1
|
Couret D, Boussen S, Cardoso D, Alonzo A, Madec S, Reyre A, Brunel H, Girard N, Graillon T, Dufour H, Bruder N, Boucekine M, Meilhac O, Simeone P, Velly L. Comparison of scales for the evaluation of aneurysmal subarachnoid haemorrhage: a retrospective cohort study. Eur Radiol 2024; 34:7526-7536. [PMID: 38836940 PMCID: PMC11519170 DOI: 10.1007/s00330-024-10814-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 04/05/2024] [Accepted: 04/14/2024] [Indexed: 06/06/2024]
Abstract
BACKGROUND/OBJECTIVES Aneurysmal subarachnoid haemorrhage (aSAH) is a life-threatening event with major complications. Delayed cerebral infarct (DCI) occurs most frequently 7 days after aSAH and can last for a prolonged period. To determine the most predictive radiological scales in grading subarachnoid or ventricular haemorrhage or both for functional outcome at 3 months in a large aSAH population, we conducted a single-centre retrospective study. METHODS A 3-year single-centre retrospective cohort study of 230 patients hospitalised for aSAH was analysed. Initial computed tomography (CT) scans in patients hospitalised for aSAH were blindly assessed using eight grading systems: the Fisher grade, modified Fisher grade, Barrow Neurological Institute scale, Hijdra scale, Intraventricular Haemorrhage (IVH) score, Graeb score and LeRoux score. RESULTS Of 200 patients with aSAH who survived to day 7 and were included for DCI analysis, 39% of cases were complicated with DCI. The Hijdra scale was the best predictor for DCI, with a receiver operating characteristic area under the curve (ROCAUC) of 0.80 (95% confidence interval (CI), 0.74-0.85). The IVH score was the most effective grading system for predicting acute hydrocephalus, with a ROCAUC of 0.85 (95% CI, 0.79-0.89). In multivariate analysis, the Hijdra scale was the best predictor of the occurrence of DCI (hazard ratio, 1.18; 95% CI, 1.10-1.25). CONCLUSIONS Although these results have yet to be prospectively confirmed, our findings suggest that the Hijdra scale may be a good predictor of DCI and could be useful in daily clinical practice. CLINICAL RELEVANCE STATEMENT Better assessment of subarachnoid haemorrhage patients would allow for better prognostication and management of expectations, as well as referral for appropriate services and helping to appropriate use limited critical care resources. KEY POINTS Aneurysmal subarachnoid haemorrhage is a life-threatening event that causes severe disability and leads to major complications such as delayed cerebral infarction. Accurate assessment of the amount of blood in the subarachnoid spaces on computed tomography with the Hijdra scale can better predict the risk of delayed cerebral infarct. The Hijdra scale could be a good triage tool for subarachnoid haemorrhage patients.
Collapse
Affiliation(s)
- David Couret
- Department of Anaesthesiology and Critical Care Medicine, Aix Marseille Univ, University Hospital Timone, Marseille, France.
- Neurocritical Care Unit, University Hospital Saint Pierre, Réunion Univ, BP 350, Saint Pierre, 97448, La Réunion, France.
- Reunion Island University, INSERM, Diabète Athérothrombose Réunion Océan Indien (DéTROI), Saint Denis de la Réunion, France.
| | - Salah Boussen
- Department of Anaesthesiology and Critical Care Medicine, Aix Marseille Univ, University Hospital Timone, Marseille, France
| | - Dan Cardoso
- Department of Anaesthesiology and Critical Care Medicine, Aix Marseille Univ, University Hospital Timone, Marseille, France
| | - Audrey Alonzo
- Department of Anaesthesiology and Critical Care Medicine, Aix Marseille Univ, University Hospital Timone, Marseille, France
| | - Sylvain Madec
- Department of Anaesthesiology and Critical Care Medicine, Aix Marseille Univ, University Hospital Timone, Marseille, France
| | - Anthony Reyre
- Department of Radiology, University Hospital Timone, Aix Marseille University, Marseille, France
| | - Hervé Brunel
- Department of Radiology, University Hospital Timone, Aix Marseille University, Marseille, France
| | - Nadine Girard
- Department of Radiology, University Hospital Timone, Aix Marseille University, Marseille, France
| | - Thomas Graillon
- Department of Neurosurgery, University Hospital Timone, Aix Marseille University, Marseille, France
| | - Henry Dufour
- Department of Neurosurgery, University Hospital Timone, Aix Marseille University, Marseille, France
| | - Nicolas Bruder
- Department of Anaesthesiology and Critical Care Medicine, Aix Marseille Univ, University Hospital Timone, Marseille, France
| | - Mohamed Boucekine
- Centre D'Etudes Et de Recherches Sur Les Services de Santé Et Qualité, Faculté de Médecine, Aix-Marseille Université, 13005, Marseille, France
| | - Olivier Meilhac
- Reunion Island University, INSERM, Diabète Athérothrombose Réunion Océan Indien (DéTROI), Saint Denis de la Réunion, France
| | - Pierre Simeone
- Department of Anaesthesiology and Critical Care Medicine, Aix Marseille Univ, University Hospital Timone, Marseille, France
- CNRS, INT, Inst Neurosci Timone, Aix Marseille Univ, Marseille, France
| | - Lionel Velly
- Department of Anaesthesiology and Critical Care Medicine, Aix Marseille Univ, University Hospital Timone, Marseille, France
- CNRS, INT, Inst Neurosci Timone, Aix Marseille Univ, Marseille, France
| |
Collapse
|
2
|
Narayan V, Kumar M, Mahajan S, Ganesh V, Luthra A, Gupta T, Rawat A, Singh A, Vyas S, Narayanan V, Depuru A, Kaur K, Panda N, Bhagat H. The Role of Serum Matrix Metalloproteinase-9 as a Predictor of Delayed Cerebral Ischemia in Patients with Aneurysmal Subarachnoid Hemorrhage. J Mol Neurosci 2024; 74:18. [PMID: 38315311 DOI: 10.1007/s12031-024-02194-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/26/2024] [Indexed: 02/07/2024]
Abstract
Delayed cerebral ischemia (DCI) is one of the major causes of a poor neurological outcome following aneurysmal subarachnoid hemorrhage (aSAH). Several biomarkers, including matrix metalloproteinase-9 (MMP-9), have been evaluated to predict the development of DCI for timely management. This prospective cohort study was done on 98 patients with aSAH presenting within 72 h of the ictus. Serum samples were collected preoperatively, 7 days after ictus, 10 days after ictus, or when the patient developed DCI, whichever was earlier. The primary objective was to correlate the serum MMP-9 levels with the development of DCI. The secondary objectives were to correlate the serum MMP-9 levels with sonographic vasospasm and the neurological outcome. There was no correlation between the serum MMP-9 levels and the development of DCI (p = 0.37). Similarly, there was no correlation between the serum MMP-9 levels and the sonographic vasospasm (0.05) nor with the modified Rankin Scale (mRS) at discharge (p = 0.27), mRS at 3 months (p = 0.22), and Glasgow Outcome Scale Extended (GOSE) at 3 months (p = 0.15). Serum MMP-9 levels do not predict the development of DCI following aSAH.
Collapse
Affiliation(s)
- Vinitha Narayan
- Department of Anesthesia and Intensive Care 4th Floor, Nehru Hospital PGIMER, Sector 12, Chandigarh, 160012, India
| | - Munish Kumar
- Department of Anesthesia and Intensive Care 4th Floor, Nehru Hospital PGIMER, Sector 12, Chandigarh, 160012, India
| | - Shalvi Mahajan
- Department of Anesthesia and Intensive Care 4th Floor, Nehru Hospital PGIMER, Sector 12, Chandigarh, 160012, India
| | - Venkata Ganesh
- Department of Anesthesia and Intensive Care 4th Floor, Nehru Hospital PGIMER, Sector 12, Chandigarh, 160012, India
| | - Ankur Luthra
- Department of Anesthesia and Intensive Care 4th Floor, Nehru Hospital PGIMER, Sector 12, Chandigarh, 160012, India
| | - Tulika Gupta
- Department of Anatomy, PGIMER, Chandigarh, India
| | - Amit Rawat
- Department of Pediatric Immunology, PGIMER, Chandigarh, India
| | | | - Sameer Vyas
- Department of Radiodiagnosis, PGIMER, Chandigarh, India
| | - Vidhya Narayanan
- Department of Anesthesia, Sree Balaji Medical College and Hospital, Chennai, Tamil Nadu, India
| | | | - Kirandeep Kaur
- Department of Anesthesia and Intensive Care 4th Floor, Nehru Hospital PGIMER, Sector 12, Chandigarh, 160012, India
| | - Nidhi Panda
- Department of Anesthesia and Intensive Care 4th Floor, Nehru Hospital PGIMER, Sector 12, Chandigarh, 160012, India
| | - Hemant Bhagat
- Department of Anesthesia and Intensive Care 4th Floor, Nehru Hospital PGIMER, Sector 12, Chandigarh, 160012, India.
| |
Collapse
|
3
|
Chikh K, Tonon D, Triglia T, Lagier D, Buisson A, Alessi MC, Defoort C, Benatia S, Velly LJ, Bruder N, Martin JC. Early Metabolic Disruption and Predictive Biomarkers of Delayed-Cerebral Ischemia in Aneurysmal Subarachnoid Hemorrhage. J Proteome Res 2024; 23:316-328. [PMID: 38148664 DOI: 10.1021/acs.jproteome.3c00575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Delayed cerebral ischemia (DCI) following aneurysmal subarachnoid hemorrhage (aSAH) is a major cause of complications and death. Here, we set out to identify high-performance predictive biomarkers of DCI and its underlying metabolic disruptions using metabolomics and lipidomics approaches. This single-center prospective observational study enrolled 61 consecutive patients with severe aSAH; among them, 22 experienced a DCI. Nine patients without aSAH were included as validation controls. Blood and cerebrospinal fluid (CSF) were sampled within the first 24 h after admission. We identified a panel of 20 metabolites that, together, showed high predictive performance for DCI. This panel of metabolites included lactate, cotinine, salicylate, 6 phosphatidylcholines, and 4 sphingomyelins. The interplay of the metabolome and the lipidome found between CSF and plasma in our patients underscores that aSAH and its associated DCI complications can extend beyond cerebral implications, with a peripheral dimension as well. As an illustration, early biological disruptions that might explain the subsequent DCI found systemic hypoxia driven mainly by higher blood lactate, arginine, and proline metabolism likely associated with vascular NO and disrupted ceramide/sphingolipid metabolism. We conclude that targeting early peripheral hypoxia preceding DCI could provide an interesting strategy for the prevention of vascular dysfunction.
Collapse
Affiliation(s)
- Karim Chikh
- Service de Biochimie et Biologie Moléculaire, Hôpital Lyon Sud, Hospices Civils de Lyon, Pierre-Bénite 69310, France
- Laboratoire CarMeN, Inserm U1060, INRAE U1397, Université de Lyon, Université Claude-Bernard Lyon1, Pierre-Bénite 69310, France
| | - David Tonon
- Centre Cardiovasculaire et Nutrition (C2VN), INRAE, INSERM, Aix Marseille Université, Marseille 13005, France
- Service d'Anesthésie et Réanimation, Hôpital de La Timone, Marseille 13005, France
| | - Thibaut Triglia
- Centre Cardiovasculaire et Nutrition (C2VN), INRAE, INSERM, Aix Marseille Université, Marseille 13005, France
- Service d'Anesthésie et Réanimation, Hôpital de La Timone, Marseille 13005, France
| | - David Lagier
- Centre Cardiovasculaire et Nutrition (C2VN), INRAE, INSERM, Aix Marseille Université, Marseille 13005, France
- Service d'Anesthésie et Réanimation, Hôpital de La Timone, Marseille 13005, France
| | - Anouk Buisson
- Service de Biochimie et Biologie Moléculaire, Hôpital Lyon Sud, Hospices Civils de Lyon, Pierre-Bénite 69310, France
| | - Marie-Christine Alessi
- Centre Cardiovasculaire et Nutrition (C2VN), INRAE, INSERM, Aix Marseille Université, Marseille 13005, France
| | - Catherine Defoort
- Centre Cardiovasculaire et Nutrition (C2VN), INRAE, INSERM, Aix Marseille Université, Marseille 13005, France
| | - Sherazade Benatia
- Centre Cardiovasculaire et Nutrition (C2VN), INRAE, INSERM, Aix Marseille Université, Marseille 13005, France
| | - Lionel J Velly
- Service d'Anesthésie et Réanimation, INT (Institut de Neurosciences de La Timone), Hôpital de La Timone, Aix Marseille Université, Marseille 13005, France
| | - Nicolas Bruder
- Service d'Anesthésie et Réanimation, Hôpital de La Timone, Marseille 13005, France
| | - Jean-Charles Martin
- Centre Cardiovasculaire et Nutrition (C2VN), INRAE, INSERM, Aix Marseille Université, Marseille 13005, France
| |
Collapse
|
4
|
Batista S, Bocanegra-Becerra JE, Claassen B, Rubião F, Rabelo NN, Figueiredo EG, Oberman DZ. Biomarkers in aneurysmal subarachnoid hemorrhage: A short review. World Neurosurg X 2023; 19:100205. [PMID: 37206060 PMCID: PMC10189293 DOI: 10.1016/j.wnsx.2023.100205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 05/21/2023] Open
Abstract
Poor outcomes of aneurysmal subarachnoid hemorrhage (aSAH) can be the result of the initial catastrophic event or the many acute or delayed neurological complications. Recent evidence suggests that some molecules play a critical role in both events, through some unknown pathways involved. Understanding the role of these molecules in these events could allow to improve diagnostic accuracy, guide management, and prevent long-term disability in aSAH. Here we present the studies on aSAH biomarkers present in current medical literature, highlighting their roles and main results.
Collapse
Affiliation(s)
- Sávio Batista
- Faculty of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Bernardo Claassen
- Faculty of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Felipe Rubião
- Faculty of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Dan Zimelewicz Oberman
- Department of Neurosurgery, Hospital de Força Aérea do Galeão, Rio de Janeiro, Brazil
- Corresponding author. Neurosurgery Department Hospital Força Aérea do Galeão, Estrada do Galeão, 4101 - Galeão, Rio de Janeiro - RJ, 21941-353, Brazil.
| |
Collapse
|
5
|
Chai CZ, Ho UC, Kuo LT. Systemic Inflammation after Aneurysmal Subarachnoid Hemorrhage. Int J Mol Sci 2023; 24:10943. [PMID: 37446118 DOI: 10.3390/ijms241310943] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/16/2023] [Accepted: 06/18/2023] [Indexed: 07/15/2023] Open
Abstract
Aneurysmal subarachnoid hemorrhage (aSAH) is one of the most severe neurological disorders, with a high mortality rate and severe disabling functional sequelae. Systemic inflammation following hemorrhagic stroke may play an important role in mediating intracranial and extracranial tissue damage. Previous studies showed that various systemic inflammatory biomarkers might be useful in predicting clinical outcomes. Anti-inflammatory treatment might be a promising therapeutic approach for improving the prognosis of patients with aSAH. This review summarizes the complicated interactions between the nervous system and the immune system.
Collapse
Affiliation(s)
- Chang-Zhang Chai
- Department of Medical Education, National Taiwan University, School of Medicine, Taipei 100, Taiwan
| | - Ue-Cheung Ho
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital Yunlin Branch, Yunlin 640, Taiwan
| | - Lu-Ting Kuo
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital Yunlin Branch, Yunlin 640, Taiwan
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, Taipei 100, Taiwan
| |
Collapse
|
6
|
Schenck H, Netti E, Teernstra O, De Ridder I, Dings J, Niemelä M, Temel Y, Hoogland G, Haeren R. The Role of the Glycocalyx in the Pathophysiology of Subarachnoid Hemorrhage-Induced Delayed Cerebral Ischemia. Front Cell Dev Biol 2021; 9:731641. [PMID: 34540844 PMCID: PMC8446455 DOI: 10.3389/fcell.2021.731641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 08/06/2021] [Indexed: 12/02/2022] Open
Abstract
The glycocalyx is an important constituent of blood vessels located between the bloodstream and the endothelium. It plays a pivotal role in intercellular interactions in neuroinflammation, reduction of vascular oxidative stress, and provides a barrier regulating vascular permeability. In the brain, the glycocalyx is closely related to functions of the blood-brain barrier and neurovascular unit, both responsible for adequate neurovascular responses to potential threats to cerebral homeostasis. An aneurysmal subarachnoid hemorrhage (aSAH) occurs following rupture of an intracranial aneurysm and leads to immediate brain damage (early brain injury). In some cases, this can result in secondary brain damage, also known as delayed cerebral ischemia (DCI). DCI is a life-threatening condition that affects up to 30% of all aSAH patients. As such, it is associated with substantial societal and healthcare-related costs. Causes of DCI are multifactorial and thought to involve neuroinflammation, oxidative stress, neuroinflammation, thrombosis, and neurovascular uncoupling. To date, prediction of DCI is limited, and preventive and effective treatment strategies of DCI are scarce. There is increasing evidence that the glycocalyx is disrupted following an aSAH, and that glycocalyx disruption could precipitate or aggravate DCI. This review explores the potential role of the glycocalyx in the pathophysiological mechanisms contributing to DCI following aSAH. Understanding the role of the glycocalyx in DCI could advance the development of improved methods to predict DCI or identify patients at risk for DCI. This knowledge may also alter the methods and timing of preventive and treatment strategies of DCI. To this end, we review the potential and limitations of methods currently used to evaluate the glycocalyx, and strategies to restore or prevent glycocalyx shedding.
Collapse
Affiliation(s)
- Hanna Schenck
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, Netherlands
| | - Eliisa Netti
- Department of Neurosurgery, Helsinki University Hospital, Helsinki, Finland
| | - Onno Teernstra
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, Netherlands
| | - Inger De Ridder
- Department of Neurology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, Netherlands
| | - Jim Dings
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, Netherlands
| | - Mika Niemelä
- Department of Neurosurgery, Helsinki University Hospital, Helsinki, Finland
| | - Yasin Temel
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, Netherlands
| | - Govert Hoogland
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, Netherlands
| | - Roel Haeren
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, Netherlands.,Department of Neurosurgery, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
7
|
Schranz D, Molnar T, Erdo‐Bonyar S, Simon D, Berki T, Nagy C, Czeiter E, Buki A, Lenzser G, Csecsei P. Increased level of LIGHT/TNFSF14 is associated with survival in aneurysmal subarachnoid hemorrhage. Acta Neurol Scand 2021; 143:530-537. [PMID: 33492677 DOI: 10.1111/ane.13394] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/18/2020] [Accepted: 12/28/2020] [Indexed: 12/22/2022]
Abstract
OBJECTIVES Multiple cytokines have been implicated in aneurysmal subarachnoid hemorrhage (aSAH), but tumor necrosis factor superfamily 14 (LIGHT/TNFSF14) and oncostatin-M (OSM) have not been previously explored. AIMS OF THE STUDY The primary objective of this study was to examine the relationship between TNFSF14 and OSM levels and survival. Our secondary goal was to investigate a potential association between these markers and the incidence of delayed cerebral ischemia (DCI). MATERIALS & METHODS We consecutively recruited 60 patients with a clinical diagnosis of aSAH. LIGHT/TNFSF14 and OSM serum concentrations were determined by ELISA. The primary endpoint was survival at Day 30, while development of DCI was assessed as secondary outcome. RESULTS Patients had significantly higher levels of both markers than the control group (median of LIGHT: 18.1 pg/ml vs. 7 pg/ml; p = 0.01; median of OSM: 10.3 pg/ml vs. 2.8 pg/ml, p < 0.001). Significantly lower serum level of LIGHT/TNFSF14 was found in nonsurviving patients (n = 9) compared with survivors (n = 51; p = 0.011). Based on ROC analysis, serum LIGHT/TNFSF14 with a cutoff value of >7.95 pg/ml predicted 30-day survival with a sensitivity of 71% and specificity of 78% (Area: 0.763; 95% CI: 0.604-0.921, p = 0.013). In addition, it was also a predictor of DCI with a sensitivity of 72.7% and a specificity of 62.5% (AUC: 0.702; 95% CI: 0.555-0.849, p = 0.018). Based on binary logistic regression analysis, LIGHT/TNFSF14 was found to be independently associated with 30-day mortality, but not with DCI. CONCLUSION In this cohort, a higher serum level of LIGHT/TNFSF14 was associated with increased survival of patients with aSAH.
Collapse
Affiliation(s)
- Daniel Schranz
- Department of Neurology University of PecsMedical School Pecs Hungary
| | - Tihamer Molnar
- Department of Anaesthesiology and Intensive Care University of PecsMedical School Pecs Hungary
| | - Szabina Erdo‐Bonyar
- Department of Immunology and Biotechnology University of PecsMedical School Pecs Hungary
| | - Diana Simon
- Department of Immunology and Biotechnology University of PecsMedical School Pecs Hungary
| | - Tímea Berki
- Department of Immunology and Biotechnology University of PecsMedical School Pecs Hungary
| | - Csaba Nagy
- Department of Neurosurgery University of PecsMedical School Pecs Hungary
| | - Endre Czeiter
- Department of Neurosurgery University of PecsMedical School Pecs Hungary
- Neurotrauma Research Group Szentágothai Research Centre University of Pécs Pécs Hungary
- MTA‐PTE Clinical Neuroscience MR Research Group Pécs Hungary
| | - Andras Buki
- Department of Neurosurgery University of PecsMedical School Pecs Hungary
| | - Gabor Lenzser
- Department of Neurosurgery University of PecsMedical School Pecs Hungary
| | - Peter Csecsei
- Department of Neurosurgery University of PecsMedical School Pecs Hungary
| |
Collapse
|
8
|
Pulcrano-Nicolas AS, Jacquens A, Proust C, Clarençon F, Perret C, Shotar E, Puybasset L, Le Goff W, Degos V, Trégouët DA, Garnier S. Whole blood levels of S1PR4 mRNA associated with cerebral vasospasm after aneurysmal subarachnoid hemorrhage. J Neurosurg 2020; 133:1837-1841. [PMID: 31783362 DOI: 10.3171/2019.9.jns191305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 09/13/2019] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The authors sought to identify mRNA biomarkers of cerebral vasospasm in whole blood of patients suffering from aneurysmal subarachnoid hemorrhage (aSAH). METHODS A prospective transcriptomic study for vasospasm was conducted in whole blood samples of 44 aSAH patients who developed (VSP+ group, n = 22) or did not develop (VSP- group, n = 22) vasospasm. Samples from all patients were profiled for 21,460 mRNA probes using the Illumina Human HT12v4.0 array. Differential statistical analysis was performed using a linear mixed model. RESULTS Levels of sphingosine-1-phosphate receptor 4 (S1PR4) mRNA were significantly higher (p = 8.03 × 10-6) at presentation in patients who developed vasospasm after aSAH than in patients who did not. CONCLUSIONS The results, which are consistent with findings of previous experimental investigations conducted in animal models, support the role of S1PR4 and its ligand, sphingosine-1-phosphate (S1P), in arterial-associated vasoconstriction, which suggests that S1PR4 could be used as a biomarker for cerebral vasospasm in aSAH patients.
Collapse
Affiliation(s)
- Anne-Sophie Pulcrano-Nicolas
- 1Sorbonne Université, UPMC, INSERM UMR_S 1166, F-75013, Paris
- 2ICAN Institute for Cardiometabolism and Nutrition, Paris
| | - Alice Jacquens
- 3Department of Anesthesia and Intensive Care, Pitié-Salpetrière Hospital, Assistance, Publique-Hopitaux de Paris, Paris
- 4Université Paris 7, INSERM UMR 1141, Paris
| | - Carole Proust
- 5INSERM UMR_S 1219, Bordeaux Population Health Research Center, University of Bordeaux, Bordeaux
| | - Frédéric Clarençon
- 6Sorbonne Université, UPMC, Groupe de Recherche Clinique Biosfast, Paris; and
- 7Department of Neuroradiology, Pitié-Salpêtrière Hospital, Paris, France
| | - Claire Perret
- 1Sorbonne Université, UPMC, INSERM UMR_S 1166, F-75013, Paris
- 2ICAN Institute for Cardiometabolism and Nutrition, Paris
| | - Eimad Shotar
- 7Department of Neuroradiology, Pitié-Salpêtrière Hospital, Paris, France
| | - Louis Puybasset
- 3Department of Anesthesia and Intensive Care, Pitié-Salpetrière Hospital, Assistance, Publique-Hopitaux de Paris, Paris
- 4Université Paris 7, INSERM UMR 1141, Paris
| | - Wilfried Le Goff
- 1Sorbonne Université, UPMC, INSERM UMR_S 1166, F-75013, Paris
- 2ICAN Institute for Cardiometabolism and Nutrition, Paris
| | - Vincent Degos
- 3Department of Anesthesia and Intensive Care, Pitié-Salpetrière Hospital, Assistance, Publique-Hopitaux de Paris, Paris
- 4Université Paris 7, INSERM UMR 1141, Paris
| | - David-Alexandre Trégouët
- 5INSERM UMR_S 1219, Bordeaux Population Health Research Center, University of Bordeaux, Bordeaux
| | - Sophie Garnier
- 1Sorbonne Université, UPMC, INSERM UMR_S 1166, F-75013, Paris
- 2ICAN Institute for Cardiometabolism and Nutrition, Paris
| |
Collapse
|
9
|
Steliga A, Kowiański P, Czuba E, Waśkow M, Moryś J, Lietzau G. Neurovascular Unit as a Source of Ischemic Stroke Biomarkers-Limitations of Experimental Studies and Perspectives for Clinical Application. Transl Stroke Res 2020; 11:553-579. [PMID: 31701356 PMCID: PMC7340668 DOI: 10.1007/s12975-019-00744-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 01/13/2023]
Abstract
Cerebral stroke, which is one of the most frequent causes of mortality and leading cause of disability in developed countries, often leads to devastating and irreversible brain damage. Neurological and neuroradiological diagnosis of stroke, especially in its acute phase, is frequently uncertain or inconclusive. This results in difficulties in identification of patients with poor prognosis or being at high risk for complications. It also makes difficult identification of these stroke patients who could benefit from more aggressive therapies. In contrary to the cardiovascular disease, no single biomarker is available for the ischemic stroke, addressing the abovementioned issues. This justifies the need for identifying of effective diagnostic measures characterized by high specificity and sensitivity. One of the promising avenues in this area is studies on the panels of biomarkers characteristic for processes which occur in different types and phases of ischemic stroke and represent all morphological constituents of the brains' neurovascular unit (NVU). In this review, we present the current state of knowledge concerning already-used or potentially applicable biomarkers of the ischemic stroke. We also discuss the perspectives for identification of biomarkers representative for different types and phases of the ischemic stroke, as well as for different constituents of NVU, which concentration levels correlate with extent of brain damage and patients' neurological status. Finally, a critical analysis of perspectives on further improvement of the ischemic stroke diagnosis is presented.
Collapse
Affiliation(s)
- Aleksandra Steliga
- Faculty of Health Sciences, Pomeranian University of Slupsk, 64 Bohaterów Westerplatte St., 76-200, Slupsk, Poland
| | - Przemysław Kowiański
- Faculty of Health Sciences, Pomeranian University of Slupsk, 64 Bohaterów Westerplatte St., 76-200, Slupsk, Poland.
- Department of Anatomy and Neurobiology, Medical University of Gdansk, 1 Debinki St., 80-211, Gdansk, Poland.
| | - Ewelina Czuba
- Department of Anatomy and Neurobiology, Medical University of Gdansk, 1 Debinki St., 80-211, Gdansk, Poland
| | - Monika Waśkow
- Faculty of Health Sciences, Pomeranian University of Slupsk, 64 Bohaterów Westerplatte St., 76-200, Slupsk, Poland
| | - Janusz Moryś
- Department of Anatomy and Neurobiology, Medical University of Gdansk, 1 Debinki St., 80-211, Gdansk, Poland
| | - Grażyna Lietzau
- Department of Anatomy and Neurobiology, Medical University of Gdansk, 1 Debinki St., 80-211, Gdansk, Poland
- Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
10
|
Pulcrano-Nicolas AS, Proust C, Clarençon F, Jacquens A, Perret C, Roux M, Shotar E, Thibord F, Puybasset L, Garnier S, Degos V, Trégouët DA. Whole-Blood miRNA Sequencing Profiling for Vasospasm in Patients With Aneurysmal Subarachnoid Hemorrhage. Stroke 2019; 49:2220-2223. [PMID: 30354977 DOI: 10.1161/strokeaha.118.021101] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Background and Purpose- Arterial vasospasm is a well-known delayed complication of aneurysmal subarachnoid hemorrhage (aSAH). However, no validated biomarker exists to help clinicians discriminating patients with aSAH who will develop vasospasm (VSP+) and identifying those who then deserve aggressive preventive therapy. We hypothesized that whole-blood miRNAs could be a source of candidate biomarkers for vasospasm. Methods- Using a next-generation sequencing approach, we performed whole-blood miRNA profiling between VSP+patients with aSAH and patients who did not develop vasospasm (VSP-) in a prospective cohort of 32 patients. Profiling was performed on the admission day and 3 days before vasospasm. Results- Four hundred forty-two miRNAs were highly expressed in whole blood of patients with aSAH. Among them, hsa-miR-3177-3p demonstrated significant ( P=5.9×10-5; PBonferroni corrected=0.03) lower levels in VSP- compared with VSP+ patients. Looking for whole-blood mRNA correlates of hsa-miR-3177-3p, we observed some evidence that the decrease in hsa-miR-3177-3p levels after aSAH was associated with an increase in LDHA mRNA levels in VSP- ( P<10-3) but not in VSP+ ( P=0.66) patients. Conclusions- Whole-blood miRNA levels of hsa-miR-3177-3p could serve as a biomarker for vasospasm. Clinical Trial Registration- URL: https://www.clinicaltrials.gov . Unique identifier: NCT01779713.
Collapse
Affiliation(s)
- Anne-Sophie Pulcrano-Nicolas
- From the INSERM UMR-S 1166 (A.-S.P.-N., C. Proust, C. Perret, M.R., F.T., S.G., D.-A.T.).,Sorbonne Universités, University Pierre et Marie Curie, Université Paris 06, France; ICAN Institute of Cardiometabolism and Nutrition, Paris, France (A.-S.P.-N., C. Proust, C. Perret, M.R., F.T., S.G., D.-A.T.)
| | - Carole Proust
- From the INSERM UMR-S 1166 (A.-S.P.-N., C. Proust, C. Perret, M.R., F.T., S.G., D.-A.T.).,Sorbonne Universités, University Pierre et Marie Curie, Université Paris 06, France; ICAN Institute of Cardiometabolism and Nutrition, Paris, France (A.-S.P.-N., C. Proust, C. Perret, M.R., F.T., S.G., D.-A.T.)
| | - Frédéric Clarençon
- Groupe de Recherche Clinique Biosfast (F.C., E.S.).,Department of Neuroradiology (F.C., E.S.)
| | - Alice Jacquens
- Department of Anesthesia and Intensive Care (A.J., L.P., V.D.).,Pitié-Salpetrière Hospital, Assistance Publique-Hopitaux de Paris, France; and INSERM UMR 1141, Université Paris 7, France (A.J., L.P., V.D.)
| | - Claire Perret
- From the INSERM UMR-S 1166 (A.-S.P.-N., C. Proust, C. Perret, M.R., F.T., S.G., D.-A.T.).,Sorbonne Universités, University Pierre et Marie Curie, Université Paris 06, France; ICAN Institute of Cardiometabolism and Nutrition, Paris, France (A.-S.P.-N., C. Proust, C. Perret, M.R., F.T., S.G., D.-A.T.)
| | - Maguelonne Roux
- From the INSERM UMR-S 1166 (A.-S.P.-N., C. Proust, C. Perret, M.R., F.T., S.G., D.-A.T.).,Sorbonne Universités, University Pierre et Marie Curie, Université Paris 06, France; ICAN Institute of Cardiometabolism and Nutrition, Paris, France (A.-S.P.-N., C. Proust, C. Perret, M.R., F.T., S.G., D.-A.T.)
| | - Eimad Shotar
- Groupe de Recherche Clinique Biosfast (F.C., E.S.).,Department of Neuroradiology (F.C., E.S.)
| | - Florian Thibord
- From the INSERM UMR-S 1166 (A.-S.P.-N., C. Proust, C. Perret, M.R., F.T., S.G., D.-A.T.).,Sorbonne Universités, University Pierre et Marie Curie, Université Paris 06, France; ICAN Institute of Cardiometabolism and Nutrition, Paris, France (A.-S.P.-N., C. Proust, C. Perret, M.R., F.T., S.G., D.-A.T.)
| | - Louis Puybasset
- Department of Anesthesia and Intensive Care (A.J., L.P., V.D.).,Pitié-Salpetrière Hospital, Assistance Publique-Hopitaux de Paris, France; and INSERM UMR 1141, Université Paris 7, France (A.J., L.P., V.D.)
| | - Sophie Garnier
- From the INSERM UMR-S 1166 (A.-S.P.-N., C. Proust, C. Perret, M.R., F.T., S.G., D.-A.T.).,Sorbonne Universités, University Pierre et Marie Curie, Université Paris 06, France; ICAN Institute of Cardiometabolism and Nutrition, Paris, France (A.-S.P.-N., C. Proust, C. Perret, M.R., F.T., S.G., D.-A.T.)
| | - Vincent Degos
- Department of Anesthesia and Intensive Care (A.J., L.P., V.D.).,Pitié-Salpetrière Hospital, Assistance Publique-Hopitaux de Paris, France; and INSERM UMR 1141, Université Paris 7, France (A.J., L.P., V.D.)
| | - David-Alexandre Trégouët
- From the INSERM UMR-S 1166 (A.-S.P.-N., C. Proust, C. Perret, M.R., F.T., S.G., D.-A.T.).,Sorbonne Universités, University Pierre et Marie Curie, Université Paris 06, France; ICAN Institute of Cardiometabolism and Nutrition, Paris, France (A.-S.P.-N., C. Proust, C. Perret, M.R., F.T., S.G., D.-A.T.)
| |
Collapse
|
11
|
Geraghty JR, Davis JL, Testai FD. Neuroinflammation and Microvascular Dysfunction After Experimental Subarachnoid Hemorrhage: Emerging Components of Early Brain Injury Related to Outcome. Neurocrit Care 2019; 31:373-389. [PMID: 31012056 PMCID: PMC6759381 DOI: 10.1007/s12028-019-00710-x] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Aneurysmal subarachnoid hemorrhage has a high mortality rate and, for those who survive this devastating injury, can lead to lifelong impairment. Clinical trials have demonstrated that cerebral vasospasm of larger extraparenchymal vessels is not the sole contributor to neurological outcome. Recently, the focus of intense investigation has turned to mechanisms of early brain injury that may play a larger role in outcome, including neuroinflammation and microvascular dysfunction. Extravasated blood after aneurysm rupture results in a robust inflammatory response characterized by activation of microglia, upregulation of cellular adhesion molecules, recruitment of peripheral immune cells, as well as impaired neurovascular coupling, disruption of the blood-brain barrier, and imbalances in endogenous vasodilators and vasoconstrictors. Each of these phenomena is either directly or indirectly associated with neuronal death and brain injury. Here, we review recent studies investigating these various mechanisms in experimental models of subarachnoid hemorrhage with special emphasis on neuroinflammation and its effect on microvascular dysfunction. We discuss the various therapeutic targets that have risen from these mechanistic studies and suggest the utility of a multi-targeted approach to preventing delayed injury and improving outcome after subarachnoid hemorrhage.
Collapse
Affiliation(s)
- Joseph R Geraghty
- Department of Neurology and Rehabilitation, College of Medicine, University of Illinois at Chicago, 912 S. Wood St. Suite 174N, Chicago, IL, 60612, USA.
- Medical Scientist Training Program, University of Illinois at Chicago, Chicago, IL, USA.
| | - Joseph L Davis
- Department of Neurology and Rehabilitation, College of Medicine, University of Illinois at Chicago, 912 S. Wood St. Suite 174N, Chicago, IL, 60612, USA
| | - Fernando D Testai
- Department of Neurology and Rehabilitation, College of Medicine, University of Illinois at Chicago, 912 S. Wood St. Suite 174N, Chicago, IL, 60612, USA
| |
Collapse
|
12
|
Lin M, Griessenauer CJ, Starke RM, Tubbs RS, Shoja MM, Foreman PM, Vyas NA, Walters BC, Harrigan MR, Hendrix P, Fisher WS, Pittet JF, Mathru M, Lipsky RH. Haplotype analysis of SERPINE1 gene: Risk for aneurysmal subarachnoid hemorrhage and clinical outcomes. Mol Genet Genomic Med 2019; 7:e737. [PMID: 31268630 PMCID: PMC6687628 DOI: 10.1002/mgg3.737] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 04/24/2019] [Indexed: 12/12/2022] Open
Abstract
Background Aneurysmal subarachnoid hemorrhage (aSAH) has high fatality and permanent disability rates due to the severe damage to brain cells and inflammation. The SERPINE1 gene that encodes PAI‐1 for the regulation of tissue plasminogen activator is considered an important therapeutic target for aSAH. Methods Six SNPs in the SERPINE1 gene (in order of rs2227631, rs1799889, rs6092, rs6090, rs2227684, rs7242) were investigated. Blood samples were genotyped with Taqman genotyping assays and pyrosequencing. The experiment‐wide statistically significant threshold for single marker analysis was set at p < 0.01 after evaluation of independent markers. Haplotype analysis was performed in Haplo.stats package with permutation tests. Bonferroni correction for multiple comparison in dominant, additive, and recessive model was applied. Results A total of 146 aSAH patients and 49 control subjects were involved in this study. The rs2227631 G allele is significant (p = 0.01) for aSAH compared to control. In aSAH group, haplotype analysis showed that G5GGGT homozygotes in recessive model were associated with delayed cerebral ischemia (p < 0.01, Odds Ratio = 5.14, 95% CI = 1.45–18.18), clinical vasospasm (p = 0.01, Odds Ratio = 4.58, 95% CI = 1.30–16.13), and longer intensive care unit stay (p = 0.01). By contrast, the G5GGAG carriers were associated with less incidence of cerebral edema (p < 0.01) and higher Glasgow Coma Scale (p < 0.01). The A4GGGT carriers were associated with less incidence of severe hypertension (>140/90) (p < 0.01). Conclusion The results suggested an important regulatory role of the SERPINE1 gene polymorphism in clinical outcomes of aSAH.
Collapse
Affiliation(s)
- Mingkuan Lin
- Department of Systems Biology, George Mason University, Fairfax, Virginia.,Department of Neuroscience, INOVA Health System, Fairfax, Virginia
| | - Christoph J Griessenauer
- Department of Neurosurgery, Geisinger, Danville, Pennsylvania.,Research Institute of Neurointervention, Paracelsus Medical University, Salzurg, Austria
| | - Robert M Starke
- Department of Neurosurgery and Radiology, University of Miami, Miami, Florida
| | | | | | - Paul M Foreman
- Department of Neurosurgery, University of Alabama at Birmingham, Alabama, Alabama
| | - Nilesh A Vyas
- Department of Neuroscience, INOVA Health System, Fairfax, Virginia
| | | | - Mark R Harrigan
- Department of Neurosurgery, University of Alabama at Birmingham, Alabama, Alabama
| | - Philipp Hendrix
- Department of Neurosurgery, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Winfield S Fisher
- Department of Neurosurgery, University of Alabama at Birmingham, Alabama, Alabama
| | - Jean-Francois Pittet
- Department of Neurosurgery, University of Alabama at Birmingham, Alabama, Alabama
| | - Mali Mathru
- Department of Neurosurgery, University of Alabama at Birmingham, Alabama, Alabama
| | - Robert H Lipsky
- Department of Systems Biology, George Mason University, Fairfax, Virginia.,Department of Neuroscience, INOVA Health System, Fairfax, Virginia
| |
Collapse
|
13
|
Chou SHY, Macdonald RL, Keller E. Biospecimens and Molecular and Cellular Biomarkers in Aneurysmal Subarachnoid Hemorrhage Studies: Common Data Elements and Standard Reporting Recommendations. Neurocrit Care 2019; 30:46-59. [PMID: 31144274 PMCID: PMC7888262 DOI: 10.1007/s12028-019-00725-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Development of clinical biomarkers to guide therapy is an important unmet need in aneurysmal subarachnoid hemorrhage (SAH). A wide spectrum of plausible biomarkers has been reported for SAH, but none have been validated due to significant variabilities in study design, methodology, laboratory techniques, and outcome endpoints. METHODS A systematic review of SAH biomarkers was performed per the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The panel's recommendations focused on harmonization of (1) target cellular and molecular biomarkers for future investigation in SAH, (2) standardization of best-practice procedures in biospecimen and biomarker studies, and (3) experimental method reporting requirements to facilitate meta-analyses and future validation of putative biomarkers. RESULTS No cellular or molecular biomarker has been validated for inclusion as "core" recommendation. Fifty-four studies met inclusion criteria and generated 33 supplemental and emerging biomarker targets. Core recommendations include best-practice protocols for biospecimen collection and handling as well as standardized reporting guidelines to capture the heterogeneity and variabilities in experimental methodologies and biomarker analyses platforms. CONCLUSION Significant variabilities in study design, methodology, laboratory techniques, and outcome endpoints exist in SAH biomarker studies and present significant barriers toward validation and translation of putative biomarkers to clinical use. Adaptation of common data elements, recommended biospecimen protocols, and reporting guidelines will reduce heterogeneity and facilitate future meta-analyses and development of validated clinical biomarkers in SAH.
Collapse
Affiliation(s)
- Sherry H-Y Chou
- Departments of Critical Care Medicine, Neurology, and Neurosurgery, University of Pittsburgh School of Medicine, 3550 Terrace Street Suite 646, Pittsburgh, PA, 15261, USA.
| | - R Loch Macdonald
- Division of Neurosurgery, Department of Surgery, St. Michael's Hospital, University of Toronto, Toronto, Canada
- Labatt Family Centre of Excellence in Brain Injury and Trauma Research, Keenan Research Centre for Biomedical Research, Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Canada
- Departments of Physiology and Surgery, University of Toronto, Toronto, Canada
| | - Emanuela Keller
- Neurocritical Care Unit, Department of Neurosurgery, UniversitätsSpital Zürich, Zurich, Switzerland
| |
Collapse
|
14
|
Saand AR, Yu F, Chen J, Chou SHY. Systemic inflammation in hemorrhagic strokes - A novel neurological sign and therapeutic target? J Cereb Blood Flow Metab 2019; 39:959-988. [PMID: 30961425 PMCID: PMC6547186 DOI: 10.1177/0271678x19841443] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Growing evidences suggest that stroke is a systemic disease affecting many organ systems beyond the brain. Stroke-related systemic inflammatory response and immune dysregulations may play an important role in brain injury, recovery, and stroke outcome. The two main phenomena in stroke-related peripheral immune dysregulations are systemic inflammation and post-stroke immunosuppression. There is emerging evidence suggesting that the spleen contracts following ischemic stroke, activates peripheral immune response and this may further potentiate brain injury. Whether similar brain-immune crosstalk occurs in hemorrhagic strokes such as intracerebral hemorrhage (ICH) and subarachnoid hemorrhage (SAH) is not established. In this review, we systematically examined animal and human evidence to date on peripheral immune responses associated with hemorrhagic strokes. Specifically, we reviewed the impact of clinical systemic inflammatory response syndrome (SIRS), inflammation- and immune-associated biomarkers, the brain-spleen interaction, and cellular mediators of peripheral immune responses to ICH and SAH including regulatory T cells (Tregs). While there is growing data suggesting that peripheral immune dysregulation following hemorrhagic strokes may be important in brain injury pathogenesis and outcome, details of this brain-immune system cross-talk remain insufficiently understood. This is an important unmet scientific need that may lead to novel therapeutic strategies in this highly morbid condition.
Collapse
Affiliation(s)
- Aisha R Saand
- 1 Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Fang Yu
- 2 Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jun Chen
- 2 Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sherry H-Y Chou
- 1 Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,2 Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,3 Department of Neurosurgery, School of Medicine, University of Pittsburgh, PA, USA
| |
Collapse
|
15
|
Liu FY, Cai J, Wang C, Ruan W, Guan GP, Pan HZ, Li JR, Qian C, Chen JS, Wang L, Chen G. Fluoxetine attenuates neuroinflammation in early brain injury after subarachnoid hemorrhage: a possible role for the regulation of TLR4/MyD88/NF-κB signaling pathway. J Neuroinflammation 2018; 15:347. [PMID: 30572907 PMCID: PMC6302437 DOI: 10.1186/s12974-018-1388-x] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 12/03/2018] [Indexed: 12/12/2022] Open
Abstract
Background Neuroinflammation is closely associated with functional outcome in subarachnoid hemorrhage (SAH) patients. Our recent study demonstrated that fluoxetine inhibited NLRP3 inflammasome activation and attenuated necrotic cell death in early brain injury after SAH, while the effects and potential mechanisms of fluoxetine on neuroinflammation after SAH have not been well-studied yet. Methods One hundred and fifty-three male SD rats were subjected to the endovascular perforation model of SAH. Fluoxetine (10 mg/kg) was administered intravenously at 6 h after SAH induction. TAK-242 (1.5 mg/kg), an exogenous TLR4 antagonist, was injected intraperitoneally 1 h after SAH. SAH grade, neurological scores, brain water content, Evans blue extravasation, immunofluorescence/TUNEL staining, quantitative real-time polymerase chain reaction (qRT-PCR), and western blot were performed. Results Fluoxetine administration attenuated BBB disruption, brain edema, and improved neurological function after SAH. In addition, fluoxetine alleviated the number of Iba-1-positive microglia/macrophages, neutrophil infiltration, and cell death. Moreover, fluoxetine reduced the levels of pro-inflammatory cytokines, downregulated the expression of TLR4 and MyD88, and promoted the nuclear translocation of NF-κB p65, which were also found in rats with TAK-242 administration. Combined administration of fluoxetine and TAK-242 did not enhance the neuroprotective effects of fluoxetine. Conclusion Fluoxetine attenuated neuroinflammation and improved neurological function in SAH rats. The potential mechanisms involved, at least in part, TLR4/MyD88/NF-κB signaling pathway. Electronic supplementary material The online version of this article (10.1186/s12974-018-1388-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fu-Yi Liu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Cai
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Chun Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Wu Ruan
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Guo-Ping Guan
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Hai-Zhou Pan
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Jian-Ru Li
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Cong Qian
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Jing-Sen Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Lin Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Gao Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
16
|
Höllig A, Stoffel-Wagner B, Clusmann H, Veldeman M, Schubert GA, Coburn M. Time Courses of Inflammatory Markers after Aneurysmal Subarachnoid Hemorrhage and Their Possible Relevance for Future Studies. Front Neurol 2017; 8:694. [PMID: 29312122 PMCID: PMC5744005 DOI: 10.3389/fneur.2017.00694] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 12/04/2017] [Indexed: 12/02/2022] Open
Abstract
Object Aneurysmal subarachnoid hemorrhage triggers an intense inflammatory response, which is suspected to increase the risk for secondary complications such as delayed cerebral ischemia (DCI). However, to date, the monitoring of the inflammatory response to detect secondary complications such as DCI has not become part of the clinical routine diagnostic. Here, we aim to illustrate the time courses of inflammatory parameters after aneurysmal subarachnoid hemorrhage (aSAH) and discuss the problems of inflammatory parameters as biomarkers but also their possible relevance for deeper understanding of the pathophysiology after aSAH and sophisticated planning of future studies. Materials and methods In this prospective cohort study, 109 patients with aSAH were initially included, n = 28 patients had to be excluded. Serum and—if possible—cerebral spinal fluid samples (n = 48) were retrieved at days 1, 4, 7, 10, and 14 after aSAH. Samples were analyzed for leukocyte count and C-reactive protein (CRP) (serum samples only) as well as matrix metallopeptidase 9 (MMP9), intercellular adhesion molecule 1 (ICAM1), and leukemia inhibitory factor (LIF) [both serum and cerebrospinal fluid (CSF) samples]. Time courses of the inflammatory parameters were displayed and related to the occurrence of DCI. Results We illustrate the time courses of leukocyte count, CRP, MMP9, ICAM1, and LIF in patients’ serum samples from the first until the 14th day after aSAH. Time courses of MMP9, ICAM1, and LIF in CSF samples are demonstrated. Furthermore, no significant difference was shown relating the time courses to the occurrence of DCI. Conclusion We estimate that the wide range of the measured values hampers their interpretation and usage as a biomarker. However, understanding the inflammatory response after aSAH and generating a multicenter database may facilitate further studies: realistic sample size calculations on the basis of a multicenter database will increase the quality and clinical relevance of the acquired results.
Collapse
Affiliation(s)
- Anke Höllig
- Department of Neurosurgery, University Hospital RWTH Aachen, Aachen, Germany
| | - Birgit Stoffel-Wagner
- Department of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Hans Clusmann
- Department of Neurosurgery, University Hospital RWTH Aachen, Aachen, Germany
| | - Michael Veldeman
- Department of Neurosurgery, University Hospital RWTH Aachen, Aachen, Germany
| | - Gerrit A Schubert
- Department of Neurosurgery, University Hospital RWTH Aachen, Aachen, Germany
| | - Mark Coburn
- Department of Anesthesiology, University Hospital RWTH Aachen, Aachen, Germany
| |
Collapse
|
17
|
Vellimana AK, Zhou ML, Singh I, Aum DJ, Nelson JW, Harris GR, Athiraman U, Han BH, Zipfel GJ. Minocycline protects against delayed cerebral ischemia after subarachnoid hemorrhage via matrix metalloproteinase-9 inhibition. Ann Clin Transl Neurol 2017; 4:865-876. [PMID: 29296615 PMCID: PMC5740245 DOI: 10.1002/acn3.492] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 09/06/2017] [Accepted: 09/25/2017] [Indexed: 12/11/2022] Open
Abstract
Objective Delayed cerebral ischemia (DCI) is an independent risk factor for poor outcome after aneurysmal subarachnoid hemorrhage (SAH) and is multifactorial in etiology. While prior studies have suggested a role for matrix metalloproteinase-9 (MMP-9) in early brain injury after SAH, its contribution to the pathophysiology of DCI is unclear. Methods In the first experiment, wild-type (WT) and MMP-9-/- mice were subjected to sham or endovascular perforation SAH surgery. In separate experiments, WT and MMP-9-/-mice were administered vehicle or minocycline either pre- or post-SAH. All mice underwent assessment of multiple components of DCI including vasospasm, neurobehavioral function, and microvessel thrombosis. In another experiment, rabbits were subjected to sham or cisterna magna injection SAH surgery, and administered vehicle or minocycline followed by vasospasm assessment. Results MMP-9 expression and activity was increased after SAH. Genetic (MMP-9-/- mice) and pharmacological (pre-SAH minocycline administration) inhibition of MMP-9 resulted in decreased vasospasm and neurobehavioral deficits. A therapeutically feasible strategy of post-SAH administration of minocycline resulted in attenuation of multiple components of DCI. Minocycline administration to MMP-9-/- mice did not yield additional protection. Consistent with experiments in mice, both pre- and post-SAH administration of minocycline attenuated SAH-induced vasospasm in rabbits. Interpretation MMP-9 is a key player in the pathogenesis of DCI. The consistent attenuation of multiple components of DCI with both pre- and post-SAH administration of minocycline across different species and experimental models of SAH, combined with the excellent safety profile of minocycline in humans suggest that a clinical trial in SAH patients is warranted.
Collapse
Affiliation(s)
- Ananth K Vellimana
- Department of Neurological Surgery Washington University School of Medicine St. Louis Missouri
| | - Meng-Liang Zhou
- Department of Neurosurgery Jinling Hospital School of Medicine Nanjing University Nanjing Jiangsu Province China
| | - Itender Singh
- Department of Neurological Surgery Washington University School of Medicine St. Louis Missouri
| | - Diane J Aum
- Department of Neurological Surgery Washington University School of Medicine St. Louis Missouri
| | - James W Nelson
- Department of Neurological Surgery Washington University School of Medicine St. Louis Missouri
| | - Glenn R Harris
- Department of Neurological Surgery Washington University School of Medicine St. Louis Missouri
| | - Umeshkumar Athiraman
- Department of Anesthesiology Washington University School of Medicine St. Louis Missouri
| | - Byung H Han
- Department of Pharmacology A.T. Still University of Health Sciences Kirksville College of Osteopathic Medicine Kirksville Missouri
| | - Gregory J Zipfel
- Department of Neurological Surgery Washington University School of Medicine St. Louis Missouri
| |
Collapse
|
18
|
|
19
|
Serum microRNAs are non-invasive biomarkers for the presence and progression of subarachnoid haemorrhage. Biosci Rep 2017; 37:BSR20160480. [PMID: 28115593 PMCID: PMC5322746 DOI: 10.1042/bsr20160480] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/18/2016] [Accepted: 01/23/2017] [Indexed: 01/06/2023] Open
Abstract
miRNAs are important regulators of translation and have been associated with the pathogenesis of a number of cardiovascular diseases including stroke and may be possible prognostic biomarkers. The purpose of the present study was to determine the expression levels of miRNAs in the sera of subarachnoid haemorrhage (SAH) patients and to evaluate their relationships with the severity and clinical outcome of SAH. Serum samples on day 3 after the onset of SAH were subjected to microarray analysis with Exqion miRCURYTM LNA array and quantitative PCR analysis. Serum samples from SAH patients (n=60) and healthy controls (n=10) were subjected to quantitative PCR analysis. The severities and clinical outcomes of the SAH patients were evaluated with the WFNS grade and the Modified Rankin Scale (mRS). Three miRNAs, miR-502-5p, miR-1297 and miR-4320 were significantly up-regulated in the sera of SAH patients when compared with the healthy controls. The serum miR-502-5p and miR-1297 levels were significantly higher in the patients with severe SAH and a poor outcome than in those with mild SAH and a good outcome (P<0.05). The areas under the receiver operating characteristic (ROC) curves (AUCs) of miR-502-5p, miR-1297 and miR-4320 to distinguish the SAH patients from the healthy controls were 0.958 (P<0.001), 0.950 (P<0.001) and 0.843 (P<0.001) respectively. Taken together, these results indicate that miR-502-5p and miR-1297 are potentially valuable indicators of the diagnosis, severity and prognosis of SAH, and miR-4320 was a potentially valuable indicator of the diagnosis of SAH.
Collapse
|