1
|
Dubé K, Patel H, Meanley S, Dee L, Korolkova A, Wan F, Eskaf S, Williams M, Hoh R, Deeks SG, Peluso MJ, Sugarman J, Sauceda JA. Lessons Learned in Eliciting Systematic Participant Perspectives in a Combination HIV Cure Research Trial. AIDS Res Hum Retroviruses 2025; 41:241-252. [PMID: 39907119 DOI: 10.1089/aid.2024.0086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025] Open
Abstract
Current trials toward an HIV cure involve combination strategies aimed at achieving durable antiretroviral treatment (ART)-free viral control or HIV elimination, many relying on analytical treatment interruptions (ATIs) to evaluate efficacy. Given the physical, psychosocial, and interpersonal risks associated with ATIs, it is critical to monitor participants' experiences so that support can be provided when needed. While qualitative approaches have been used in similar settings, we designed and implemented a series of short, closed-ended participant surveys in the University of California, San Francisco-amfAR trial, a single-arm multi-intervention HIV cure-related trial with an extended ATI. Surveys were administered at relevant trial timepoints to capture participants' (n = 10) perspectives and experiences. These included their understanding of the trial, motivations, expectations, perceived risks, benefits, and burdens of trial participation, as well as their perspectives on restarting ART and partner protections. We describe these data using descriptive statistics and summarize lessons learned from implementing quantitative surveys in this complex trial. Our data indicate that all respondents understood the scientific goals and requirements of participating in the trial. Most were motivated to help advance research but many expressed anxiety about participating. During the trial, respondents had limited side effects, discomfort, and trial burnout. Those who completed surveys at ART restart reported mixed (positive and negative) feelings and challenges (e.g., missed doses) when restarting ART. Participants offered various methods for partner protection during ATIs and at ART restart. Many respondents expressed future willingness to participate in a similar HIV cure trial. While the number of respondents was small, these findings are consistent with concerns identified in guidance regarding these types of trials as well as qualitative findings from earlier studies. Moreover, we demonstrated that it is feasible to implement quantitative evaluations of participants' experiences. Such approaches should be implemented in future HIV cure trials to optimize human-centered research implementation.
Collapse
Affiliation(s)
- Karine Dubé
- Division of Infectious Diseases and Global Public Health (IDGPH), Department of Medicine, University of California San Diego (UCSD), La Jolla, California, USA
| | - Hursch Patel
- Division of Infectious Diseases and Global Public Health (IDGPH), Department of Medicine, University of California San Diego (UCSD), La Jolla, California, USA
| | - Steven Meanley
- Department of Family and Community Health, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Lynda Dee
- AIDS Action Baltimore, Baltimore, Maryland, USA
- Delaney AIDS Research Enterprise (DARE) Community Engagement Coordinator, San Francisco, California, USA
| | - Anastasia Korolkova
- Division of Infectious Diseases and Global Public Health (IDGPH), Department of Medicine, University of California San Diego (UCSD), La Jolla, California, USA
| | - Fang Wan
- Division of Infectious Diseases and Global Public Health (IDGPH), Department of Medicine, University of California San Diego (UCSD), La Jolla, California, USA
| | - Shadi Eskaf
- Public Health Research Consultant, Chapel Hill, North Carolina, USA
| | - Meghann Williams
- Division of HIV, Infectious Diseases and Global Medicine, Department of Medicine, University of California, San Francsico, San Francisco, California, USA
| | - Rebecca Hoh
- Division of HIV, Infectious Diseases and Global Medicine, Department of Medicine, University of California, San Francsico, San Francisco, California, USA
| | - Steven G Deeks
- Division of HIV, Infectious Diseases and Global Medicine, Department of Medicine, University of California, San Francsico, San Francisco, California, USA
| | - Michael J Peluso
- Division of HIV, Infectious Diseases and Global Medicine, Department of Medicine, University of California, San Francsico, San Francisco, California, USA
| | - Jeremy Sugarman
- Johns Hopkins Berman Institute for Bioethics, Baltimore, Maryland, USA
| | - John A Sauceda
- Division of Prevention Science, Center for AIDS Prevention Studies (CAPS), San Francisco, California, USA
| |
Collapse
|
2
|
Singh M, Shanmukha S, Eldesouki RE, Harraz MM. FDA-approved drug repurposing screen identifies inhibitors of SARS-CoV-2 pseudovirus entry. Front Pharmacol 2025; 16:1537912. [PMID: 40166473 PMCID: PMC11955658 DOI: 10.3389/fphar.2025.1537912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 02/17/2025] [Indexed: 04/02/2025] Open
Abstract
Background and purpose The coronavirus disease 2019 (COVID-19) pandemic has devastated global health and the economy, underscoring the urgent need for extensive research into the mechanisms of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral entry and the development of effective therapeutic interventions. Experimental approach We established a cell line expressing human angiotensin-converting enzyme 2 (ACE2). We used it as a model of pseudotyped viral entry using murine leukemia virus (MLV) expressing SARS-CoV-2 spike (S) protein on its surface and firefly luciferase as a reporter. We screened an U.S. Food and Drug Administration (FDA)-approved compound library for inhibiting ACE2-dependent SARS-CoV-2 pseudotyped viral entry and identified several drug-repurposing candidates. Key results We identified 18 drugs and drug candidates, including 14 previously reported inhibitors of viral entry and four novel candidates. Pyridoxal 5'-phosphate, Dovitinib, Adefovir dipivoxil, and Biapenem potently inhibit ACE2-dependent viral entry with inhibitory concentration 50% (IC50) values of 57nM, 74 nM, 130 nM, and 183 nM, respectively. Conclusion and implications We identified four novel FDA-approved candidate drugs for anti-SARS-CoV-2 combination therapy. Our findings contribute to the growing body of evidence supporting drug repurposing as a viable strategy for rapidly developing COVID-19 treatments.
Collapse
Affiliation(s)
- Manisha Singh
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Shruthi Shanmukha
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Raghda E. Eldesouki
- Genetics Unit, Histology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Maged M. Harraz
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Pharmacology and Physiology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
3
|
Azzouzi M, El Hadad SE, Azougagh O, Ouchaoui AA, Abou-Salama M, Oussaid A, Pannecouque C, Rohand T. Synthesis, Characterization, and antiviral evaluation of New Chalcone-Based Imidazo[1,2-a]pyridine Derivatives: Insights from in vitro and in silico Anti-HIV studies. Bioorg Chem 2025; 154:108102. [PMID: 39740310 DOI: 10.1016/j.bioorg.2024.108102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/10/2024] [Accepted: 12/24/2024] [Indexed: 01/02/2025]
Abstract
Given the ease of synthetic accessibility and the promising biological profile demonstrated by both imidazo[1,2-a]pyridine and Chalcone derivatives, a series of Chalcone-based imidazo[1,2-a]pyridine derivatives were synthesized and characterized using 1H NMR, 13C NMR, Mass Spectrometry and FTIR techniques. Density functional theory (DFT) was employed to investigate the structural and electronic properties, providing insights into potential reactive sites. The synthesized compounds were evaluated in vitro for their antiviral properties against human immunodeficiency virus type-1 (HIV-1) and human immunodeficiency virus type-2 (HIV-2) in MT-4 cells. Furthermore, Molecular docking studies show strong binding affinities with HIV-1 reverse transcriptase and HIV-2 protease. To further understand the dynamic behavior and stability of these interactions, molecular dynamics (MD) simulations were conducted. The MD results indicated stable binding conformations of the ligands within the active sites, with low RMSD and RMSF values throughout the simulation, confirming the robustness of these interactions. ADME predictions suggested acceptable pharmacokinetic profiles, though solubility remains a limitation for these compounds. Although the in vitro antiviral activity was limited, the combination of in vitro and in silico approaches provided valuable insights, guiding further structural optimization to improve bioavailability and enhance the therapeutic potential of these derivatives.
Collapse
Affiliation(s)
- Mohamed Azzouzi
- Laboratory of Molecular Chemistry, Materials and Environment (LCM2E), Department of Chemistry, Multidisciplinary Faculty of Nador, University Mohamed I, 60700 Nador, Morocco
| | - Salah Eddine El Hadad
- Chemical and Biochemical Sciences-Green Process Engineering, University Mohammed VI Polytechnic, Ben Guerir, Morocco
| | - Omar Azougagh
- Laboratory of Molecular Chemistry, Materials and Environment (LCM2E), Department of Chemistry, Multidisciplinary Faculty of Nador, University Mohamed I, 60700 Nador, Morocco
| | - Abderrahim Ait Ouchaoui
- Mohammed VI university of Sciences and Health (UM6SS), Casablanca, Morocco; Mohammed VI Center for Research and Innovation (CM6), Rabat 10000, Morocco
| | - Mohamed Abou-Salama
- Laboratory of Molecular Chemistry, Materials and Environment (LCM2E), Department of Chemistry, Multidisciplinary Faculty of Nador, University Mohamed I, 60700 Nador, Morocco
| | - Adyl Oussaid
- Laboratory of Molecular Chemistry, Materials and Environment (LCM2E), Department of Chemistry, Multidisciplinary Faculty of Nador, University Mohamed I, 60700 Nador, Morocco
| | - Christophe Pannecouque
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, K.U. Leuven, Leuven B-3000, Belgium
| | - Taoufik Rohand
- Laboratory of Molecular Chemistry, Materials and Environment (LCM2E), Department of Chemistry, Multidisciplinary Faculty of Nador, University Mohamed I, 60700 Nador, Morocco.
| |
Collapse
|
4
|
Azzouzi M, Ouchaoui AA, Azougagh O, El Hadad SE, Abou-Salama M, Oussaid A, Pannecouque C, Rohand T. Synthesis, crystal structure, and antiviral evaluation of new imidazopyridine-schiff base derivatives: in vitro and in silico anti-HIV studies. RSC Adv 2024; 14:36902-36918. [PMID: 39569129 PMCID: PMC11574953 DOI: 10.1039/d4ra07561g] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 11/13/2024] [Indexed: 11/22/2024] Open
Abstract
A series of Imidazo[1,2-a]pyridine-Schiff base derivatives were synthesized and characterized using 1H NMR, 13C NMR, Mass Spectrometry and FTIR techniques, and the structure of 4a was further confirmed through single-crystal X-ray diffraction analysis. Density Functional Theory (DFT) has been used to investigate the structural and electronic properties. The synthesized compounds were evaluated in vitro for their antiviral activity against human immunodeficiency virus type-1 (HIV-1) and human immunodeficiency virus type-2 (HIV-2) in MT-4 cells. Compound 4a displayed EC50 values of 82,02 and 47,72 μg ml-1 against HIV-1 and HIV-2, respectively. Molecular docking studies were conducted to gain insights into the interaction mechanism of the synthesized compounds with HIV-1 reverse transcriptase. ADME analysis suggested acceptable pharmacokinetic profiles, though solubility remains a limitation for these compounds, highlighting the need for further structural modifications to enhance bioavailability and therapeutic potential.
Collapse
Affiliation(s)
- Mohamed Azzouzi
- Laboratory of Molecular Chemistry, Materials and Environment (LCM2E), Department of Chemistry, Multidisciplinary Faculty of Nador, University Mohamed I Nador 60700 Morocco
| | - Abderrahim Ait Ouchaoui
- Mohammed VI University of Sciences and Health (UM6SS) Casablanca Morocco
- Mohammed VI Center for Research and Innovation (CM6) Rabat 10000 Morocco
| | - Omar Azougagh
- Laboratory of Molecular Chemistry, Materials and Environment (LCM2E), Department of Chemistry, Multidisciplinary Faculty of Nador, University Mohamed I Nador 60700 Morocco
| | - Salah Eddine El Hadad
- Chemical and Biochemical Sciences-Green Process Engineering, University Mohammed VI Polytechnic Ben Guerir Morocco
| | - Mohamed Abou-Salama
- Laboratory of Molecular Chemistry, Materials and Environment (LCM2E), Department of Chemistry, Multidisciplinary Faculty of Nador, University Mohamed I Nador 60700 Morocco
| | - Adyl Oussaid
- Laboratory of Molecular Chemistry, Materials and Environment (LCM2E), Department of Chemistry, Multidisciplinary Faculty of Nador, University Mohamed I Nador 60700 Morocco
| | - Christophe Pannecouque
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, K.U. Leuven Leuven B-3000 Belgium
| | - Taoufik Rohand
- Laboratory of Molecular Chemistry, Materials and Environment (LCM2E), Department of Chemistry, Multidisciplinary Faculty of Nador, University Mohamed I Nador 60700 Morocco
| |
Collapse
|
5
|
Xiong F, Chen L, Zhang YJ, Zhu YR, Sun C, Ma C, Zhang SJ, Wang ZH. Molecular Modeling and Docking Studies of 2,4,5-Trisubstituted Pyrimidines as HIV-1 Non-Nucleoside Reverse Transcriptase Inhibitors. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2141274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Fei Xiong
- Department of Chemistry, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Lu Chen
- Department of Chemistry, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Yan-jun Zhang
- Department of Chemistry, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Yi-ren Zhu
- Department of Chemistry, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Chen Sun
- Department of Chemistry, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Chao Ma
- Department of Chemistry, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Shuai-jun Zhang
- Department of Chemistry, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Zhong-hua Wang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, PR China
| |
Collapse
|
6
|
Geng EH, Nash D, Phanuphak N, Green K, Solomon S, Grimsrud A, Sohn AH, Mayer KH, Bärnighausen T, Bekker LG. The question of the question: impactful implementation science to address the HIV epidemic. J Int AIDS Soc 2022; 25:e25898. [PMID: 35384312 PMCID: PMC8982316 DOI: 10.1002/jia2.25898] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 02/18/2022] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION Questions about the implementation of evidence-based intervention to treat and prevent HIV have risen to the top of the field's scientific priorities. Despite the availability of highly efficacious treatment and prevention interventions, impact has fallen short of targets because these interventions are used with insufficient reach, consistency, sustainability and equity in diverse real-world settings. At present, substantial excitement for implementation science - defined as research methods and strategies to improve use of evidence-based interventions - has focused on developing and disseminating methods to conduct rigorous research. Yet, impactful answers depend on a sometimes less visible, but even more important, step: asking good questions about implementation. DISCUSSION In this commentary, we offer several considerations for researchers formulating implementation research questions based on several distinctive features of the field. First, as findings are used not only by other researchers but by implementers, scientific questions must incorporate a range of stakeholder and community perspectives to be most relevant. Second, real-world settings are contextually diverse, and the most relevant scientific questions must position answers to make sense within these contexts (whether geographical, organizational and sociological), rather than apart from them. Third, implementation is complex and dynamic; consequently, research questions must make use of emerging standards in describing implementation strategies and their effects whenever possible. Finally, the field of implementation science continues to evolve, so framing problems with a diverse disciplinary lens will enable researchers to pose insightful and impactful questions. CONCLUSIONS We are now at a juncture marked by both rich evidence-based interventions and a persistent global pandemic. To achieve continued scientific progress against the HIV epidemic, asking the right questions might be part of the answer itself.
Collapse
Affiliation(s)
- Elvin H Geng
- Center for Dissemination and Implementation, Institute of Public Health, Division of Infectious Diseases, Department of Medicine, School of Medicine at Washington University in St. Louis, St. Louis, Missouri, USA
| | - Denis Nash
- Institute for Implementation Science in Population Health, City University of New York, New York, USA.,Department of Epidemiology and Biostatistics, Graduate School of Public Health, City University of New York, New York, USA
| | | | | | - Sunil Solomon
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | | | | | - Kenneth H Mayer
- The Fenway Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Till Bärnighausen
- Heidelberg Institute of Global Health, Faculty of Medicine and University Hospital, Heidelberg, Germany
| | - Linda-Gail Bekker
- Institute of Infectious Disease and Molecular Medicine, Desmond Tutu HIV Centre, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
7
|
Barbian HJ, Seaton MS, Narasipura SD, Wallace J, Rajan R, Sha BE, Al-Harthi L. β-catenin regulates HIV latency and modulates HIV reactivation. PLoS Pathog 2022; 18:e1010354. [PMID: 35255110 PMCID: PMC8939789 DOI: 10.1371/journal.ppat.1010354] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 03/22/2022] [Accepted: 02/09/2022] [Indexed: 11/18/2022] Open
Abstract
Latency is the main obstacle towards an HIV cure, with cure strategies aiming to either elicit or prevent viral reactivation. While these strategies have shown promise, they have only succeeded in modulating latency in a fraction of the latent HIV reservoir, suggesting that the mechanisms controlling HIV latency are not completely understood, and that comprehensive latency modulation will require targeting of multiple latency maintenance pathways. We show here that the transcriptional co-activator and the central mediator of canonical Wnt signaling, β-catenin, inhibits HIV transcription in CD4+ T cells via TCF-4 LTR binding sites. Further, we show that inhibiting the β-catenin pathway reactivates HIV in a primary TCM cell model of HIV latency, primary cells from cART-controlled HIV donors, and in CD4+ latent cell lines. β-catenin inhibition or activation also enhanced or inhibited the activity of several classes of HIV latency reversing agents, respectively, in these models, with significant synergy of β-catenin and each LRA class tested. In sum, we identify β-catenin as a novel regulator of HIV latency in vitro and ex vivo, adding new therapeutic targets that may be combined for comprehensive HIV latency modulation in HIV cure efforts.
Collapse
Affiliation(s)
- Hannah J. Barbian
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Melanie S. Seaton
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Srinivas D. Narasipura
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Jennillee Wallace
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Reshma Rajan
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Beverly E. Sha
- Department of Internal Medicine, Division of Infectious Diseases, Rush University Medical Center, Chicago, Illinios United States of America
| | - Lena Al-Harthi
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
8
|
Dubé K, Kanazawa J, Dee L, Taylor J, Sauceda JA, Gianella S, Smith D, Deeks SG, Peluso MJ. Considerations for designing and implementing combination HIV cure trials: findings from a qualitative in-depth interview study in the United States. AIDS Res Ther 2021; 18:75. [PMID: 34663375 PMCID: PMC8522863 DOI: 10.1186/s12981-021-00401-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 10/06/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND An increasing number of HIV cure trials involve combining multiple potentially curative interventions. Until now, considerations for designing and implementing complex combination HIV cure trials have not been thoroughly considered. METHODS We used a purposive method to select key informants for our study. Informants included biomedical HIV cure researchers, regulators, policy makers, bioethicists, and community members. We used in-depth interviews to generate ethical and practical considerations to guide the design and implementation of combination HIV cure research. We analyzed the qualitative data using conventional content analysis focused on inductive reasoning. RESULTS We interviewed 11 biomedical researchers, 4 community members, 2 regulators, 1 policy researcher, and 1 bioethicist. Informants generated considerations for designing and implementing combination interventions towards an HIV cure, focused on ethical aspects, as well as considerations to guide trial design, benefit/risk determinations, regulatory requirements, prioritization and sequencing and timing of interventions, among others. Informants also provided considerations related to combining specific HIV cure research modalities, such as broadly neutralizing antibodies (bNAbs), cell and gene modification products, latency-reversing agents and immune-based interventions. Finally, informants provided suggestions to ensure meaningful therapeutic improvements over standard antiretroviral therapy, overcome challenges of designing combination approaches, and engage communities around combination HIV cure research. CONCLUSION The increasing number of combination HIV cure trials brings with them a host of ethical and practical challenges. We hope our paper will inform meaningful stakeholder dialogue around the use of combinatorial HIV cure research approaches. To protect the public trust in HIV cure research, considerations should be periodically revisited and updated with key stakeholder input as the science continues to advance.
Collapse
Affiliation(s)
- Karine Dubé
- University of North Carolina Chapel Hill, Gillings School of Global Public Health, 4108 McGavran-Greenberg Hall, Chapel Hill, NC 27599 USA
- UNC Gillings School of Global Public Health, 4108 McGavran-Greenberg Hall, Chapel Hill, NC 27516 USA
| | - John Kanazawa
- University of North Carolina Chapel Hill, Gillings School of Global Public Health, 4108 McGavran-Greenberg Hall, Chapel Hill, NC 27599 USA
| | - Lynda Dee
- AIDS Action Baltimore, 14 East Eager Street, Baltimore, MD 21202 USA
- Delaney AIDS Research Enterprise (DARE) Community Advisory Board (CAB), 995 Potrero Avenue, San Francisco, CA 94110 USA
| | - Jeff Taylor
- Delaney AIDS Research Enterprise (DARE) Community Advisory Board (CAB), 995 Potrero Avenue, San Francisco, CA 94110 USA
- HIV+Aging Research Project-Palm Springs (H+ARP-PS), 1775 East Palm Canyon Drive, Suite 110-349, Palm Springs, CA 92264 USA
| | - John A. Sauceda
- Department of Medicine, Division of Prevention Science, Center for AIDS Prevention Studies (CAPS), University of California, San Francisco (UCSF), 550 16th Street, 3rd Floor, San Francisco, CA 94158 USA
| | - Sara Gianella
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093 USA
| | - Davey Smith
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093 USA
- AntiViral Research Center (AVRC), University of California at San Diego, 220 Dickinson Street, Suite A, San Diego, CA 92103 USA
| | - Steven G. Deeks
- Department of Medicine, Division of HIV, Infectious Diseases, and Global Medicine, San Francisco General Hospital, University of California, San Francisco (UCSF), Ward 84, Building 80, San Francisco, CA 94110 USA
| | - Michael J. Peluso
- Department of Medicine, Division of HIV, Infectious Diseases, and Global Medicine, San Francisco General Hospital, University of California, San Francisco (UCSF), Ward 84, Building 80, San Francisco, CA 94110 USA
| |
Collapse
|
9
|
Xu S, Sun L, Dick A, Zalloum WA, Huang T, Meuser ME, Zhang X, Tao Y, Cherukupalli S, Ding D, Ding X, Gao S, Jiang X, Kang D, De Clercq E, Pannecouque C, Cocklin S, Liu X, Zhan P. Design, synthesis, and mechanistic investigations of phenylalanine derivatives containing a benzothiazole moiety as HIV-1 capsid inhibitors with improved metabolic stability. Eur J Med Chem 2021; 227:113903. [PMID: 34653770 DOI: 10.1016/j.ejmech.2021.113903] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/03/2021] [Accepted: 10/03/2021] [Indexed: 12/17/2022]
Abstract
Further clinical development of PF74, a lead compound targeting HIV-1 capsid, is impeded by low antiviral activity and inferior metabolic stability. By modifying the benzene (region I) and indole of PF74, we identified two potent compounds (7m and 7u) with significantly improved metabolic stability. Compared to PF74, 7u displayed greater metabolic stability in human liver microsomes (HLMs) with half-life (t1/2) 109-fold that of PF74. Moreover, mechanism of action (MOA) studies demonstrated that 7m and 7u effectively mirrored the MOA of compounds that interact within the PF74 interprotomer pocket, showing direct and robust interactions with recombinant CA, and 7u displaying antiviral effects in both the early and late stages of HIV-1 replication. Furthermore, MD simulation corroborated that 7u was bound to the PF74 binding site, and the results of the online molinspiration software predicted that 7m and 7u had desirable physicochemical properties. Unexpectedly, this series of compounds exhibited better antiviral activity than PF74 against HIV-2, represented by compound 7m whose anti-HIV-2 activity was almost 5 times increased potency over PF74. Therefore, we have rationally redesigned the PF74 chemotype to inhibitors with novel structures and enhanced metabolic stability in this study. We hope that these new compounds can serve as a blueprint for developing a new generation of HIV treatment regimens.
Collapse
Affiliation(s)
- Shujing Xu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Lin Sun
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Alexej Dick
- Department of Biochemistry & Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, PA, 19102, USA
| | - Waleed A Zalloum
- Department of Pharmacy, Faculty of Health Science, American University of Madaba, P.O Box 2882, Amman, 11821, Jordan
| | - Tianguang Huang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Megan E Meuser
- Department of Biochemistry & Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, PA, 19102, USA
| | - Xujie Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Yucen Tao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Srinivasulu Cherukupalli
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Dang Ding
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Xiao Ding
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Shenghua Gao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Xiangyi Jiang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Erik De Clercq
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, K.U. Leuven, Herestraat 49 Postbus 1043 (09.A097), B-3000, Leuven, Belgium
| | - Christophe Pannecouque
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, K.U. Leuven, Herestraat 49 Postbus 1043 (09.A097), B-3000, Leuven, Belgium.
| | - Simon Cocklin
- Department of Biochemistry & Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, PA, 19102, USA.
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China.
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China.
| |
Collapse
|
10
|
Kringel D, Malkusch S, Lötsch J. Drugs and Epigenetic Molecular Functions. A Pharmacological Data Scientometric Analysis. Int J Mol Sci 2021; 22:7250. [PMID: 34298869 PMCID: PMC8311652 DOI: 10.3390/ijms22147250] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/25/2021] [Accepted: 06/30/2021] [Indexed: 12/14/2022] Open
Abstract
Interactions of drugs with the classical epigenetic mechanism of DNA methylation or histone modification are increasingly being elucidated mechanistically and used to develop novel classes of epigenetic therapeutics. A data science approach is used to synthesize current knowledge on the pharmacological implications of epigenetic regulation of gene expression. Computer-aided knowledge discovery for epigenetic implications of current approved or investigational drugs was performed by querying information from multiple publicly available gold-standard sources to (i) identify enzymes involved in classical epigenetic processes, (ii) screen original biomedical scientific publications including bibliometric analyses, (iii) identify drugs that interact with epigenetic enzymes, including their additional non-epigenetic targets, and (iv) analyze computational functional genomics of drugs with epigenetic interactions. PubMed database search yielded 3051 hits on epigenetics and drugs, starting in 1992 and peaking in 2016. Annual citations increased to a plateau in 2000 and show a downward trend since 2008. Approved and investigational drugs in the DrugBank database included 122 compounds that interacted with 68 unique epigenetic enzymes. Additional molecular functions modulated by these drugs included other enzyme interactions, whereas modulation of ion channels or G-protein-coupled receptors were underrepresented. Epigenetic interactions included (i) drug-induced modulation of DNA methylation, (ii) drug-induced modulation of histone conformations, and (iii) epigenetic modulation of drug effects by interference with pharmacokinetics or pharmacodynamics. Interactions of epigenetic molecular functions and drugs are mutual. Recent research activities on the discovery and development of novel epigenetic therapeutics have passed successfully, whereas epigenetic effects of non-epigenetic drugs or epigenetically induced changes in the targets of common drugs have not yet received the necessary systematic attention in the context of pharmacological plasticity.
Collapse
Affiliation(s)
- Dario Kringel
- Institute of Clinical Pharmacology, Goethe-University, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (D.K.); (S.M.)
| | - Sebastian Malkusch
- Institute of Clinical Pharmacology, Goethe-University, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (D.K.); (S.M.)
| | - Jörn Lötsch
- Institute of Clinical Pharmacology, Goethe-University, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (D.K.); (S.M.)
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| |
Collapse
|
11
|
Dubé K, Kanazawa J, Taylor J, Dee L, Jones N, Roebuck C, Sylla L, Louella M, Kosmyna J, Kelly D, Clanton O, Palm D, Campbell DM, Onaiwu MG, Patel H, Ndukwe S, Henley L, Johnson MO, Saberi P, Brown B, Sauceda JA, Sugarman J. Ethics of HIV cure research: an unfinished agenda. BMC Med Ethics 2021; 22:83. [PMID: 34193141 PMCID: PMC8243312 DOI: 10.1186/s12910-021-00651-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 06/23/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The pursuit of a cure for HIV is a high priority for researchers, funding agencies, governments and people living with HIV (PLWH). To date, over 250 biomedical studies worldwide are or have been related to discovering a safe, effective, and scalable HIV cure, most of which are early translational research and experimental medicine. As HIV cure research increases, it is critical to identify and address the ethical challenges posed by this research. METHODS We conducted a scoping review of the growing HIV cure research ethics literature, focusing on articles published in English peer-reviewed journals from 2013 to 2021. We extracted and summarized key developments in the ethics of HIV cure research. Twelve community advocates actively engaged in HIV cure research provided input on this summary and suggested areas warranting further ethical inquiry and foresight via email exchange and video conferencing. DISCUSSION Despite substantial scholarship related to the ethics of HIV cure research, additional attention should focus on emerging issues in six categories of ethical issues: (1) social value (ongoing and emerging biomedical research and scalability considerations); (2) scientific validity (study design issues, such as the use of analytical treatment interruptions and placebos); (3) fair selection of participants (equity and justice considerations); (4) favorable benefit/risk balance (early phase research, benefit-risk balance, risk perception, psychological risks, and pediatric research); (5) informed consent (attention to language, decision-making, informed consent processes and scientific uncertainty); and (6) respect for enrolled participants and community (perspectives of people living with HIV and affected communities and representation). CONCLUSION HIV cure research ethics has an unfinished agenda. Scientific research and bioethics should work in tandem to advance ethical HIV cure research. Because the science of HIV cure research will continue to rapidly advance, ethical considerations of the major themes we identified will need to be revisited and refined over time.
Collapse
Affiliation(s)
- Karine Dubé
- University of North Carolina at Chapel Hill, Gillings School of Global Public Health, 4108 McGavran-Greenberg Hall, Chapel Hill, NC 27599-7469 USA
| | - John Kanazawa
- University of North Carolina at Chapel Hill, Gillings School of Global Public Health, 4108 McGavran-Greenberg Hall, Chapel Hill, NC 27599-7469 USA
| | - Jeff Taylor
- HIV + Aging Research Project – Palm Springs (HARP–PS), Palm Springs, CA USA
- AntiViral Research Center (AVRC) Community Advisory Board (CAB), San Diego, CA USA
- Collaboratory of AIDS Researchers for Eradication (CARE) CAB, Chapel Hill, NC USA
| | - Lynda Dee
- AIDS Action Baltimore, Baltimore, MD USA
- Delaney AIDS Research Enterprise (DARE) Community Advisory Board (CAB), San Francisco, CA USA
| | - Nora Jones
- BEAT-HIV Collaboratory CAB, Philadelphia, PA USA
| | | | | | | | - Jan Kosmyna
- AIDS Clinical Trials Group (ACTG) Community Scientific Subcommittee (CSS) Ethics Working Group, Nationwide, USA
| | - David Kelly
- AIDS Clinical Trials Group (ACTG) Community Scientific Subcommittee (CSS) Ethics Working Group, Nationwide, USA
| | - Orbit Clanton
- AIDS Clinical Trials Group Global CAB, Washington, D.C. USA
| | - David Palm
- Collaboratory of AIDS Researchers for Eradication (CARE) CAB, Chapel Hill, NC USA
- Institute of Global Health and Infectious Diseases HIV Treatment and Prevention CAB, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Danielle M. Campbell
- Delaney AIDS Research Enterprise (DARE) Community Advisory Board (CAB), San Francisco, CA USA
- Charles R. Drew College of Medicine and Science, Los Angeles, CA USA
| | - Morénike Giwa Onaiwu
- AIDS Clinical Trials Group (ACTG) Community Scientific Subcommittee (CSS) Ethics Working Group, Nationwide, USA
- Center for the Study of Women, Gender, and Sexuality (School of Humanities), Rice University, Houston, TX USA
| | - Hursch Patel
- University of North Carolina at Chapel Hill, Gillings School of Global Public Health, 4108 McGavran-Greenberg Hall, Chapel Hill, NC 27599-7469 USA
| | - Samuel Ndukwe
- University of North Carolina at Chapel Hill, Gillings School of Global Public Health, 4108 McGavran-Greenberg Hall, Chapel Hill, NC 27599-7469 USA
| | - Laney Henley
- University of North Carolina at Chapel Hill, Gillings School of Global Public Health, 4108 McGavran-Greenberg Hall, Chapel Hill, NC 27599-7469 USA
| | - Mallory O. Johnson
- Center for AIDS Prevention Studies (CAPS), Division of Prevention Sciences, UCSF, San Francisco, CA USA
| | - Parya Saberi
- Center for AIDS Prevention Studies (CAPS), Division of Prevention Sciences, UCSF, San Francisco, CA USA
| | - Brandon Brown
- Department of Social Medicine, Population and Public Health, Center for Healthy Communities, University of California, Riverside, Riverside, CA USA
| | - John A. Sauceda
- Center for AIDS Prevention Studies (CAPS), Division of Prevention Sciences, UCSF, San Francisco, CA USA
| | - Jeremy Sugarman
- Johns Hopkins Berman Institute for Bioethics, Baltimore, MD USA
| |
Collapse
|
12
|
Jackson PEH, Dzhivhuho G, Rekosh D, Hammarskjold ML. Sequence and Functional Variation in the HIV-1 Rev Regulatory Axis. Curr HIV Res 2021; 18:85-98. [PMID: 31906839 DOI: 10.2174/1570162x18666200106112842] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/22/2019] [Accepted: 12/02/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND To complete its replication cycle, HIV-1 requires the nucleocytoplasmic export of intron-containing viral mRNAs. This process is ordinarily restricted by the cell, but HIV overcomes the block by means of a viral protein, Rev, and an RNA secondary structure found in all unspliced and incompletely spliced viral mRNAs called the Rev Response Element (RRE). In vivo activity of the Rev-RRE axis requires Rev binding to the RRE, oligomerization of Rev to form a competent ribonucleoprotein complex, and recruitment of cellular factors including Crm1 and RanGTP in order to export the targeted transcript. Sequence variability is observed among primary isolates in both Rev and the RRE, and the activity of both can be modulated through relatively small sequence changes. Primary isolates show differences in Rev-RRE activity and a few studies have found a correlation between lower Rev-RRE activity and slower progression of clinical disease. Lower Rev-RRE activity has also been associated with the evasion of cytotoxic T lymphocyte mediated killing. CONCLUSION The HIV-1 Rev-RRE regulatory axis is an understudied mechanism by which viral adaptation to diverse immune milieus may take place. There is evidence that this adaptation plays a role in HIV pathogenesis, particularly in immune evasion and latency, but further studies with larger sample sizes are warranted.
Collapse
Affiliation(s)
- Patrick E H Jackson
- Division of Infectious Diseases and International Health, School of Medicine, University of Virginia, Charlottesville, Virginia United States.,Myles H. Thaler Center for HIV and Human Retrovirus Research, University of Virginia, Charlottesville, Virginia, United States
| | - Godfrey Dzhivhuho
- Myles H. Thaler Center for HIV and Human Retrovirus Research, University of Virginia, Charlottesville, Virginia, United States.,Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, Virginia, United States
| | - David Rekosh
- Myles H. Thaler Center for HIV and Human Retrovirus Research, University of Virginia, Charlottesville, Virginia, United States.,Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, Virginia, United States
| | - Marie-Louise Hammarskjold
- Myles H. Thaler Center for HIV and Human Retrovirus Research, University of Virginia, Charlottesville, Virginia, United States.,Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, Virginia, United States
| |
Collapse
|
13
|
Hendricks CM, Cordeiro T, Gomes AP, Stevenson M. The Interplay of HIV-1 and Macrophages in Viral Persistence. Front Microbiol 2021; 12:646447. [PMID: 33897659 PMCID: PMC8058371 DOI: 10.3389/fmicb.2021.646447] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 03/11/2021] [Indexed: 12/18/2022] Open
Abstract
HIV-1 has evolved mechanisms to evade host cell immune responses and persist for lifelong infection. Latent cellular reservoirs are responsible for this persistence of HIV-1 despite the powerful effects of highly active antiretroviral therapies (HAART) to control circulating viral load. While cellular reservoirs have been extensively studied, much of these studies have focused on peripheral blood and resting memory CD4+ T cells containing latent HIV-1 provirus; however, efforts to eradicate cellular reservoirs have been stunted by reservoirs found in tissues compartments that are not easily accessible. These tissues contain resting memory CD4+ T cells and tissue resident macrophages, another latent cellular reservoir to HIV-1. Tissue resident macrophages have been associated with HIV-1 infection since the 1980s, and evidence has continued to grow regarding their role in HIV-1 persistence. Specific biological characteristics play a vital role as to why macrophages are latent cellular reservoirs for HIV-1, and in vitro and in vivo studies exhibit how macrophages contribute to viral persistence in individuals and animals on antiretroviral therapies. In this review, we characterize the role and evolutionary advantages of macrophage reservoirs to HIV-1 and their contribution to HIV-1 persistence. In acknowledging the interplay of HIV-1 and macrophages in the host, we identify reasons why current strategies are incapable of eliminating HIV-1 reservoirs and why efforts must focus on eradicating reservoirs to find a future functional cure.
Collapse
Affiliation(s)
- Chynna M. Hendricks
- Department of Microbiology & Immunology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Thaissa Cordeiro
- Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Ana Paula Gomes
- Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Mario Stevenson
- Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, United States
| |
Collapse
|
14
|
Ma Y, Frutos-Beltrán E, Kang D, Pannecouque C, De Clercq E, Menéndez-Arias L, Liu X, Zhan P. Medicinal chemistry strategies for discovering antivirals effective against drug-resistant viruses. Chem Soc Rev 2021; 50:4514-4540. [PMID: 33595031 DOI: 10.1039/d0cs01084g] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
During the last forty years we have witnessed impressive advances in the field of antiviral drug discovery culminating with the introduction of therapies able to stop human immunodeficiency virus (HIV) replication, or cure hepatitis C virus infections in people suffering from liver disease. However, there are important viral diseases without effective treatments, and the emergence of drug resistance threatens the efficacy of successful therapies used today. In this review, we discuss strategies to discover antiviral compounds specifically designed to combat drug resistance. Currently, efforts in this field are focused on targeted proteins (e.g. multi-target drug design strategies), but also on drug conformation (either improving drug positioning in the binding pocket or introducing conformational constraints), in the introduction or exploitation of new binding sites, or in strengthening interaction forces through the introduction of multiple hydrogen bonds, covalent binding, halogen bonds, additional van der Waals forces or multivalent binding. Among the new developments, proteolysis targeting chimeras (PROTACs) have emerged as a valid approach taking advantage of intracellular mechanisms involving protein degradation by the ubiquitin-proteasome system. Finally, several molecules targeting host factors (e.g. human dihydroorotate dehydrogenase and DEAD-box polypeptide 3) have been identified as broad-spectrum antiviral compounds. Implementation of herein described medicinal chemistry strategies are expected to contribute to the discovery of new drugs effective against current and future threats due to emerging and re-emerging viral pandemics.
Collapse
Affiliation(s)
- Yue Ma
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Ji'nan, 250012, Shandong Province, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Prolonged administration of maraviroc reactivates latent HIV in vivo but it does not prevent antiretroviral-free viral rebound. Sci Rep 2020; 10:22286. [PMID: 33339855 PMCID: PMC7749169 DOI: 10.1038/s41598-020-79002-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/27/2020] [Indexed: 01/24/2023] Open
Abstract
Human immunodeficiency virus (HIV) remains incurable due to latent viral reservoirs established in non-activated CD4 T cells that cannot be eliminated via antiretroviral therapy. Current efforts to cure HIV are focused on identifying drugs that will induce viral gene expression in latently infected cells, commonly known as latency reversing agents (LRAs). Some drugs have been shown to reactivate latent HIV but do not cause a reduction in reservoir size. Therefore, finding new LRAs or new combinations or increasing the round of stimulations is needed to cure HIV. However, the effects of these drugs on viral rebound after prolonged treatment have not been evaluated. In a previous clinical trial, antiretroviral therapy intensification with maraviroc for 48 weeks caused an increase in residual viremia and episomal two LTR-DNA circles suggesting that maraviroc could reactivate latent HIV. We amended the initial clinical trial to explore additional virologic parameters in stored samples and to evaluate the time to viral rebound during analytical treatment interruption in three patients. Maraviroc induced an increase in cell-associated HIV RNA during the administration of the drug. However, there was a rapid rebound of viremia after antiretroviral therapy discontinuation. HIV-specific T cell response was slightly enhanced. These results show that maraviroc can reactivate latent HIV in vivo but further studies are required to efficiently reduce the reservoir size.
Collapse
|
16
|
López-Huertas MR, Jiménez-Tormo L, Madrid-Elena N, Gutiérrez C, Vivancos MJ, Luna L, Moreno S. Maraviroc reactivates HIV with potency similar to that of other latency reversing drugs without inducing toxicity in CD8 T cells. Biochem Pharmacol 2020; 182:114231. [PMID: 32979351 DOI: 10.1016/j.bcp.2020.114231] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 09/21/2020] [Indexed: 01/12/2023]
Abstract
Human immunodeficiency virus (HIV) remains incurable due to latent reservoirs established in non-activated CD4 T cells. Current efforts to achieve a functional cure rely on immunomodulatory strategies focused on enhancing the functions of cytotoxic cells. Implementation of these actions requires a coordinated activation of the viral transcription in latently infected cells so that the reservoir became visible and accessible to cytotoxic cells. As no latency reversing agent (LRA) has been shown to be completely effective, new combinations are of increasing importance. Recent data have shown that maraviroc is a new LRA. In this work, we have explored how the combination of maraviroc with other LRAs influences on HIV reactivation using in vitro latency models as well as on the cell viability of CD8 T cells from ART-treated patients. Maraviroc reactivated HIV with a potency similar to other LRAs. Triple combinations resulted toxic and were rejected. No dual combination was synergistic. The combination with panobinostat or disulfiram maintained the effect of both drugs without inducing cell proliferation or toxicity. Maraviroc does not alter the viability of CD8 T cells isolated from patients under antiretroviral treatment. This finding enhances the properties of maraviroc as a LRA.
Collapse
Affiliation(s)
- María Rosa López-Huertas
- Servicio de Enfermedades Infecciosas, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) and Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain.
| | - Laura Jiménez-Tormo
- Servicio de Enfermedades Infecciosas, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) and Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Nadia Madrid-Elena
- Servicio de Enfermedades Infecciosas, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) and Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Carolina Gutiérrez
- Servicio de Enfermedades Infecciosas, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) and Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - María Jesús Vivancos
- Servicio de Enfermedades Infecciosas, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) and Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Laura Luna
- Servicio de Enfermedades Infecciosas, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) and Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Santiago Moreno
- Servicio de Enfermedades Infecciosas, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) and Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain; Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá de Henares, 28871 Alcalá de Henares, Spain
| |
Collapse
|
17
|
Patnin S, Makarasen A, Kuno M, Deeyohe S, Techasakul S, Chaivisuthangkura A. Binding interaction of potent HIV-1 NNRTIs, amino-oxy-diarylquinoline with the transport protein using spectroscopic and molecular docking. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 233:118159. [PMID: 32120287 DOI: 10.1016/j.saa.2020.118159] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/11/2020] [Accepted: 02/16/2020] [Indexed: 06/10/2023]
Abstract
In the present investigation, the intermolecular interaction of 4-(4'-cyanophenoxy)-2-(4''-cyanophenyl)-aminoquinoline (1), a potent non-nucleoside HIV-1 reverse transcriptase inhibitors, with the transport proteins, namely bovine serum albumin (BSA) and human serum albumin (HSA), has been investigated under physiological conditions employing UV-Vis, fluorescence spectrophotometry, competitive binding experiments and molecular docking methods. The results indicated that binding of (1) to the transport proteins caused fluorescence quenching though a static quenching mechanism. The number of binding site (n) and the apparent binding constant (Kb) between (1) and the transport proteins were determined to be about 1 and 104-105 L·mol-1 (at three different temperatures; 298, 308, 318 K), respectively. The interaction of (1) upon binding to the transport proteins was spontaneous. The enthalpic change (ΔH°) and the entropic change (ΔS°) were calculated to be -56.50 kJ·mol-1, -72.31 J·mol-1 K-1 for (1)/BSA, respectively and computed to be -49.35 kJ·mol-1, -58.64 J·mol-1 K-1, respectively for (1)/HSA, respectively. The results implied that the process of interaction force of (1) with the transport protein were Vander Waals force and/or hydrogen bonding interactions. The site maker competitive experiments revealed that the binding site of (1) with the transport proteins were mainly located within site I (sub-domain IIA) in both proteins. Additionally, the molecular docking experiment supported the above results which confirmed the binding interaction between (1) and the transport proteins. This study will come up with basic data for explicating the binding mechanisms of (1) with the transport protein and can be great significance in the opening to clarify the transport process of (1) in vivo.
Collapse
Affiliation(s)
- Suwicha Patnin
- Department of Chemistry, Faculty of Science, Srinakharinwirot University, Wattana, Bangkok 10110, Thailand
| | - Arthit Makarasen
- Department of Chemistry, Laboratory of Organic Synthesis, Chulabhorn Research Institute, Laksi, Bangkok 10210, Thailand.
| | - Mayuso Kuno
- Department of Chemistry, Faculty of Science, Srinakharinwirot University, Wattana, Bangkok 10110, Thailand
| | - Sirinya Deeyohe
- Department of Chemistry, Laboratory of Organic Synthesis, Chulabhorn Research Institute, Laksi, Bangkok 10210, Thailand
| | - Supanna Techasakul
- Department of Chemistry, Laboratory of Organic Synthesis, Chulabhorn Research Institute, Laksi, Bangkok 10210, Thailand
| | - Apinya Chaivisuthangkura
- Department of Chemistry, Faculty of Science, Srinakharinwirot University, Wattana, Bangkok 10110, Thailand.
| |
Collapse
|
18
|
Wu Y, Tang C, Rui R, Yang L, Ding W, Wang J, Li Y, Lai CC, Wang Y, Luo R, Xiao W, Zhang H, Zheng Y, He Y. Synthesis and biological evaluation of a series of 2-(((5-akly/aryl-1 H-pyrazol-3-yl)methyl)thio)-5-alkyl-6-(cyclohexylmethyl)-pyrimidin-4(3 H)-ones as potential HIV-1 inhibitors. Acta Pharm Sin B 2020; 10:512-528. [PMID: 32140396 PMCID: PMC7049619 DOI: 10.1016/j.apsb.2019.08.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/06/2019] [Accepted: 08/22/2019] [Indexed: 01/16/2023] Open
Abstract
A series of 2-(((5-akly/aryl-1H-pyrazol-3-yl)methyl)thio)-5-alkyl-6-(cyclohexylmethyl)-pyrimidin-4(3H)-ones were synthesized and their anti-HIV-1 activities were evaluated. Most of these compounds were highly active against wild-type (WT) HIV-1 strain (IIIB) with EC50 values in the range of 0.0038–0.4759 μmol/L. Among those compounds, I-11 had an EC50 value of 3.8 nmol/L and SI (selectivity index) of up to 25,468 indicating excellent activity against WT HIV-1. In vitro anti-HIV-1 activity and resistance profile studies suggested that compounds I-11 and I-12 displayed potential anti-HIV-1 activity against laboratory adapted strains and primary isolated strains including different subtypes and tropism strains (EC50s range from 4.3 to 63.6 nmol/L and 18.9–219.3 nmol/L, respectively). On the other hand, it was observed that those two compounds were less effective with EC50 values of 2.77 and 4.87 μmol/L for HIV-1A17 (K103N + Y181C). The activity against reverse transcriptase (RT) was also evaluated for those compounds. Both I-11 and I-12 obtained sub-micromolar IC50 values showing their potential in RT inhibition. The pharmacokinetics examination in rats indicated that compound I-11 has acceptable pharmacokinetic properties and bioavailability. Preliminary structure–activity relationships and molecular modeling studies were also discussed.
Collapse
Affiliation(s)
- Yumeng Wu
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Chengrun Tang
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, the National Kunming High Level Biosafety Research Center for Nonhuman Primate, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| | - Ruomei Rui
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Liumeng Yang
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, the National Kunming High Level Biosafety Research Center for Nonhuman Primate, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Wei Ding
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Jiangyuan Wang
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Yiming Li
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Christopher C. Lai
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Yueping Wang
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Ronghua Luo
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, the National Kunming High Level Biosafety Research Center for Nonhuman Primate, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Weilie Xiao
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Hongbing Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
- Corresponding authors. Tel./ fax: +86 871 65035538.
| | - Yongtang Zheng
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, the National Kunming High Level Biosafety Research Center for Nonhuman Primate, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Corresponding authors. Tel./ fax: +86 871 65035538.
| | - Yanping He
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
- Corresponding authors. Tel./ fax: +86 871 65035538.
| |
Collapse
|
19
|
López-Huertas MR, Morín M, Madrid-Elena N, Gutiérrez C, Jiménez-Tormo L, Santoyo J, Sanz-Rodríguez F, Moreno Pelayo MÁ, Bermejo LG, Moreno S. Selective miRNA Modulation Fails to Activate HIV Replication in In Vitro Latency Models. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 17:323-336. [PMID: 31288207 PMCID: PMC6614709 DOI: 10.1016/j.omtn.2019.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 06/09/2019] [Accepted: 06/10/2019] [Indexed: 02/08/2023]
Abstract
HIV remains incurable because of viral persistence in latent reservoirs that are inaccessible to antiretroviral therapy. A potential curative strategy is to reactivate viral gene expression in latently infected cells. However, no drug so far has proven to be successful in vivo in reducing the reservoir, and therefore new anti-latency compounds are needed. We explored the role of microRNAs (miRNAs) in latency maintenance and their modulation as a potential anti-latency strategy. Latency models based on treating resting CD4 T cells with chemokine (C-C motif) ligand 19 (CCL19) or interleukin-7 (IL7) before HIV infection and next-generation sequencing were used to identify the miRNAs involved in HIV latency. We detected four upregulated miRNAs (miRNA-98, miRNA-4516, miRNA-4488, and miRNA-7974). Individual or combined inhibition of these miRNAs was performed by transfection into cells latently infected with HIV. Viral replication, assessed 72 h after transfection, did not increase after miRNA modulation, despite miRNA inhibition and lack of toxicity. Furthermore, the combined modulation of five miRNAs previously associated with HIV latency was not effective in these models. Our results do not support the modulation of miRNAs as a useful strategy for the reversal of HIV latency. As shown with other drugs, the potential of miRNA modulation as an HIV reactivation strategy could be dependent on the latency model used.
Collapse
Affiliation(s)
- María Rosa López-Huertas
- Servicio de Enfermedades Infecciosas, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) and Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain.
| | - Matías Morín
- Servicio de Genética, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) and Hospital Universitario Ramón y Cajal, CIBERER, 28034 Madrid, Spain
| | - Nadia Madrid-Elena
- Servicio de Enfermedades Infecciosas, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) and Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Carolina Gutiérrez
- Servicio de Enfermedades Infecciosas, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) and Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Laura Jiménez-Tormo
- Servicio de Enfermedades Infecciosas, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) and Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Javier Santoyo
- Edinburgh Genomics, The Roslin Institute, University of Edinburgh, Scotland, UK
| | - Francisco Sanz-Rodríguez
- Fluorescence Imaging Group, Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) and Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Miguel Ángel Moreno Pelayo
- Servicio de Genética, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) and Hospital Universitario Ramón y Cajal, CIBERER, 28034 Madrid, Spain
| | - Laura García Bermejo
- Grupo de Biomarcadores y Dianas Terapéuticas, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) and Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain.
| | - Santiago Moreno
- Servicio de Enfermedades Infecciosas, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) and Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain; Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá de Henares, 28871 Alcalá de Henares, Spain
| |
Collapse
|
20
|
Elsheikh MM, Tang Y, Li D, Jiang G. Deep latency: A new insight into a functional HIV cure. EBioMedicine 2019; 45:624-629. [PMID: 31227439 PMCID: PMC6642357 DOI: 10.1016/j.ebiom.2019.06.020] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/11/2019] [Accepted: 06/12/2019] [Indexed: 12/26/2022] Open
Abstract
Latent HIV reservoir is the main obstacle that prevents a cure for HIV-1 (HIV). While antiretroviral therapy is effective in controlling viral replication, it cannot eliminate latent HIV reservoirs in patients. Several strategies have been proposed to combat HIV latency, including bone marrow transplantation to replace blood cells with CCR5-mutated stem cells, gene editing to disrupt the HIV genome, and “Shock and Kill” to reactivate latent HIV followed by an immune clearance. However, high risks and limitations to scale-up in clinics, off-target effects in human genomes or failure to reduce reservoir sizes in patients hampered our current efforts to achieve an HIV cure. This necessitates alternative strategies to control the latent HIV reservoirs. This review will discuss an emerging strategy aimed to deeply silence HIV reservoirs, the development of this concept, its potential and caveats for HIV remission/cure, and prospective directions for silencing the latent HIV, thereby preventing viruses from rebound.
Collapse
Affiliation(s)
- Maher M Elsheikh
- Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Yuyang Tang
- UNC HIV Cure Center, Institute of Global Health & Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Dajiang Li
- UNC HIV Cure Center, Institute of Global Health & Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Guochun Jiang
- UNC HIV Cure Center, Institute of Global Health & Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
21
|
Shirvani P, Fassihi A, Saghaie L. Recent Advances in the Design and Development of Non-nucleoside Reverse Transcriptase Inhibitor Scaffolds. ChemMedChem 2018; 14:52-77. [PMID: 30417561 DOI: 10.1002/cmdc.201800577] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 11/04/2018] [Indexed: 12/31/2022]
Abstract
Non-nucleoside reverse transcriptase inhibitors (NNRTIs) have always been an important part of the anti-HIV-1 combination therapy known as combination antiretroviral therapy (cART) since 1996. The use of NNRTIs for about 22 years has led to some mutations in the residues that compose the reverse transcriptase active site, resulting in the emergence of drug-resistant viruses. Thus, the search for new potent NNRTIs with an improved safety profile and activity against drug-resistant HIV strains is indispensable, and many hit and lead NNRTIs have been discovered in the last decade. This review provides an overview of the development in this field from 2013 to August 2018.
Collapse
Affiliation(s)
- Pouria Shirvani
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Hezar Jerib Avenue, 81746-73461, Isfahan, Iran
| | - Afshin Fassihi
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Hezar Jerib Avenue, 81746-73461, Isfahan, Iran
| | - Lotfollah Saghaie
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Hezar Jerib Avenue, 81746-73461, Isfahan, Iran
| |
Collapse
|
22
|
Discovery of biphenyl-substituted diarylpyrimidines as non-nucleoside reverse transcriptase inhibitors with high potency against wild-type and mutant HIV-1. Eur J Med Chem 2018; 145:726-734. [PMID: 29353724 DOI: 10.1016/j.ejmech.2018.01.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 12/28/2017] [Accepted: 01/05/2018] [Indexed: 11/22/2022]
Abstract
A novel series of diarylpyrimidine (DAPY) derivatives bearing the biphenyl motif with multiple substituted groups was synthesized as human immunodeficiency virus (HIV)-1 non-nucleoside reverse transcriptase inhibitors. All of the target compounds were evaluated for their in vitro activity against HIV in MT-4 cells. Most of the compounds exhibited excellent activity with low nanomolar EC50 values against wild-type, single and double mutant HIV-1 strains. Compound 4b displayed an EC50 value of 1 nM against HIV-1 IIIB, 1.3 nM against L100I, 0.84 nM against K103 N, 1.5 nM against Y181C, 11 nM against Y188L, 2 nM against E138K, 10 nM against K103 N + Y181C, and almost 110 nM against F227L + V106. The improvement in the selectivity and potency of the target molecules against the wild-type and mutant HIV-1 strains validated our hypothesis. The biphenyl ring in the DAPY derivatives could strengthen the π-π stacking effect between the target molecule and the non-nucleoside inhibitor-binding pocket in the reverse transcriptase by extending the conjugating systems. This research represented a significant step toward the discovery of novel therapeutic DAPYs for treating acquired immunodeficiency syndrome in patients infected with HIV-1.
Collapse
|
23
|
Dubé K, Sylla L, Dee L, Taylor J, Evans D, Bruton CD, Gilberston A, Gralinski L, Brown B, Skinner A, Weiner BJ, Greene SB, Corneli A, Adimora AA, Tucker JD, Rennie S. Research on HIV cure: Mapping the ethics landscape. PLoS Med 2017; 14:e1002470. [PMID: 29220353 PMCID: PMC5722280 DOI: 10.1371/journal.pmed.1002470] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In an essay, Karine Dubé and coauthors discuss the ethics of preclinical and clinical studies relevant to achieving an HIV cure.
Collapse
Affiliation(s)
- Karine Dubé
- University of North Carolina Gillings School of Global Public Health, Chapel Hill, North Carolina, United States of America
- * E-mail:
| | - Laurie Sylla
- defeatHIV Community Advisory Board (CAB), Seattle, Washington, United States of America
| | - Lynda Dee
- amfAR Institute for HIV Cure Research CAB, San Francisco, California, United States of America
- Delaney AIDS Research Enterprise (DARE) CAB, San Francisco, California, United States of America
- AIDS Action Baltimore, Baltimore, Maryland, United States of America
| | - Jeff Taylor
- amfAR Institute for HIV Cure Research CAB, San Francisco, California, United States of America
- Collaboratory of AIDS Researchers for Eradication (CARE) CAB, Palm Springs, California, and Chapel Hill, North Carolina, United States of America
| | - David Evans
- Delaney AIDS Research Enterprise (DARE) CAB, San Francisco, California, United States of America
- Project Inform, San Francisco, California, United States of America
| | - Carl Dean Bruton
- Collaboratory of AIDS Researchers for Eradication (CARE) CAB, Palm Springs, California, and Chapel Hill, North Carolina, United States of America
- AIDS Clinical Trials Group (ACTG) CAB, Chapel Hill, North Carolina, United States of America
| | - Adam Gilberston
- Department of Social Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Lisa Gralinski
- University of North Carolina Gillings School of Global Public Health, Chapel Hill, North Carolina, United States of America
| | - Brandon Brown
- University of California Riverside, Riverside, California, United States of America
| | - Asheley Skinner
- University of North Carolina Gillings School of Global Public Health, Chapel Hill, North Carolina, United States of America
- Duke Clinical Research Institute (DCRI), Durham, North Carolina, United States
| | - Bryan J. Weiner
- University of North Carolina Gillings School of Global Public Health, Chapel Hill, North Carolina, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
| | - Sandra B. Greene
- University of North Carolina Gillings School of Global Public Health, Chapel Hill, North Carolina, United States of America
| | - Amy Corneli
- Duke Clinical Research Institute (DCRI), Durham, North Carolina, United States
| | - Adaora A. Adimora
- UNC Institute of Global Health and Infectious Diseases (IGHID), Chapel Hill, North Carolina, United States of America
| | - Joseph D. Tucker
- UNC Institute of Global Health and Infectious Diseases (IGHID), Chapel Hill, North Carolina, United States of America
- UNC Project China, Guangzhou, China
| | - Stuart Rennie
- Department of Social Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- UNC Center for Bioethics, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
24
|
López-Huertas MR, Jiménez-Tormo L, Madrid-Elena N, Gutiérrez C, Rodríguez-Mora S, Coiras M, Alcamí J, Moreno S. The CCR5-antagonist Maraviroc reverses HIV-1 latency in vitro alone or in combination with the PKC-agonist Bryostatin-1. Sci Rep 2017; 7:2385. [PMID: 28539614 PMCID: PMC5443841 DOI: 10.1038/s41598-017-02634-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 04/20/2017] [Indexed: 12/21/2022] Open
Abstract
A potential strategy to cure HIV-1 infection is to use latency reversing agents (LRAs) to eliminate latent reservoirs established in resting CD4+ T (rCD4+) cells. As no drug has been shown to be completely effective, finding new drugs and combinations are of increasing importance. We studied the effect of Maraviroc (MVC), a CCR5 antagonist that activates NF-κB, on HIV-1 replication from latency. HIV-1-latency models based on CCL19 or IL7 treatment, before HIV-1 infection were used. Latently infected primary rCD4+ or central memory T cells were stimulated with MVC alone or in combination with Bryostatin-1, a PKC agonist known to reverse HIV-1 latency. MVC 5 μM and 0.31 μM were chosen for further studies although other concentrations of MVC also increased HIV-1 replication. MVC was as efficient as Bryostatin-1 in reactivating X4 and R5-tropic HIV-1. However, the combination of MVC and Bryostatin-1 was antagonistic, probably because Bryostatin-1 reduced CCR5 expression levels. Although HIV-1 reactivation had the same tendency in both latency models, statistical significance was only achieved in IL7-treated cells. These data suggest that MVC should be regarded as a new LRA with potency similar as Bryostatin-1. Further studies are required to describe the synergistic effect of MVC with other LRAs.
Collapse
Affiliation(s)
- María Rosa López-Huertas
- Department of Infectious Diseases, Hospital Ramón y Cajal, Alcalá de Henares University, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.
| | - Laura Jiménez-Tormo
- Department of Infectious Diseases, Hospital Ramón y Cajal, Alcalá de Henares University, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Nadia Madrid-Elena
- Department of Infectious Diseases, Hospital Ramón y Cajal, Alcalá de Henares University, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Carolina Gutiérrez
- Department of Infectious Diseases, Hospital Ramón y Cajal, Alcalá de Henares University, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Sara Rodríguez-Mora
- AIDS Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain
| | - Mayte Coiras
- AIDS Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain
| | - José Alcamí
- AIDS Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain
| | - Santiago Moreno
- Department of Infectious Diseases, Hospital Ramón y Cajal, Alcalá de Henares University, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| |
Collapse
|
25
|
Gul S. Epigenetic assays for chemical biology and drug discovery. Clin Epigenetics 2017; 9:41. [PMID: 28439316 PMCID: PMC5399855 DOI: 10.1186/s13148-017-0342-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 04/12/2017] [Indexed: 12/27/2022] Open
Abstract
The implication of epigenetic abnormalities in many diseases and the approval of a number of compounds that modulate specific epigenetic targets in a therapeutically relevant manner in cancer specifically confirms that some of these targets are druggable by small molecules. Furthermore, a number of compounds are currently in clinical trials for other diseases including cardiovascular, neurological and metabolic disorders. Despite these advances, the approved treatments for cancer only extend progression-free survival for a relatively short time and being associated with significant side effects. The current clinical trials involving the next generation of epigenetic drugs may address the disadvantages of the currently approved epigenetic drugs. The identification of chemical starting points of many drugs often makes use of screening in vitro assays against libraries of synthetic or natural products. These assays can be biochemical (using purified protein) or cell-based (using for example, genetically modified, cancer cell lines or primary cells) and performed in microtiter plates, thus enabling a large number of samples to be tested. A considerable number of such assays are available to monitor epigenetic target activity, and this review provides an overview of drug discovery and chemical biology and describes assays that monitor activities of histone deacetylase, lysine-specific demethylase, histone methyltransferase, histone acetyltransferase and bromodomain. It is of critical importance that an appropriate assay is developed and comprehensively validated for a given drug target prior to screening in order to improve the probability of the compound progressing in the drug discovery value chain.
Collapse
Affiliation(s)
- Sheraz Gul
- Fraunhofer Institute for Molecular Biology and Applied Ecology - ScreeningPort, Schnackenburgallee 114, 22525 Hamburg, Germany
| |
Collapse
|
26
|
Dubé K, Taylor J, Sylla L, Evans D, Dee L, Burton A, Willenberg L, Rennie S, Skinner A, Tucker JD, Weiner BJ, Greene SB. 'Well, It's the Risk of the Unknown… Right?': A Qualitative Study of Perceived Risks and Benefits of HIV Cure Research in the United States. PLoS One 2017; 12:e0170112. [PMID: 28122027 PMCID: PMC5266311 DOI: 10.1371/journal.pone.0170112] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 12/29/2016] [Indexed: 01/23/2023] Open
Abstract
INTRODUCTION Biomedical research towards an HIV cure is advancing in the United States and elsewhere, yet little is known about perceptions of risks and benefits among potential study participants and other stakeholders. We conducted a qualitative study to explore perceived risks and benefits of investigational HIV cure research among people living with HIV (PLWHIV), biomedical HIV cure researchers, policy-makers and bioethicists. METHODS We conducted a qualitative research study using in-depth interviews with a purposive sample of PLWHIV, biomedical HIV cure researchers, policy-makers and bioethicists in 2015-2016. We analysed interview transcripts using thematic analysis anchored in grounded theory. RESULTS We conducted and analyzed 36 key informant interviews. Qualitative analysis revealed four main findings. 1) Potential HIV cure study volunteers noted needing more information and education about the potential risks of HIV cure research. 2) Biomedical HIV cure researchers, policy-makers and bioethicists showed less awareness of social and financial risks of HIV cure research than PLWHIV. 3) Most respondents across the different categories of informants identified some risks that were too great to be acceptable in HIV cure research, although a subset of PLWHIV did not place an upper limit on acceptable risk. 4) PLWHIV showed a better awareness of potential psychological benefits of participating in HIV cure research than other groups of stakeholders. CONCLUSION Our research suggests that PLWHIV have a variable understanding of the individual risks, sometimes substantial, associated with participating in biomedical HIV cure research studies. Community engagement and increased research literacy may help improve community understanding. Intensive informed consent procedures will be necessary for ethical study implementation. The current state of HIV cure research offers greater potential benefits to society than to participants. There is likely to be disagreement among regulators, researchers, clinicians, and potential participants about what constitutes acceptable risk for HIV cure studies.
Collapse
Affiliation(s)
- Karine Dubé
- University of North Carolina Gillings School of Global Public Health, Chapel Hill, NC, United States of America
| | - Jeff Taylor
- Collaboratory of AIDS Researchers for Eradication (CARE) Community Advisory Board (CAB), Palm Springs, CA, United States of America
| | - Laurie Sylla
- defeatHIV CAB, Seattle, WA, United States of America
| | - David Evans
- Delaney AIDS Research Enterprise (DARE) CAB, Los Angeles, CA, United States of America
- Project Inform, Los Angeles, CA, United States of America
| | - Lynda Dee
- AIDS Action Baltimore, Baltimore, MD, United States of America
| | - Alasdair Burton
- Multi-Decadal, Multi-CAB Member, Glendale, CA, United States of America
| | - Loreen Willenberg
- Zephyr Long-Term Non-Progressors (LTNP) Foundation, Inc., Sacramento, CA, United States of America
| | - Stuart Rennie
- Department of Social Medicine, UNC Bioethics Center, Chapel Hill, NC, United States of America
| | - Asheley Skinner
- University of North Carolina Gillings School of Global Public Health, Chapel Hill, NC, United States of America
- Duke Clinical Research Institute (DCRI), Durham, NC, United States of America
| | - Joseph D. Tucker
- UNC Institute of Global Health and Infectious Diseases (IGHID), Chapel Hill, NC, United States of America
- UNC Project China, Guangzhou, China
| | - Bryan J. Weiner
- University of North Carolina Gillings School of Global Public Health, Chapel Hill, NC, United States of America
- Department of Global Health, University of Washington, Seattle, WA, United States of America
| | - Sandra B. Greene
- University of North Carolina Gillings School of Global Public Health, Chapel Hill, NC, United States of America
| |
Collapse
|
27
|
Discovery of novel piperidine-substituted indolylarylsulfones as potent HIV NNRTIs via structure-guided scaffold morphing and fragment rearrangement. Eur J Med Chem 2016; 126:190-201. [PMID: 27750153 DOI: 10.1016/j.ejmech.2016.10.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 10/03/2016] [Accepted: 10/04/2016] [Indexed: 12/27/2022]
Abstract
To further explore the chemical space around the entrance channel of HIV-1 reverse transcriptase (RT), a series of novel indolylarylsulfones (IASs) bearing N-substituted piperidine at indole-2-carboxamide were identified as potent HIV NNRTIs by structure-guided scaffold morphing and fragment rearrangement. All the IASs exhibited moderate to excellent potency against wild-type HIV-1 with EC50 values ranging from 0.62 μM to 0.006 μM 8 (EC50 = 6 nM) and 18 (EC50 = 9 nM) were identified as the most potent compounds, which were more active than NVP and DLV, and reached the same order of EFV and ETV. Furthermore, most compounds maintained high activity agaist various single HIV-1 mutants (L100I, K103N, E138K, Y181C) as well as one double mutant (F227L/V106A) with EC50 values in low-micromolar to double-digit nanomolar concentration ranges. Especially, 8 displayed outstanding potency against L100I (EC50 = 17 nM with a 2.8-fold resistance ratio) and 18 was relatively more potent to E138K mutant (EC50 = 43 nM with a 4.7-fold resistance ratio). Preliminary SARs and molecular modeling studies were also discussed in detail, which may provide valuable insights for further optimization.
Collapse
|
28
|
Jackson PE, Tebit DM, Rekosh D, Hammarskjold ML. Rev-RRE Functional Activity Differs Substantially Among Primary HIV-1 Isolates. AIDS Res Hum Retroviruses 2016; 32:923-34. [PMID: 27147495 DOI: 10.1089/aid.2016.0047] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The HIV-1 replication cycle requires the nucleocytoplasmic export of intron-containing viral RNAs, a process that is ordinarily restricted. HIV overcomes this by means of the viral Rev protein, which binds to an RNA secondary structure called the Rev response element (RRE) present in all unspliced or incompletely spliced viral RNA transcripts. The resulting mRNP complex is exported through interaction with cellular factors. The Rev-RRE binding interaction is increasingly understood to display remarkable structural plasticity, but little is known about how Rev-RRE sequence differences affect functional activity. To study this issue, we utilized a lentiviral vector assay in which vector titer is dependent on the activity of selected Rev-RRE pairs. We found that Rev-RRE functional activity varies significantly (up to 24-fold) between naturally occurring viral isolates. The activity differences of the Rev-RRE cognate pairs track closely with Rev, but not with RRE activity. This variation in Rev activity is not correlated with differences in Rev steady state protein levels. These data suggest that Rev sequence differences drive substantial variation in Rev-RRE functional activity between patients. Such variation may play a role in viral adaptation to different immune milieus within and between patients and may be significant in the establishment of latency. The identification of differences in Rev-RRE functional activity in naturally occurring isolates may also permit more efficient production of lentiviral vectors.
Collapse
Affiliation(s)
- Patrick E. Jackson
- Department of Microbiology, Immunology, and Cancer Biology, Myles H. Thaler Center for AIDS and Human Retrovirus Research, University of Virginia, Charlottesville, Virginia
| | - Denis M. Tebit
- Department of Microbiology, Immunology, and Cancer Biology, Myles H. Thaler Center for AIDS and Human Retrovirus Research, University of Virginia, Charlottesville, Virginia
| | - David Rekosh
- Department of Microbiology, Immunology, and Cancer Biology, Myles H. Thaler Center for AIDS and Human Retrovirus Research, University of Virginia, Charlottesville, Virginia
| | - Marie-Louise Hammarskjold
- Department of Microbiology, Immunology, and Cancer Biology, Myles H. Thaler Center for AIDS and Human Retrovirus Research, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
29
|
Maelfait J, Bridgeman A, Benlahrech A, Cursi C, Rehwinkel J. Restriction by SAMHD1 Limits cGAS/STING-Dependent Innate and Adaptive Immune Responses to HIV-1. Cell Rep 2016; 16:1492-1501. [PMID: 27477283 PMCID: PMC4978700 DOI: 10.1016/j.celrep.2016.07.002] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 05/20/2016] [Accepted: 07/01/2016] [Indexed: 01/08/2023] Open
Abstract
SAMHD1 is a restriction factor for HIV-1 infection. SAMHD1 mutations cause the autoinflammatory Aicardi-Goutières syndrome that is characterized by chronic type I interferon (IFN) secretion. We show that the spontaneous IFN response in SAMHD1-deficient cells and mice requires the cGAS/STING cytosolic DNA-sensing pathway. We provide genetic evidence that cell-autonomous control of lentivirus infection in myeloid cells by SAMHD1 limits virus-induced production of IFNs and the induction of co-stimulatory markers. This program of myeloid cell activation required reverse transcription, cGAS and STING, and signaling through the IFN receptor. Furthermore, SAMHD1 reduced the induction of virus-specific cytotoxic T cells in vivo. Therefore, virus restriction by SAMHD1 limits the magnitude of IFN and T cell responses. This demonstrates a competition between cell-autonomous virus control and subsequent innate and adaptive immune responses, a concept with important implications for the treatment of infection. Spontaneous IFN production in SAMHD1-deficient cells requires cGAS and STING During HIV-1 infection, SAMHD1 limits activation of myeloid cells cGAS and STING detect HIV-1 infection in SAMHD1-deficient cells and induce IFN SAMHD1 prevents virus-specific CD8 T cell responses in vivo
Collapse
Affiliation(s)
- Jonathan Maelfait
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine and Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Anne Bridgeman
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine and Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Adel Benlahrech
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine and Nuffield Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Chiara Cursi
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine and Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Jan Rehwinkel
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine and Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK.
| |
Collapse
|
30
|
White CH, Moesker B, Ciuffi A, Beliakova-Bethell N. Systems biology applications to study mechanisms of human immunodeficiency virus latency and reactivation. World J Clin Infect Dis 2016; 6:6-21. [DOI: 10.5495/wjcid.v6.i2.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 01/15/2016] [Accepted: 03/09/2016] [Indexed: 02/06/2023] Open
Abstract
Eradication of human immunodeficiency virus (HIV) in infected individuals is currently not possible because of the presence of the persistent cellular reservoir of latent infection. The identification of HIV latency biomarkers and a better understanding of the molecular mechanisms contributing to regulation of HIV expression might provide essential tools to eliminate these latently infected cells. This review aims at summarizing gene expression profiling and systems biology applications to studies of HIV latency and eradication. Studies comparing gene expression in latently infected and uninfected cells identify candidate latency biomarkers and novel mechanisms of latency control. Studies that profiled gene expression changes induced by existing latency reversing agents (LRAs) highlight uniting themes driving HIV reactivation and novel mechanisms that contribute to regulation of HIV expression by different LRAs. Among the reviewed gene expression studies, the common approaches included identification of differentially expressed genes and gene functional category assessment. Integration of transcriptomic data with other biological data types is presently scarce, and the field would benefit from increased adoption of these methods in future studies. In addition, designing prospective studies that use the same methods of data acquisition and statistical analyses will facilitate a more reliable identification of latency biomarkers using different model systems and the comparison of the effects of different LRAs on host factors with a role in HIV reactivation. The results from such studies would have the potential to significantly impact the process by which candidate drugs are selected and combined for future evaluations and advancement to clinical trials.
Collapse
|
31
|
Ondondo B, Murakoshi H, Clutton G, Abdul-Jawad S, Wee EGT, Gatanaga H, Oka S, McMichael AJ, Takiguchi M, Korber B, Hanke T. Novel Conserved-region T-cell Mosaic Vaccine With High Global HIV-1 Coverage Is Recognized by Protective Responses in Untreated Infection. Mol Ther 2016; 24:832-42. [PMID: 26743582 PMCID: PMC4886941 DOI: 10.1038/mt.2016.3] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 12/31/2015] [Indexed: 12/12/2022] Open
Abstract
An effective human immunodeficiency virus type 1 (HIV-1) vaccine is the best solution for halting the acquired immune deficiency syndrome epidemic. Here, we describe the design and preclinical immunogenicity of T-cell vaccine expressing novel immunogens tHIVconsvX, vectored by DNA, simian (chimpanzee) adenovirus, and poxvirus modified vaccinia virus Ankara (MVA), a combination highly immunogenic in humans. The tHIVconsvX immunogens combine the three leading strategies for elicitation of effective CD8(+) T cells: use of regions of HIV-1 proteins functionally conserved across all M group viruses (to make HIV-1 escape costly on viral fitness), inclusion of bivalent complementary mosaic immunogens (to maximize global epitope matching and breadth of responses, and block common escape paths), and inclusion of epitopes known to be associated with low viral load in infected untreated people (to induce field-proven protective responses). tHIVconsvX was highly immunogenic in two strains of mice. Furthermore, the magnitude and breadth of CD8(+) T-cell responses to tHIVconsvX-derived peptides in treatment-naive HIV-1(+) patients significantly correlated with high CD4(+) T-cell count and low viral load. Overall, the tHIVconsvX design, combining the mosaic and conserved-region approaches, provides an indisputably better coverage of global HIV-1 variants than previous T-cell vaccines. These immunogens delivered in a highly immunogenic framework of adenovirus prime and MVA boost are ready for clinical development.
Collapse
Affiliation(s)
- Beatrice Ondondo
- The Jenner Institute, University of Oxford, Roosevelt Drive, Oxford, UK
| | | | - Genevieve Clutton
- The Jenner Institute, University of Oxford, Roosevelt Drive, Oxford, UK
- Current address: Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | - Edmund G-T Wee
- The Jenner Institute, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Hiroyuki Gatanaga
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
- AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Shinichi Oka
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
- AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo, Japan
| | | | - Masafumi Takiguchi
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Bette Korber
- Los Alamo National Laboratory, Theoretical Biology and Biophysics, Los Alamos, New Mexico, USA
- The New Mexico Consortium, Los Alamos, New Mexico, USA
| | - Tomáš Hanke
- The Jenner Institute, University of Oxford, Roosevelt Drive, Oxford, UK
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
32
|
Abdul-Jawad S, Ondondo B, van Hateren A, Gardner A, Elliott T, Korber B, Hanke T. Increased Valency of Conserved-mosaic Vaccines Enhances the Breadth and Depth of Epitope Recognition. Mol Ther 2016; 24:375-384. [PMID: 26581160 PMCID: PMC4817818 DOI: 10.1038/mt.2015.210] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 11/09/2015] [Indexed: 12/19/2022] Open
Abstract
The biggest roadblock in development of effective vaccines against human immunodeficiency virus type 1 (HIV-1) is the virus genetic diversity. For T-cell vaccine, this can be tackled by focusing the vaccine-elicited T-cells on the highly functionally conserved regions of HIV-1 proteins, mutations in which typically cause a replicative fitness loss, and by computing multivalent mosaic proteins, which maximize the coverage of potential 9-mer T-cell epitopes of the input viral sequences. Our first conserved region vaccines HIVconsv employed clade alternating consensus sequences and showed promise in the initial clinical trials in terms of magnitude and breadth of elicited CD8(+) T-cells. Here, monitoring T-cells restricted by HLA-A*02:01 in transgenic mice, we assessed whether or not the tHIVconsv design (HIVconsv with a tissue plasminogen activator leader sequence) benefits from combining with a complementing conserved mosaic immunogen tHIVcmo, and compared the bivalent immunization to that with trivalent conserved mosaic vaccines. A hierarchy of tHIVconsv ≤ tHIVconsv+tHIVcmo < tCmo1+tCmo2+tCmo3 vaccinations for induction of CD8(+) T-cell responses was observed in terms of recognition of tested peptide variants. Thus, our HLA-A*02:01-restricted epitope data concur with previously published mouse and macaque observations and suggest that even conserved region vaccines benefit from oligovalent mosaic design.
Collapse
Affiliation(s)
| | | | - Andy van Hateren
- Faculty of Medicine and Institute for Life Science, University of Southampton, Southampton, UK
| | | | - Tim Elliott
- Faculty of Medicine and Institute for Life Science, University of Southampton, Southampton, UK
| | - Bette Korber
- Los Alamos National Laboratory, Theoretical Biology and Biophysics, Los Alamos, New Mexico, USA; The New Mexico Consortium, Los Alamos, New Mexico, USA
| | - Tomáš Hanke
- The Jenner Institute, University of Oxford, Oxford, UK; International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
33
|
Maldarelli F. The role of HIV integration in viral persistence: no more whistling past the proviral graveyard. J Clin Invest 2016; 126:438-47. [PMID: 26829624 DOI: 10.1172/jci80564] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A substantial research effort has been directed to identifying strategies to eradicate or control HIV infection without a requirement for combination antiretroviral therapy (cART). A number of obstacles prevent HIV eradication, including low-level viral persistence during cART, long-term persistence of HIV-infected cells, and latent infection of resting CD4+ T cells. Mechanisms of persistence remain uncertain, but integration of the provirus into the host genome represents a central event in replication and pathogenesis of all retroviruses, including HIV. Analysis of HIV proviruses in CD4+ lymphocytes from individuals after prolonged cART revealed that a substantial proportion of the infected cells that persist have undergone clonal expansion and frequently have proviruses integrated in genes associated with regulation of cell growth. These data suggest that integration may influence persistence and clonal expansion of HIV-infected cells after cART is introduced, and these processes may represent key mechanisms for HIV persistence. Determining the diversity of host genes with integrants in HIV-infected cells that persist for prolonged periods may yield useful information regarding pathways by which infected cells persist for prolonged periods. Moreover, many integrants are defective, and new studies are required to characterize the role of clonal expansion in the persistence of replication-competent HIV.
Collapse
|
34
|
Zhan P, Pannecouque C, De Clercq E, Liu X. Anti-HIV Drug Discovery and Development: Current Innovations and Future Trends. J Med Chem 2015; 59:2849-78. [PMID: 26509831 DOI: 10.1021/acs.jmedchem.5b00497] [Citation(s) in RCA: 242] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The early effectiveness of combinatorial antiretroviral therapy (cART) in the treatment of HIV infection has been compromised to some extent by rapid development of multidrug-resistant HIV strains, poor bioavailability, and cumulative toxicities, and so there is a need for alternative strategies of antiretroviral drug discovery and additional therapeutic agents with novel action modes or targets. From this perspective, we first review current strategies of antiretroviral drug discovery and optimization, with the aid of selected examples from the recent literature. We highlight the development of phosphate ester-based prodrugs as a means to improve the aqueous solubility of HIV inhibitors, and the introduction of the substrate envelope hypothesis as a new approach for overcoming HIV drug resistance. Finally, we discuss future directions for research, including opportunities for exploitation of novel antiretroviral targets, and the strategy of activation of latent HIV reservoirs as a means to eradicate the virus.
Collapse
Affiliation(s)
- Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44, West Culture Road, 250012, Jinan, Shandong, P. R. China
| | - Christophe Pannecouque
- Rega Institute for Medical Research, Katholieke Universiteit Leuven , Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Erik De Clercq
- Rega Institute for Medical Research, Katholieke Universiteit Leuven , Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44, West Culture Road, 250012, Jinan, Shandong, P. R. China
| |
Collapse
|
35
|
Pegu A, Asokan M, Wu L, Wang K, Hataye J, Casazza JP, Guo X, Shi W, Georgiev I, Zhou T, Chen X, O'Dell S, Todd JP, Kwong PD, Rao SS, Yang ZY, Koup RA, Mascola JR, Nabel GJ. Activation and lysis of human CD4 cells latently infected with HIV-1. Nat Commun 2015; 6:8447. [PMID: 26485194 PMCID: PMC4633990 DOI: 10.1038/ncomms9447] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 08/21/2015] [Indexed: 12/18/2022] Open
Abstract
The treatment of AIDS with combination antiretroviral therapy (cART) remains lifelong largely because the virus persists in latent reservoirs. Elimination of latently infected cells could therefore reduce treatment duration and facilitate immune reconstitution. Here we report an approach to reduce the viral reservoir by activating dormant viral gene expression and directing T lymphocytes to lyse previously latent, HIV-1-infected cells. An immunomodulatory protein was created that combines the specificity of a HIV-1 broadly neutralizing antibody with that of an antibody to the CD3 component of the T-cell receptor. CD3 engagement by the protein can stimulate T-cell activation that induces proviral gene expression in latently infected T cells. It further stimulates CD8 T-cell effector function and redirects T cells to lyse these previously latent-infected cells through recognition of newly expressed Env. This immunomodulatory protein could potentially help to eliminate latently infected cells and deplete the viral reservoir in HIV-1-infected individuals. The elimination of latently infected cells is a sought after goal in the treatment of HIV-1 infections. Here the authors develop an approach to eliminate latently HIV-1 infected cells by using an immunomodulatory protein, which can activate viral gene expression in these cells and direct T lymphocytes to lyse them in vitro.
Collapse
Affiliation(s)
- Amarendra Pegu
- Vaccine Research Center National Institute for Allergy and Infectious Diseases, National Institutes of Health, Building 40, Room 4502, MSC-3005 40 Convent Drive, Bethesda, Maryland 20892-3005, USA
| | - Mangaiarkarasi Asokan
- Vaccine Research Center National Institute for Allergy and Infectious Diseases, National Institutes of Health, Building 40, Room 4502, MSC-3005 40 Convent Drive, Bethesda, Maryland 20892-3005, USA
| | - Lan Wu
- Vaccine Research Center National Institute for Allergy and Infectious Diseases, National Institutes of Health, Building 40, Room 4502, MSC-3005 40 Convent Drive, Bethesda, Maryland 20892-3005, USA
| | - Keyun Wang
- Vaccine Research Center National Institute for Allergy and Infectious Diseases, National Institutes of Health, Building 40, Room 4502, MSC-3005 40 Convent Drive, Bethesda, Maryland 20892-3005, USA
| | - Jason Hataye
- Vaccine Research Center National Institute for Allergy and Infectious Diseases, National Institutes of Health, Building 40, Room 4502, MSC-3005 40 Convent Drive, Bethesda, Maryland 20892-3005, USA
| | - Joseph P Casazza
- Vaccine Research Center National Institute for Allergy and Infectious Diseases, National Institutes of Health, Building 40, Room 4502, MSC-3005 40 Convent Drive, Bethesda, Maryland 20892-3005, USA
| | - Xiaoti Guo
- Vaccine Research Center National Institute for Allergy and Infectious Diseases, National Institutes of Health, Building 40, Room 4502, MSC-3005 40 Convent Drive, Bethesda, Maryland 20892-3005, USA
| | - Wei Shi
- Vaccine Research Center National Institute for Allergy and Infectious Diseases, National Institutes of Health, Building 40, Room 4502, MSC-3005 40 Convent Drive, Bethesda, Maryland 20892-3005, USA
| | - Ivelin Georgiev
- Vaccine Research Center National Institute for Allergy and Infectious Diseases, National Institutes of Health, Building 40, Room 4502, MSC-3005 40 Convent Drive, Bethesda, Maryland 20892-3005, USA
| | - Tongqing Zhou
- Vaccine Research Center National Institute for Allergy and Infectious Diseases, National Institutes of Health, Building 40, Room 4502, MSC-3005 40 Convent Drive, Bethesda, Maryland 20892-3005, USA
| | - Xuejun Chen
- Vaccine Research Center National Institute for Allergy and Infectious Diseases, National Institutes of Health, Building 40, Room 4502, MSC-3005 40 Convent Drive, Bethesda, Maryland 20892-3005, USA
| | - Sijy O'Dell
- Vaccine Research Center National Institute for Allergy and Infectious Diseases, National Institutes of Health, Building 40, Room 4502, MSC-3005 40 Convent Drive, Bethesda, Maryland 20892-3005, USA
| | - John-Paul Todd
- Vaccine Research Center National Institute for Allergy and Infectious Diseases, National Institutes of Health, Building 40, Room 4502, MSC-3005 40 Convent Drive, Bethesda, Maryland 20892-3005, USA
| | - Peter D Kwong
- Vaccine Research Center National Institute for Allergy and Infectious Diseases, National Institutes of Health, Building 40, Room 4502, MSC-3005 40 Convent Drive, Bethesda, Maryland 20892-3005, USA
| | - Srinivas S Rao
- Vaccine Research Center National Institute for Allergy and Infectious Diseases, National Institutes of Health, Building 40, Room 4502, MSC-3005 40 Convent Drive, Bethesda, Maryland 20892-3005, USA
| | - Zhi-yong Yang
- Vaccine Research Center National Institute for Allergy and Infectious Diseases, National Institutes of Health, Building 40, Room 4502, MSC-3005 40 Convent Drive, Bethesda, Maryland 20892-3005, USA
| | - Richard A Koup
- Vaccine Research Center National Institute for Allergy and Infectious Diseases, National Institutes of Health, Building 40, Room 4502, MSC-3005 40 Convent Drive, Bethesda, Maryland 20892-3005, USA
| | - John R Mascola
- Vaccine Research Center National Institute for Allergy and Infectious Diseases, National Institutes of Health, Building 40, Room 4502, MSC-3005 40 Convent Drive, Bethesda, Maryland 20892-3005, USA
| | - Gary J Nabel
- Vaccine Research Center National Institute for Allergy and Infectious Diseases, National Institutes of Health, Building 40, Room 4502, MSC-3005 40 Convent Drive, Bethesda, Maryland 20892-3005, USA
| |
Collapse
|
36
|
Dubé K, Ramirez C, Handibode J, Taylor J, Skinner A, Greene S, Tucker JD. Participation in HIV cure-related research: a scoping review of the proxy literature and implications for future research. J Virus Erad 2015; 1:250-256. [PMID: 26866059 PMCID: PMC4745088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To identify the main types of HIV cure-related strategies and examine possible risks (and benefits) associated with participating in HIV cure-related research studies. METHODS We undertook a scoping review to first map out the landscape of HIV cure-related research and then examined the risks and potential benefits associated with participating in HIV cure research. Given the early stage of many HIV cure-related studies, we used proxy literatures from non-cure HIV research and cancer research in order to anticipate possible motivators and deterrents of participation in HIV cure-related studies. RESULTS We discussed four main categories of HIV cure-related research: (1) early antiretroviral treatment (ART); (2) latency-reversing agents (LRAs); (3) therapeutic vaccinations and immune-based therapies (IBT); and (4) stem-cell transplantation and gene therapy. At this juncture, these categories of HIV cure-related research have substantial individual risks and negligible individual and clinical benefits. Non-cure HIV research (including HIV prevention and treatment) and cancer research have empirical similarities (and differences) to HIV cure research and may provide an opportunity to anticipate ethical and logistical challenges associated with HIV cure-related research participation and decision-making. Learning from the cancer field, a strong foundation of patient-participant and clinician-researcher trust will need to be established to facilitate recruitment of participants into HIV cure-related studies. CONCLUSION Further empirical social science and ethics research will be necessary to inform clinical HIV cure-related research. The study of participation in HIV cure-related research can gain insights from proxy fields by incorporating study elements to clearly explain motivators and deterrents to participation and to inform the implementation of HIV cure-related studies. Study-specific contexts from the reviewed literature further demonstrate the importance of various types of research to assess factors affecting participation in HIV cure-related research, including adequate formative and ethics research.
Collapse
Affiliation(s)
- Karine Dubé
- Institute for Global Health and Infectious Diseases (IGHID),
University of North Carolina at Chapel Hill (UNC-CH),
Chapel Hill,
NC,
USA
- Health Policy and Management,
University of North Carolina at Chapel Hill (UNC-CH),
Chapel Hill,
NC,
USA
| | - Catalina Ramirez
- Institute for Global Health and Infectious Diseases (IGHID),
University of North Carolina at Chapel Hill (UNC-CH),
Chapel Hill,
NC,
USA
| | | | - Jeffrey Taylor
- CARE Community Advisory Board (CAB),
Palm Springs,
CA,
USA
| | - Asheley Skinner
- Health Policy and Management,
University of North Carolina at Chapel Hill (UNC-CH),
Chapel Hill,
NC,
USA
| | - Sandra Greene
- Health Policy and Management,
University of North Carolina at Chapel Hill (UNC-CH),
Chapel Hill,
NC,
USA
| | - Joseph D Tucker
- Institute for Global Health and Infectious Diseases (IGHID),
University of North Carolina at Chapel Hill (UNC-CH),
Chapel Hill,
NC,
USA
- UNC Project-China,
Guangzhou,
China
| |
Collapse
|
37
|
Dubé K, Ramirez C, Handibode J, Taylor J, Skinner A, Greene S, Tucker JD. Participation in HIV cure-related research: a scoping review of the proxy literature and implications for future research. J Virus Erad 2015. [DOI: 10.1016/s2055-6640(20)30928-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
38
|
Sereti I, Folkers GK, Meintjes G, Boulware DR. Towards a scalable HIV cure research agenda: the role of co-infections. J Virus Erad 2015. [DOI: 10.1016/s2055-6640(20)30925-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
39
|
Sereti I, Folkers GK, Meintjes G, Boulware DR. Towards a scalable HIV cure research agenda: the role of co-infections. J Virus Erad 2015; 1:269-271. [PMID: 26855972 PMCID: PMC4739889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The development of a cure is among the foremost contemporary priorities in the field of HIV research. The science that underpins a potential HIV cure should be generalisable to the many millions of persons globally who enter antiretroviral treatment programs with advanced immunosuppression and/or an opportunistic infection. We provide five key suggestions for incorporation into the HIV cure research agenda to maximise the generalisability and applicability of an HIV cure once developed.
Collapse
Affiliation(s)
- Irini Sereti
- National Institute of Allergy and Infectious Diseases,
National Institutes of Health,
Bethesda,
Maryland,
USA,Corresponding author: Irini Sereti, NIAID, 10 Center Drive, Building 10, Room 11B-07A, Bethesda, MD 20892, USA
| | - Gregory K Folkers
- National Institute of Allergy and Infectious Diseases,
National Institutes of Health,
Bethesda,
Maryland,
USA
| | - Graeme Meintjes
- University of Cape Town,
Cape Town,
South Africa,Imperial College London,
London,
UK
| | | |
Collapse
|
40
|
Teichert RW, Schmidt EW, Olivera BM. Constellation pharmacology: a new paradigm for drug discovery. Annu Rev Pharmacol Toxicol 2015; 55:573-89. [PMID: 25562646 DOI: 10.1146/annurev-pharmtox-010814-124551] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Constellation pharmacology is a cell-based high-content phenotypic-screening platform that utilizes subtype-selective pharmacological agents to elucidate the cell-specific combinations (constellations) of key signaling proteins that define specific cell types. Heterogeneous populations of native cells, in which the different individual cell types have been identified and characterized, are the foundation for this screening platform. Constellation pharmacology is useful for screening small molecules or for deconvoluting complex mixtures of biologically active natural products. This platform has been used to purify natural products and discover their molecular mechanisms. In the ongoing development of constellation pharmacology, there is a positive feedback loop between the pharmacological characterization of cell types and screening for new drug candidates. As constellation pharmacology is used to discover compounds with novel targeting-selectivity profiles, those new compounds then further help to elucidate the constellations of specific cell types, thereby increasing the content of this high-content platform.
Collapse
|
41
|
Synergistic Reactivation of Latent HIV Expression by Ingenol-3-Angelate, PEP005, Targeted NF-kB Signaling in Combination with JQ1 Induced p-TEFb Activation. PLoS Pathog 2015. [PMID: 26225771 PMCID: PMC4520526 DOI: 10.1371/journal.ppat.1005066] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Although anti-retroviral therapy (ART) is highly effective in suppressing HIV replication, it fails to eradicate the virus from HIV-infected individuals. Stable latent HIV reservoirs are rapidly established early after HIV infection. Therefore, effective strategies for eradication of the HIV reservoirs are urgently needed. We report that ingenol-3-angelate (PEP005), the only active component in a previously FDA approved drug (PICATO) for the topical treatment of precancerous actinic keratosis, can effectively reactivate latent HIV in vitro and ex vivo with relatively low cellular toxicity. Biochemical analysis showed that PEP005 reactivated latent HIV through the induction of the pS643/S676-PKCδ/θ-IκBα/ε-NF-κB signaling pathway. Importantly, PEP005 alone was sufficient to induce expression of fully elongated and processed HIV RNAs in primary CD4+ T cells from HIV infected individuals receiving suppressive ART. Furthermore, PEP005 and the P-TEFb agonist, JQ1, exhibited synergism in reactivation of latent HIV with a combined effect that is 7.5-fold higher than the effect of PEP005 alone. Conversely, PEP005 suppressed HIV infection of primary CD4+ T cells through down-modulation of cell surface expression of HIV co-receptors. This anti-cancer compound is a potential candidate for advancing HIV eradication strategies. Stable latent viral reservoirs in HIV infected individuals are rapidly reactivated following the interruption of anti-retroviral therapy (ART). Despite an early initiation of ART, viral reservoirs are established and persist as demonstrated in the case of the Mississippi baby and from recent studies of the SIV model of AIDS. Therefore, new strategies are needed for the eradication of the latent HIV reservoirs. We found that ingenol-3-angelate (PEP005), a member of the new class of anti-cancer ingenol compounds, effectively reactivated HIV from latency in primary CD4+ T cells from HIV infected individuals receiving ART. Importantly, a combination of PEP005 and JQ1, a p-TEFb agonist, reactivated HIV from latency at level on average 7.5-fold higher compared to PEP005 alone. The potency of synergistic effects of PEP005 and JQ1 provide novel opportunities for advancing HIV eradication strategies in the future. In summary, ingenols represent a new group of lead compounds for combating HIV latency.
Collapse
|
42
|
Smith KA, Lin X, Bolshakov O, Griffin J, Niu X, Kovalskyy D, Ivanov A, Jerebtsova M, Taylor RE, Akala E, Nekhai S. Activation of HIV-1 with Nanoparticle-Packaged Small-Molecule Protein Phosphatase-1-Targeting Compound. Sci Pharm 2015; 83:535-48. [PMID: 26839837 PMCID: PMC4727795 DOI: 10.3797/scipharm.1502-01] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 06/22/2015] [Indexed: 11/22/2022] Open
Abstract
Complete eradication of HIV-1 infection is impeded by the existence of latent HIV-1 reservoirs in which the integrated HIV-1 provirus is transcriptionally inactive. Activation of HIV-1 transcription requires the viral Tat protein and host cell factors, including protein phosphatase-1 (PP1). We previously developed a library of small compounds that targeted PP1 and identified a compound, SMAPP1, which induced HIV-1 transcription. However, this compound has a limited bioavailability in vivo and may not be able to reach HIV-1-infected cells and induce HIV-1 transcription in patients. We packaged SMAPP1 in polymeric polyethylene glycol polymethyl methacrylate nanoparticles and analyzed its release and the effect on HIV-1 transcription in a cell culture. SMAPP1 was efficiently packaged in the nanoparticles and released during a 120-hr period. Treatment of the HIV-1-infected cells with the SMAPP1-loaded nanoparticles induced HIV-1 transcription. Thus, nanoparticles loaded with HIV-1-targeting compounds might be useful for future anti-HIV-1 therapeutics.
Collapse
Affiliation(s)
- Kahli A Smith
- Center for Sickle Cell Disease, Howard University, Washington DC 20059, USA; Department of Pharmacology, Howard University, Washington DC 20059, USA
| | - Xionghao Lin
- Center for Sickle Cell Disease, Howard University, Washington DC 20059, USA
| | - Oleg Bolshakov
- Department of Pharmaceutical Sciences, Howard University, Washington DC 20059, USA
| | - James Griffin
- College of Engineering, Howard University, Washington DC 20059, USA
| | - Xiaomei Niu
- Center for Sickle Cell Disease, Howard University, Washington DC 20059, USA
| | - Dmytro Kovalskyy
- Department of Biochemistry, School of Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr., San Antonio TX 78229, USA; Enamine LLC, Princeton Corporate Plaza, 7 Deer Park Drive, Ste. M-3 Monmouth Jct., NJ 08852, USA
| | - Andrey Ivanov
- Center for Sickle Cell Disease, Howard University, Washington DC 20059, USA
| | - Marina Jerebtsova
- Department of Microbiology, College of Medicine, Howard University, Washington DC 20059, USA
| | - Robert E Taylor
- Department of Pharmacology, Howard University, Washington DC 20059, USA
| | - Emmanuel Akala
- Department of Pharmaceutical Sciences, Howard University, Washington DC 20059, USA
| | - Sergei Nekhai
- Center for Sickle Cell Disease, Howard University, Washington DC 20059, USA; Department of Pharmacology, Howard University, Washington DC 20059, USA; Department of Microbiology, College of Medicine, Howard University, Washington DC 20059, USA; Department of Medicine, Howard University, Washington DC 20059, USA
| |
Collapse
|
43
|
|
44
|
HIV cure strategies: how good must they be to improve on current antiretroviral therapy? PLoS One 2014; 9:e113031. [PMID: 25397616 PMCID: PMC4232561 DOI: 10.1371/journal.pone.0113031] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 10/17/2014] [Indexed: 12/18/2022] Open
Abstract
Background We examined efficacy, toxicity, relapse, cost, and quality-of-life thresholds of hypothetical HIV cure interventions that would make them cost-effective compared to life-long antiretroviral therapy (ART). Methods We used a computer simulation model to assess three HIV cure strategies: Gene Therapy, Chemotherapy, and Stem Cell Transplantation (SCT), each compared to ART. Efficacy and cost parameters were varied widely in sensitivity analysis. Outcomes included quality-adjusted life expectancy, lifetime cost, and cost-effectiveness in dollars/quality-adjusted life year ($/QALY) gained. Strategies were deemed cost-effective with incremental cost-effectiveness ratios <$100,000/QALY. Results For patients on ART, discounted quality-adjusted life expectancy was 16.4 years and lifetime costs were $591,400. Gene Therapy was cost-effective with efficacy of 10%, relapse rate 0.5%/month, and cost $54,000. Chemotherapy was cost-effective with efficacy of 88%, relapse rate 0.5%/month, and cost $12,400/month for 24 months. At $150,000/procedure, SCT was cost-effective with efficacy of 79% and relapse rate 0.5%/month. Moderate efficacy increases and cost reductions made Gene Therapy cost-saving, but substantial efficacy/cost changes were needed to make Chemotherapy or SCT cost-saving. Conclusions Depending on efficacy, relapse rate, and cost, cure strategies could be cost-effective compared to current ART and potentially cost-saving. These results may help provide performance targets for developing cure strategies for HIV.
Collapse
|
45
|
Broadly-specific cytotoxic T cells targeting multiple HIV antigens are expanded from HIV+ patients: implications for immunotherapy. Mol Ther 2014; 23:387-95. [PMID: 25366030 DOI: 10.1038/mt.2014.207] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 10/17/2014] [Indexed: 12/31/2022] Open
Abstract
Antiretroviral therapy (ART) is unable to eradicate human immunodeficiency virus type 1 (HIV-1) infection. Therefore, there is an urgent need to develop novel therapies for this disease to augment anti-HIV immunity. T cell therapy is appealing in this regard as T cells have the ability to proliferate, migrate, and their antigen specificity reduces the possibility of off-target effects. However, past human studies in HIV-1 infection that administered T cells with limited specificity failed to provide ART-independent, long-term viral control. In this study, we sought to expand functional, broadly-specific cytotoxic T cells (HXTCs) from HIV-infected patients on suppressive ART as a first step toward developing cellular therapies for implementation in future HIV eradication protocols. Blood samples from seven HIV+ patients on suppressive ART were used to derive HXTCs. Multiantigen specificity was achieved by coculturing T cells with antigen-presenting cells pulsed with peptides representing Gag, Pol, and Nef. All but two lines were multispecific for all three antigens. HXTCs demonstrated efficacy as shown by release of proinflammatory cytokines, specific lysis of antigen-pulsed targets, and the ability to suppress HIV replication in vitro. In conclusion, we are able to generate broadly-specific cytotoxic T cell lines that simultaneously target multiple HIV antigens and show robust antiviral function.
Collapse
|
46
|
Stevenson M. Role of myeloid cells in HIV-1-host interplay. J Neurovirol 2014; 21:242-8. [PMID: 25236811 DOI: 10.1007/s13365-014-0281-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 07/25/2014] [Accepted: 08/14/2014] [Indexed: 12/11/2022]
Abstract
The AIDS research field has embarked on a bold mission to cure HIV-1-infected individuals of the virus. To do so, scientists are attempting to identify the reservoirs that support viral persistence in patients on therapy, to understand how viral persistence is regulated and to come up with strategies that interrupt viral persistence and that eliminate the viral reservoirs. Most of the attention regarding the cure of HIV-1 infection has focused on the CD4+ T cell reservoir. Investigators are developing tools to probe the CD4+ T cell reservoirs as well as in vitro systems that provide clues on how to perturb them. By comparison, the myeloid cell, and in particular, the macrophage has received far less attention. As a consequence, there is very little understanding as to the role played by myeloid cells in viral persistence in HIV-1-infected individuals on suppressive therapy. As such, should myeloid cells constitute a viral reservoir, unique strategies may be required for their elimination. This article will overview research that is examining the role of macrophage in virus-host interplay and will discuss features of this interplay that could impact efforts to eliminate myeloid cell reservoirs.
Collapse
Affiliation(s)
- Mario Stevenson
- Department of Medicine, University of Miami Medical School, Miami, FL, USA,
| |
Collapse
|
47
|
Reactivation of HIV latency by a newly modified Ingenol derivative via protein kinase Cδ-NF-κB signaling. AIDS 2014; 28:1555-66. [PMID: 24804860 DOI: 10.1097/qad.0000000000000289] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Although HAART effectively suppresses viral replication, it fails to eradicate latent viral reservoirs. The 'shock and kill' strategy involves the activation of HIV from latent reservoirs and targeting them for eradication. Our goal was to develop new approaches for activating HIV from latent reservoirs. DESIGN We investigated capacity of Ingenol B (IngB), a newly modified derivative of Ingenol ester that was originally isolated from a Brazilian plant in Amazon, for its capacity and mechanisms of HIV reactivation. METHODS Reactivation of HIV-1 by IngB was evaluated in J-Lat A1 cell culture model of HIV latency as well as in purified primary CD4 T cells from long-term HAART-treated virologically-suppressed HIV-infected individuals. The underlining molecular mechanisms of viral reactivation were investigated using flow cytometry, RT-qPCR and chromatin immunoprecipitation. RESULTS IngB is highly effective in reactivating HIV in J-Lat A1 cells with relatively low cellular toxicity. It is also able to reactivate latent HIV in purified CD4 T cells from HAART-treated HIV-positive individuals ex vivo. Our data show that IngB may reactivate HIV expression by both activating protein kinase C (PKC)δ-nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway and directly inducing NF-κB protein expression. Importantly, IngB has a synergistic effect with JQ1, a BET bromodomain inhibitor, in latent HIV reactivation. CONCLUSIONS IngB is a new promising compound to activate latent HIV reservoirs. Our data suggest that formulating novel derivatives from Ingenol esters may be an innovative approach to develop new lead compounds to reactivate latent HIV.
Collapse
|
48
|
Siewe B, Wallace J, Rygielski S, Stapleton JT, Martin J, Deeks SG, Landay A. Regulatory B cells inhibit cytotoxic T lymphocyte (CTL) activity and elimination of infected CD4 T cells after in vitro reactivation of HIV latent reservoirs. PLoS One 2014; 9:e92934. [PMID: 24739950 PMCID: PMC3989168 DOI: 10.1371/journal.pone.0092934] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 02/27/2014] [Indexed: 12/24/2022] Open
Abstract
During HIV infection, IL-10/IL-10 receptor and programmed death-1 (PD-1)/programmed death-1-ligand (PD-L1) interactions have been implicated in the impairment of cytotoxic T lymphocyte (CTL) activity. Despite antiretroviral therapy (ART), attenuated anti-HIV CTL functions present a major hurdle towards curative measures requiring viral eradication. Therefore, deeper understanding of the mechanisms underlying impaired CTL is crucial before HIV viral eradication is viable. The generation of robust CTL activity necessitates interactions between antigen-presenting cells (APC), CD4+ and CD8+ T cells. We have shown that in vitro, IL-10hiPD-L1hi regulatory B cells (Bregs) directly attenuate HIV-specific CD8+-mediated CTL activity. Bregs also modulate APC and CD4+ T cell function; herein we characterize the Breg compartment in uninfected (HIVNEG), HIV-infected "elite controllers" (HIVEC), ART-treated (HIVART), and viremic (HIVvir), subjects, and in vitro, assess the impact of Bregs on anti-HIV CTL generation and activity after reactivation of HIV latent reservoirs using suberoylanilide hydroxamic acid (SAHA). We find that Bregs from HIVEC and HIVART subjects exhibit comparable IL-10 expression levels significantly higher than HIVNEG subjects, but significantly lower than HIVVIR subjects. Bregs from HIVEC and HIVART subjects exhibit comparable PD-L1 expression, significantly higher than in HIVVIR and HIVNEG subjects. SAHA-treated Breg-depleted PBMC from HIVEC and HIVART subjects, displayed enhanced CD4+ T-cell proliferation, significant upregulation of antigen-presentation molecules, increased frequency of CD107a+ and HIV-specific CD8+ T cells, associated with efficient elimination of infected CD4+ T cells, and reduction in integrated viral DNA. Finally, IL-10-R and PD-1 antibody blockade partially reversed Breg-mediated inhibition of CD4+ T-cell proliferation. Our data suggest that, possibly, via an IL-10 and PD-L1 synergistic mechanism; Bregs likely inhibit APC function and CD4+ T-cell proliferation, leading to anti-HIV CTL attenuation, hindering viral eradication.
Collapse
Affiliation(s)
- Basile Siewe
- Rush University Medical Center, Department of Immunology and Microbiology, Chicago, Illinois, United States of America
- * E-mail:
| | - Jennillee Wallace
- Rush University Medical Center, Department of Immunology and Microbiology, Chicago, Illinois, United States of America
| | - Sonya Rygielski
- Rush University Medical Center, Department of Immunology and Microbiology, Chicago, Illinois, United States of America
| | - Jack T. Stapleton
- Iowa City Veterans Affairs Medical Center and the University of Iowa, Departments of Internal Medicine, Microbiology and Immunology, Iowa City, Iowa, United States of America
| | - Jeffrey Martin
- HIV/AIDS Division, San Francisco General Hospital, University of California San Francisco (UCSF), San Francisco, California, United States of America
| | - Steven G. Deeks
- HIV/AIDS Division, San Francisco General Hospital, University of California San Francisco (UCSF), San Francisco, California, United States of America
| | - Alan Landay
- Rush University Medical Center, Department of Immunology and Microbiology, Chicago, Illinois, United States of America
- FC Donders Chair, Division of Pharmacology, Utrecht Institute of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
49
|
Archin NM, Bateson R, Tripathy MK, Crooks AM, Yang KH, Dahl NP, Kearney MF, Anderson EM, Coffin JM, Strain MC, Richman DD, Robertson KR, Kashuba AD, Bosch RJ, Hazuda DJ, Kuruc JD, Eron JJ, Margolis DM. HIV-1 expression within resting CD4+ T cells after multiple doses of vorinostat. J Infect Dis 2014; 210:728-35. [PMID: 24620025 DOI: 10.1093/infdis/jiu155] [Citation(s) in RCA: 213] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND A single dose of the histone deacetylase inhibitor vorinostat (VOR) up-regulates HIV RNA expression within resting CD4(+) T cells of treated, aviremic human immunodeficiency virus (HIV)-positive participants. The ability of multiple exposures to VOR to repeatedly disrupt latency has not been directly measured, to our knowledge. METHODS Five participants in whom resting CD4(+) T-cell-associated HIV RNA (rc-RNA) increased after a single dose of VOR agreed to receive daily VOR Monday through Wednesday for 8 weekly cycles. VOR serum levels, peripheral blood mononuclear cell histone acetylation, plasma HIV RNA single-copy assays, rc-RNA, total cellular HIV DNA, and quantitative viral outgrowth assays from resting CD4(+) T cells were assayed. RESULTS VOR was well tolerated, with exposures within expected parameters. However, rc-RNA measured after dose 11 (second dose of cycle 4) or dose 22 (second dose of cycle 8) increased significantly in only 3 of the 5 participants, and the magnitude of the rc-RNA increase was much reduced compared with that after a single dose. Changes in histone acetylation were blunted. Results of quantitative viral outgrowth and other assays were unchanged. CONCLUSIONS Although HIV latency is disrupted by an initial VOR dose, the effect of subsequent doses in this protocol was much reduced. We hypothesize that the global effect of VOR results in a refractory period of ≥ 24 hours. The optimal schedule for VOR administration is still to be defined.
Collapse
Affiliation(s)
- Nancy M Archin
- Department of Medicine, University of North Carolina at Chapel Hill
| | - Rosalie Bateson
- Department of Medicine, University of North Carolina at Chapel Hill
| | - Manoj K Tripathy
- Department of Medicine, University of North Carolina at Chapel Hill
| | - Amanda M Crooks
- Department of Medicine, University of North Carolina at Chapel Hill
| | - Kuo-Hsiung Yang
- Department of Medicine, University of North Carolina at Chapel Hill
| | - Noelle P Dahl
- Department of Medicine, University of North Carolina at Chapel Hill
| | - Mary F Kearney
- HIV Drug Resistance Program, National Cancer Institute, National Institutes of Health, Frederick, Maryland
| | - Elizabeth M Anderson
- HIV Drug Resistance Program, National Cancer Institute, National Institutes of Health, Frederick, Maryland
| | - John M Coffin
- HIV Drug Resistance Program, National Cancer Institute, National Institutes of Health, Frederick, Maryland Departments of Genetics and Molecular Biology, Tufts University School of Medicine, School of Public Health, Boston, Massachusetts
| | - Matthew C Strain
- Department of Medicine, University of California San Diego and Veterans Affairs San Diego Healthcare System, La Jolla
| | - Douglas D Richman
- Department of Medicine, University of California San Diego and Veterans Affairs San Diego Healthcare System, La Jolla
| | | | - Angela D Kashuba
- Department of Medicine, University of North Carolina at Chapel Hill
| | - Ronald J Bosch
- Department of Biostatistics, School of Public Health, Boston, Massachusetts
| | - Daria J Hazuda
- Merck Research Laboratories, White Horse Junction, Pennsylvania
| | - Joann D Kuruc
- Department of Medicine, University of North Carolina at Chapel Hill
| | - Joseph J Eron
- Department of Medicine, University of North Carolina at Chapel Hill
| | - David M Margolis
- Department of Medicine, University of North Carolina at Chapel Hill
| |
Collapse
|
50
|
Hanke T. Conserved immunogens in prime-boost strategies for the next-generation HIV-1 vaccines. Expert Opin Biol Ther 2014; 14:601-16. [PMID: 24490585 DOI: 10.1517/14712598.2014.885946] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Effective vaccines are the best solution for stopping the spread of HIV/AIDS and other infectious diseases. Their development and in-depth understanding of pathogen-host interactions rely on technological advances. AREAS COVERED Rational vaccine development can be effectively approached by conceptual separation of, on one hand, design of immunogens from improving their presentation to the immune system and, on the other, induction of antibodies from induction of killer CD8(+) T cells. The biggest roadblock for many vaccines is the pathogens' variability. This is best tackled by focusing both antibodies and T cells on the functionally most conserved regions of proteins common to many variants, including escape mutants. For vectored vaccines, these 'universal' subunit immunogens are most efficiently delivered using heterologous prime-boost regimens, which can be further optimised by adjuvantation and route of delivery. EXPERT OPINION Development of vaccines against human diseases has many features in common. Acceleration of vaccine discovery depends on basic research and new technologies. Novel strategies should be safely, but rapidly tested in humans. While out-of-the-box thinking is important, vaccine success largely depends on incremental advances best achieved through small, systematic, iterative clinical studies. Failures are inevitable, but the end rewards are huge. The future will be exciting.
Collapse
Affiliation(s)
- Tomáš Hanke
- The Jenner Institute, University of Oxford , Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ , UK
| |
Collapse
|