1
|
Akkaya A, Aykan D, Gencturk S, Unal G. Intermittent environmental enrichment induces behavioral despair, while intermittent social isolation impairs spatial learning in rats. Pharmacol Biochem Behav 2025; 250:174001. [PMID: 40118218 DOI: 10.1016/j.pbb.2025.174001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 03/01/2025] [Accepted: 03/17/2025] [Indexed: 03/23/2025]
Abstract
Environmental enrichment and social isolation constitute two well-studied experimental manipulations that result in several behavioral, neural, and molecular changes in rodents. Enrichment is linked to enhanced cognitive performance, and mitigation of different nervous system injuries and disorders. In contrast, social isolation or impoverished environment often induce negative effects on cognitive and affective systems. Both manipulations are typically examined with a short-term or chronic exposure, which cannot capture the actual human experiences. In this study, we explored the behavioral and neural alterations led by intermittent environmental enrichment or social isolation in adult Wistar rats. Animals were assigned to an enriched condition (EC), isolation/impoverished condition (IC), or standard condition (SC). The differential housing protocol involved transferring the animals to their respective cages for two days at the end of each five-day standard housing period for 8 weeks. Enriched animals exhibited behavioral despair in the forced swim test without differential overall locomotor activity. In the Morris water maze, impoverished animals displayed a slower learning rate compared to the SC and EC groups. In line with this, the IC group had fewer parvalbumin (PV) immunopositive (+) cells in the CA1 and dentate gyrus. No differences were observed in PV+ cell levels in the amygdala, while the IC group had more c-Fos+ cells in the same region following acute restraint stress. These findings implicate that intermittent isolation or enrichment are sufficient to trigger distinct behavioral changes at the cognitive and affective domains, and pinpoint PV as a biomarker for environmentally induced alterations in hippocampal memory performance.
Collapse
Affiliation(s)
- Aybuke Akkaya
- Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University, 34342 Istanbul, Turkey
| | - Deren Aykan
- Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University, 34342 Istanbul, Turkey
| | - Sinem Gencturk
- Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University, 34342 Istanbul, Turkey
| | - Gunes Unal
- Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University, 34342 Istanbul, Turkey.
| |
Collapse
|
2
|
Ding Z, Jia H, Yang Z, Yao N, Wang Y. The cardiovascular toxicity of clozapine in embryonic zebrafish and RNA sequencing-based transcriptome analysis. J Appl Toxicol 2024; 44:175-183. [PMID: 37605992 DOI: 10.1002/jat.4530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 07/29/2023] [Accepted: 08/07/2023] [Indexed: 08/23/2023]
Abstract
Clozapine (CLZ) is the most prescribed medication for treating refractory schizophrenia but is associated with significant cardiovascular toxicity. This study aimed to investigate the cardiovascular toxicity induced by CLZ using zebrafish as a model animal. For this purpose, zebrafish developed to 80-h post-fertilization were exposed to different CLZ concentration solutions for 24 h followed by cardiac morphological observations in yolk sac edema, pericardial edema, and blood coagulation, in addition to increased SV-BA distance, functionally manifested as bradycardia, and decreased cardiac ejection fraction using the untreated embryos as control. At the same time, RNA sequencing was used to study the possible molecular mechanism of CLZ-induced cardiovascular toxicity. The results indicated that compared to the control group, the experimental groups possessed a total of 5888 differentially expressed genes (DEGs), where gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment of analysis indicated that DEGs were mainly enriched in the pathways related to ion channels. These findings may provide new insights and directions for the subsequent in-depth study of the molecular mechanism of CLZ-induced cardiovascular toxicity.
Collapse
Affiliation(s)
- Zijiao Ding
- Department of Pathology, School of Basic Medicine, Anhui Medical University, Hefei, 230032, China
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Huiting Jia
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ziqian Yang
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Nan Yao
- Department of Pathology, School of Basic Medicine, Anhui Medical University, Hefei, 230032, China
| | - Yunyun Wang
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
3
|
Sheardown E, Mech AM, Petrazzini MEM, Leggieri A, Gidziela A, Hosseinian S, Sealy IM, Torres-Perez JV, Busch-Nentwich EM, Malanchini M, Brennan CH. Translational relevance of forward genetic screens in animal models for the study of psychiatric disease. Neurosci Biobehav Rev 2022; 135:104559. [PMID: 35124155 PMCID: PMC9016269 DOI: 10.1016/j.neubiorev.2022.104559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 12/10/2021] [Accepted: 02/01/2022] [Indexed: 12/16/2022]
Abstract
Psychiatric disorders represent a significant burden in our societies. Despite the convincing evidence pointing at gene and gene-environment interaction contributions, the role of genetics in the etiology of psychiatric disease is still poorly understood. Forward genetic screens in animal models have helped elucidate causal links. Here we discuss the application of mutagenesis-based forward genetic approaches in common animal model species: two invertebrates, nematodes (Caenorhabditis elegans) and fruit flies (Drosophila sp.); and two vertebrates, zebrafish (Danio rerio) and mice (Mus musculus), in relation to psychiatric disease. We also discuss the use of large scale genomic studies in human populations. Despite the advances using data from human populations, animal models coupled with next-generation sequencing strategies are still needed. Although with its own limitations, zebrafish possess characteristics that make them especially well-suited to forward genetic studies exploring the etiology of psychiatric disorders.
Collapse
Affiliation(s)
- Eva Sheardown
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | - Aleksandra M Mech
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | | | - Adele Leggieri
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | - Agnieszka Gidziela
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | - Saeedeh Hosseinian
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | - Ian M Sealy
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - Jose V Torres-Perez
- UK Dementia Research Institute at Imperial College London and Department of Brain Sciences, Imperial College London, 86 Wood Lane, London W12 0BZ, UK
| | - Elisabeth M Busch-Nentwich
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | - Margherita Malanchini
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | - Caroline H Brennan
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK.
| |
Collapse
|
4
|
D'Addario C, Pucci M, Bellia F, Girella A, Sabatucci A, Fanti F, Vismara M, Benatti B, Ferrara L, Fasciana F, Celebre L, Viganò C, Elli L, Sergi M, Maccarrone M, Buzzelli V, Trezza V, Dell'Osso B. Regulation of oxytocin receptor gene expression in obsessive-compulsive disorder: a possible role for the microbiota-host epigenetic axis. Clin Epigenetics 2022; 14:47. [PMID: 35361281 PMCID: PMC8973787 DOI: 10.1186/s13148-022-01264-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 03/18/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Obsessive-compulsive disorder (OCD) is a prevalent and severe clinical condition. Robust evidence suggests a gene-environment interplay in its etiopathogenesis, yet the underlying molecular clues remain only partially understood. In order to further deepen our understanding of OCD, it is essential to ascertain how genes interact with environmental risk factors, a cross-talk that is thought to be mediated by epigenetic mechanisms. The human microbiota may be a key player, because bacterial metabolites can act as epigenetic modulators. We analyzed, in the blood and saliva of OCD subjects and healthy controls, the transcriptional regulation of the oxytocin receptor gene and, in saliva, also the different levels of major phyla. We also investigated the same molecular mechanisms in specific brain regions of socially isolated rats showing stereotyped behaviors reminiscent of OCD as well as short chain fatty acid levels in the feces of rats. RESULTS Higher levels of oxytocin receptor gene DNA methylation, inversely correlated with gene expression, were observed in the blood as well as saliva of OCD subjects when compared to controls. Moreover, Actinobacteria also resulted higher in OCD and directly correlated with oxytocin receptor gene epigenetic alterations. The same pattern of changes was present in the prefrontal cortex of socially-isolated rats, where also altered levels of fecal butyrate were observed at the beginning of the isolation procedure. CONCLUSIONS This is the first demonstration of an interplay between microbiota modulation and epigenetic regulation of gene expression in OCD, opening new avenues for the understanding of disease trajectories and for the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Claudio D'Addario
- Faculty of Bioscience, University of Teramo, Teramo, Italy. .,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden. .,Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Renato Balzarini, 1, 64100, Teramo, Italy.
| | | | - Fabio Bellia
- Faculty of Bioscience, University of Teramo, Teramo, Italy
| | | | | | - Federico Fanti
- Faculty of Bioscience, University of Teramo, Teramo, Italy
| | - Matteo Vismara
- Department of Mental Health, Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milano, Milano, Italy
| | - Beatrice Benatti
- Department of Mental Health, Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milano, Milano, Italy
| | - Luca Ferrara
- Department of Mental Health, Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milano, Milano, Italy
| | - Federica Fasciana
- Department of Mental Health, Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milano, Milano, Italy
| | - Laura Celebre
- Department of Mental Health, Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milano, Milano, Italy
| | - Caterina Viganò
- Department of Mental Health, Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milano, Milano, Italy
| | - Luca Elli
- Department of Mental Health, Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milano, Milano, Italy
| | - Manuel Sergi
- Faculty of Bioscience, University of Teramo, Teramo, Italy
| | - Mauro Maccarrone
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy.,European Center for Brain Research/Santa Lucia Foundation IRCCS, Rome, Italy
| | | | | | - Bernardo Dell'Osso
- Department of Mental Health, Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milano, Milano, Italy. .,Department of Psychiatry, Department of Biomedical and Clinical Sciences "Luigi Sacco", Psychiatry Unit 2, ASST Sacco-Fatebenefratelli, Via G.B. Grassi, 74, 20157, Milan, Italy.
| |
Collapse
|
5
|
Social isolation reinforces aging-related behavioral inflexibility by promoting neuronal necroptosis in basolateral amygdala. Mol Psychiatry 2022; 27:4050-4063. [PMID: 35840795 PMCID: PMC9284973 DOI: 10.1038/s41380-022-01694-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 02/07/2023]
Abstract
Aging is characterized with a progressive decline in many cognitive functions, including behavioral flexibility, an important ability to respond appropriately to changing environmental contingencies. However, the underlying mechanisms of impaired behavioral flexibility in aging are not clear. In this study, we reported that necroptosis-induced reduction of neuronal activity in the basolateral amygdala (BLA) plays an important role in behavioral inflexibility in 5-month-old mice of the senescence-accelerated mice prone-8 (SAMP8) line, a well-established model with age-related phenotypes. Application of Nec-1s, a specific inhibitor of necroptosis, reversed the impairment of behavioral flexibility in SAMP8 mice. We further observed that the loss of glycogen synthase kinase 3α (GSK-3α) was strongly correlated with necroptosis in the BLA of aged mice and the amygdala of aged cynomolgus monkeys (Macaca fascicularis). Moreover, genetic deletion or knockdown of GSK-3α led to the activation of necroptosis and impaired behavioral flexibility in wild-type mice, while the restoration of GSK-3α expression in the BLA arrested necroptosis and behavioral inflexibility in aged mice. We further observed that GSK-3α loss resulted in the activation of mTORC1 signaling to promote RIPK3-dependent necroptosis. Importantly, we discovered that social isolation, a prevalent phenomenon in aged people, facilitated necroptosis and behavioral inflexibility in 4-month-old SAMP8 mice. Overall, our study not only revealed the molecular mechanisms of the dysfunction of behavioral flexibility in aged people but also identified a critical lifestyle risk factor and a possible intervention strategy.
Collapse
|
6
|
Taheri Zadeh Z, Rahmani S, Alidadi F, Joushi S, Esmaeilpour K. Depresssion, anxiety and other cognitive consequences of social isolation: Drug and non-drug treatments. Int J Clin Pract 2021; 75:e14949. [PMID: 34614276 DOI: 10.1111/ijcp.14949] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 10/04/2021] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE During the COVID-19 pandemic, quarantine and staying at home is advised. The social relationship between people has become deficient, and human social isolation (SI) has become the consequence of this situation. It was shown that SI has made changes in hippocampal neuroplasticity, which will lead to poor cognitive function and behavioural abnormalities. There is a connection between SI, learning, and memory impairments. In addition, anxiety-like behaviour and increased aggressive mood in long-term isolation have been revealed during the COVID-19 outbreak. METHODS Term searches was done in Google Scholar, Scopus, ScienceDirect, Web of Science and PubMed databases as well as hand searching in key resource journals from 1979 to 2020. RESULTS Studies have shown that some drug administrations may positively affect or even prevent social isolation consequences in animal models. These drug treatments have included opioid drugs, anti-depressants, Antioxidants, and herbal medications. In addition to drug interventions, there are non-drug treatments that include an enriched environment, regular exercise, and music. CONCLUSION This manuscript aims to review improved cognitive impairments induced by SI during COVID-19.
Collapse
Affiliation(s)
- Zahra Taheri Zadeh
- Student Research Committee, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Shayan Rahmani
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Sara Joushi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Khadijeh Esmaeilpour
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Canada
| |
Collapse
|
7
|
Venkataramaiah C, Payani S, Priya BL, Pradeepkiran JA. Therapeutic potentiality of a new flavonoid against ketamine induced glutamatergic dysregulation in schizophrenia: In vivo and in silico approach. Biomed Pharmacother 2021; 138:111453. [PMID: 34187143 DOI: 10.1016/j.biopha.2021.111453] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 02/15/2021] [Accepted: 02/27/2021] [Indexed: 12/14/2022] Open
Abstract
Glutamate and dopamine hypotheses are leading theories of the pathophysiology of schizophrenia. Multiple lines of evidence suggest that dopaminergic and glutamatergic dysfunction is an underlying mechanism in schizophrenia. Since currently available antipsychotic drugs have significant untoward side effects, identification of new neuroprotective compounds from the medicinal plants may prove beneficial in neurodegenerative disorders. In our previous investigation we have isolated, characterized and reported a novel bioactive compound viz. 3-(3, 4-dimethoxy phenyl)-1-(4-methoxy phenyl) prop-2-en-1-one from the Celastrus paniculatus (CP) is used for the current clinical intervention of schizophrenia disease. The present study is mainly aimed to evaluate the neuroprotective potential of the above bioactive compound against ketamine-induced schizophrenia with particular reference to glutamate metabolism using in vivo and in silico methods. The decrease in glutamine content and the activity levels of glutamate dehydrogenase, glutamine synthetase, and glutaminase in different regions of the rat brain suggests lowered oxidative deamination and lowered mobilization of glutamate towards glutamine formation during ketamine-induced schizophrenia. Pre-treatment with the plant compound reversed the alterations in glutamate metabolism and restored the normal glutamatergic neurotransmission akin to the reference drug, clozapine. In addition, the compound has shown strong interaction and exhibited the highest binding energies against selected NMDA receptors with the lowest inhibition constant than the reference drug. Recoveries of these parameters during anti-schizophrenic treatment suggest that administration of plant compound might offer neuroprotection by interrupting the pathological cascade of glutamatergic neurotransmission that occurs during schizophrenia.
Collapse
Affiliation(s)
- Chintha Venkataramaiah
- Division of Molecular Biology, Department of Zoology, Sri Venkateswara University, Tirupati, Andhra Pradesh, India; Department of Zoology, Faculty of Humanities and Sciences, Sri Venkateswara Vedic University, Tirupati, Andhra Pradesh, India
| | - Sholapuri Payani
- Division of Molecular Biology, Department of Zoology, Sri Venkateswara University, Tirupati, Andhra Pradesh, India
| | - Bandila Lakshmi Priya
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati, Andhra Pradesh, India
| | - Jangampalli Adi Pradeepkiran
- Division of Molecular Biology, Department of Zoology, Sri Venkateswara University, Tirupati, Andhra Pradesh, India; Deapartment of Internal Medicine, Texas Tech University of Health Science Centre, Lubbock, TX, USA.
| |
Collapse
|
8
|
Wang P, Li M, Zhao A, Ma J. Application of animal experimental models in the research of schizophrenia. Am J Med Genet B Neuropsychiatr Genet 2021; 186:209-227. [PMID: 34155806 DOI: 10.1002/ajmg.b.32863] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 05/04/2021] [Accepted: 05/31/2021] [Indexed: 12/14/2022]
Abstract
Schizophrenia is a relatively common but serious mental illness that results in a heavy burden to patients, their families, and society. The disease can be triggered by multiple factors, while the specific pathogenesis remains unclear. The development of effective therapeutic drugs for schizophrenia relies on a comprehensive understanding of the basic biology and pathophysiology of the disease. Therefore, effective animal experimental models play a vital role in the study of schizophrenia. Based on different molecular mechanisms and modeling methods, the currently used experimental animal experimental models of schizophrenia can be divided into four categories that can better simulate the clinical symptoms and the interplay between susceptible genes and the environment: neurodevelopmental, drug-induced, genetic-engineering, and genetic-environmental interaction of animal experimental models. Each of these categories contains multiple subtypes, which has its own advantages and disadvantages and therefore requires careful selection in a research application. The emergence and utilization of these models are promising in the prediction of the risk of schizophrenia at the molecular level, which will shed light on effective and targeted treatment at the genetic level.
Collapse
Affiliation(s)
- Pengjie Wang
- Medical Research Center, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, China.,Department of Electron Microscope, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Manling Li
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Gui Yang, Guizhou, China
| | - Aizhen Zhao
- Medical Research Center, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, China
| | - Jie Ma
- Medical Research Center, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, China.,Department of Electron Microscope, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| |
Collapse
|
9
|
Neonatal phencyclidine and social isolation in the rat: effects of clozapine on locomotor activity, social recognition, prepulse inhibition, and executive functions deficits. Psychopharmacology (Berl) 2021; 238:517-528. [PMID: 33169202 DOI: 10.1007/s00213-020-05700-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 10/30/2020] [Indexed: 12/26/2022]
Abstract
RATIONALE There is a need to develop animal models of schizophrenia-like behaviors that have both construct and predictive validity. Recently, a neonatal phencyclidine (PCP) and post-weaning social isolation dual-hit model was developed; however, its face and predictive validities need to be further investigated. OBJECTIVE The aims of this study were to extend the characterization of the behavioral changes occurring in the neonatal PCP and post-weaning social isolation dual-hit rat model and to evaluate the effects of chronic treatment with clozapine on signs related to schizophrenia. METHODS Male Wistar rat pups were treated with PCP (10 mg/kg s.c.) on postnatal days (PND) 7, 9, and 11. Starting from weaning, neonatal PCP-treated rat pups were socially isolated, while control saline-treated rats were group housed. At adulthood, rats were assessed using behavioral tasks evaluating locomotor activity, social recognition, prepulse inhibition, and reversal learning. Clozapine (3 mg/kg i.p.) was administered daily starting from a week before behavioral tests and until the end of the study. RESULTS Neonatal PCP-treated and post-weaning social isolated (PCP-SI) rats displayed persistent and robust locomotor hyperactivity as well as social recognition impairment. The latter could not be explained by variations in the motivation to interact with a juvenile rat. Weak-to-moderate deficits in prepulse inhibition and reversal learning were also observed. Chronic treatment with clozapine attenuated the observed locomotor hyperactivity and social recognition deficits. CONCLUSION The PCP-SI model presents enduring and robust deficits (hyperactivity and social recognition impairment) associated with positive symptoms and cognitive/social deficits of schizophrenia, respectively. These deficits are normalized by chronic treatment with clozapine, thereby confirming the predictive validity of this animal model.
Collapse
|
10
|
Chintha V, Wudayagiri R. Isolation and neuroprotective prospective of novel bioactive compound "3-(3,4-dimethoxyphenyl)-1-(4-methoxyphenyl) prop-2-en-1-one" against ketamine-induced cognitive deficits in schizophrenia: an experimental study. Nat Prod Res 2021; 36:1352-1358. [PMID: 33415998 DOI: 10.1080/14786419.2020.1869968] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
For the first time a new flavonoid compound is isolated from the seeds of Celastrus paniculatus (CP) using different chromatographic techniques and it's structure is predicted as "3-(3,4-dimethoxyphenyl)-1-(4-methoxyphenyl)prop-2-en-1-one" by employing various spectroscopic studies. The neuroprotective potential of this flavonoid was evaluated against ketamine-induced cognitive deficits with special reference to cholinergic system in vivo. The compound has exhibited significant neuroprotective property against ketamine-induced cholinergic alterations in different brain regions of rat which are restored to normal during the treatment with the compound on par with the reference compound, clozapine. Moreover, the isolated compound was found to be non-toxic to the animal during the treatment which indicates its safety in any human health related applications and can add value to the new drug development. In conclusion, this is the first study of new flavonoid compound of CP and its protective efficacy against schizophrenia.
Collapse
Affiliation(s)
- Venkataramaiah Chintha
- Division of Molecular Biology, Department of Zoology, Sri Venkateswara University, Tirupati, India.,Department of Zoology, Faculty of Humanities and Sciences, Sri Venkateswara Vedic University, Tirupati, India
| | - Rajendra Wudayagiri
- Division of Molecular Biology, Department of Zoology, Sri Venkateswara University, Tirupati, India
| |
Collapse
|
11
|
Venkataramaiah C, Lakshmi Priya B, Rajendra W. Perturbations in the catecholamine metabolism and protective effect of "3-(3, 4-dimethoxy phenyl)-1-4(methoxy phenyl) prop-2-en-1-one" during ketamine-induced schizophrenia: an in vivo and in silico studies. J Biomol Struct Dyn 2020; 39:3523-3532. [PMID: 32375600 DOI: 10.1080/07391102.2020.1765875] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Different kinds of secondary metabolites present in the medicinal plants play an important role to alleviate different human ailments including neurodegenerative disorders such as Parkinson's, Alzheimer's, epilepsy and schizophrenia etc. Recently we have isolated and characterized a novel bioactive compound viz. 3-(3,4-dimethoxy phenyl)-1-4(methoxy phenyl)prop-2-en-1-one from the methanolic extract of Celastrus paniculatus (CP) which has been widely used for the treatment of neurodegenerative diseases. The present investigation is mainly aimed to evaluate the neuroprotective potential of the above bioactive compound against ketamine-induced schizophrenia with particular reference to catecholaminergic metabolism using in vivo and in silico methods. Ketamine-induced schizophrenia caused significant elevation in biogenic amines (epinephrine, nor epinephrine, dopamine and 5-HT) and monoamine oxidase activity levels which were restored to normal during the treatment with the bioactive compound akin to the reference compound, clozapine. In addition, the compound has shown highest binding score against all the biogenic amine receptors viz. D1, D2, D3, D4 and serotonin receptor, 5-HT2A with lowest inhibition constant values than the reference compound, clozapine. The present findings suggest that modulation of CNS monoamine neurotransmitter system might partly contribute to the impairments associated with schizophrenia and the plant compound alleviates the monoaminergic abnormalities associated with the neurological dysfunction.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Chintha Venkataramaiah
- Division of Molecular Biology, Department of Zoology, Sri Venkateswara University, Tirupati, Andhra Pradesh, India.,Department of Zoology, Faculty of Humanities and Sciences, Sri Venkateswara Vedic University, Tirupati, Andhra Pradesh, India
| | - Bandila Lakshmi Priya
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati, Andhra Pradesh, India
| | - Wudayagiri Rajendra
- Division of Molecular Biology, Department of Zoology, Sri Venkateswara University, Tirupati, Andhra Pradesh, India
| |
Collapse
|
12
|
Begni V, Zampar S, Longo L, Riva MA. Sex Differences in the Enduring Effects of Social Deprivation during Adolescence in Rats: Implications for Psychiatric Disorders. Neuroscience 2020; 437:11-22. [PMID: 32334072 DOI: 10.1016/j.neuroscience.2020.04.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/14/2020] [Accepted: 04/15/2020] [Indexed: 12/13/2022]
Abstract
The exposure to adverse environmental situations during sensitive periods of development may induce re-organizational effects on different systems and increase the vulnerability to develop psychiatric disorders later in life. The adolescent period has been demonstrated extremely susceptible to stressful events. However, most of the studies focused on the immediate effects of stress exposure and few of them investigated sex differences. This raised the question if these modulations might also be long-lasting and how the differential maturational events taking place during adolescence between males and females might have a role in the detrimental effects of stress. Given the importance of social play for the right maturation of behavior during adolescence, we used the preclinical model of social deprivation, based on the lack of all social contacts, for four weeks after weaning, followed by re-socialization until adulthood. We found that both male and female animals reared in isolation during adolescence developed an anhedonic phenotype at adulthood, without any impairments in the cognitive domain. At molecular level, these functional changes were associated with sex-specific impairments in the expression of neuroplastic markers as well as of hypothalamic-pituitary-adrenal axis-related genes. Lastly, we also reported anatomically-selective changes associated with the enduring effects of social isolation.
Collapse
Affiliation(s)
- Veronica Begni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan Italy.
| | - Silvia Zampar
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan Italy
| | - Linda Longo
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan Italy
| | - Marco Andrea Riva
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan Italy.
| |
Collapse
|
13
|
Venkataramaiah C. Modulations in the ATPases during ketamine-induced schizophrenia and regulatory effect of "3-(3, 4-dimethoxy phenyl) -1- (4-methoxyphenyl) prop-2-en-1-one": an in vivo and in silico studies. J Recept Signal Transduct Res 2020; 40:148-156. [PMID: 32009493 DOI: 10.1080/10799893.2020.1720242] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Schizophrenia is a devastating illness and displays a wide range of psychotic symptoms. Accumulating evidence indicate impairment of bioenergetic pathways including energy storage and usage in the pathogenesis of schizophrenia. Although well-established synthetic drugs are being used for the management of schizophrenia, most of them have several adverse effects. Hence, natural products derived from medicinal plants represent a continuous major source for ethnomedicine-derived pharmaceuticals for different neurological disorders including schizophrenia. In the present study, we have investigated the neuroprotective effect of the novel bioactive compound i.e. "3-(3,4-dimethoxy phenyl) -1- (4-methoxyphenyl) prop-2-en-1-one" of Celastrus paniculata against ketamine-induced schizophrenia with particular reference to the activities of ATPase using in vivo and in silico methods. Ketamine-induced schizophrenia caused significant reduction in the activities of all three ATPases (Na+/K+, Ca2+ and Mg2+) in different regions of brain which reflects the decreased turnover of ATP, presumably due to the inhibition of oxidoreductase system and uncoupling of the same from the electron transport system. On par with the reference compound, clozapine, the activity levels of all three ATPases were restored to normal after pretreatment with the compound suggesting recovery of energy loss that was occurred during ketamine-induced schizophrenia. Besides, the compound has shown strong interaction and exhibited highest binding energies against all the three ATPases with a lowest inhibition constant value than the clozapine. The results of the present study clearly imply that the compound exhibit significant neuroprotective and antischizophrenic effect by modulating bioenergietic pathways that were altered during induced schizophrenia.
Collapse
Affiliation(s)
- Chintha Venkataramaiah
- Division of Molecular Biology, Department of Zoology, Sri Venkateswara University, Tirupati, India
| |
Collapse
|
14
|
Fei XY, Liu S, Sun YH, Cheng L. Social isolation improves the performance of rodents in a novel cognitive flexibility task. Front Zool 2019; 16:43. [PMID: 31788010 PMCID: PMC6858689 DOI: 10.1186/s12983-019-0339-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 10/09/2019] [Indexed: 01/16/2023] Open
Abstract
Background Social isolation, i.e., the deprivation of social contact, is a highly stressful circumstance that affects behavioral and functional brain development in social animals. Cognitive flexibility, one of the essential executive brain function that facilitates survival problem solving, was reported to be impaired after social isolation rearing. However, most of the previous studies have focused on the constrained aspect of flexibility and little is known about the unconstrained aspect. In the present study, the unconstrained cognitive flexibility of Kunming mice (Mus musculus, Km) reared in isolation was examined by a novel digging task. The exploratory behavior of the mice was also tested utilizing the hole-board and elevated plus maze tests to explain the differences in cognitive flexibility between the mice reared socially and in isolation. Results The results demonstrated that the isolated mice had a higher success rate in solving the novel digging problem and showed a higher rate of exploratory behavior compared with the controls. Linear regression analysis revealed that the time it took the mice to solve the digging problem was negatively associated with exploratory behavior. Conclusions The data suggest that social isolation rearing improves unconstrained cognitive flexibility in mice, which is probably related to an increase in their exploratory behavior. Such effects may reflect the behavioral and cognitive evolutionary adaptations of rodents to survive under complex and stressful conditions.
Collapse
Affiliation(s)
- Xin-Yuan Fei
- 1School of Psychology & Key Laboratory of Adolescent Cyberpsycology and Behavior (CCNU) of Ministry of Education, Central China Normal University, Wuhan, 430079 China
| | - Sha Liu
- 1School of Psychology & Key Laboratory of Adolescent Cyberpsycology and Behavior (CCNU) of Ministry of Education, Central China Normal University, Wuhan, 430079 China
| | - Yan-Hong Sun
- 2Fisheries Research Institute, Wuhan Academy of Agricultural Sciences, Wuhan, 430207 China
| | - Liang Cheng
- 1School of Psychology & Key Laboratory of Adolescent Cyberpsycology and Behavior (CCNU) of Ministry of Education, Central China Normal University, Wuhan, 430079 China
| |
Collapse
|
15
|
Liu Y, Sun Y, Zhao X, Kim JY, Luo L, Wang Q, Meng X, Li Y, Sui N, Chen ZF, Pan C, Li L, Zhang Y. Enhancement of Aggression Induced by Isolation Rearing is Associated with a Lack of Central Serotonin. Neurosci Bull 2019; 35:841-852. [PMID: 30977041 DOI: 10.1007/s12264-019-00373-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 01/13/2019] [Indexed: 01/06/2023] Open
Abstract
Isolation rearing (IR) enhances aggressive behavior, and the central serotonin (5-hydroxytryptamine, 5-HT) system has been linked to IR-induced aggression. However, whether the alteration of central serotonin is the cause or consequence of enhanced aggression is still unknown. In the present study, using mice deficient in central serotonin Tph2-/- and Lmx1b-/-, we examined the association between central serotonin and aggression with or without social isolation. We demonstrated that central serotonergic neurons are critical for the enhanced aggression after IR. 5-HT depletion in wild-type mice increased aggression. On the other hand, application of 5-HT in Lmx1b-/- mice inhibited the enhancement of aggression under social isolation conditions. Dopamine was downregulated in Lmx1b-/- mice. Similar to 5-HT, L-DOPA decreased aggression in Lmx1b-/- mice. Our results link the serotoninergic system directly to aggression and this may have clinical implications for aggression-related human conditions.
Collapse
Affiliation(s)
- Yiqiong Liu
- State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing, 100871, China.,PKU-IDG/McGovern Institute for Brain Research, Beijing, 100871, China
| | | | - Xiaoyan Zhao
- Department of Anesthesiology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100005, China
| | - Ji-Young Kim
- Department of Anesthesiology, Department of Psychiatry, Department of Developmental Biology, Center for the Study of Itch, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Lu Luo
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, 100871, China
| | - Qian Wang
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, 100871, China
| | - Xiaolu Meng
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yonghui Li
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Nan Sui
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhou-Feng Chen
- Department of Anesthesiology, Department of Psychiatry, Department of Developmental Biology, Center for the Study of Itch, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Chuxiong Pan
- Department of Anesthesiology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100005, China
| | - Liang Li
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, 100871, China. .,Beijing Institute for Brain Disorders, Beijing, 100069, China.
| | - Yan Zhang
- State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing, 100871, China. .,PKU-IDG/McGovern Institute for Brain Research, Beijing, 100871, China.
| |
Collapse
|
16
|
Li L, Dong X, Tu C, Li X, Peng Z, Zhou Y, Zhang D, Jiang J, Burke A, Zhao Z, Jin L, Jiang Y. Opposite effects of cannabinoid CB 1 and CB 2 receptors on antipsychotic clozapine-induced cardiotoxicity. Br J Pharmacol 2019; 176:890-905. [PMID: 30707759 PMCID: PMC6433645 DOI: 10.1111/bph.14591] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 10/13/2018] [Accepted: 12/10/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND AND PURPOSE Clozapine is an atypical antipsychotic drug that is very efficacious in treating psychosis, but the risk of severe cardiotoxicity limits its clinical use. The present study investigated the harmful effects of clozapine on myocardium and assessed the involvement of cannabinoid receptors in its cardiotoxicity. EXPERIMENTAL APPROACH Clozapine alone or in combination with selective cannabinoid receptor antagonists or agonists were used to treat mice and cardiomyocytes. KEY RESULTS Clozapine induced myocardial inflammation and infiltration 7 days after i.p. injection. Mice survival rate and myocardial infiltration, and fibrotic lesions were dose-dependently worsened by clozapine. Clozapine decreased major endocannabinoid levels in sera and cultured cardiomyocytes. Cannabinoid CB1 receptors decreased in clozapine-treated hearts and were translocated from cytomembranes to cytoplasm and nuclei, whereas CB2 receptors increased in clozapine-treated hearts and inversely translocated from nuclei to the cytomembrane. Selective antagonists of CB1 receptors, rimonabant and AM281, but not its selective agonist arachidonyl-2'-chloroethylamide, ameliorated clozapine-induced myocardial inflammatory infiltration and fibrotic lesions. In contrast, selective agonists of CB2 receptors, AM1241 and JWH-133, but not its selective antagonist AM630, blunted clozapine-mediated cardiotoxicity in mice. In cultured cardiomyocytes, clozapine increased the pro-inflammatory factor IL-1β and the concentrations of myocardial injury markers (LDH and aspartate aminotransferase); these effects were reversed by either a CB1 antagonist or CB2 agonist and further prevented by combined pretreatments. CONCLUSIONS AND IMPLICATIONS Our data provide evidence that cannabinoid CB1 and CB2 receptors have opposite effects and selective antagonists of CB1 or agonists of CB2 receptors might confer protective effects against clozapine in myocardium.
Collapse
MESH Headings
- Animals
- Antipsychotic Agents/pharmacology
- Cannabinoid Receptor Agonists/pharmacology
- Cannabinoid Receptor Antagonists/pharmacology
- Cardiotoxicity/metabolism
- Cardiotoxicity/pathology
- Cell Line
- Clozapine/pharmacology
- Male
- Mice
- Myocardium/metabolism
- Myocardium/pathology
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/agonists
- Receptor, Cannabinoid, CB2/antagonists & inhibitors
- Receptor, Cannabinoid, CB2/metabolism
Collapse
Affiliation(s)
- Liliang Li
- Department of Forensic Medicine, School of Basic Medical SciencesFudan UniversityShanghaiChina
- Department of PathologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA
- Ministry of Education Key Laboratory of Contemporary Anthropology and State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life SciencesFudan UniversityShanghaiChina
| | - Xiaoru Dong
- Department of Forensic Medicine, School of Basic Medical SciencesFudan UniversityShanghaiChina
| | - Chunyan Tu
- Department of Forensic Medicine, School of Basic Medical SciencesFudan UniversityShanghaiChina
| | - Xiaoqing Li
- Department of Forensic Medicine, School of Basic Medical SciencesFudan UniversityShanghaiChina
| | - Zhao Peng
- Department of Forensic Medicine, School of Basic Medical SciencesFudan UniversityShanghaiChina
| | - Yiling Zhou
- Department of Forensic Medicine, School of Basic Medical SciencesFudan UniversityShanghaiChina
| | - Dingang Zhang
- Department of Forensic Medicine, School of Basic Medical SciencesFudan UniversityShanghaiChina
| | - Jieqing Jiang
- Department of Forensic Medicine, School of Basic Medical SciencesFudan UniversityShanghaiChina
| | - Allen Burke
- Department of PathologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Ziqin Zhao
- Department of Forensic Medicine, School of Basic Medical SciencesFudan UniversityShanghaiChina
| | - Li Jin
- Ministry of Education Key Laboratory of Contemporary Anthropology and State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life SciencesFudan UniversityShanghaiChina
| | - Yan Jiang
- Department of Forensic Medicine, School of Basic Medical SciencesFudan UniversityShanghaiChina
| |
Collapse
|
17
|
Ilg AK, Enkel T, Bartsch D, Bähner F. Behavioral Effects of Acute Systemic Low-Dose Clozapine in Wild-Type Rats: Implications for the Use of DREADDs in Behavioral Neuroscience. Front Behav Neurosci 2018; 12:173. [PMID: 30154702 PMCID: PMC6102325 DOI: 10.3389/fnbeh.2018.00173] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 07/24/2018] [Indexed: 11/23/2022] Open
Abstract
Designer receptors exclusively activated by designer drugs (DREADDs) are popular tools used to manipulate the activity of defined groups of neurons. Recent work has shown that DREADD effects in the brain are most likely not mediated by the proposed ligand clozapine-N-oxide (CNO) but its metabolite clozapine (CLOZ). However, it is not known whether low doses of CLOZ required to activate DREADDs already have DREADD-independent effects on behavior as described for higher CLOZ doses used in previous preclinical studies. To close this gap, we compared effects of acute systemic (i.p.) CLOZ treatment vs. vehicle (VEH) in a wide range of behavioral tests in male wild-type rats. We found that CLOZ doses as low as 0.05–0.1 mg/kg significantly affected locomotion, anxiety and cognitive flexibility but had no effect on working memory or social interaction. These results highlight the need for careful controls in future chemogenetic experiments and show that previous results in studies lacking CNO/CLOZ controls may require critical re-evaluation.
Collapse
Affiliation(s)
- Ann-Kathrin Ilg
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Thomas Enkel
- Department of Theoretical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Department of Molecular Biology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Dusan Bartsch
- Department of Molecular Biology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Florian Bähner
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Department of Theoretical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
18
|
Novick AM, Levandowski ML, Laumann LE, Philip NS, Price LH, Tyrka AR. The effects of early life stress on reward processing. J Psychiatr Res 2018; 101:80-103. [PMID: 29567510 PMCID: PMC5889741 DOI: 10.1016/j.jpsychires.2018.02.002] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 01/29/2018] [Accepted: 02/08/2018] [Indexed: 01/19/2023]
Abstract
Early life stress (ELS), in the form of childhood maltreatment, abuse, or neglect, increases the risk for psychiatric sequelae later in life. The neurobiology of response to early stress and of reward processing overlap substantially, leading to the prediction that reward processing may be a primary mediator of the effects of early life stress. We describe a growing body of literature investigating the effects of early life stressors on reward processing in animals and humans. Despite variation in the reviewed studies, an emerging pattern of results indicates that ELS results in deficits of ventral striatum-related functions of reward responsiveness and approach motivation, especially when the stressor is experienced in early in development. For stressors experienced later in the juvenile period and adolescence, the animal literature suggests an opposite effect, in which ELS results in increased hedonic drive. Future research in this area will help elucidate the transdiagnostic impact of early life stress, and therefore potentially identify and intervene with at-risk youth, prior to the emergence of clinical psychopathology.
Collapse
Affiliation(s)
- Andrew M. Novick
- Mood Disorders Research Program and Laboratory for Clinical and Translational Neuroscience, Butler Hospital, Providence, RI, USA,Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA,Corresponding author: Andrew M Novick, MD PhD, Butler Hospital, 345 Blackstone Blvd, Providence, RI 02906, USA,
| | - Mateus L. Levandowski
- Developmental Cognitive Neuroscience Lab (DCNL), Graduate Program in Psychology, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Laura E. Laumann
- Mood Disorders Research Program and Laboratory for Clinical and Translational Neuroscience, Butler Hospital, Providence, RI, USA
| | - Noah S. Philip
- Mood Disorders Research Program and Laboratory for Clinical and Translational Neuroscience, Butler Hospital, Providence, RI, USA,Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA,Center for Neurorestoration and Neurotechnology, Providence VA, Providence, RI, USA
| | - Lawrence H. Price
- Mood Disorders Research Program and Laboratory for Clinical and Translational Neuroscience, Butler Hospital, Providence, RI, USA,Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA
| | - Audrey R. Tyrka
- Mood Disorders Research Program and Laboratory for Clinical and Translational Neuroscience, Butler Hospital, Providence, RI, USA,Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
19
|
Phencyclidine increased while isolation rearing did not affect progressive ratio responding in rats: Investigating potential models of amotivation in schizophrenia. Behav Brain Res 2017; 364:413-422. [PMID: 29175446 DOI: 10.1016/j.bbr.2017.11.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/20/2017] [Accepted: 11/21/2017] [Indexed: 11/22/2022]
Abstract
BACKGROUND Schizophrenia is a debilitating neurodevelopmental disorder affecting 1% of the global population with heterogeneous symptoms including positive, negative, and cognitive. While treatment for positive symptoms exists, none have been developed to treat negative symptoms. Animal models of schizophrenia are required to test targeted treatments and since patients exhibit reduced effort (breakpoints) for reward in a progressive ratio (PR) task, we examined the PR breakpoints of rats treated with the NMDA receptor antagonist phencyclidine or those reared in isolation - two common manipulations used to induce schizophrenia-relevant behaviors in rodents. METHODS In two cohorts, the PR breakpoint for a palatable food reward was examined in Long Evans rats after: 1) a repeated phencyclidine regimen; 2) A subchronic phencyclidine regimen followed by drug washout; and 3) post-weaning social isolation. RESULTS Rats treated with repeated phencyclidine and those following washout from phencyclidine exhibited higher PR breakpoints than vehicle-treated rats. The breakpoint of isolation reared rats did not differ from those socially reared, despite abnormalities of these rats in other schizophrenia-relevant behaviors. CONCLUSION Despite their common use for modeling other schizophrenia-relevant behaviors neither phencyclidine treatment nor isolation rearing recreated the motivational deficits observed in patients with schizophrenia, as measured by PR breakpoint. Other manipulations, and negative symptom-relevant behaviors, require investigation prior to testing putative therapeutics.
Collapse
|
20
|
Differential effects of social and novelty enrichment on individual differences in impulsivity and behavioral flexibility. Behav Brain Res 2017; 327:54-64. [PMID: 28341610 DOI: 10.1016/j.bbr.2017.03.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 03/10/2017] [Accepted: 03/20/2017] [Indexed: 01/03/2023]
Abstract
Early life experience profoundly impacts behavior and cognitive functions in rats. The present study investigated how the presence of conspecifics and/or novel objects, could independently influence individual differences in impulsivity and behavioral flexibility. Twenty-four rats were reared in an isolated condition, an isolated condition with a novel object, a pair-housed social condition, or a pair-housed social condition with a novel object. The rats were then tested on an impulsive choice task, a behavioral flexibility task, and an impulsive action task. Novelty enrichment produced an overall increase in impulsive choice, while social enrichment decreased impulsive choice in the absence of novelty enrichment and also produced an overall increase in impulsive action. In the behavioral flexibility task, social enrichment increased regressive errors, whereas both social and novelty enrichment reduced never-reinforced errors. Individual differences analyses indicated a significant relationship between performance in the behavioral flexibility and impulsive action tasks, which may reflect a common psychological correlate of action inhibition. Moreover, there was a relationship between delay sensitivity in the impulsive choice task and performance on the DRL and behavioral flexibility tasks, suggesting a dual role for timing and inhibitory processes in driving the interrelationship between these tasks. Overall, these results indicate that social and novelty enrichment produce distinct effects on impulsivity and adaptability, suggesting the need to parse out the different elements of enrichment in future studies. Further research is warranted to better understand how individual differences in sensitivity to enrichment affect individuals' interactions with and the resulting consequences of the rearing environment.
Collapse
|
21
|
Robbins TW. Neurobehavioural sequelae of social deprivation in rodents revisited: Modelling social adversity for developmental neuropsychiatric disorders. J Psychopharmacol 2016; 30:1082-1089. [PMID: 27678088 DOI: 10.1177/0269881116664450] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The significance of investigating effects of deprivation of social experience in rodents is reviewed in the context of the review by Robbins et al. (1996) in the Journal of Psychopharmacology (10: 39-47). The early development of the paradigm by which rats were reared post-weaning in social isolation is described and compared with other early experience manipulations. The specification of the neural and behavioural phenotype of the isolate is brought up-to-date, focusing on changes in motivation and cognitive function, as well as on contrasting changes in the dopamine and serotonin systems, and in cortical (including hippocampal) structure and function. The relevance of the isolate for animal models of psychiatric disorders such as attention deficit hyperactivity disorder and schizophrenia is reviewed, and it is considered that the paradigm best exemplifies a manipulation that can be applied to test effects of certain forms of social adversity during adolescence on brain development and behaviour.
Collapse
Affiliation(s)
- T W Robbins
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| |
Collapse
|
22
|
Wu ZM, Ding Y, Jia HX, Li L. Different effects of isolation-rearing and neonatal MK-801 treatment on attentional modulations of prepulse inhibition of startle in rats. Psychopharmacology (Berl) 2016; 233:3089-102. [PMID: 27370017 DOI: 10.1007/s00213-016-4351-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 06/02/2016] [Indexed: 01/04/2023]
Abstract
RATIONAL Prepulse inhibition (PPI) is suppression of the startle reflex by a weaker sensory stimulus (prepulse) preceding the startling stimulus. In people with schizophrenia, impairment of attentional modulation of PPI, but not impairment of baseline PPI, is correlated with symptom severity. In rats, both fear conditioning of prepulse and perceptually spatial separation between the conditioned prepulse and a noise masker enhance PPI (the paradigms of attentional modulation of PPI). OBJECTIVES As a neurodevelopmental model of schizophrenia, isolation rearing impairs both baseline PPI and attentional modulations of PPI in rats. This study examined in Sprague-Dawley male rats whether neonatally blocking N-methyl-D-aspartate (NMDA) receptors specifically affects attentional modulations of PPI during adulthood. RESULTS Both socially reared rats with neonatal exposure to the NMDA receptor antagonist MK-801 and isolation-reared rats exhibited augmented startle responses, but only isolation rearing impaired baseline PPI. Fear conditioning of the prepulse enhanced PPI in socially reared rats, but MK-801-treated rats lost the prepulse feature specificity. Perceptually spatial separation between the conditioned prepulse and a noise masker further enhanced PPI only in normally reared rats. Clozapine administration during adulthood generally weakened startle, enhanced baseline PPI in neonatally interrupted rats, and restored the fear conditioning-induced PPI enhancement in isolation-reared rats with a loss of the prepulse feature specificity. Clozapine administration also abolished both the perceptual separation-induced PPI enhancement in normally reared rats and the fear conditioning-induced PPI enhancement in MK-801-treated rats. CONCLUSIONS Isolation rearing impairs both baseline PPI and attentional modulations of PPI, but neonatally disrupting NMDA receptor-mediated transmissions specifically impair attentional modulations of PPI. Clozapine has limited alleviating effects.
Collapse
Affiliation(s)
- Zhe-Meng Wu
- Department of Psychology and Beijing Key Laboratory of Behavior and Mental Health, Speech and Hearing Research Center, Key Laboratory on Machine Perception (Ministry of Education), Peking University, Beijing, 100080, China
| | - Yu Ding
- Department of Psychology and Beijing Key Laboratory of Behavior and Mental Health, Speech and Hearing Research Center, Key Laboratory on Machine Perception (Ministry of Education), Peking University, Beijing, 100080, China
| | - Hong-Xiao Jia
- Beijing Key Laboratory for Mental Disorders, Center of Schizophrenia,Beijing Anding Hospital, Capital Medical University, Beijing, 100088, China. .,Beijing Institute for Brain Disorders, Beijing, China.
| | - Liang Li
- Department of Psychology and Beijing Key Laboratory of Behavior and Mental Health, Speech and Hearing Research Center, Key Laboratory on Machine Perception (Ministry of Education), Peking University, Beijing, 100080, China. .,Beijing Institute for Brain Disorders, Beijing, China.
| |
Collapse
|
23
|
Negative visuospatial priming in isolation-reared rats: Evidence of resistance to the disruptive effects of amphetamine. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2016. [PMID: 26220402 DOI: 10.3758/s13415-015-0369-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Negative visuospatial priming (NP) represents a quantifiable measure of inhibitory information processing that is disrupted in several neurodevelopmental and psychiatric disorders, including schizophrenia. We developed a novel rodent NP task to investigate mechanisms underlying NP and its role in various disorders, and to test potential therapeutics. In the present studies, we further characterized this novel paradigm by investigating whether NP is disrupted in rats reared in isolation, a developmental manipulation that produces a range of abnormalities in behavior, neurochemistry, and brain structure that mirror aspects of schizophrenia pathology. We also further explored the role of monoaminergic signaling in NP and the effects of isolation rearing by challenging both socially reared and isolation-reared rats with D-amphetamine during the NP task. Although fewer isolation-reared animals learned the complex NP task, those that learned exhibited unaffected NP compared with socially reared rats. Consistent with previous reports, D-amphetamine impaired NP and increased motor impulsivity in socially reared rats. In contrast, D-amphetamine did not affect NP or motor impulsivity in isolation-reared rats. These data confirm a monoaminergic influence on NP behavior and indicate that rats reared in isolation have altered dopaminergic sensitivity.
Collapse
|
24
|
Grayson B, Barnes SA, Markou A, Piercy C, Podda G, Neill JC. Postnatal Phencyclidine (PCP) as a Neurodevelopmental Animal Model of Schizophrenia Pathophysiology and Symptomatology: A Review. Curr Top Behav Neurosci 2016; 29:403-428. [PMID: 26510740 DOI: 10.1007/7854_2015_403] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Cognitive dysfunction and negative symptoms of schizophrenia remain an unmet clinical need. Therefore, it is essential that new treatments and approaches are developed to recover the cognitive and social impairments that are seen in patients with schizophrenia. These may only be discovered through the use of carefully validated, aetiologically relevant and translational animal models. With recent renewed interest in the neurodevelopmental hypothesis of schizophrenia, postnatal administration of N-methyl-D-aspartate receptor (NMDAR) antagonists such as phencyclidine (PCP) has been proposed as a model that can mimic aspects of schizophrenia pathophysiology. The purpose of the current review is to examine the validity of this model and compare it with the adult subchronic PCP model. We review the ability of postnatal PCP administration to produce behaviours (specifically cognitive deficits) and neuropathology of relevance to schizophrenia and their subsequent reversal by pharmacological treatments. We review studies investigating effects of postnatal PCP on cognitive domains in schizophrenia in rats. Morris water maze and delayed spontaneous alternation tasks have been used for working memory, attentional set-shifting for executive function, social novelty discrimination for selective attention and prepulse inhibition of acoustic startle for sensorimotor gating. In addition, we review studies on locomotor activity and neuropathology. We also include two studies using dual hit models incorporating postnatal PCP and two studies on social behaviour deficits following postnatal PCP. Overall, the evidence we provide supports the use of postnatal PCP to model cognitive and neuropathological disturbances of relevance to schizophrenia. To date, there is a lack of evidence to support a significant advantage of postnatal PCP over the adult subchronic PCP model and full advantage has not been taken of its neurodevelopmental component. When thoroughly characterised, it is likely that it will provide a useful neurodevelopmental model to complement other models such as maternal immune activation, particularly when combined with other manipulations to produce dual or triple hit models. However, the developmental trajectory of behavioural and neuropathological changes induced by postnatal PCP and their relevance to schizophrenia must be carefully mapped out. Overall, we support further development of dual (or triple) hit models incorporating genetic, neurodevelopmental and appropriate environmental elements in the search for more aetiologically valid animal models of schizophrenia and neurodevelopmental disorders (NDDs).
Collapse
Affiliation(s)
- B Grayson
- Manchester Pharmacy School, University of Manchester, Oxford Road, Manchester, M13 9PT, UK.
| | - S A Barnes
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive, La Jolla, San Diego, CA, 92093-0603, USA
| | - A Markou
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive, La Jolla, San Diego, CA, 92093-0603, USA
| | - C Piercy
- Manchester Pharmacy School, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - G Podda
- Manchester Pharmacy School, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - J C Neill
- Manchester Pharmacy School, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| |
Collapse
|
25
|
O'Connor WT, O'Shea SD. Clozapine and GABA transmission in schizophrenia disease models. Pharmacol Ther 2015; 150:47-80. [DOI: 10.1016/j.pharmthera.2015.01.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 01/06/2015] [Indexed: 11/30/2022]
|
26
|
Samsom JN, Wong AHC. Schizophrenia and Depression Co-Morbidity: What We have Learned from Animal Models. Front Psychiatry 2015; 6:13. [PMID: 25762938 PMCID: PMC4332163 DOI: 10.3389/fpsyt.2015.00013] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 01/24/2015] [Indexed: 12/15/2022] Open
Abstract
Patients with schizophrenia are at an increased risk for the development of depression. Overlap in the symptoms and genetic risk factors between the two disorders suggests a common etiological mechanism may underlie the presentation of comorbid depression in schizophrenia. Understanding these shared mechanisms will be important in informing the development of new treatments. Rodent models are powerful tools for understanding gene function as it relates to behavior. Examining rodent models relevant to both schizophrenia and depression reveals a number of common mechanisms. Current models which demonstrate endophenotypes of both schizophrenia and depression are reviewed here, including models of CUB and SUSHI multiple domains 1, PDZ and LIM domain 5, glutamate Delta 1 receptor, diabetic db/db mice, neuropeptide Y, disrupted in schizophrenia 1, and its interacting partners, reelin, maternal immune activation, and social isolation. Neurotransmission, brain connectivity, the immune system, the environment, and metabolism emerge as potential common mechanisms linking these models and potentially explaining comorbid depression in schizophrenia.
Collapse
Affiliation(s)
- James N Samsom
- Department of Molecular Neuroscience, Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute , Toronto, ON , Canada ; Department of Pharmacology, Faculty of Medicine, University of Toronto , Toronto, ON , Canada
| | - Albert H C Wong
- Department of Molecular Neuroscience, Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute , Toronto, ON , Canada ; Department of Pharmacology, Faculty of Medicine, University of Toronto , Toronto, ON , Canada ; Department of Psychiatry, Faculty of Medicine, University of Toronto , Toronto, ON , Canada
| |
Collapse
|
27
|
Ziypak T, Halici Z, Alkan E, Akpinar E, Polat B, Adanur S, Cadirci E, Ferah I, Bayir Y, Karakus E, Mercantepe T. Renoprotective effect of aliskiren on renal ischemia/reperfusion injury in rats: electron microscopy and molecular study. Ren Fail 2014; 37:343-54. [DOI: 10.3109/0886022x.2014.991327] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
28
|
Isolation rearing effects on probabilistic learning and cognitive flexibility in rats. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2014; 14:388-406. [PMID: 23943516 DOI: 10.3758/s13415-013-0204-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Isolation rearing is a neurodevelopmental manipulation that produces neurochemical, structural, and behavioral alterations in rodents that in many ways are consistent with schizophrenia. Symptoms induced by isolation rearing that mirror clinically relevant aspects of schizophrenia, such as cognitive deficits, open up the possibility of testing putative therapeutics in isolation-reared animals prior to clinical development. We investigated what effect isolation rearing would have on cognitive flexibility, a cognitive function characteristically disrupted in schizophrenia. For this purpose, we assessed cognitive flexibility using between- and within-session probabilistic reversal-learning tasks based on clinical tests. Isolation-reared rats required more sessions, though not more task trials, to acquire criterion performance in the reversal phase of the task, and were slower to adjust their task strategy after reward contingencies were switched. Isolation-reared rats also completed fewer trials and exhibited lower levels of overall activity in the probabilistic reversal-learning task than did the socially reared rats. This finding contrasted with the elevated levels of unconditioned investigatory activity and reduced levels of locomotor habituation that isolation-reared rats displayed in the behavioral pattern monitor. Finally, isolation-reared rats also exhibited sensorimotor gating deficits, reflected by decreased prepulse inhibition of the startle response, consistent with previous studies. We concluded that isolation rearing constitutes a valuable, noninvasive manipulation for modeling schizophrenia-like cognitive deficits and assessing putative therapeutics.
Collapse
|
29
|
Wang Q, Li M, Du W, Shao F, Wang W. The different effects of maternal separation on spatial learning and reversal learning in rats. Behav Brain Res 2014; 280:16-23. [PMID: 25479401 DOI: 10.1016/j.bbr.2014.11.040] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 11/20/2014] [Accepted: 11/25/2014] [Indexed: 01/26/2023]
Abstract
Early postnatal maternal separation (MS) can play an important role in the development of psychopathologies during ontogeny. In the present study, we investigated the effects of repeated MS (4h per day from postnatal day (PND) 1 to 21) on locomotor activity and anxiety behavior in open field, spatial learning and reversal learning in Morris water maze of male and female juvenile (PND 21), adolescent (PND 35) and early adult (PND 56) Wistar rats. The results indicated that MS increased locomotor activity of rats across all ages and reduced anxiety behavior of adolescent rats in open field test. MS also increased swim distance in spatial learning and decreased escape latency in reversal learning in adolescent and early adult rats. Additionally, for socially reared rats, there was increased spontaneous locomotion with age, decreased reversal learning ability with age. The present study provides novel insights into the consequences of MS and demonstrates unique age-dependent changes at the behavioral levels.
Collapse
Affiliation(s)
- Qiong Wang
- Department of Psychology, Peking University, Beijing 100871, China
| | - Man Li
- Department of Psychology, Peking University, Beijing 100871, China
| | - Wei Du
- Department of Psychology, Peking University, Beijing 100871, China
| | - Feng Shao
- Department of Psychology, Peking University, Beijing 100871, China.
| | - Weiwen Wang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
30
|
Protective effect of captopril against clozapine-induced myocarditis in rats: Role of oxidative stress, proinflammatory cytokines and DNA damage. Chem Biol Interact 2014; 216:43-52. [DOI: 10.1016/j.cbi.2014.03.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 03/20/2014] [Accepted: 03/26/2014] [Indexed: 12/21/2022]
|
31
|
Green MR, McCormick CM. Effects of stressors in adolescence on learning and memory in rodent models. Horm Behav 2013; 64:364-79. [PMID: 23998678 DOI: 10.1016/j.yhbeh.2012.09.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 09/04/2012] [Accepted: 09/23/2012] [Indexed: 02/07/2023]
Abstract
This article is part of a Special Issue "Puberty and Adolescence". Learning and memory is affected by a myriad of factors, including exposure to stressors and the corresponding rise in circulating glucocorticoids. Nevertheless, the effects of stressors depend on the sex, species, the type of stressor used, the duration of exposure, as well as the developmental time-point in which stressors are experienced. Effects of stress in adolescence, however, have received less attention than other developmental periods. In adolescence, the hypothalamic-pituitary-adrenal axis and brain regions involved in learning and memory, which also richly express corticosteroid receptors, are continuing to develop, and thus the effects of stress exposures would be expected to differ from those in adulthood. We conclude from a review of the available literature in animal models that hippocampal function is particularly sensitive to adolescent stressors, and the effects tend to be most evident several weeks after the exposure, suggesting stressors alter the developmental trajectory of the hippocampus.
Collapse
Affiliation(s)
- Matthew R Green
- Department of Psychology, Brock University, 500 Glenridge Ave., St. Catharines, Ontario, Canada
| | | |
Collapse
|
32
|
Hall FS, Perona MTG. Have studies of the developmental regulation of behavioral phenotypes revealed the mechanisms of gene-environment interactions? Physiol Behav 2012; 107:623-40. [PMID: 22643448 PMCID: PMC3447116 DOI: 10.1016/j.physbeh.2012.05.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 05/15/2012] [Accepted: 05/15/2012] [Indexed: 12/30/2022]
Abstract
This review addresses the recent convergence of our long-standing knowledge of the regulation of behavioral phenotypes by developmental experience with recent advances in our understanding of mechanisms regulating gene expression. This review supports a particular perspective on the developmental regulation of behavioral phenotypes: That the role of common developmental experiences (e.g. maternal interactions, peer interactions, exposure to a complex environment, etc.) is to fit individuals to the circumstances of their lives within bounds determined by long-standing (evolutionary) mechanisms that have shaped responses to critical and fundamental types of experience via those aspects of gene structure that regulate gene expression. The phenotype of a given species is not absolute for a given genotype but rather variable within bounds that is determined by mechanisms regulated by experience (e.g. epigenetic mechanisms). This phenotypic variation is not necessarily random, or evenly distributed along a continuum of description or measurement, but often highly disjointed, producing distinct, even opposing, phenotypes. The potentiality for these varying phenotypes is itself the product of evolution, the potential for alternative phenotypes itself conveying evolutionary advantage. Examples of such phenotypic variation, resulting from environmental or experiential influences, have a long history of study in neurobiology, and a number of these will be discussed in this review: neurodevelopmental experiences that produce phenotypic variation in visual perception, cognitive function, and emotional behavior. Although other examples will be discussed, particular emphasis will be made on the role of social behavior on neurodevelopment and phenotypic determination. It will be argued that an important purpose of some aspects of social behavior is regulation of neurobehavioral phenotypes by experience via genetic regulatory mechanisms.
Collapse
Affiliation(s)
- F Scott Hall
- Molecular Neurobiology Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, 333 Cassel Drive, Baltimore, MD 21224, United States.
| | | |
Collapse
|
33
|
Long-lasting recovery of psychotic-like symptoms in isolation-reared rats after chronic but not acute treatment with the cannabinoid antagonist AM251. Int J Neuropsychopharmacol 2012; 15:267-80. [PMID: 20923599 DOI: 10.1017/s1461145710001185] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In this work we investigated the ability of AM251 to reverse schizophrenia-like symptoms produced by a neurodevelopmental animal model based on a social isolation procedure. First, we assessed the validity of our isolation-rearing protocol and, as expected, isolation-reared rats showed hyperlocomotion in a novel environment, cognitive impairment in the novel object recognition (NOR) test and a significant increase in the number of aggressive behaviours in the social interaction test compared to group-housed controls. This behavioural picture was associated with a reduction in CB₁ receptor/G protein coupling in specific brain areas as well as reduced c-Fos immunoreactivity in the prefrontal cortex and caudate putamen. In this model, chronic but not acute treatment with the CB₁ receptor antagonist AM251 counteracted isolation-induced cognitive impairment in the NOR test and aggressive behaviours in the social interaction test. This behavioural recovery was accompanied by the rescue of CB₁ receptor functionality and c-Fos levels in all brain regions altered in isolation-reared rats. Moreover, chronic AM251 also increased c-Fos immunoreactivity in the nucleus accumbens, as previously demonstrated for antipsychotic drugs. Interestingly, the behavioural recovery due to chronic AM251 administration persisted until 10 d after discontinuing the treatment, indicating a long-lasting effect of the cannabinoid antagonist on psychotic-like symptoms.
Collapse
|
34
|
Social isolation produces anxiety-like behaviors and changes PSD-95 levels in the forebrain. Neurosci Lett 2012; 514:27-30. [PMID: 22387065 DOI: 10.1016/j.neulet.2012.02.043] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Accepted: 02/12/2012] [Indexed: 11/20/2022]
Abstract
Isolation rearing induces profound behavioral and neurochemical abnormalities in rodents. However there have been many controversies with its anxiogenic-like effects using models like elevated-plus maze. In the current study we aimed to address this by using one novelty-based anxiety paradigm that has been largely overlooked in previous isolation rearing studies. We found that eight-week isolation rearing produced potent anxiogenic-like effects in novelty-induced hypophagia test in mice. We also demonstrated PSD-95 levels were elevated in the hippocampus and amygdala and reduced in the frontal cortex after social isolation. This study provides further behavioral and neurochemical evidence to support that isolation rearing can produce anxiogenic-like effects in rodents.
Collapse
|
35
|
Han X, Li N, Meng Q, Shao F, Wang W. Maternal immune activation impairs reversal learning and increases serum tumor necrosis factor-α in offspring. Neuropsychobiology 2011; 64:9-14. [PMID: 21577008 DOI: 10.1159/000322455] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Accepted: 10/20/2010] [Indexed: 11/19/2022]
Abstract
Maternal immune activation (MIA) produces a variety of behavioral and brain abnormalities in rodent models of several neuropsychiatric disorders. However, it remains controversial whether MIA impairs reversal learning, a basic function of flexibility relevant to those diseases, in offspring. In the present study, we used the Morris water maze to investigate the effects of middle to late gestation stage poly(I:C) challenges on spatial learning and subsequent reversal learning performance in adolescent rats. Maternal poly(I:C) treatment induced deficits in reversal learning without affecting spatial acquisition abilities. In addition, the serum level of the proinflammatory cytokine tumor necrosis factor-α was increased in MIA rats. This study advances our understanding of how MIA affects adolescent behavior and brain function.
Collapse
Affiliation(s)
- Xiao Han
- Department of Psychology, Peking University, Beijing, China
| | | | | | | | | |
Collapse
|
36
|
Jones CA, Watson DJG, Fone KCF. Animal models of schizophrenia. Br J Pharmacol 2011; 164:1162-94. [PMID: 21449915 PMCID: PMC3229756 DOI: 10.1111/j.1476-5381.2011.01386.x] [Citation(s) in RCA: 558] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 03/09/2011] [Accepted: 03/12/2011] [Indexed: 12/27/2022] Open
Abstract
Developing reliable, predictive animal models for complex psychiatric disorders, such as schizophrenia, is essential to increase our understanding of the neurobiological basis of the disorder and for the development of novel drugs with improved therapeutic efficacy. All available animal models of schizophrenia fit into four different induction categories: developmental, drug-induced, lesion or genetic manipulation, and the best characterized examples of each type are reviewed herein. Most rodent models have behavioural phenotype changes that resemble 'positive-like' symptoms of schizophrenia, probably reflecting altered mesolimbic dopamine function, but fewer models also show altered social interaction, and learning and memory impairment, analogous to negative and cognitive symptoms of schizophrenia respectively. The negative and cognitive impairments in schizophrenia are resistant to treatment with current antipsychotics, even after remission of the psychosis, which limits their therapeutic efficacy. The MATRICS initiative developed a consensus on the core cognitive deficits of schizophrenic patients, and recommended a standardized test battery to evaluate them. More recently, work has begun to identify specific rodent behavioural tasks with translational relevance to specific cognitive domains affected in schizophrenia, and where available this review focuses on reporting the effect of current and potential antipsychotics on these tasks. The review also highlights the need to develop more comprehensive animal models that more adequately replicate deficits in negative and cognitive symptoms. Increasing information on the neurochemical and structural CNS changes accompanying each model will also help assess treatments that prevent the development of schizophrenia rather than treating the symptoms, another pivotal change required to enable new more effective therapeutic strategies to be developed.
Collapse
Affiliation(s)
- C A Jones
- School of Biomedical Sciences, Medical School, Queen's Medical Centre, The University of Nottingham, Nottingham, UK
| | | | | |
Collapse
|
37
|
Han X, Wang W, Xue X, Shao F, Li N. Brief social isolation in early adolescence affects reversal learning and forebrain BDNF expression in adult rats. Brain Res Bull 2011; 86:173-8. [PMID: 21801814 DOI: 10.1016/j.brainresbull.2011.07.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 07/11/2011] [Accepted: 07/12/2011] [Indexed: 10/17/2022]
Abstract
Isolation rearing produces significant behavioral and neurochemical dysregulations in rodents. However, few studies have examined the effects of short-term isolation rearing during puberty compared to chronic social isolation from weaning to adulthood. In this study, we subjected weaning rats to a brief two-week social isolation and then re-socialized them until adulthood. We found that early isolation rearing affected reversal learning without interfering with spatial learning in the Morris water maze. We also found that brain-derived neurotrophic factor (BDNF) protein expression was increased in the medial prefrontal cortex (mPFC) but was decreased in the nucleus accumbens (NAc), CA1 and dentate gyrus of the hippocampus in isolation-reared rats. Together, our findings support the use of adolescent social isolation as a rodent model to study brain and behavior abnormalities induced by early environmental interruptions.
Collapse
Affiliation(s)
- Xiao Han
- Department of Psychology, Peking University, Beijing, China
| | | | | | | | | |
Collapse
|
38
|
Isolation rearing alters social behaviors and monoamine neurotransmission in the medial prefrontal cortex and nucleus accumbens of adult rats. Brain Res 2011; 1385:175-81. [DOI: 10.1016/j.brainres.2011.02.035] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 02/11/2011] [Accepted: 02/13/2011] [Indexed: 11/15/2022]
|
39
|
Meng Q, Li N, Han X, Shao F, Wang W. Effects of adolescent social isolation on the expression of brain-derived neurotrophic factors in the forebrain. Eur J Pharmacol 2011; 650:229-32. [DOI: 10.1016/j.ejphar.2010.09.061] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 09/17/2010] [Accepted: 09/20/2010] [Indexed: 10/19/2022]
|
40
|
Shao F, Han X, Li N, Wang W. Adolescent chronic apomorphine treatment impairs latent inhibition and reduces prefrontal cortex mGluR5 receptor expression in adult rats. Eur J Pharmacol 2010; 649:202-5. [DOI: 10.1016/j.ejphar.2010.09.051] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 08/27/2010] [Accepted: 09/07/2010] [Indexed: 11/16/2022]
|
41
|
Meng Q, Li N, Han X, Shao F, Wang W. Peri-adolescence isolation rearing alters social behavior and nociception in rats. Neurosci Lett 2010; 480:25-9. [DOI: 10.1016/j.neulet.2010.05.067] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2010] [Revised: 04/17/2010] [Accepted: 05/23/2010] [Indexed: 10/19/2022]
|
42
|
Post weaning social isolation influences spatial cognition, prefrontal cortical synaptic plasticity and hippocampal potassium ion channels in Wistar rats. Neuroscience 2010; 169:214-22. [DOI: 10.1016/j.neuroscience.2010.04.048] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 04/20/2010] [Accepted: 04/22/2010] [Indexed: 12/15/2022]
|
43
|
Robinson SA, Loiacono RE, Christopoulos A, Sexton PM, Malone DT. The effect of social isolation on rat brain expression of genes associated with endocannabinoid signaling. Brain Res 2010; 1343:153-67. [DOI: 10.1016/j.brainres.2010.04.031] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Revised: 04/14/2010] [Accepted: 04/14/2010] [Indexed: 10/19/2022]
|
44
|
Hill SK, Bishop JR, Palumbo D, Sweeney JA. Effect of second-generation antipsychotics on cognition: current issues and future challenges. Expert Rev Neurother 2010; 10:43-57. [PMID: 20021320 DOI: 10.1586/ern.09.143] [Citation(s) in RCA: 175] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Generalized cognitive impairments are stable deficits linked to schizophrenia and key factors associated with functional disability in the disorder. Preclinical data suggest that second-generation antipsychotics could potentially reduce cognitive impairments; however, recent large clinical trials indicate only modest cognitive benefits relative to first-generation antipsychotics. This might reflect a limited drug effect in humans, a differential drug effect due to brain alterations associated with schizophrenia, or limited sensitivity of the neuropsychological tests for evaluating cognitive outcomes. New adjunctive procognitive drugs may be needed to achieve robust cognitive and functional improvement. Drug discovery may benefit from greater utilization of translational neurocognitive biomarkers to bridge preclinical and clinical proof-of-concept studies, to optimize assay sensitivity, enhance cost efficiency, and speed progress in drug development.
Collapse
Affiliation(s)
- S Kristian Hill
- Center for Cognitive Medicine (M/C 913), University of Illinois at Chicago, 912 South Wood Street, Suite 235, Chicago, IL 60612, USA.
| | | | | | | |
Collapse
|
45
|
McLean S, Grayson B, Harris M, Protheroe C, Woolley M, Neill J. Isolation rearing impairs novel object recognition and attentional set shifting performance in female rats. J Psychopharmacol 2010; 24:57-63. [PMID: 18635708 DOI: 10.1177/0269881108093842] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
It has been suggested that the isolation rearing paradigm models certain aspects of schizophrenia symptomatology. This study aimed to investigate whether isolation rearing impairs rats' performance in two models of cognition: the novel object recognition (NOR) and attentional set-shifting tasks, tests of episodic memory and executive function, respectively. Two cohorts of female Hooded-Lister rats were used in these experiments. Animals were housed in social isolation or in groups of five from weaning, post-natal day 28. The first cohort was tested in the NOR test with inter-trial intervals (ITIs) of 1 min up to 6 h. The second cohort was trained and tested in the attentional set-shifting task. In the NOR test, isolates were only able to discriminate between the novel and familiar objects up to 1-h ITI, whereas socially reared animals remembered the familiar object up to a 4-h ITI. In the attentional set-shifting task, isolates were significantly and selectively impaired in the extra-dimensional shift phase of the task (P < 0.01). Rats reared in isolation show impaired episodic memory in the NOR task and reduced ability to shift attention between stimulus dimensions in the attentional set-shifting task. Because schizophrenic patients show similar deficits in performance in these cognitive domains, these data further support isolation rearing as a putative preclinical model of the cognitive deficits associated with schizophrenia.
Collapse
Affiliation(s)
- Sl McLean
- Bradford School of Pharmacy, University of Bradford, Bradford, West Yorkshire, UK
| | | | | | | | | | | |
Collapse
|
46
|
Du Y, Wu X, Li L. Emotional learning enhances stimulus-specific top-down modulation of sensorimotor gating in socially reared rats but not isolation-reared rats. Behav Brain Res 2010; 206:192-201. [DOI: 10.1016/j.bbr.2009.09.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Revised: 09/03/2009] [Accepted: 09/07/2009] [Indexed: 11/16/2022]
|
47
|
Zhao X, Sun L, Jia H, Meng Q, Wu S, Li N, He S. Isolation rearing induces social and emotional function abnormalities and alters glutamate and neurodevelopment-related gene expression in rats. Prog Neuropsychopharmacol Biol Psychiatry 2009; 33:1173-7. [PMID: 19563853 DOI: 10.1016/j.pnpbp.2009.06.016] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Revised: 06/19/2009] [Accepted: 06/22/2009] [Indexed: 11/26/2022]
Abstract
Isolation rearing induces various cognitive abnormalities such as reversal learning deficits and reduced prepulse inhibition in rats. However, there are few reports in the literature on its effects on social and emotional functions. In the current study we aimed to address these issues and demonstrated that isolation rearing induced aggression and impaired social recognition, produced moderate anxiogenic effects in the elevated-plus maze, and resulted in hyperactivity in a novel open field. We also found NR2A, NR2B, PSD-95 and SAP-102 mRNA expression were significantly up-regulated in the hippocampus while NR2B was down-regulated in prefrontal cortex in response to isolation rearing. This study advances the use of social isolation as an animal model for studying etiological mechanisms of various neuropsychiatric disorders.
Collapse
Affiliation(s)
- Xiaohong Zhao
- Department of Biology, College of Arts and Science, Beijing Union University, Beijing 100083, China
| | | | | | | | | | | | | |
Collapse
|
48
|
Turnock-Jones JJ, Jennings CA, Robbins MJ, Cluderay JE, Cilia J, Reid JL, Taylor A, Jones DN, Emson PC, Southam E. Increased expression of the NR2A NMDA receptor subunit in the prefrontal cortex of rats reared in isolation. Synapse 2009; 63:836-46. [DOI: 10.1002/syn.20665] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
49
|
Li L, Du Y, Li N, Wu X, Wu Y. Top–down modulation of prepulse inhibition of the startle reflex in humans and rats. Neurosci Biobehav Rev 2009; 33:1157-67. [DOI: 10.1016/j.neubiorev.2009.02.001] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Revised: 02/02/2009] [Accepted: 02/04/2009] [Indexed: 10/21/2022]
|
50
|
Fone KCF, Porkess MV. Behavioural and neurochemical effects of post-weaning social isolation in rodents-relevance to developmental neuropsychiatric disorders. Neurosci Biobehav Rev 2008; 32:1087-102. [PMID: 18423591 DOI: 10.1016/j.neubiorev.2008.03.003] [Citation(s) in RCA: 652] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2007] [Revised: 02/06/2008] [Accepted: 02/08/2008] [Indexed: 10/22/2022]
Abstract
Exposing mammals to early-life adverse events, including maternal separation or social isolation, profoundly affects brain development and adult behaviour and may contribute to the occurrence of psychiatric disorders, such as depression and schizophrenia in genetically predisposed humans. The molecular mechanisms underlying these environmentally induced developmental adaptations are unclear and best evaluated in animal paradigms with translational salience. Rearing rat pups from weaning in isolation, to prevent social contact with conspecifics, produces reproducible, long-term changes including; neophobia, impaired sensorimotor gating, aggression, cognitive rigidity, reduced prefrontal cortical volume and decreased cortical and hippocampal synaptic plasticity. These alterations are associated with hyperfunction of mesolimbic dopaminergic systems, enhanced presynaptic dopamine (DA) and serotonergic (5-HT) function in the nucleus accumbens (NAcc), hypofunction of mesocortical DA and attenuated 5-HT function in the prefrontal cortex and hippocampus. These behavioural, morphological and neurochemical abnormalities, as reviewed herein, strongly resemble core features of schizophrenia. Therefore unravelling the mechanisms that trigger these sequelae will improve our knowledge of the aetiology of neurodevelopmental psychiatric disorders, enable identification of longitudinal biomarkers of dysfunction and permit predictive screening for novel compounds with potential antipsychotic efficacy.
Collapse
Affiliation(s)
- Kevin C F Fone
- Institute of Neuroscience, School of Biomedical Sciences, Medical School, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK.
| | | |
Collapse
|