasi G, Persaud D, Chahroudi A, Lichterfeld M, Nastouli E, Cancrini C, Amodio D, Rossi P, Cotugno N, Palma P. How CD4 + T Cells Transcriptional Profile Is Affected by Culture Conditions: Towards the Design of Optimal In Vitro HIV Reactivation Assays. Biomedicines 2023; 11:888. [PMID: 36979867 PMCID: PMC10045592 DOI: 10.3390/biomedicines11030888] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/15/2023] [Accepted: 02/25/2023] [Indexed: 03/16/2023] Open
Abstract
Most of the current assays directed at the investigation of HIV reactivation are based on cultures of infected cells such as Peripheral Blood Mononuclear Cells (PBMCs) or isolated CD4+ T cells, stimulated in vitro with different activator molecules. The culture media in these in vitro tests lack many age- and donor-specific immunomodulatory components normally found within the autologous plasma. This triggered our interest in understanding the impact that different matrices and cell types have on T cell transcriptional profiles following in vitro culture and stimulation. METHODS Unstimulated or stimulated CD4+ T cells of three young adults with perinatal HIV-infection were isolated from PBMCs before or after culture in RPMI medium or autologous plasma. Transcriptomes were sequenced using Oxford Nanopore technologies. RESULTS Transcriptional profiles revealed the activation of similar pathways upon stimulation in both media with a higher magnitude of TCR cascade activation in CD4+ lymphocytes cultured in RPMI. CONCLUSIONS These results suggest that for studies aiming at quantifying the magnitude of biological mechanisms under T cell activation, the autologous plasma could better approximate the in vivo environment. Conversely, if the study aims at defining qualitative aspects, then RPMI culture could provide more evident results.
Collapse
Affiliation(s)
- Giuseppe Rubens Pascucci
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children’s Hospital, 00165 Rome, Italy
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Elena Morrocchi
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children’s Hospital, 00165 Rome, Italy
| | - Chiara Pighi
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children’s Hospital, 00165 Rome, Italy
| | - Arianna Rotili
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Alessia Neri
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children’s Hospital, 00165 Rome, Italy
| | - Chiara Medri
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children’s Hospital, 00165 Rome, Italy
| | - Giulio Olivieri
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children’s Hospital, 00165 Rome, Italy
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Marco Sanna
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children’s Hospital, 00165 Rome, Italy
| | - Gianmarco Rasi
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children’s Hospital, 00165 Rome, Italy
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Deborah Persaud
- Department of Pediatric Infectious Diseases, School of Medicine, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Ann Chahroudi
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA 30322, USA
- Center for Childhood Infections and Vaccines, Children’s Healthcare of Atlanta and Emory University, Atlanta, GA 30322, USA
| | - Mathias Lichterfeld
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
- Infectious Disease Division, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Eleni Nastouli
- Department of Infection, Immunity and Inflammation, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| | - Caterina Cancrini
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children’s Hospital, 00165 Rome, Italy
| | - Donato Amodio
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children’s Hospital, 00165 Rome, Italy
| | - Paolo Rossi
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children’s Hospital, 00165 Rome, Italy
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Nicola Cotugno
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children’s Hospital, 00165 Rome, Italy
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Paolo Palma
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children’s Hospital, 00165 Rome, Italy
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| |
Collapse
|
3
|
Donoso M, D’Amico D, Valdebenito S, Hernandez CA, Prideaux B, Eugenin EA. Identification, Quantification, and Characterization of HIV-1 Reservoirs in the Human Brain. Cells 2022; 11:2379. [PMID: 35954221 PMCID: PMC9367788 DOI: 10.3390/cells11152379] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/19/2022] [Accepted: 07/26/2022] [Indexed: 02/04/2023] Open
Abstract
The major barrier to cure HIV infection is the early generation and extended survival of HIV reservoirs in the circulation and tissues. Currently, the techniques used to detect and quantify HIV reservoirs are mostly based on blood-based assays; however, it has become evident that viral reservoirs remain in tissues. Our study describes a novel multi-component imaging method (HIV DNA, mRNA, and viral proteins in the same assay) to identify, quantify, and characterize viral reservoirs in tissues and blood products obtained from HIV-infected individuals even when systemic replication is undetectable. In the human brains of HIV-infected individuals under ART, we identified that microglia/macrophages and a small population of astrocytes are the main cells with integrated HIV DNA. Only half of the cells with integrated HIV DNA expressed viral mRNA, and one-third expressed viral proteins. Surprisingly, we identified residual HIV-p24, gp120, nef, vpr, and tat protein expression and accumulation in uninfected cells around HIV-infected cells suggesting local synthesis, secretion, and bystander uptake. In conclusion, our data show that ART reduces the size of the brain's HIV reservoirs; however, local/chronic viral protein secretion still occurs, indicating that the brain is still a major anatomical target to cure HIV infection.
Collapse
Affiliation(s)
| | | | | | | | | | - Eliseo A. Eugenin
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch (UTMB), Research Building 17, Fifth Floor, 105 11th Street, Galveston, TX 77555, USA; (M.D.); (D.D.); (S.V.); (C.A.H.); (B.P.)
| |
Collapse
|
4
|
Veenhuis RT, Abreu CM, Shirk EN, Gama L, Clements JE. HIV replication and latency in monocytes and macrophages. Semin Immunol 2021; 51:101472. [PMID: 33648815 PMCID: PMC10171083 DOI: 10.1016/j.smim.2021.101472] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 02/20/2021] [Indexed: 12/13/2022]
Abstract
The relevance of monocyte and macrophage reservoirs in virally suppressed people with HIV (vsPWH) has previously been debatable. Macrophages were assumed to have a moderate life span and lack self-renewing potential. However, recent studies have challenged this dogma and now suggest an important role of these cell as long-lived HIV reservoirs. Lentiviruses have a long-documented association with macrophages and abundant evidence exists that macrophages are important target cells for HIV in vivo. A critical understanding of HIV infection, replication, and latency in macrophages is needed in order to determine the appropriate method of measuring and eliminating this cellular reservoir. This review provides a brief discussion of the biology and acute and chronic infection of monocytes and macrophages, with a more substantial focus on replication, latency and measurement of the reservoir in cells of myeloid origin.
Collapse
Affiliation(s)
- Rebecca T Veenhuis
- Department of Molecular and Comparative Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Celina M Abreu
- Department of Molecular and Comparative Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Erin N Shirk
- Department of Molecular and Comparative Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Lucio Gama
- Department of Molecular and Comparative Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Vaccine Research Center, NIAID, NIH, Bethesda, MD, United States
| | - Janice E Clements
- Department of Molecular and Comparative Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
5
|
Abstract
Although highly active antiretroviral therapy (HAART) has been introduced over twenty years ago to treat Human Immunodeficiency Virus (HIV) positive patients, acquired immunodeficiency syndrome (AIDS) is still one of the deadliest diseases found worldwide. AIDS prevalence and mortality rates are usually more pronounced in resource-constrained countries than in the developed world. The lack of trained medical technicians, sophisticated diagnostic equipment, and the overall scarcity of medical infrastructures have severely impacted HIV/AIDS diagnostics, which hinders the initiation and periodic monitoring of antiretroviral therapy (ART). Currently, available HIV viral load assays are not well-suited for resource-limited settings due to their high cost and a requirement for medical/technical infrastructures. In this paper, we review current and emerging diagnostic assays for HIV detection, with a focus on point-of-care (POC) based immunoassays for viral load measurement, drug resistance, and HIV recurrence. We also discuss the limitations of the available HIV assays and highlight the technological advancements in cellphone, paper, and flexible material-based assays which have the potential to improve HIV diagnosis and monitoring, thus assisting with the management of the disease.
Collapse
Affiliation(s)
- Md Alamgir Kabir
- Department of Computer and Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL, USA.,Asghar-Lab, Micro and Nanotechnology in Medicine, College of Engineering and Computer Science, Boca Raton, FL, USA
| | - Hussein Zilouchian
- Asghar-Lab, Micro and Nanotechnology in Medicine, College of Engineering and Computer Science, Boca Raton, FL, USA
| | - Massimo Caputi
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| | - Waseem Asghar
- Department of Computer and Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL, USA.,Asghar-Lab, Micro and Nanotechnology in Medicine, College of Engineering and Computer Science, Boca Raton, FL, USA.,Department of Biological Sciences (courtesy appointment), Florida Atlantic University, Boca Raton, FL, USA
| |
Collapse
|
6
|
Falcinelli SD, Ceriani C, Margolis DM, Archin NM. New Frontiers in Measuring and Characterizing the HIV Reservoir. Front Microbiol 2019; 10:2878. [PMID: 31921056 PMCID: PMC6930150 DOI: 10.3389/fmicb.2019.02878] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 11/28/2019] [Indexed: 12/13/2022] Open
Abstract
A cure for HIV infection remains elusive due to the persistence of replication-competent HIV proviral DNA during suppressive antiretroviral therapy (ART). With the exception of rare elite or post-treatment controllers of viremia, withdrawal of ART invariably results in the rebound of viremia and progression of HIV disease. A thorough understanding of the reservoir is necessary to develop new strategies in order to reduce or eliminate the reservoir. However, there is significant heterogeneity in the sequence composition, genomic location, stability, and expression of the HIV reservoir both within and across individuals, and a majority of proviral sequences are replication-defective. These factors, and the low frequency of persistently infected cells in individuals on suppressive ART, make understanding the reservoir and its response to experimental reservoir reduction interventions challenging. Here, we review the characteristics of the HIV reservoir, state-of-the-art assays to measure and characterize the reservoir, and how these assays can be applied to accurately detect reductions in reservoir during efforts to develop a cure for HIV infection. In particular, we highlight recent advances in the development of direct measures of provirus, including intact proviral DNA assays and full-length HIV DNA sequencing with integration site analysis. We also focus on novel techniques to quantitate persistent and inducible HIV, including RNA sequencing and RNA/gag protein staining techniques, as well as modified viral outgrowth methods that seek to improve upon throughput, sensitivity and dynamic range.
Collapse
Affiliation(s)
- Shane D Falcinelli
- UNC HIV Cure Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Cristina Ceriani
- UNC HIV Cure Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - David M Margolis
- UNC HIV Cure Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Nancie M Archin
- UNC HIV Cure Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
7
|
Prevedel L, Ruel N, Castellano P, Smith C, Malik S, Villeux C, Bomsel M, Morgello S, Eugenin EA. Identification, Localization, and Quantification of HIV Reservoirs Using Microscopy. ACTA ACUST UNITED AC 2018; 82:e64. [PMID: 30265439 DOI: 10.1002/cpcb.64] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The major barrier to eradicating human immunodeficiency virus-1 (HIV) infection is the generation and extended survival of HIV reservoirs. In order to eradicate HIV infection, it is essential to detect, quantify, and characterize circulating and tissue-associated viral reservoirs in infected individuals. Currently, PCR-based technologies and Quantitative Viral Outgrowth Assays (Q-VOA) are the gold standards to detect viral reservoirs. However, these methods are limited to detecting circulating viral reservoirs, and it has been shown that they misrepresent the size of the reservoirs, largely because they detect only one component of the HIV life cycle and are unable to detect viral reservoirs in tissues. Here, we described the use of multiple detection systems to identify integrated HIV DNA or viral mRNA and several HIV proteins in circulating and tissue reservoirs using improved staining and microscopy techniques. We believe that this imaging-based approach for detecting HIV reservoirs will lead to breakthroughs necessary to eradicate these reservoirs. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Lisa Prevedel
- Public Health Research Institute (PHRI).,Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Rutgers the State University of New Jersey, Newark, New Jersey
| | - Nancy Ruel
- Public Health Research Institute (PHRI).,Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Rutgers the State University of New Jersey, Newark, New Jersey
| | - Paul Castellano
- Public Health Research Institute (PHRI).,Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Rutgers the State University of New Jersey, Newark, New Jersey
| | - Carla Smith
- Public Health Research Institute (PHRI).,Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Rutgers the State University of New Jersey, Newark, New Jersey
| | - Shaily Malik
- Public Health Research Institute (PHRI).,Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Rutgers the State University of New Jersey, Newark, New Jersey
| | - Courtney Villeux
- Public Health Research Institute (PHRI).,Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Rutgers the State University of New Jersey, Newark, New Jersey
| | - Morgane Bomsel
- Institute COCHIN, Infection, Immunity, and Inflammation Department, Paris, France
| | - Susan Morgello
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York.,Departments of Pathology & Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Eliseo A Eugenin
- Public Health Research Institute (PHRI).,Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Rutgers the State University of New Jersey, Newark, New Jersey.,Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch (UTMB), Galveston, Texas
| |
Collapse
|
8
|
HIV Protease-Generated Casp8p41, When Bound and Inactivated by Bcl2, Is Degraded by the Proteasome. J Virol 2018; 92:JVI.00037-18. [PMID: 29643240 PMCID: PMC6002723 DOI: 10.1128/jvi.00037-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 04/02/2018] [Indexed: 11/20/2022] Open
Abstract
HIV protease is known to cause cell death, which is dependent upon cleavage of procaspase 8. HIV protease cleavage of procaspase 8 generates Casp8p41, which directly binds Bak with nanomolar affinity, causing Bak activation and consequent cell death. Casp8p41 can also bind Bcl2 with nanomolar affinity, in which case cell death is averted. Central memory CD4 T cells express high levels of Bcl2, possibly explaining why those cells do not die when they reactivate HIV. Here, we determine that the Casp8p41-Bcl2 complex is polyubiquitinated and degraded by the proteasome. Ixazomib, a proteasome inhibitor in clinical use, blocks this pathway, increasing the abundance of Casp8p41 and causing more cells to die in a Casp8p41-dependent manner. IMPORTANCE The Casp8p41 pathway of cell death is unique to HIV-infected cells yet is blocked by Bcl2. Once bound by Bcl2, Casp8p41 is polyubiquitinated and degraded by the proteasome. Proteasome inhibition blocks degradation of Casp8p41, increasing Casp8p41 levels and causing more HIV-infected cells to die.
Collapse
|
9
|
Pinzone MR, O’Doherty U. Measuring integrated HIV DNA ex vivo and in vitro provides insights about how reservoirs are formed and maintained. Retrovirology 2018; 15:22. [PMID: 29452580 PMCID: PMC5816390 DOI: 10.1186/s12977-018-0396-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/19/2018] [Indexed: 11/29/2022] Open
Abstract
The identification of the most appropriate marker to measure reservoir size has been a great challenge for the HIV field. Quantitative viral outgrowth assay (QVOA), the reference standard to quantify the amount of replication-competent virus, has several limitations, as it is laborious, expensive, and unable to robustly reactivate every single integrated provirus. PCR-based assays have been developed as an easier, cheaper and less error-prone alternative to QVOA, but also have limitations. Historically, measuring integrated HIV DNA has provided insights about how reservoirs are formed and maintained. In the 1990s, measuring integrated HIV DNA was instrumental in understanding that a subset of resting CD4 T cells containing integrated HIV DNA were the major source of replication-competent virus. Follow-up studies have further characterized the phenotype of these cells containing integrated HIV DNA, as well as shown the correlation between the integration levels and clinical parameters, such as duration of infection, CD4 count and viral load. Integrated HIV DNA correlates with total HIV measures and with QVOA. The integration assay has several limitations. First, it largely overestimates the reservoir size, as both defective and replication-competent proviruses are detected. Since defective proviruses are the majority in patients on ART, it follows that the number of proviruses capable of reactivating and releasing new virions is significantly smaller than the number of integrated proviruses. Second, in patients on ART clonal expansion could theoretically lead to the preferential amplification of proviruses close to an Alu sequence though longitudinal studies have not captured this effect. Proviral sequencing combined with integration measures is probably the best estimate of reservoir size, but it is expensive, time-consuming and requires considerable bioinformatics expertise. All these reasons limit its use on a large scale. Herein, we review the utility of measuring HIV integration and suggest combining it with sequencing and total HIV measurements can provide insights that underlie reservoir maintenance.
Collapse
Affiliation(s)
- Marilia Rita Pinzone
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Una O’Doherty
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA USA
| |
Collapse
|
10
|
Zhang M, Robinson TO, Duverger A, Kutsch O, Heath SL, Cron RQ. Regulatory CD4 T cells inhibit HIV-1 expression of other CD4 T cell subsets via interactions with cell surface regulatory proteins. Virology 2018; 516:21-29. [PMID: 29324358 DOI: 10.1016/j.virol.2017.12.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 12/28/2017] [Accepted: 12/29/2017] [Indexed: 01/16/2023]
Abstract
During chronic HIV-1 infection, regulatory CD4 T cells (Tregs) frequently represent the largest subpopulation of CD4 T cell subsets, implying relative resistant to HIV-1. When HIV-1 infection of CD4 T cells was explored in vitro and ex vivo from patient samples, Tregs possessed lower levels of HIV-1 DNA and RNA in comparison with conventional effector and memory CD4 T cells. Moreover, Tregs suppressed HIV-1 expression in other CD4 T cells in an in vitro co-culture system. This suppression was mediated in part via multiple inhibitory surface proteins expressed on Tregs. Antibody blockade of CTLA-4, PD-1, and GARP on Tregs resulted in increased HIV-1 DNA integration and mRNA expression in neighboring CD4 T cells. Moreover, antibody blockade of Tregs inhibitory proteins resulted in increased HIV-1 LTR transcription in co-cultured CD4 T cells. Thus, Tregs inhibit HIV-1 infection of other CD4 T cell subsets via interactions with inhibitory cell surface proteins.
Collapse
Affiliation(s)
- Mingce Zhang
- Division of Rheumatology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Tanya O Robinson
- Division of Rheumatology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Alexandra Duverger
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Olaf Kutsch
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Sonya L Heath
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Randy Q Cron
- Division of Rheumatology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW The persistence of HIV within long-lived HIV-infected CD4 T cells is the primary obstacle towards HIV eradication and numerous strategies are currently being evaluated to target and kill HIV-infected cells to ultimately find a cure. HIV reservoirs are classically quantified by standard methods such as integrated HIV DNA (Alu PCR) and/or quantitative viral outgrowth assay; however, recent technical advances may offer new opportunities to comprehensively assess the impact of clinical interventions. RECENT FINDINGS Digital droplet PCR, tat/rev-induced limiting dilution analysis, enhanced quantitative viral outgrowth assay, and whole genome sequencing technologies offer increased precision and/or higher sensitivity to quantify and characterize HIV reservoirs in antiretroviral therapy-treated HIV-infected patients. SUMMARY The objective of this review is to highlight the characteristics and limits of recent technical advances that may help to monitor the impact of clinical interventions in antiretroviral therapy-treated patients.
Collapse
|
12
|
Ruggiero A, Malatinkova E, Rutsaert S, Paxton WA, Vandekerckhove L, De Spiegelaere W. Utility of integrated HIV-1 DNA quantification in cure studies. Future Virol 2017. [DOI: 10.2217/fvl-2016-0130] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Numerous HIV-1 curative strategies have been proposed to eradicate the virus reservoir pool that remains integrated within target cells, despite successful antiretroviral therapy. To test the impact of such interventions on this reservoir, a universal marker of persistence is needed. Quantifying integrated HIV-1 DNA load has been proposed as a strong virological marker. In this paper, we provide a detailed description of the most commonly used assays to quantify integrated HIV-1 DNA and applications in relevant clinical studies produced over the last 20 years with a major focus on the recent literature. We discuss the potential for using this marker of virological persistence and the technical limitations that need to be addressed.
Collapse
Affiliation(s)
- Alessandra Ruggiero
- Department of Clinical Infection, Microbiology & Immunology (CIMI), Institute of Infection & Global Health, University of Liverpool, Liverpool, UK
| | - Eva Malatinkova
- HIV Cure Research Center, Department of Internal Medicine, Faculty of Medicine & Health Sciences, Ghent University, Belgium
| | - Sofie Rutsaert
- HIV Cure Research Center, Department of Internal Medicine, Faculty of Medicine & Health Sciences, Ghent University, Belgium
| | - William A Paxton
- Department of Clinical Infection, Microbiology & Immunology (CIMI), Institute of Infection & Global Health, University of Liverpool, Liverpool, UK
| | - Linos Vandekerckhove
- HIV Cure Research Center, Department of Internal Medicine, Faculty of Medicine & Health Sciences, Ghent University, Belgium
| | - Ward De Spiegelaere
- Department of Morphology, Faculty of Veterinary Sciences, Ghent University, Belgium
| |
Collapse
|
13
|
Peripheral blood lymphocyte HIV DNA levels correlate with HIV associated neurocognitive disorders in Nigeria. J Neurovirol 2017; 23:474-482. [PMID: 28243867 DOI: 10.1007/s13365-017-0520-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 01/31/2017] [Accepted: 02/08/2017] [Indexed: 10/20/2022]
Abstract
Mononuclear cells play key roles in the pathogenic mechanisms leading to HIV-associated neurocognitive disorders (HANDs). We examined the association between HIV DNA within peripheral blood mononuclear cell (PBMC) subsets and HAND in Nigeria. PBMCs were collected at baseline from 36 antiretroviral naive participants. CD14+ cells and T&B lymphocyte fractions were isolated by, respectively, positive and negative magnetic bead separation. Total HIV DNA within CD14+ and T&B cells were separately quantified using real-time PCR assay targeting HIV LTR-gag and cell input numbers determined by CCR5 copies/sample. Utilizing demographically adjusted T scores obtained from a 7-domain neuropsychological test battery, cognitive status was determined by the global deficit score (GDS) approach, with a GDS of ≥0.5 indicating cognitive impairment. In a linear regression adjusting for plasma HIV RNA, CD4 and lymphocyte count, Beck's depression score, and years of education, there was 0.04 lower log10 HIV DNA copies within T&B lymphocytes per unit increase in global T score (p = 0.02). Adjusting for the same variables in a logistic regression, the odds of cognitive impairment were 6.2 times greater per log10 increase in HIV DNA within T&B lymphocytes (p = 0.048). The association between cognitive impairment and HIV DNA within CD14+ monocytes did not reach statistical significance. In this pretreatment cohort with mild cognitive dysfunction, we found a strong association between levels of HIV DNA within the lymphocyte subset and HAND independent of plasma HIV RNA. These findings likely reflect the neurologic impact of a larger HIV reservoir and active viral replication.
Collapse
|
14
|
Monitoring Integration over Time Supports a Role for Cytotoxic T Lymphocytes and Ongoing Replication as Determinants of Reservoir Size. J Virol 2016; 90:10436-10445. [PMID: 27630237 DOI: 10.1128/jvi.00242-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 08/15/2016] [Indexed: 01/30/2023] Open
Abstract
The dynamics of HIV reservoir accumulation off antiretroviral therapy (ART) is underexplored. Levels of integrated HIV DNA in peripheral blood mononuclear cells (PBMCs) were longitudinally monitored before and after antiviral therapy. HIV integration increased over time in both elite controllers (ECs; n = 8) and noncontrollers (NCs; n = 6) before ART, whereas integration remained stable in patients on ART (n = 4). The median annual fold change was higher in NCs than in ECs and negatively correlated with CD4/CD8 T-cell ratio. Cytotoxic T lymphocyte (CTL) function as assessed by infected CD4 T-cell elimination (ICE) and granzyme B activity did not significantly change over time in ECs, suggesting that the gradual increase in integrated HIV DNA observed in ECs was not a result of progressive loss of immune-mediated control. Also, acutely infected (n = 7) but not chronically infected (n = 6) patients exhibited a significant drop in integrated HIV DNA 12 months after ART initiation. In conclusion, in the absence of ART, integrated HIV accumulates over time both in NCs and in ECs, at variable individual rates. Starting ART early in infection leads to a greater drop in integrated HIV DNA than does initiating treatment after years of infection. The increase in integrated HIV DNA over time suggests that early treatment may be of benefit in limiting HIV reservoirs. IMPORTANCE The establishment of a latent reservoir represents a barrier to cure among HIV-infected individuals. The dynamics of HIV reservoir accumulation over time in patients before antiviral therapy is underexplored, in large part because it is difficult to accurately and reproducibly measure the size of HIV reservoir in this setting. In our study, we compared the dynamics of integrated HIV DNA over time in ECs and NCs before and after ART was initiated. We found that integrated HIV DNA levels progressively increase over time in the absence of ART, but with a higher, albeit variable, rate in NCs compared to ECs. In addition, integrated HIV DNA declines more dramatically when ART is initiated in acute rather than chronic HIV infection, suggesting important differences between acute and chronic infection. Our study highlights the role of HIV replication and CTL control in reservoir accumulation in sanctuary sites and why ART appears to be more effective in acute infection.
Collapse
|
15
|
Integrated and Total HIV-1 DNA Predict Ex Vivo Viral Outgrowth. PLoS Pathog 2016; 12:e1005472. [PMID: 26938995 PMCID: PMC4777389 DOI: 10.1371/journal.ppat.1005472] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 02/03/2016] [Indexed: 02/06/2023] Open
Abstract
The persistence of a reservoir of latently infected CD4 T cells remains one of the major obstacles to cure HIV. Numerous strategies are being explored to eliminate this reservoir. To translate these efforts into clinical trials, there is a strong need for validated biomarkers that can monitor the reservoir over time in vivo. A comprehensive study was designed to evaluate and compare potential HIV-1 reservoir biomarkers. A cohort of 25 patients, treated with suppressive antiretroviral therapy was sampled at three time points, with median of 2.5 years (IQR: 2.4–2.6) between time point 1 and 2; and median of 31 days (IQR: 28–36) between time point 2 and 3. Patients were median of 6 years (IQR: 3–12) on ART, and plasma viral load (<50 copies/ml) was suppressed for median of 4 years (IQR: 2–8). Total HIV-1 DNA, unspliced (us) and multiply spliced HIV-1 RNA, and 2LTR circles were quantified by digital PCR in peripheral blood, at 3 time points. At the second time point, a viral outgrowth assay (VOA) was performed, and integrated HIV-1 DNA and relative mRNA expression levels of HIV-1 restriction factors were quantified. No significant change was found for long- and short-term dynamics of all HIV-1 markers tested in peripheral blood. Integrated HIV-1 DNA was associated with total HIV-1 DNA (p<0.001, R² = 0.85), us HIV-1 RNA (p = 0.029, R² = 0.40), and VOA (p = 0.041, R2 = 0.44). Replication-competent virus was detected in 80% of patients by the VOA and it correlated with total HIV-1 DNA (p = 0.039, R² = 0.54). The mean quantification difference between Alu-PCR and VOA was 2.88 log10, and 2.23 log10 between total HIV-1 DNA and VOA. The levels of usHIV-1 RNA were inversely correlated with mRNA levels of several HIV-1 restriction factors (TRIM5α, SAMHD1, MX2, SLFN11, pSIP1). Our study reveals important correlations between the viral outgrowth and total and integrated HIV-1 DNA measures, suggesting that the total pool of HIV-1 DNA may predict the size of the replication-competent virus in ART suppressed patients. Current HIV-1 research aims to find a cure for HIV-1, either by pursuing viral eradication or by attempting to attain an immune-mediated functional cure. For the purpose of interpreting the findings of these eradication strategies, a validated representative biomarker of the replication-competent latent HIV-1 reservoir is urgently needed. In this study we have evaluated several cell-associated HIV-1 persistence markers, and we have measured replication-competent reservoir using the viral outgrowth assay (VOA). The results show a correlation between the pool of HIV-1 DNA and the replication-competent reservoir. Our data show that the pool of HIV-1 DNA (total or integrated HIV-1 DNA) can predict the amount of replication-competent latent HIV-1 in patients receiving treatment. Hence, PCR based assays quantifying integrated and/or total HIV-1 DNA can play an important role in future studies aiming at HIV-1 eradication.
Collapse
|
16
|
Ruggiero A, De Spiegelaere W, Cozzi-Lepri A, Kiselinova M, Pollakis G, Beloukas A, Vandekerckhove L, Strain M, Richman D, Phillips A, Geretti AM. During Stably Suppressive Antiretroviral Therapy Integrated HIV-1 DNA Load in Peripheral Blood is Associated with the Frequency of CD8 Cells Expressing HLA-DR/DP/DQ. EBioMedicine 2015; 2:1153-9. [PMID: 26498496 PMCID: PMC4588402 DOI: 10.1016/j.ebiom.2015.07.025] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 07/13/2015] [Accepted: 07/17/2015] [Indexed: 11/26/2022] Open
Abstract
Background Characterising the correlates of HIV persistence improves understanding of disease pathogenesis and guides the design of curative strategies. This study investigated factors associated with integrated HIV-1 DNA load during consistently suppressive first-line antiretroviral therapy (ART). Method Total, integrated, and 2-long terminal repeats (LTR) circular HIV-1 DNA, residual plasma HIV-1 RNA, T-cell activation markers, and soluble CD14 (sCD14) were measured in peripheral blood of 50 patients that had received 1–14 years of efavirenz-based or nevirapine-based therapy. Results Integrated HIV-1 DNA load (per 106 peripheral blood mononuclear cells) was median 1.9 log10 copies (interquartile range 1.7–2.2) and showed a mean difference of 0.2 log10 copies per 10 years of suppressive ART (95% confidence interval − 0.2, 0.6; p = 0.28). It was positively correlated with total HIV-1 DNA load and frequency of CD8+HLA-DR/DP/DQ+ cells, and was also higher in subjects with higher sCD14 levels, but showed no correlation with levels of 2-LTR circular HIV-1 DNA and residual plasma HIV-1 RNA, or the frequency of CD4+CD38+ and CD8+CD38+ cells. Adjusting for pre-ART viral load, duration of suppressive ART, CD4 cell counts, residual plasma HIV-1 RNA levels, and sCD14 levels, integrated HIV-1 DNA load was mean 0.5 log10 copies higher for each 50% higher frequency of CD8+HLA-DR/DP/DQ+ cells (95% confidence interval 0.2, 0.9; p = 0.01). Conclusions The observed positive association between integrated HIV-1 DNA load and frequency of CD8+DR/DP/DQ+ cells indicates that a close correlation between HIV persistence and immune activation continues during consistently suppressive therapy. The inducers of the distinct activation profile warrant further investigation. Data from a homogenously treated population with consistent virological suppression Integrated HIV-1 DNA load did not vary significantly by duration of therapy Integrated HIV-1 DNA load was not associated with markers of recent virus replication Integrated HIV-1 DNA load and CD8+HLA-DR/DP/DQ+ frequency were positively associated Subjects with top quartile integrated HIV-1 DNA load showed high sCD14 levels
Integrated HIV-1 DNA load remains constant in the peripheral blood of individuals receiving long-term suppressive antiretroviral therapy (ART). However, the mechanisms preventing decay of the reservoir remain unclear. We studied a cross-sectional population, defined by the duration of suppressive ART. Integrated HIV-1 DNA load did not differ significantly according to the duration of suppressive ART, and showed no association with direct or indirect markers of ongoing virus replication. Rather, there was an independent, positive association between integrated HIV-1 DNA load and the frequency of CD8 cells expressing the activation marker HLA-DR/DP/DQ. These cells appear to have important regulatory and effector function. Our findings add to growing evidence that immune activation sustains the HIV-1 reservoir during long-term suppressive ART.
Collapse
Key Words
- 2-LTR, 2-long terminal repeats
- ART, Anti-retroviral therapy
- Activation
- CMV, cytomegalovirus virus
- CRN, Clinical Research Network
- EBV, Epstein-Bar virus
- ELISA, enzyme-linked immune-enzymatic assay
- HIC, HIV-1 controllers
- HIV-1 VL, HIV-1 viral load
- HIV-1, Human Immunodeficiency Virus type 1
- HLA, Human Leukocyte Antigen
- Integration
- LPS, lipopolysaccharide
- NIHR, National Institute for Health Research
- NNRTI, Non-nucleoside reverse-transcriptase inhibitors
- NRTI, nucleoside/nucleotide reverse transcriptase inhibitors
- PBMCs, Peripheral blood mononuclear cells
- PCR, Polymerase chain reaction
- PFA, paraformaldehyde
- Persistence
- Reservoir
- Suppression
- VLS, Viral Load Suppression
- WHO, World Health Organisation
- sCD14, soluble CD14
Collapse
Affiliation(s)
- Alessandra Ruggiero
- Department of Clinical Infection, Microbiology and Immunology (CIMI), Institute of Infection and Global Health (IGH), University of Liverpool, 8 West Derby Street, Liverpool L697BE, United Kingdom
| | - Ward De Spiegelaere
- HIV Translational Research Unit, Department of Internal Medicine, Ghent University and University Hospital Ghent, De Pintelaan 1859000, Ghent, Belgium
| | - Alessandro Cozzi-Lepri
- Department of Infection and Population Health, University College London, Royal Free Campus, Rowland Hill Street, London, NW32PF, United Kingdom
| | - Maja Kiselinova
- HIV Translational Research Unit, Department of Internal Medicine, Ghent University and University Hospital Ghent, De Pintelaan 1859000, Ghent, Belgium
| | - Georgios Pollakis
- Department of Clinical Infection, Microbiology and Immunology (CIMI), Institute of Infection and Global Health (IGH), University of Liverpool, 8 West Derby Street, Liverpool L697BE, United Kingdom
| | - Apostolos Beloukas
- Department of Clinical Infection, Microbiology and Immunology (CIMI), Institute of Infection and Global Health (IGH), University of Liverpool, 8 West Derby Street, Liverpool L697BE, United Kingdom
| | - Linos Vandekerckhove
- HIV Translational Research Unit, Department of Internal Medicine, Ghent University and University Hospital Ghent, De Pintelaan 1859000, Ghent, Belgium
| | - Matthew Strain
- VA San Diego Healthcare System and Center for AIDS Research, University of California San Diego, La Jolla, CA 92093, United States
| | - Douglas Richman
- VA San Diego Healthcare System and Center for AIDS Research, University of California San Diego, La Jolla, CA 92093, United States
| | - Andrew Phillips
- Department of Infection and Population Health, University College London, Royal Free Campus, Rowland Hill Street, London, NW32PF, United Kingdom
| | - Anna Maria Geretti
- Department of Clinical Infection, Microbiology and Immunology (CIMI), Institute of Infection and Global Health (IGH), University of Liverpool, 8 West Derby Street, Liverpool L697BE, United Kingdom
| | | |
Collapse
|
17
|
Cross-clade ultrasensitive PCR-based assays to measure HIV persistence in large-cohort studies. J Virol 2014; 88:12385-96. [PMID: 25122785 DOI: 10.1128/jvi.00609-14] [Citation(s) in RCA: 189] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
UNLABELLED A small pool of infected cells persists in HIV-infected individuals receiving antiretroviral therapy (ART). Here, we developed ultrasensitive assays to precisely measure the frequency of cells harboring total HIV DNA, integrated HIV DNA, and two long terminal repeat (2-LTR) circles. These assays are performed on cell lysates, which circumvents the labor-intensive step of DNA extraction, and rely on the coquantification of each HIV molecular form together with CD3 gene sequences to precisely measure cell input. Using primary isolates from HIV subtypes A, B, C, D, and CRF01_A/E, we demonstrate that these assays can efficiently quantify low target copy numbers from diverse HIV subtypes. We further used these assays to measure total HIV DNA, integrated HIV DNA, and 2-LTR circles in CD4(+) T cells from HIV-infected subjects infected with subtype B. All samples obtained from ART-naive subjects were positive for the three HIV molecular forms (n = 15). Total HIV DNA, integrated HIV DNA, and 2-LTR circles were detected in, respectively, 100%, 94%, and 77% of the samples from individuals in which HIV was suppressed by ART. Higher levels of total HIV DNA and 2-LTR circles were detected in untreated subjects than individuals on ART (P = 0.0003 and P = 0.0004, respectively), while the frequency of CD4(+) T cells harboring integrated HIV DNA did not differ between the two groups. These results demonstrate that these novel assays have the ability to quantify very low levels of HIV DNA of multiple HIV subtypes without the need for nucleic acid extraction, making them well suited for the monitoring of viral persistence in large populations of HIV-infected individuals. IMPORTANCE Since the discovery of viral reservoirs in HIV-infected subjects receiving suppressive ART, measuring the degree of viral persistence has been one of the greatest challenges in the field of HIV research. Here, we report the development and validation of ultrasensitive assays to measure HIV persistence in HIV-infected individuals from multiple geographical regions. These assays are relatively inexpensive, do not require DNA extraction, and can be completed in a single day. Therefore, they are perfectly adapted to monitor HIV persistence in large cohorts of HIV-infected individuals and, given their sensitivity, can be used to monitor the efficacy of therapeutic strategies aimed at interfering with HIV persistence after prolonged ART.
Collapse
|
18
|
Abstract
HIV is a devastating disease affecting millions of people worldwide despite the advent of successful antiretroviral therapy (ART). However, ART does not result in a cure and has to be taken for life. Accordingly, researchers are turning towards cure efforts, particularly in the light of two patients whose HIV has been seemingly eradicated. Numerous approaches and strategies have been considered for curing HIV, but no scalable and safe solution has yet been reached. With newly discovered difficulties in measuring the HIV reservoir, the main barrier to a cure, the only true test of cure is to stop ART and see whether the virus becomes detectable. However, it is possible that this treatment interruption may be associated with certain risks for patients. Here, we compare the current major approaches and recent advances for curing HIV, as well as discuss ways of evaluating HIV cure and the safety concerns involved.
Collapse
Affiliation(s)
- Matthew Pace
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | | |
Collapse
|
19
|
De Spiegelaere W, Malatinkova E, Lynch L, Van Nieuwerburgh F, Messiaen P, O'Doherty U, Vandekerckhove L. Quantification of integrated HIV DNA by repetitive-sampling Alu-HIV PCR on the basis of poisson statistics. Clin Chem 2014; 60:886-95. [PMID: 24664400 DOI: 10.1373/clinchem.2013.219378] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Quantification of integrated proviral HIV DNA by repetitive-sampling Alu-HIV PCR is a candidate virological tool to monitor the HIV reservoir in patients. However, the experimental procedures and data analysis of the assay are complex and hinder its widespread use. Here, we provide an improved and simplified data analysis method by adopting binomial and Poisson statistics. METHODS A modified analysis method on the basis of Poisson statistics was used to analyze the binomial data of positive and negative reactions from a 42-replicate Alu-HIV PCR by use of dilutions of an integration standard and on samples of 57 HIV-infected patients. Results were compared with the quantitative output of the previously described Alu-HIV PCR method. RESULTS Poisson-based quantification of the Alu-HIV PCR was linearly correlated with the standard dilution series, indicating that absolute quantification with the Poisson method is a valid alternative for data analysis of repetitive-sampling Alu-HIV PCR data. Quantitative outputs of patient samples assessed by the Poisson method correlated with the previously described Alu-HIV PCR analysis, indicating that this method is a valid alternative for quantifying integrated HIV DNA. CONCLUSIONS Poisson-based analysis of the Alu-HIV PCR data enables absolute quantification without the need of a standard dilution curve. Implementation of the CI estimation permits improved qualitative analysis of the data and provides a statistical basis for the required minimal number of technical replicates.
Collapse
Affiliation(s)
| | - Eva Malatinkova
- HIV Translational Research Unit, Department of Internal Medicine, and
| | - Lindsay Lynch
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA
| | - Filip Van Nieuwerburgh
- Laboratory of Pharmaceutical Biotechnology, Department of Pharmaceutics, Ghent University, Ghent, Belgium
| | - Peter Messiaen
- HIV Translational Research Unit, Department of Internal Medicine, and
| | - Una O'Doherty
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA
| | | |
Collapse
|
20
|
Abstract
Antiretroviral therapy (ART) does not eliminate HIV-1 from latently infected reservoirs, and this remains the critical obstacle to the eradication of infection. Although ART is effective in suppressing viral load, life-long ART is burdensome in many respects. Given expanding numbers of HIV-infected individuals on ART worldwide, there is an urgent need to examine the possibility that innovative therapies might eradicate infection, and obviate the need for life-long medical therapy for HIV-positive people around the world. Several approaches to eradicating the latent HIV reservoir and curing infection have been proposed and are under study. An initial strategy seeks to induce the expression of the latent integrated proviral genomes within resting CD4+ T cells, so that viral proteins or particles may be revealed and allow these cellular reservoirs to be cleared. The inducing agents that have been studied recently are inhibitors of histone deacetylase (HDAC) such as suberoylanilide hydroxamic acid (SAHA). Such induction of viral expression seems unlikely in itself to efficiently clear all latently infected cells. Therefore, it seems likely that parallel efforts to augment the HIV-specific immune response with specific immunotherapies or vaccination may be required. Recently, efforts to achieve immune augmentation by ex vivo expansion of viral specific cytotoxic T-cell lymphocytes derived from HIV-infected patients have yielded an augmented HIV-specific immune response in vivo, as have cellular vaccinations delivered by administration of dendritic cells. As HIV latency and the persistence of infection despite effective ART is multifactorial, the eradication of HIV infection may require multiple approaches.
Collapse
|
21
|
Hatano H, Yukl SA, Ferre AL, Graf EH, Somsouk M, Sinclair E, Abdel-Mohsen M, Liegler T, Harvill K, Hoh R, Palmer S, Bacchetti P, Hunt PW, Martin JN, McCune JM, Tracy RP, Busch MP, O'Doherty U, Shacklett BL, Wong JK, Deeks SG. Prospective antiretroviral treatment of asymptomatic, HIV-1 infected controllers. PLoS Pathog 2013; 9:e1003691. [PMID: 24130489 PMCID: PMC3795031 DOI: 10.1371/journal.ppat.1003691] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 08/23/2013] [Indexed: 11/19/2022] Open
Abstract
The study of HIV-infected "controllers" who are able to maintain low levels of plasma HIV RNA in the absence of antiretroviral therapy (ART) may provide insights for HIV cure and vaccine strategies. Despite maintaining very low levels of plasma viremia, controllers have elevated immune activation and accelerated atherosclerosis. However, the degree to which low-level replication contributes to these phenomena is not known. Sixteen asymptomatic controllers were prospectively treated with ART for 24 weeks. Controllers had a statistically significant decrease in ultrasensitive plasma and rectal HIV RNA levels with ART. Markers of T cell activation/dysfunction in blood and gut mucosa also decreased substantially with ART. Similar reductions were observed in the subset of "elite" controllers with pre-ART plasma HIV RNA levels below conventional assays (<40 copies/mL). These data confirm that HIV replication persists in controllers and contributes to a chronic inflammatory state. ART should be considered for these individuals (ClinicalTrials.gov NCT01025427).
Collapse
Affiliation(s)
- Hiroyu Hatano
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| | - Steven A. Yukl
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
- Department of Medicine, San Francisco Veterans Affairs Medical Center, San Francisco, California, United States of America
| | - April L. Ferre
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, United States of America
| | - Erin H. Graf
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Ma Somsouk
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Elizabeth Sinclair
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Mohamed Abdel-Mohsen
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Teri Liegler
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Kara Harvill
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Rebecca Hoh
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Sarah Palmer
- Karolinska Institutet and Swedish Institute for Infectious Disease Control, Solna, Sweden
- Centre for Virus Research, Westmead Millennium Institute and University of Sydney, Westmead, Australia
| | - Peter Bacchetti
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, United States of America
| | - Peter W. Hunt
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Jeffrey N. Martin
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, United States of America
| | - Joseph M. McCune
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Russell P. Tracy
- Departments of Pathology and Biochemistry, University of Vermont, Colchester, Vermont, United States of America
| | - Michael P. Busch
- Blood Systems Research Institute, San Francisco, California, United States of America
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Una O'Doherty
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Barbara L. Shacklett
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, United States of America
| | - Joseph K. Wong
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
- Department of Medicine, San Francisco Veterans Affairs Medical Center, San Francisco, California, United States of America
| | - Steven G. Deeks
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| |
Collapse
|