1
|
Liu Y, Yu C, Zhang Y, Xie Z, Wang Y, Qian H, Liang L, Liu Y, Chen Q, Jia J, Yan S, Lai X, Li W, Li J, Zhang Y, Nan F, Yu C. A Phase I Study to Evaluate the Safety, Tolerability, Pharmacokinetics of BGT-002, a Novel ATP-Citrate Lyase Inhibitor, in Healthy Chinese Subjects. Drug Des Devel Ther 2025; 19:1783-1794. [PMID: 40093645 PMCID: PMC11910062 DOI: 10.2147/dddt.s504814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 02/13/2025] [Indexed: 03/19/2025] Open
Abstract
Objective This Phase I study evaluated the safety, tolerability, pharmacokinetics (PK) and pharmacodynamics (PD) of BGT-002, a novel ATP-citrate lyase (ACLY) inhibitor, in healthy Chinese adults. Methods This study included three parts: Part I (single-ascending-dose study), Part II (multiple-ascending-dose study), and Part III (food effect study). A total of 104 healthy subjects were enrolled in the study and were given BGT-002 tablet or placebo per protocol requirements. Blood samples were collected for pharmacokinetic and pharmacodynamic analysis. Safety was assessed by clinical examinations and adverse events. Results In Part I, BGT-002 demonstrated rapid absorption with a Tmax of 0.67 to 1.75 hours, and slow elimination with a T1/2 of 24.53 to 72.86 hours, prolonged with increased dosages. Cmax and AUC0-∞ ranged from 1.55 to 48.39 μg/mL, and 31.09 to 2930.69 h·μg/mL, respectively. In Part II, the accumulation index (Rac) of Cmax and AUCtau following 14 days of consecutive administration were 3.53 to 3.62 and 5.29 to 5.59, respectively, with a dose-proportionality PK profile. The levels of total cholesterol (TC), non-high-density lipoprotein cholesterol (non-HDL-C), and low-density lipoprotein cholesterol (LDL-C) were maximally decreased by 15.80%, 18.50%, and 22.37%, respectively. In Part III, the geometric mean ratio (90% CI) of fed to fasting condition in Cmax and AUC0-∞ of BGT-002 were 73.11% and 98.36%, respectively, indicating a minor food effect on the absorption rate. Across the study, two cases of Grade 3 adverse events (elevated blood triglycerides) were reported, both of which were assessed as not related to BGT-002. No serious adverse events were observed. Conclusion BGT-002 demonstrated favorable safety, tolerability, and lipid-lowering effects, supporting its potential for further clinical development. Clinical Trial Registration ChiCTR2200057793(https://www.chictr.org.cn/showproj.html?proj=160210); ChiCTR2300067474(https://www.chictr.org.cn/showproj.html?proj=182183); ChiCTR2300067472(https://www.chictr.org.cn/showproj.html?proj=184079).
Collapse
Affiliation(s)
- Yun Liu
- Shanghai Xuhui Central Hospital/Zhongshan-Xuhui Hospital, Fudan University, Shanghai, People's Republic of China
- Phase I Clinical Research and Quality Consistency Evaluation for Drugs, Shanghai Engineering Research Center, Shanghai, People's Republic of China
| | - Chengyin Yu
- Shanghai Xuhui Central Hospital/Zhongshan-Xuhui Hospital, Fudan University, Shanghai, People's Republic of China
- Phase I Clinical Research and Quality Consistency Evaluation for Drugs, Shanghai Engineering Research Center, Shanghai, People's Republic of China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Yifan Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Zhifu Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Yating Wang
- Shanghai Xuhui Central Hospital/Zhongshan-Xuhui Hospital, Fudan University, Shanghai, People's Republic of China
- Phase I Clinical Research and Quality Consistency Evaluation for Drugs, Shanghai Engineering Research Center, Shanghai, People's Republic of China
| | - Hongjie Qian
- Shanghai Xuhui Central Hospital/Zhongshan-Xuhui Hospital, Fudan University, Shanghai, People's Republic of China
- Phase I Clinical Research and Quality Consistency Evaluation for Drugs, Shanghai Engineering Research Center, Shanghai, People's Republic of China
| | - Liyu Liang
- Shanghai Xuhui Central Hospital/Zhongshan-Xuhui Hospital, Fudan University, Shanghai, People's Republic of China
- Phase I Clinical Research and Quality Consistency Evaluation for Drugs, Shanghai Engineering Research Center, Shanghai, People's Republic of China
| | - Yanmei Liu
- Shanghai Xuhui Central Hospital/Zhongshan-Xuhui Hospital, Fudan University, Shanghai, People's Republic of China
- Phase I Clinical Research and Quality Consistency Evaluation for Drugs, Shanghai Engineering Research Center, Shanghai, People's Republic of China
| | - Qian Chen
- Shanghai Xuhui Central Hospital/Zhongshan-Xuhui Hospital, Fudan University, Shanghai, People's Republic of China
- Phase I Clinical Research and Quality Consistency Evaluation for Drugs, Shanghai Engineering Research Center, Shanghai, People's Republic of China
| | - Jingying Jia
- Shanghai Xuhui Central Hospital/Zhongshan-Xuhui Hospital, Fudan University, Shanghai, People's Republic of China
- Phase I Clinical Research and Quality Consistency Evaluation for Drugs, Shanghai Engineering Research Center, Shanghai, People's Republic of China
| | - Sai Yan
- Burgeon Therapeutics Co., Ltd., Shanghai, People's Republic of China
| | - Xiaoyin Lai
- Burgeon Therapeutics Co., Ltd., Shanghai, People's Republic of China
| | - Wei Li
- Burgeon Therapeutics Co., Ltd., Shanghai, People's Republic of China
| | - Jingya Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Yangming Zhang
- Burgeon Therapeutics Co., Ltd., Shanghai, People's Republic of China
| | - Fajun Nan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Chen Yu
- Shanghai Xuhui Central Hospital/Zhongshan-Xuhui Hospital, Fudan University, Shanghai, People's Republic of China
- Phase I Clinical Research and Quality Consistency Evaluation for Drugs, Shanghai Engineering Research Center, Shanghai, People's Republic of China
| |
Collapse
|
2
|
Suresh A, Balakrishnan A, Ramaswamy V, Natesan S. Analytical method development and validation for simultaneous estimation of Bempedoic acid and Ezetimibe in pure and its pharmaceutical dosage form by RP-HPLC. Biomed Chromatogr 2024; 38:e5938. [PMID: 38922950 DOI: 10.1002/bmc.5938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/17/2024] [Accepted: 06/01/2024] [Indexed: 06/28/2024]
Abstract
A simple, accurate and precise method was developed for the simultaneous estimation of the bempedoic acid and ezetimibe in pure and tablet dosage form. The developed method was validated as per International Conference on Harmonization guidelines. The chromatographic separation was achieved isocratically on a Waters- C18, 250 × 4.6 mm, 5 μm column. Mobile phase containing K2HPO4-methanol in the ratio 60:40 in buffer at pH 4.3 was pumped through column at a flow rate of 1.0 ml/min. The temperature was maintained at 25°C. The optimized wavelength selected was 242 nm. The separation of bempedoic acid and ezetimibe showed retention times of 3.090 and 4.268 min respectively. The RSD values of the bempedoic acid and ezetimibe were 0.34 and 0.08 respectively. The accuracy of method was determined at three levels (50,100 and 150%). The percentage recovery was obtained as 100.0 and 100.0% for bempedoic acid and ezetimibe, respectively. The limits of determination and quantitation obtained from regression equations of bempedoic acid and ezetimibe were 1.065, 3.550 and 0.203, 0.677, respectively. The regression equation of bempedoic acid is y = 20,795x + 24,168, and it is y = 6,885.7x + 11,000 for ezetimibe. The retention times were decreased and the run time was decreased, so that the method developed is simple and economical that can be adopted for regular quality control tests in industry.
Collapse
Affiliation(s)
- Aakash Suresh
- Department of Pharmaceutical Analysis, JKKMMRFs-Annai JKK Sampoorani Ammal College of Pharmacy, The Tamil Nadu Dr. MGR Medical University, Namakkal, Tamil Nadu, India
| | - Anbarasi Balakrishnan
- Department of Pharmaceutical Analysis, JKKMMRFs-Annai JKK Sampoorani Ammal College of Pharmacy, The Tamil Nadu Dr. MGR Medical University, Namakkal, Tamil Nadu, India
| | - Vijayamirtharaj Ramaswamy
- Department of Pharmaceutical Analysis, JKKMMRFs-Annai JKK Sampoorani Ammal College of Pharmacy, The Tamil Nadu Dr. MGR Medical University, Namakkal, Tamil Nadu, India
| | - Senthilkumar Natesan
- Department of Pharmaceutical Analysis, JKKMMRFs-Annai JKK Sampoorani Ammal College of Pharmacy, The Tamil Nadu Dr. MGR Medical University, Namakkal, Tamil Nadu, India
| |
Collapse
|
3
|
Qureshi Z, Khanzada M, Safi A, Fatima E, Altaf F, Vittorio TJ. Hypercholesterolemia: a literature review on management using tafolecimab: a novel member of PCSK9 monoclonal antibodies. Ann Med Surg (Lond) 2024; 86:2818-2827. [PMID: 38694324 PMCID: PMC11060207 DOI: 10.1097/ms9.0000000000001945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/02/2024] [Indexed: 05/04/2024] Open
Abstract
Background Cardiovascular diseases (CVD) persist as the leading cause of mortality globally, with atherosclerotic cardiovascular disease (ASCVD), including hypercholesterolaemia, being a significant contributor. Hyperlipidemia management includes various lipid-lowering drugs, including statins, Bempedoic acid, inclisiran, Lomitapide, ANGPTL3 inhibitors, and PCSK9 inhibitors. Statins have traditionally dominated lipid management therapies; however, a subset of patients remains unresponsive or intolerant to this therapy, necessitating novel therapeutic approaches. Tafolecimab, a promising and novel PCSK9 monoclonal antibody, demonstrated significant LDL-C reduction and a favourable safety profile in clinical trials. Objective This review aimed to discuss the role and efficacy of Tafolecimab in the management of hypercholesterolaemia. Methods The authors searched online databases, including PubMed, Scopus, and Embase, for articles related to talofecimab. Discussion The efficacy of Tafolecimab in diverse patient populations, including those with comorbid conditions and various lipid disorders, has been explored. Ongoing trials, such as CREDIT-1, CREDIT-2, and CREDIT-4, have provided valuable insights into Tafolecimab's potential as a lipid-lowering agent. Moreover, the drug's extended dosing interval may enhance patient compliance and reduce treatment costs. It has also been found that Tafolecimab has more affinity for PCSK9 and a longer duration of LDL-C reduction than other monoclonal antibody drugs such as evolocumab. Thus, this review focuses on Tafolecimab, a novel PCSK9 monoclonal antibody, its mechanism of action, clinical trial outcomes, safety profile, and potential role in hypercholesterolaemia management. Despite its assuring potential, the long-term impact of Tafolecimab on cardiovascular outcomes remains to be fully elucidated, necessitating further research. Regulatory authorities like the FDA and EMA should also evaluate Tafolecimab's risks and benefits. Conclusion In conclusion, Tafolecimab shows potential as an innovative therapeutic option for hypercholesterolaemia, particularly in patients with specific risk factors, but warrants additional research.
Collapse
Affiliation(s)
- Zaheer Qureshi
- The Frank H. Netter M.D. School of Medicine at Quinnipiac University, Bridgeport, CT
| | - Mikail Khanzada
- Department of Internal Medicine, Lahore Medical & Dental College
| | - Adnan Safi
- Department of Medicine, Lahore General Hospital
| | - Eeshal Fatima
- Department of Medicine, Services Institute of Medical Sciences, Lahore, Pakistan
| | - Faryal Altaf
- Department of Internal Medicine, Icahn School of Medicine at Mount Sinai/BronxCare Health System
| | | |
Collapse
|
4
|
Das S, Devi Rajeswari V, Venkatraman G, Elumalai R, Dhanasekaran S, Ramanathan G. Current updates on metabolites and its interlinked pathways as biomarkers for diabetic kidney disease: A systematic review. Transl Res 2024; 265:71-87. [PMID: 37952771 DOI: 10.1016/j.trsl.2023.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/09/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023]
Abstract
Diabetic kidney disease (DKD) is a major microvascular complication of diabetes mellitus (DM) that poses a serious risk as it can lead to end-stage renal disease (ESRD). DKD is linked to changes in the diversity, composition, and functionality of the microbiota present in the gastrointestinal tract. The interplay between the gut microbiota and the host organism is primarily facilitated by metabolites generated by microbial metabolic processes from both dietary substrates and endogenous host compounds. The production of numerous metabolites by the gut microbiota is a crucial factor in the pathogenesis of DKD. However, a comprehensive understanding of the precise mechanisms by which gut microbiota and its metabolites contribute to the onset and progression of DKD remains incomplete. This review will provide a summary of the current scenario of metabolites in DKD and the impact of these metabolites on DKD progression. We will discuss in detail the primary and gut-derived metabolites in DKD, and the mechanisms of the metabolites involved in DKD progression. Further, we will address the importance of metabolomics in helping identify potential DKD markers. Furthermore, the possible therapeutic interventions and research gaps will be highlighted.
Collapse
Affiliation(s)
- Soumik Das
- School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - V Devi Rajeswari
- School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Ganesh Venkatraman
- School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Ramprasad Elumalai
- Department of Nephrology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, Tamil Nadu 600116, India
| | - Sivaraman Dhanasekaran
- School of Energy Technology, Pandit Deendayal Energy University, Knowledge Corridor, Raisan Village, PDPU Road, Gandhinagar, Gujarat 382426, India
| | - Gnanasambandan Ramanathan
- School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India.
| |
Collapse
|
5
|
Sabouret P, Manzo-Silberman S, Alasnag M, Fysekidis M, Gulati M, Galati G, Spadafora L, Banach M, Biondi-Zoccai G, Bhatt DL. New approaches to reduce recurrent PCI: to angioplasty and beyond! EUROPEAN HEART JOURNAL OPEN 2023; 3:oead049. [PMID: 37273260 PMCID: PMC10233093 DOI: 10.1093/ehjopen/oead049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 05/02/2023] [Accepted: 05/15/2023] [Indexed: 06/06/2023]
Affiliation(s)
- Pierre Sabouret
- Heart Institute, ACTION Study Group-CHU Pitié-Salpétrière Paris, 47-83 Boulevard de l'Hôpital, 75005 Paris, France
- Collège National des Cardiologues Français (CNCF), 13 rue Niepce, 75014 Paris, France
| | - Stéphane Manzo-Silberman
- Heart Institute, ACTION Study Group-CHU Pitié-Salpétrière Paris, 47-83 Boulevard de l'Hôpital, 75005 Paris, France
| | - Mirvat Alasnag
- Cardiac Center, King Fahd Armed Forces Hospital, Jeddah, Saudi Arabia
| | - Marinos Fysekidis
- Department of endocrinology, Avicenne Hospital, AP-HP, 125, rue de Stalingrad, 93000 Bobigny, France
| | - Martha Gulati
- Barbra Streisand Women’s Heart Center, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, USA
| | - Giuseppe Galati
- Heart Failure Unit, Division of Cardiology, Department of Cardiothoracic and Vascular, San Raffaele Hospital, Scientific Institute (IRCCS), Via Olgettina 60, 20132 Milan, Italy
| | - Luigi Spadafora
- Department of Clinical, Internal Medicine, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Maciej Banach
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz and Polish Mother's Memorial Hospital Research Institute, Lodz, Poland
| | - Giuseppe Biondi-Zoccai
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
- Mediterranea Cardiocentro, Napoli, Italy
| | - Deepak L Bhatt
- Mount Sinai Heart, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
6
|
Yang L, Li JZ, Li MR. Progress in research of lipogenesis inhibitors for treatment of nonalcoholic fatty liver disease. Shijie Huaren Xiaohua Zazhi 2022; 30:735-742. [DOI: 10.11569/wcjd.v30.i16.735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Liu Yang
- Department of Infectious Diseases, The First Affiliated Hospital of Jinan University, Guangzhou 510630, Guangdong Province, China
| | - Jin-Zhong Li
- Department of Infectious Diseases, The First Affiliated Hospital of Jinan University, Guangzhou 510630, Guangdong Province, China
| | - Min-Ran Li
- Department of Infectious Diseases, The First Affiliated Hospital of Jinan University, Guangzhou 510630, Guangdong Province, China
| |
Collapse
|
7
|
Noh S, Mai K, Shaver M, Yong S, Mostaghimi M, Oh G, Radwan MM. Emerging Cholesterol Modulators for Atherosclerotic Cardiovascular Disease. Am J Med Sci 2022; 363:373-387. [DOI: 10.1016/j.amjms.2021.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 08/07/2021] [Accepted: 12/07/2021] [Indexed: 12/01/2022]
|
8
|
Sanjay K, Vishwakarma S, Zope BR, Mane VS, Mohire S, Dhakshinamoorthy S. ATP citrate lyase inhibitor Bempedoic Acid alleviate long term HFD induced NASH through improvement in glycemic control, reduction of hepatic triglycerides & total cholesterol, modulation of inflammatory & fibrotic genes and improvement in NAS score. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100051. [PMID: 34909677 PMCID: PMC8663992 DOI: 10.1016/j.crphar.2021.100051] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/20/2021] [Accepted: 08/31/2021] [Indexed: 12/20/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) and Non-alcoholic steatohepatitis (NASH) are chronic liver disorders, the prevalence of which is increasing worldwide. Long term High Fat Diet (HFD) induced NASH animal models closely mimic the characteristics of human NASH and hence used by investigators as a model system for studying the mechanism of action of new drugs. Bempedoic acid (ETC-1002), a ATP citrate lyase (ACLY) inhibitor that lowers the LDL cholesterol was recently approved by US FDA for the treatment of heterozygous familial hypercholesterolemia (HeFH) and established atherosclerotic cardiovascular disease (ASCVD). ACLY is one of the genes modulated in NASH patients and hence we studied the effect of ACLY inhibitor Bempedoic acid in long term HFD induced NASH animal model to understand the pharmacological benefits and the associated mechanism of action of this newly approved drug in NASH. Mice fed with 60% Kcal High Fat Diet for 32 weeks were used for the study and the animals were given Bempedoic acid for 5 weeks at doses of 10 mg kg−1, po, qd, and 30 mg kg−1, po, qd. Bempedoic acid treatment resulted in inhibition of body weight gain and improved the glycemic control. Bempedoic acid treated group showed statistically significant reduction in plasma ALT, AST, hepatic triglycerides (TG) and total cholesterol (TC), along with statistically significant reduction in steatosis score by histological analysis. Hepatic gene expression analysis showed significant reduction in inflammatory and fibrotic genes such as Mcp-1/Ccl2, Timp-1 & Col1α1. Histological analysis showed significant improvement in NAS score. Overall, Bempedoic acid alleviated HFD induced Non-Alcoholic Steatohepatitis through inhibition of body weight gain, improvement in glycemic control, reduction of hepatic triglycerides & total cholesterol, modulation of inflammatory & fibrotic genes, and improvement in NAS score. Hence, Bempedoic acid can be a potential therapeutic option for metabolic syndrome and NASH. Bempedoic acid alleviated HFD induced Non-Alcoholic Steatohepatitis in a long term HFD induced NASH animal model. Mechanism of action includes modulation of lipid profile, inflammatory & fibrotic genes and inhibition of body weight gain. Overall improvement in NAS score was observed with Bempedoic acid treatment. Our study shows a promising role for Bempedoic acid in amelioration of metabolic disorders and NASH.
Collapse
|
9
|
Govindaraju A, Sabarathinam S. Bempedoic acid: A nonstatin drug for the management of hypercholesterolemia. Health Sci Rep 2021; 4:e431. [PMID: 34786488 PMCID: PMC8577242 DOI: 10.1002/hsr2.431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/22/2021] [Accepted: 10/07/2021] [Indexed: 12/26/2022] Open
Affiliation(s)
- Asvitha Govindaraju
- Department of Pharmacy PracticeSRM College of Pharmacy, SRM ISTKancheepuramIndia
| | - Sarvesh Sabarathinam
- Department of Pharmacy PracticeSRM College of Pharmacy, SRM ISTKancheepuramIndia
| |
Collapse
|
10
|
Guber K, Pemmasani G, Malik A, Aronow WS, Yandrapalli S, Frishman WH. Statins and Higher Diabetes Mellitus Risk: Incidence, Proposed Mechanisms, and Clinical Implications. Cardiol Rev 2021; 29:314-322. [PMID: 32947479 DOI: 10.1097/crd.0000000000000348] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors are ubiquitously prescribed for cardiovascular disease (CVD) prevention and treatment. However, the use of statins has been linked to the development of new-onset diabetes mellitus (NODM), which could possibly increase future CVD risk. This phenomenon necessitates a clear discussion of the possible etiologies of this relationship and its broader clinical consequences. We discuss the reported incidence of NODM in statin users through a rigorous review of data from metaanalyses of randomized control trials examining this association. We also highlight the various possible mechanisms responsible for the development of statin-induced diabetes mellitus. Finally, we examine the clinical implications of this effect on future CVD risk and identify specific patient factors that can be used for risk-stratification strategies. Data from 14 randomized control trials metaanalyses suggest a 9-33% higher risk of NODM with statin use. Several cellular, molecular, and genetic mechanisms, as well as lifestyle habits, have been identified as potential underlying factors responsible for this elevated risk. The principle mode of the diabetogenic action of statins is still unclear, though it is likely the result of a complex interplay of pancreatic and extrapancreatic effects. It is understood that patient populations with a greater predisposition to diabetes mellitus, and those with thicker epicardial adiposity are more at risk for the development of statin-induced NODM. Despite these observations, robust data from a variety of investigations suggest that the CVD preventative benefits of statin treatment significantly outweigh the risks associated with the development of NODM. Nevertheless, further study must better identify the causative mechanisms involved in this process, its natural history, and the unique factors that will help clinicians risk stratify and appropriately monitor patients on statin therapy.
Collapse
Affiliation(s)
- Kenneth Guber
- From the Department of Medicine, New York Presbyterian-Columbia University Medical Center, New York, NY
| | | | | | | | | | - William H Frishman
- Department of Medicine, New York Medical College/Westchester Medical Center, Valhalla, NY
| |
Collapse
|
11
|
Verberk SGS, Kuiper KL, Lauterbach MA, Latz E, Van den Bossche J. The multifaceted therapeutic value of targeting ATP-citrate lyase in atherosclerosis. Trends Mol Med 2021; 27:1095-1105. [PMID: 34635427 DOI: 10.1016/j.molmed.2021.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/10/2021] [Accepted: 09/16/2021] [Indexed: 12/12/2022]
Abstract
ATP-citrate lyase (Acly) is the target of the new class low-density lipoprotein-cholesterol (LDL-C)-lowering drug bempedoic acid (BA). Acly is a key metabolic enzyme synthesizing acetyl-CoA as the building block of cholesterol and fatty acids. Treatment with BA lowers circulating lipid levels and reduces systemic inflammation, suggesting a dual benefit of this drug for atherosclerosis therapy. Recent studies have shown that targeting Acly in macrophages can attenuate inflammatory responses and decrease atherosclerotic plaque vulnerability. Therefore, it could be beneficial to extend the application of Acly inhibition from solely lipid-lowering by liver-specific inhibition to also targeting macrophages in atherosclerosis. Here, we outline the possibilities of targeting Acly and describe the future needs to translate these findings to the clinic.
Collapse
Affiliation(s)
- Sanne G S Verberk
- Department of Molecular Cell Biology and Immunology, Amsterdam Cardiovascular Sciences, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Kirsten L Kuiper
- Department of Molecular Cell Biology and Immunology, Amsterdam Cardiovascular Sciences, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Mario A Lauterbach
- Institute of Innate Immunity, University Hospital Bonn, University of Bonn, Bonn 53127, Germany
| | - Eicke Latz
- Institute of Innate Immunity, University Hospital Bonn, University of Bonn, Bonn 53127, Germany
| | - Jan Van den Bossche
- Department of Molecular Cell Biology and Immunology, Amsterdam Cardiovascular Sciences, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
12
|
Liang Y, Chen Y, Li L, Zhang S, Xiao J, Wei D. Krebs Cycle Rewired: Driver of Atherosclerosis Progression? Curr Med Chem 2021; 29:2322-2333. [PMID: 34365937 DOI: 10.2174/0929867328666210806105246] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 06/16/2021] [Accepted: 06/19/2021] [Indexed: 11/22/2022]
Abstract
The tricarboxylic acid (TCA) cycle is the center of energy metabolism in eukaryotic cells and dynamically adjusted according to energy needs of cells. Macrophages are activated by inflammatory stimuli, and then two breakpoints in TCA cycle lead to the accumulation of intermediates. Atherosclerosis is a chronic inflammatory process. Here, the "non-metabolic" signaling functions of TCA cycle intermediates in the macrophage under inflammatory stimulation and the role of intermediates in the progression of atherosclerosis were discussed.
Collapse
Affiliation(s)
- Yamin Liang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, Hunan 421001. China
| | - Yanmei Chen
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, Hunan 421001. China
| | - Lu Li
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, Hunan 421001. China
| | - Shulei Zhang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, Hunan 421001. China
| | - Jinyan Xiao
- YueYang Maternal-Child Medicine Health Hospital Hunan, Province Innovative Training Base for Medical Postgraduates, University of China South China and Yueyang Women & Children's Medical Center, Yueyang, Hunan, 414000. China
| | - Dangheng Wei
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, Hunan 421001. China
| |
Collapse
|
13
|
Masana Marín L, Plana Gil N. Bempedoic acid. Mechanism of action and pharmacokinetic and pharmacodynamic properties. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS 2021; 33 Suppl 1:53-57. [PMID: 33966814 DOI: 10.1016/j.arteri.2021.02.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/09/2021] [Indexed: 01/22/2023]
Abstract
Bempedoic acid acts by inhibiting adenosine triphosphate-citrate lyase (ACL) and consequently cholesterol biosynthesis, leading to increased expression of LDL receptors and increasing low-density lipoproteins (LDL-C) plasma clearence. It is a prodrug for oral administration with intracellular activation. It is activatedin liver cells and to a lesser extent in kidney cells, being absent in adipose tissue and muscle cells. Therefore, unlike statins, its potential myotoxic effect is very limited. It has recently been approved as a lipid-lowering drug in combination with diet, with statins, or with other lipid-lowering drugs in patients with hypercholesterolaemia, mixed dyslipidaemia, statin intolerance, or when these are contraindicated. The marketing of bempedoic acid implies, in clinical practice, having a new family of lipid-lowering drugs.
Collapse
Affiliation(s)
- Lluís Masana Marín
- Unitat de Medicina Vascular i Metabolisme. Hospital Universitari Sant Joan. Universitat Rovira I Virgili. IISPV. CIBERDEM, Reus, España
| | - Núria Plana Gil
- Unitat de Medicina Vascular i Metabolisme. Hospital Universitari Sant Joan. Universitat Rovira I Virgili. IISPV. CIBERDEM, Reus, España.
| |
Collapse
|
14
|
A Review of the Efficacy and Tolerability of Bempedoic Acid in the Treatment of Hypercholesterolemia. Am J Cardiovasc Drugs 2020; 20:535-548. [PMID: 32166726 DOI: 10.1007/s40256-020-00399-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Despite the widespread use of statins and ezetimibe to decrease low-density lipoprotein cholesterol (LDL-C) levels and associated atherosclerotic cardiovascular disease (ASCVD), many patients do not achieve adequate LDL-C lowering as per the recommended American College of Cardiology (ACC)/American Heart Association (AHA) and European Society of Cardiology (ESC)/European Atherosclerosis Society (EAS) guidelines and demonstrate residual cardiovascular risk. The introduction of proprotein convertase subtilisin/kexin type 9 (PCSK-9) inhibitors in 2015 was a promising addition to hypercholesterolemia therapies, but their cost and subcutaneous administration has limited their use, and therefore, new affordable and patient friendly treatment strategies are crucial to help reduce ASCVD risk. Bempedoic acid, a drug currently under investigation, is a small molecule that has been shown to upregulate LDL receptors, decrease LDL-C, and reduce atherosclerotic plaque formation in hypercholesterolemic patients. Furthermore, bempedoic acid is a prodrug that becomes activated by an enzyme expressed primarily in the liver, allowing it to avoid the potential myotoxicity associated with statin therapy. The purpose of this review is to summarize the major clinical studies evaluating bempedoic acid and describe its potential addition to currently approved lipid-lowering therapies.
Collapse
|
15
|
Abstract
Statin therapy has been the cornerstone for the reduction of cholesterol and circulating low-density lipoprotein (LDL) in patients with cardiovascular diseases. However, statin monotherapy has disadvantages attributable to myopathies and to the insufficient cholesterol reduction observed in some patients. There is a need for new well-tolerated therapies for lowering LDL. This review will focus on bempedoic acid in combination with traditional statin therapy or other lipid-lowering agents and its emerging role in LDL-C lowering. Bempedoic acid is also a viable alternative for reducing LDL cholesterol in the treatment of some patients suffering from heterozygous familial hypercholesterolemia.
Collapse
|
16
|
Montesdeoca N, López M, Ariza X, Herrero L, Makowski K. Inhibitors of lipogenic enzymes as a potential therapy against cancer. FASEB J 2020; 34:11355-11381. [PMID: 32761847 DOI: 10.1096/fj.202000705r] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/10/2020] [Accepted: 07/18/2020] [Indexed: 01/05/2023]
Abstract
Cancer cells rely on several metabolic pathways such as lipid metabolism to meet the increase in energy demand, cell division, and growth and successfully adapt to challenging environments. Fatty acid synthesis is therefore commonly enhanced in many cancer cell lines. Thus, relevant efforts are being made by the scientific community to inhibit the enzymes involved in lipid metabolism to disrupt cancer cell proliferation. We review the rapidly expanding body of inhibitors that target lipid metabolism, their side effects, and current status in clinical trials as potential therapeutic approaches against cancer. We focus on their molecular, biochemical and structural properties, selectivity and effectiveness and discuss their potential role as antitumor drugs.
Collapse
Affiliation(s)
- Nicolás Montesdeoca
- School of Chemical Sciences and Engineering, Yachay Tech University, San Miguel de Urcuquí, Ecuador
| | - Marta López
- School of Chemical Sciences and Engineering, Yachay Tech University, San Miguel de Urcuquí, Ecuador
| | - Xavier Ariza
- Department of Inorganic and Organic Chemistry, School of Chemistry, Universitat de Barcelona, Barcelona, Spain.,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Laura Herrero
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.,Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain
| | - Kamil Makowski
- School of Chemical Sciences and Engineering, Yachay Tech University, San Miguel de Urcuquí, Ecuador
| |
Collapse
|
17
|
Cicero AFG, Pontremoli R, Fogacci F, Viazzi F, Borghi C. Effect of Bempedoic Acid on Serum Uric Acid and Related Outcomes: A Systematic Review and Meta-analysis of the available Phase 2 and Phase 3 Clinical Studies. Drug Saf 2020; 43:727-736. [PMID: 32358698 DOI: 10.1007/s40264-020-00931-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Bempedoic acid (ETC-1002) is a first-in-class lipid-lowering agent recently approved by the United States (US) Food and Drug Administration (FDA) and the European Medicines Agency (EMA) for commercialization. OBJECTIVE The aim was to assess, through a systematic review of the literature and a meta-analysis of the available phase 2 and phase 3 clinical studies, the effect of treatment with bempedoic acid on serum uric acid (SUA) concentration. Secondary outcomes were treatment-related variations in creatinine serum level and incidence of gout. METHODS A systematic literature search in SCOPUS, PubMed Medline, ISI Web of Science and Google Scholar databases was conducted up to November 13th, 2019, in order to identify clinical trials potentially eligible for the meta-analysis. Effect sizes were expressed as absolute mean differences (MDs) and 95% confidence intervals (CIs). RESULTS Data were pooled from four clinical studies comprising ten arms, which included overall 3369 subjects, with 2213 in the active-treatment arm and 1156 in the control one. Meta-analysis of data suggested that treatment with bempedoic acid is related to a significant increase in SUA (MD 0.73, 95% CI 0.54-0.91, P < 0.001), serum creatinine (MD 0.04, 95% CI 0.03-0.05, P < 0.001) and the incidence of gout (odds ratio 3.56, 95% CI 1.24-10.19, P = 0.018). The relatively small number of subjects involved in the studies and the exclusion of patients with renal impairment from the clinical trials are important limitations of the meta-analysis. However, our data indicate potential safety issues with bempedoic acid and suggest that further studies are performed both to elucidate the pathogenetic mechanisms underlying these associations and to verify the long-term safety of this treatment. CONCLUSION Bempedoic acid seems to have unfavourable effects on SUA, creatinine level and the incidence of gout. The ongoing Cardiovascular Outcomes Trial (CVOT) will explore the longer-term safety of treatment with bempedoic acid and clarify its effect on cardiovascular events and mortality. PROSPERO DATABASE REGISTRATION CRD42019146126.
Collapse
Affiliation(s)
- Arrigo F G Cicero
- Department of Medical and Surgical Sciences, Sant'Orsola-Malpighi University Hospital, University of Bologna, Via Albertoni, 15, 40138, Bologna, Italy.
| | - Roberto Pontremoli
- Department of Internal Medicine, Università degl Studi and IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Federica Fogacci
- Department of Medical and Surgical Sciences, Sant'Orsola-Malpighi University Hospital, University of Bologna, Via Albertoni, 15, 40138, Bologna, Italy
| | - Francesca Viazzi
- Department of Internal Medicine, Università degl Studi and IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Claudio Borghi
- Department of Medical and Surgical Sciences, Sant'Orsola-Malpighi University Hospital, University of Bologna, Via Albertoni, 15, 40138, Bologna, Italy
| |
Collapse
|
18
|
Affiliation(s)
- Junyi Yang
- Department of Pharmaceutical, Central Hospital of Linyi City, Yishui, Shandong, China
| |
Collapse
|
19
|
Zhao S, Jang C, Liu J, Uehara K, Gilbert M, Izzo L, Zeng X, Trefely S, Fernandez S, Carrer A, Miller KD, Schug ZT, Snyder NW, Gade TP, Titchenell PM, Rabinowitz JD, Wellen KE. Dietary fructose feeds hepatic lipogenesis via microbiota-derived acetate. Nature 2020; 579:586-591. [PMID: 32214246 PMCID: PMC7416516 DOI: 10.1038/s41586-020-2101-7] [Citation(s) in RCA: 331] [Impact Index Per Article: 66.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 01/21/2020] [Indexed: 02/06/2023]
Abstract
Consumption of fructose has risen markedly in recent decades owing to the use of sucrose and high-fructose corn syrup in beverages and processed foods1, and this has contributed to increasing rates of obesity and non-alcoholic fatty liver disease2-4. Fructose intake triggers de novo lipogenesis in the liver4-6, in which carbon precursors of acetyl-CoA are converted into fatty acids. The ATP citrate lyase (ACLY) enzyme cleaves cytosolic citrate to generate acetyl-CoA, and is upregulated after consumption of carbohydrates7. Clinical trials are currently pursuing the inhibition of ACLY as a treatment for metabolic diseases8. However, the route from dietary fructose to hepatic acetyl-CoA and lipids remains unknown. Here, using in vivo isotope tracing, we show that liver-specific deletion of Acly in mice is unable to suppress fructose-induced lipogenesis. Dietary fructose is converted to acetate by the gut microbiota9, and this supplies lipogenic acetyl-CoA independently of ACLY10. Depletion of the microbiota or silencing of hepatic ACSS2, which generates acetyl-CoA from acetate, potently suppresses the conversion of bolus fructose into hepatic acetyl-CoA and fatty acids. When fructose is consumed more gradually to facilitate its absorption in the small intestine, both citrate cleavage in hepatocytes and microorganism-derived acetate contribute to lipogenesis. By contrast, the lipogenic transcriptional program is activated in response to fructose in a manner that is independent of acetyl-CoA metabolism. These data reveal a two-pronged mechanism that regulates hepatic lipogenesis, in which fructolysis within hepatocytes provides a signal to promote the expression of lipogenic genes, and the generation of microbial acetate feeds lipogenic pools of acetyl-CoA.
Collapse
Affiliation(s)
- Steven Zhao
- Department of Cancer Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Cell & Molecular Biology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Cholsoon Jang
- Department of Chemistry and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Joyce Liu
- Department of Cancer Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Biochemistry & Molecular Biophysics Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Kahealani Uehara
- Biochemistry & Molecular Biophysics Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Institute of Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Michael Gilbert
- Department of Cancer Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Biochemistry & Molecular Biophysics Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Luke Izzo
- Department of Cancer Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Cell & Molecular Biology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Xianfeng Zeng
- Department of Chemistry and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Sophie Trefely
- Department of Cancer Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Center for Metabolic Disease Research, Department of Microbiology and Immunology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Sully Fernandez
- Department of Cancer Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Alessandro Carrer
- Department of Cancer Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Veneto Institute of Molecular Medicine (VIMM), Padua, Italy
| | - Katelyn D Miller
- Molecular and Cellular Oncogenesis, Wistar Institute, Philadelphia, PA, USA
| | - Zachary T Schug
- Molecular and Cellular Oncogenesis, Wistar Institute, Philadelphia, PA, USA
| | - Nathaniel W Snyder
- Center for Metabolic Disease Research, Department of Microbiology and Immunology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Terence P Gade
- Department of Cancer Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Paul M Titchenell
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Institute of Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Joshua D Rabinowitz
- Department of Chemistry and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Kathryn E Wellen
- Department of Cancer Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
- Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
- Institute of Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
20
|
The vital role of ATP citrate lyase in chronic diseases. J Mol Med (Berl) 2019; 98:71-95. [PMID: 31858156 DOI: 10.1007/s00109-019-01863-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 11/25/2019] [Accepted: 11/27/2019] [Indexed: 02/07/2023]
Abstract
Chronic or non-communicable diseases are the leading cause of death worldwide; they usually result in long-term illnesses and demand long-term care. Despite advances in molecular therapeutics, specific biomarkers and targets for the treatment of these diseases are required. The dysregulation of de novo lipogenesis has been found to play an essential role in cell metabolism and is associated with the development and progression of many chronic diseases; this confirms the link between obesity and various chronic diseases. The main enzyme in this pathway-ATP-citrate lyase (ACLY), a lipogenic enzyme-catalyzes the critical reaction linking cellular glucose catabolism and lipogenesis. Increasing lines of evidence suggest that the modulation of ACLY expression correlates with the development and progressions of various chronic diseases such as neurodegenerative diseases, cardiovascular diseases, diabetes, obesity, inflammation, and cancer. Recent studies suggest that the inhibition of ACLY activity modulates the glycolysis and lipogenesis processes and stimulates normal physiological functions. This comprehensive review aimed to critically evaluate the role of ACLY in the development and progression of different diseases and the effects of its downregulation in the prevention and treatment of these diseases.
Collapse
|
21
|
Abstract
Several new or emerging drugs for dyslipidemia owe their existence, in part, to human genetic evidence, such as observations in families with rare genetic disorders or in Mendelian randomization studies. Much effort has been directed to agents that reduce LDL (low-density lipoprotein) cholesterol, triglyceride, and Lp[a] (lipoprotein[a]), with some sustained programs on agents to raise HDL (high-density lipoprotein) cholesterol. Lomitapide, mipomersen, AAV8.TBG.hLDLR, inclisiran, bempedoic acid, and gemcabene primarily target LDL cholesterol. Alipogene tiparvovec, pradigastat, and volanesorsen primarily target elevated triglycerides, whereas evinacumab and IONIS-ANGPTL3-LRx target both LDL cholesterol and triglyceride. IONIS-APO(a)-LRx targets Lp(a).
Collapse
Affiliation(s)
- Robert A Hegele
- From the Department of Medicine and Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada (R.A.H.)
| | - Sotirios Tsimikas
- Sulpizio Cardiovascular Center, Vascular Medicine Program, University of California San Diego, La Jolla (S.T.)
| |
Collapse
|
22
|
Feng X, Zhang L, Xu S, Shen AZ. ATP-citrate lyase (ACLY) in lipid metabolism and atherosclerosis: An updated review. Prog Lipid Res 2019; 77:101006. [PMID: 31499095 DOI: 10.1016/j.plipres.2019.101006] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/17/2019] [Accepted: 08/18/2019] [Indexed: 12/21/2022]
Abstract
ATP citrate lyase (ACLY) is an important enzyme linking carbohydrate to lipid metabolism by generating acetyl-CoA from citrate for fatty acid and cholesterol biosynthesis. Mendelian randomization of large human cohorts has validated ACLY as a promising target for low-density-lipoprotein-cholesterol (LDL-C) lowering and cardiovascular protection. Among current ACLY inhibitors, Bempedoic acid (ETC-1002) is a first-in-class, prodrug-based direct competitive inhibitor of ACLY which regulates lipid metabolism by upregulating hepatic LDL receptor (LDLr) expression and activity. ACLY deficiency in hepatocytes protects from hepatic steatosis and dyslipidemia. In addition, pharmacological inhibition of ACLY by bempedoic acid, prevents dyslipidemia and attenuates atherosclerosis in hypercholesterolemic ApoE-/- mice, LDLr-/- mice, and LDLr-/- miniature pigs. Convincing data from clinical trials have revealed that bempedoic acid significantly lowers LDL-C as monotherapy, combination therapy, and add-on with statin therapy in statin-intolerant patients. More recently, a phase 3 CLEAR Harmony clinical trial ("Safety and Efficacy of Bempedoic Acid to Reduce LDL Cholesterol") has shown that bempedoic acid reduces the level of LDL-C in hypercholesterolemic patients receiving guideline-recommended statin therapy with a good safety profile. Hereby, we provide a updated review of the expression, regulation, genetics, functions of ACLY in lipid metabolism and atherosclerosis, and highlight the therapeutic potential of ACLY inhibitors (such as bempedoic acid, SB-204990, and other naturally-occuring inhibitors) to treat atherosclerotic cardiovascular diseases. It must be pointed out that long-term large-scale clinical trials in high-risk patients, are warranted to validate whether ACLY represent a promising therapeutic target for pharmaceutic intervention of dyslipidemia and atherosclerosis; and assess the safety and efficacy profile of ACLY inhibitors in improving cardiovascular outcome of patients.
Collapse
Affiliation(s)
- Xiaojun Feng
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, PR China
| | - Lei Zhang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, PR China
| | - Suowen Xu
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, School of Medicine and Dentistry, Rochester, NY 14642, USA.
| | - Ai-Zong Shen
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, PR China.
| |
Collapse
|
23
|
Yandrapalli S, Malik A, Guber K, Rochlani Y, Pemmasani G, Jasti M, Aronow WS. Statins and the potential for higher diabetes mellitus risk. Expert Rev Clin Pharmacol 2019; 12:825-830. [PMID: 31474169 DOI: 10.1080/17512433.2019.1659133] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 08/20/2019] [Indexed: 01/09/2023]
Abstract
Introduction: 3-Hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors (statins) are widely used for cardiovascular disease (CVD) prevention. Long-term use of statins has been linked to the development of diabetes mellitus (DM) which increases CVD risk. Areas covered: We discussed the reported incidence of DM in statin users, various possible mechanisms responsible for the development of DM and the clinical implications of this association on CVD risk. Relevant supporting literature was identified using MEDLINE/EMBASE search. Expert opinion: Data from available RCTs and observational studies suggest a 10-45% higher risk of new-onset DM with statin use compared to nonusers. Several cellular, molecular, and genetic mechanisms, and lifestyle changes have been studied and discussed as potential underlying mechanisms responsible for this elevated DM risk with statin therapy. The mode of the diabetogenic action of statins is still unclear and an interplay of pancreatic and peripheral effects in the pathogenesis of DM is a possibility. Despite these observations, the CVD preventative benefit of statin treatment outweighs the CVD risk associated with of development of new DM. There is a need for further research to identify the exact mechanisms involved so as to specifically target causative factors and individualize treatment.
Collapse
Affiliation(s)
| | - Aaqib Malik
- Department of Medicine, Westchester Medical Center , Valhalla , NY , USA
| | - Kenneth Guber
- Department of Medicine, New York Medical College , Valhalla , NY , USA
| | - Yogitha Rochlani
- Division of Cardiology, Westchester Medical Center , Valhalla , NY , USA
| | - Gayatri Pemmasani
- Division of Cardiology, Westchester Medical Center , Valhalla , NY , USA
| | - Manasa Jasti
- Department of Medicine, MacNeal Hospital , Berwyn , IL , USA
| | - Wilbert S Aronow
- Division of Cardiology, Westchester Medical Center , Valhalla , NY , USA
| |
Collapse
|
24
|
Ruscica M, Banach M, Sahebkar A, Corsini A, Sirtori CR. ETC-1002 (Bempedoic acid) for the management of hyperlipidemia: from preclinical studies to phase 3 trials. Expert Opin Pharmacother 2019; 20:791-803. [PMID: 30810432 DOI: 10.1080/14656566.2019.1583209] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Tolerability problems in treating hypercholesterolemic patients undergoing statin treatment are of growing concern to physicians and patients, thus underlining the need for an agent with a similar mechanism but minimal side effects. A drug with a somewhat similar mechanism to statins but free of muscular side effects is ETC-1002 (bempedoic acid). It inhibits cholesterol biosynthesis at a step preceding HMG-CoA reductase, i.e. ATP citrate lyase (ACLY). A prodrug, ETC-1002 is converted to the active agent only in liver, not in skeletal muscle, and this may prevent any myotoxic activity. Area covered: The mechanism of ETC-1002 activity is described in detail, considering that ACLY inhibition markedly attenuated atherosclerosis in animal models. Clinical studies are also reported. Expert opinion: Present day LDL-C lowering treatments lead to significant reductions of cardiovascular (CV) events but, at times, the need to interrupt statin treatment appears to be dangerous due to a rapid rise in CV risk. The excellent tolerability of ETC-1002 makes it a useful alternative, either alone or as an adjunct to ezetimibe, for patients with statin intolerance needing to achieve significant CV risk reduction. ETC-1002 is also associated with a marked fall in high-sensitivity C-reactive protein.
Collapse
Affiliation(s)
- M Ruscica
- a Dipartimento di Scienze Farmacologiche e Biomolecolari , Università degli Studi di Milano , Milan , Italy
| | - M Banach
- b Department of Hypertension , WAM University Hospital in Lodz, Medical University of Lodz , Lodz , Poland.,c Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland; Cardiovascular Research Centre , University of Zielona Gora , Zielona Gora , Poland
| | - A Sahebkar
- d Biotechnology Research Center, Pharmaceutical Technology Institute , Mashhad University of Medical Sciences , Mashhad , Iran.,e Neurogenic Inflammation Research Center , Mashhad University of Medical Sciences , Mashhad , Iran.,f School of Pharmacy , Mashhad University of Medical Sciences , Mashhad , Iran
| | - A Corsini
- a Dipartimento di Scienze Farmacologiche e Biomolecolari , Università degli Studi di Milano , Milan , Italy.,g Multimedica IRCCS , Milan , Italy
| | - C R Sirtori
- h Dyslipidemia Center , A.S.S.T. Grande Ospedale Metropolitano Niguarda , Milan , Italy
| |
Collapse
|