1
|
Pohl E, Lee SR. Local and Global Public Health and Emissions from Concentrated Animal Feeding Operations in the USA: A Scoping Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:916. [PMID: 39063493 PMCID: PMC11276819 DOI: 10.3390/ijerph21070916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/05/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024]
Abstract
Up to 1.6 million tons of waste is produced annually by each of more than 21,000 concentrated animal feeding operations (CAFOs) located in the United States (USA). These operations give rise to externalities, including adverse local and global health impacts from CAFO waste emissions, which can potentially outweigh their economic viability. However, a shortage of evidence synthesis research exclusively on the impacts of USA-based CAFO waste emissions may hinder effective policy development. This scoping review (ScR) study, adhering to the guidelines from the Joanna Briggs Institute, conducted a search in databases including Scopus, Web of Science, PubMed, and Embase in May 2020, resulting in ten publications that met the inclusion criteria. The results suggest possible exposure of CAFO workers to multidrug-resistant Staphylococcus aureus (MDRSA), campylobacteriosis, and cryptosporidiosis. Communities near CAFOs experienced higher rates of adverse health impacts compared to those in non-CAFO areas, with patterns suggesting that proximity may correlate with increased odds of detrimental health effects. Implicit global health threats include methicillin-resistant Staphylococcus aureus (MRSA), MDRSA, campylobacteriosis, tuberculosis, and cryptosporidiosis. These studies provide foundational insights into CAFO proximity, density patterns, and adverse public health effects, indicating a need for evidence-informed environmental health policies to minimize local and global risks.
Collapse
Affiliation(s)
- Elise Pohl
- Wolfson Institute of Population Health, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Sang-Ryong Lee
- Aero-Soil Laboratory, Department of Biological and Environmental Science, Dongguk University, Goyang 10326, Republic of Korea
| |
Collapse
|
2
|
Bauer CD, Mosley DD, Samuelson DR, Poole JA, Smith DR, Knoell DL, Wyatt TA. Zinc Protects against Swine Barn Dust-Induced Cilia Slowing. Biomolecules 2024; 14:843. [PMID: 39062557 PMCID: PMC11274422 DOI: 10.3390/biom14070843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Agricultural workers exposed to organic dust from swine concentrated animal feeding operations (CAFOs) have increased chances of contracting chronic lung disease. Mucociliary clearance represents a first line of defense against inhaled dusts, but organic dust extracts (ODEs) from swine barns cause cilia slowing, leading to decreased bacterial clearance and increased lung inflammation. Because nutritional zinc deficiency is associated with chronic lung disease, we examined the role of zinc supplementation in ODE-mediated cilia slowing. Ciliated mouse tracheal epithelial cells were pretreated with 0-10 µg/mL ZinProTM for 1 h, followed by treatment with 5% ODE for 24 h. Cilia beat frequency (CBF) and protein kinase C epsilon (PKCε) activity were assayed. ODE treatment resulted in cilia slowing after 24 h, which was reversed with 0.5 and 1.0 µg/mL ZinPro pre-treatment. No zinc protection was observed at 50 ng/mL, and ciliated cells detached at high concentrations (100 µg/mL). ZinPro alone produced no changes in the baseline CBF and showed no toxicity to the cells at concentrations of up to 10 µg/mL. Pre-treatment with ZinPro inhibited ODE-stimulated PKCε activation in a dose-dependent manner. Based on ZinPro's superior cell permeability compared to zinc salts, it may be therapeutically more effective at reversing ODE-mediated cilia slowing through a PKCε pathway. These data demonstrate that zinc supplementation may support the mucociliary transport apparatus in the protection of CAFO workers against dust-mediated chronic lung disease.
Collapse
Affiliation(s)
- Christopher D. Bauer
- Department of Internal Medicine, Division of Pulmonary, Critical Care & Sleep Medicine, University of Nebraska Medical Center, 985910 Nebraska Medical Center, Omaha, NE 68198, USA; (C.D.B.); (D.D.M.); (D.R.S.)
| | - Deanna D. Mosley
- Department of Internal Medicine, Division of Pulmonary, Critical Care & Sleep Medicine, University of Nebraska Medical Center, 985910 Nebraska Medical Center, Omaha, NE 68198, USA; (C.D.B.); (D.D.M.); (D.R.S.)
| | - Derrick R. Samuelson
- Department of Internal Medicine, Division of Pulmonary, Critical Care & Sleep Medicine, University of Nebraska Medical Center, 985910 Nebraska Medical Center, Omaha, NE 68198, USA; (C.D.B.); (D.D.M.); (D.R.S.)
| | - Jill A. Poole
- Department of Internal Medicine, Division of Allergy & Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Deandra R. Smith
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA; (D.R.S.); (D.L.K.)
| | - Daren L. Knoell
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA; (D.R.S.); (D.L.K.)
| | - Todd A. Wyatt
- Department of Internal Medicine, Division of Pulmonary, Critical Care & Sleep Medicine, University of Nebraska Medical Center, 985910 Nebraska Medical Center, Omaha, NE 68198, USA; (C.D.B.); (D.D.M.); (D.R.S.)
- Department of Environmental, Agricultural and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Veterans Affairs, Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
| |
Collapse
|
3
|
Reza A, Chen L, Mao X. Response surface methodology for process optimization in livestock wastewater treatment: A review. Heliyon 2024; 10:e30326. [PMID: 38726140 PMCID: PMC11078649 DOI: 10.1016/j.heliyon.2024.e30326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 02/25/2024] [Accepted: 04/23/2024] [Indexed: 05/12/2024] Open
Abstract
With increasing demand for meat and dairy products, the volume of wastewater generated from the livestock industry has become a significant environmental concern. The treatment of livestock wastewater (LWW) is a challenging process that involves removing nutrients, organic matter, pathogens, and other pollutants from livestock manure and urine. In response to this challenge, researchers have developed and investigated different biological, physical, and chemical treatment technologies that perform better upon optimization. Optimization of LWW handling processes can help improve the efficacy and sustainability of treatment systems as well as minimize environmental impacts and associated costs. Response surface methodology (RSM) as an optimization approach can effectively optimize operational parameters that affect process performance. This review article summarizes the main steps of RSM, recent applications of RSM in LWW treatment, highlights the advantages and limitations of this technique, and provides recommendations for future research and practice, including its cost-effectiveness, accuracy, and ability to improve treatment efficiency.
Collapse
Affiliation(s)
- Arif Reza
- Department of Soil and Water Systems, Twin Falls Research and Extension Center, University of Idaho, 315 Falls Avenue, Twin Falls, ID, 83303-1827, USA
- New York State Center for Clean Water Technology, Stony Brook University, Stony Brook, 11794-5000, USA
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794-5000, USA
| | - Lide Chen
- Department of Soil and Water Systems, Twin Falls Research and Extension Center, University of Idaho, 315 Falls Avenue, Twin Falls, ID, 83303-1827, USA
| | - Xinwei Mao
- New York State Center for Clean Water Technology, Stony Brook University, Stony Brook, 11794-5000, USA
- Department of Civil Engineering, Stony Brook University, Stony Brook, NY, 11794-4424, USA
| |
Collapse
|
4
|
Wu X, Nawaz S, Li Y, Zhang H. Environmental health hazards of untreated livestock wastewater: potential risks and future perspectives. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:24745-24767. [PMID: 38499926 DOI: 10.1007/s11356-024-32853-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 03/07/2024] [Indexed: 03/20/2024]
Abstract
Due to technological and economic limitations, waste products such as sewage and manure generated in livestock farming lack comprehensive scientific and centralized treatment. This leads to the exposure of various contaminants in livestock wastewater, posing potential risks to both the ecological environment and human health. This review evaluates the environmental and physical health risks posed by common pollutants in livestock wastewater and outlines future treatment methods to mitigate these risks. Residual wastes in livestock wastewater, including pathogenic bacteria and parasites surviving after epidemics or diseases on various farms, along with antibiotics, organic wastes, and heavy metals from farming activities, contribute to environmental damage and pose risks to human health. As the livestock industry's development increasingly impacts society's future negatively, addressing the issue of residual wastes in livestock wastewater discharge becomes imperative. Ongoing advancements in wastewater treatment systems are consistently updating and refining practices to effectively minimize waste exposure at the discharge source, mitigating risks to environmental ecology and human health. This review not only summarizes the "potential risks of livestock wastewater" but also explores "the prospects for the development of wastewater treatment technologies" based on current reports. It offers valuable insights to support the long-term and healthy development of the livestock industry and contribute to the sustainable development of the ecological environment.
Collapse
Affiliation(s)
- Xiaomei Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Shah Nawaz
- Department of Anatomy, Faculty of Veterinary Science, University of Agriculture, Faisalabad, Pakistan
| | - Ying Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Hui Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
5
|
Wiesner-Friedman C, Beattie RE, Stewart JR, Hristova KR, Serre ML. Identifying sources of antibiotic resistance genes in the environment using the microbial Find, Inform, and Test framework. Front Microbiol 2023; 14:1223876. [PMID: 37731922 PMCID: PMC10508347 DOI: 10.3389/fmicb.2023.1223876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/07/2023] [Indexed: 09/22/2023] Open
Abstract
Introduction Antimicrobial resistance (AMR) is an increasing public health concern for humans, animals, and the environment. However, the contributions of spatially distributed sources of AMR in the environment are not well defined. Methods To identify the sources of environmental AMR, the novel microbial Find, Inform, and Test (FIT) model was applied to a panel of five antibiotic resistance-associated genes (ARGs), namely, erm(B), tet(W), qnrA, sul1, and intI1, quantified from riverbed sediment and surface water from a mixed-use region. Results A one standard deviation increase in the modeled contributions of elevated AMR from bovine sources or land-applied waste sources [land application of biosolids, sludge, and industrial wastewater (i.e., food processing) and domestic (i.e., municipal and septage)] was associated with 34-80% and 33-77% increases in the relative abundances of the ARGs in riverbed sediment and surface water, respectively. Sources influenced environmental AMR at overland distances of up to 13 km. Discussion Our study corroborates previous evidence of offsite migration of microbial pollution from bovine sources and newly suggests offsite migration from land-applied waste. With FIT, we estimated the distance-based influence range overland and downstream around sources to model the impact these sources may have on AMR at unsampled sites. This modeling supports targeted monitoring of AMR from sources for future exposure and risk mitigation efforts.
Collapse
Affiliation(s)
- Corinne Wiesner-Friedman
- Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, OH, United States
| | - Rachelle E. Beattie
- U.S. Geological Survey, Columbia Environmental Research Center, Columbia, MO, United States
- Department of Biological Sciences, Marquette University, Milwaukee, WI, United States
| | - Jill R. Stewart
- Gillings School of Global Public Health, Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | | | - Marc L. Serre
- Gillings School of Global Public Health, Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
6
|
Environmental Injustice and Industrial Chicken Farming in Maryland. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182111039. [PMID: 34769558 PMCID: PMC8582720 DOI: 10.3390/ijerph182111039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/05/2021] [Accepted: 10/13/2021] [Indexed: 12/01/2022]
Abstract
Maryland’s growing chicken industry, including concentrated animal feeding operations (CAFOs) and meat processing plants, raises a number of concerns regarding public health and environmental justice. Using hot spot analysis, we analyzed the totality of Maryland’s CAFOs and meat processing plants and those restricted to the Eastern Shore to assess whether communities of color and/or low socioeconomic status communities disproportionately hosted these types of facilities at the census tract level. We used zero-inflated regression modeling to determine the strength of the associations between environmental justice variables and the location of CAFOs and meatpacking facilities at the State level and on the Eastern Shore. Hot spot analyses demonstrated that CAFO hot spots on the Eastern Shore were located in counties with some of the lowest wealth in the State, including the lowest ranking county—Somerset. Zero-inflated regression models demonstrated that increases in median household income across the state were associated with a 0.04-unit reduction in CAFOs. For every unit increase in the percentage of people of color (POC), there was a 0.02-unit increase in meat processing facilities across the state. The distribution of CAFOs and meat processing plants across Maryland may contribute to poor health outcomes in areas affected by such production, and contribute to health disparities and health inequity.
Collapse
|
7
|
Ao Y, Yang C, Wang S, Hu Q, Yi L, Zhang J, Yu Z, Cai M, Yu C. Characteristics and nutrient function of intestinal bacterial communities in black soldier fly (Hermetia illucens L.) larvae in livestock manure conversion. Microb Biotechnol 2021; 14:886-896. [PMID: 32449587 PMCID: PMC8085981 DOI: 10.1111/1751-7915.13595] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 11/29/2022] Open
Abstract
The potential utility of black soldier fly larvae (BSFL) to convert animal waste into harvested protein or lipid sources for feeding animal or producing biodiesel provides a new strategy for agricultural waste management. In this study, the taxonomic structure and potential metabolic and nutrient functions of the intestinal bacterial communities of BSFL were investigated in chicken and swine manure conversion systems. Proteobacteria, Firmicutes and Bacteroidetes were the dominant phyla in the BSFL gut in both the swine and chicken manure systems. After the larvae were fed manure, the proportion of Proteobacteria in their gut significantly decreased, while that of Bacteroidetes remarkably increased. Compared with the original intestinal bacterial community, approximately 90 and 109 new genera were observed in the BSFL gut during chicken and swine manure conversion, and at least half of the initial intestinal genera found remained in the gut during manure conversion. This result may be due to the presence of specialized crypts or paunches that promote microbial persistence and bacteria-host interactions. Ten core genera were found in all 21 samples, and the top three phyla among all of the communities in terms of relative abundance were Proteobacteria, Firmicutes and Bacteroidetes. The nutrient elements (OM, TN, TP, TK and CF) of manure may partly affect the succession of gut bacterial communities with one another, while TN and CF are strongly positively correlated with the relative abundance of Providencia. Some bacterial taxa with the reported ability to synthesize amino acids, Rhizobiales, Burkholderia, Bacteroidales, etc., were also observed in the BSFL gut. Functional analysis based on genes showed that intestinal microbes potentially contribute to the nutrition of BSFL and the high-level amino acid metabolism may partly explain the biological mechanisms of protein accumulation in the BSFL body. These results are helpful in understanding the biological mechanisms of high-efficiency nutrient conversion in BSFL associated with intestinal microbes.
Collapse
Affiliation(s)
- Yue Ao
- State Key Laboratory of Biocatalysis and Enzyme EngineeringSchool of Life SciencesHubei Engineering Research Center for Bio‐enzyme CatalysisHubei UniversityWuhanChina
| | - Chongrui Yang
- State Key Laboratory of Agricultural MicrobiologyCollege of Life Science and TechnologyNational Engineering Research Centre of Microbial PesticidesHuazhong Agricultural UniversityWuhanChina
| | - Shengchen Wang
- State Key Laboratory of Biocatalysis and Enzyme EngineeringSchool of Life SciencesHubei Engineering Research Center for Bio‐enzyme CatalysisHubei UniversityWuhanChina
| | - Qingyi Hu
- State Key Laboratory of Biocatalysis and Enzyme EngineeringSchool of Life SciencesHubei Engineering Research Center for Bio‐enzyme CatalysisHubei UniversityWuhanChina
| | - Li Yi
- State Key Laboratory of Biocatalysis and Enzyme EngineeringSchool of Life SciencesHubei Engineering Research Center for Bio‐enzyme CatalysisHubei UniversityWuhanChina
| | - Jibin Zhang
- State Key Laboratory of Agricultural MicrobiologyCollege of Life Science and TechnologyNational Engineering Research Centre of Microbial PesticidesHuazhong Agricultural UniversityWuhanChina
| | - Ziniu Yu
- State Key Laboratory of Agricultural MicrobiologyCollege of Life Science and TechnologyNational Engineering Research Centre of Microbial PesticidesHuazhong Agricultural UniversityWuhanChina
| | - Minmin Cai
- State Key Laboratory of Agricultural MicrobiologyCollege of Life Science and TechnologyNational Engineering Research Centre of Microbial PesticidesHuazhong Agricultural UniversityWuhanChina
| | - Chan Yu
- State Key Laboratory of Biocatalysis and Enzyme EngineeringSchool of Life SciencesHubei Engineering Research Center for Bio‐enzyme CatalysisHubei UniversityWuhanChina
| |
Collapse
|
8
|
Hu H, Li X, Wu S, Yang C. Sustainable livestock wastewater treatment via phytoremediation: Current status and future perspectives. BIORESOURCE TECHNOLOGY 2020; 315:123809. [PMID: 32682262 DOI: 10.1016/j.biortech.2020.123809] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/03/2020] [Accepted: 07/05/2020] [Indexed: 06/11/2023]
Abstract
Phytoremediation, the application of vegetation and microorganisms for recovery of nutrients and decontamination of the environment, has emerged as a low-cost, eco-friendly, and sustainable approach compared to traditional biological and physico-chemical processes. Livestock wastewater is one of the most severe pollution sources to the environment and water resources. When properly handled, livestock wastewater could be an important alternative water resource in water-scarce regions. This review discussed the characteristics and hazards of different types of livestock wastewater and available methods for the treatment. Meanwhile, the current status of investigations on phytoremediation of livestock wastewater via different hydrophyte systems such as microalgae, duckweed, water hyacinth, constructed wetlands, and other hydrophytes is reviewed, and the utilization of hydrophytes after management is also discussed. Furthermore, advantages and limitations on livestock wastewater management via phytotechnologies are emphasized. At last, future research needs are also proposed.
Collapse
Affiliation(s)
- Hao Hu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China; Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Xiang Li
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China; Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Shaohua Wu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China; Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Chunping Yang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China; Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China; Hunan Provincial Environmental Protection Engineering Center for Organic Pollution Control of Urban Water and Wastewater, Changsha, Hunan 410001, China.
| |
Collapse
|
9
|
Abstract
The term "ag-gag" refers to state laws that intentionally limit public access to information about agricultural production practices, particularly livestock production. Originally created in the 1990s, these laws have recently experienced a resurgence in state legislatures. We discuss the recent history of ag-gag laws in the United States and question whether such ag-gag laws create a "chilling effect" on reporting and investigation of occupational health, community health, and food safety concerns related to industrial food animal production. We conclude with a discussion of the role of environmental and occupational health professionals to encourage critical evaluation of how ag-gag laws might influence the health, safety, and interests of day-to-day agricultural laborers and the public living proximal to industrial food animal production.
Collapse
Affiliation(s)
- Caitlin A. Ceryes
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Christopher D. Heaney
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
10
|
Martin KL, Emanuel RE, Vose JM. Terra incognita: The unknown risks to environmental quality posed by the spatial distribution and abundance of concentrated animal feeding operations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 642:887-893. [PMID: 29929140 DOI: 10.1016/j.scitotenv.2018.06.072] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 05/04/2018] [Accepted: 06/06/2018] [Indexed: 06/08/2023]
Abstract
Concentrated animal feeding operations (CAFOs) pose wide ranging environmental risks to many parts of the US and across the globe, but datasets for CAFO risk assessments are not readily available. Within the United States, some of the greatest concentrations of CAFOs occur in North Carolina. It is also one of the only states with publicly accessible location data for classes of CAFOs that are required to obtain water quality permits from the U.S. Environmental Protection Agency (EPA); however, there are no public data sources for the large number of CAFOs that do not require EPA water quality permits. We combined public records of CAFO locations with data collected in North Carolina by the Waterkeeper and Riverkeeper Alliances to examine the distribution of both permitted and non-permitted CAFOs across the state. Over half (55%) of the state's 6646 CAFOs are located in the Coastal Plain, a low-lying region vulnerable to flooding associated with regular cyclonic and convective storms. We identified 19% of CAFOs ≤ 100 m of the nearest stream, and some as close as 15 m to the nearest stream, a common riparian buffer width for water quality management. Future climate scenarios suggest large storm events are expected to become increasingly extreme, and dry interstorm periods could lengthen. Such extremes could exacerbate the environmental impacts of CAFOs. Understanding the potential impacts of CAFO agroecosystems will require remote sensing to identify CAFOs, fieldwork to determine the extent of environmental footprints, and modeling to identify thresholds that determine environmental risk under changing conditions.
Collapse
Affiliation(s)
- Katherine L Martin
- Department of Forestry and Environmental Resources, North Carolina State University, United States; Center for Geospatial Analytics, North Carolina State University, United States.
| | - Ryan E Emanuel
- Department of Forestry and Environmental Resources, North Carolina State University, United States; Center for Geospatial Analytics, North Carolina State University, United States
| | - James M Vose
- Center for Integrated Forest Science, USDA Forest Service Southern Research Station, United States
| |
Collapse
|
11
|
Hu Y, Cheng H, Tao S. Environmental and human health challenges of industrial livestock and poultry farming in China and their mitigation. ENVIRONMENT INTERNATIONAL 2017; 107:111-130. [PMID: 28719840 DOI: 10.1016/j.envint.2017.07.003] [Citation(s) in RCA: 202] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 07/05/2017] [Accepted: 07/10/2017] [Indexed: 06/07/2023]
Abstract
Driven by the growing demand for food products of animal origin, industrial livestock and poultry production has become increasingly popular and is on the track of becoming an important source of environmental pollution in China. Although concentrated animal feeding operations (CAFOs) have higher production efficiency and profitability with less resource consumption compared to the traditional family-based and "free range" farming, they bring significant environmental pollution concerns and pose public health risks. Gaseous pollutants and bioaerosols are emitted directly from CAFOs, which have health implications on animal producers and neighboring communities. A range of pollutants are excreted with the animal waste, including nutrients, pathogens, natural and synthetic hormones, veterinary antimicrobials, and heavy metals, which can enter local farmland soils, surface water, and groundwater, during the storage and disposal of animal waste, and pose direct and indirect human health risks. The extensive use of antimicrobials in CAFOs also contributes to the global public health concern of antimicrobial resistance (AMR). Efforts on treating the large volumes of manure generated in CAFOs should be enhanced (e.g., by biogas digesters and integrated farm systems) to minimize their impacts on the environment and human health. Furthermore, the use of veterinary drugs and feed additives in industrial livestock and poultry farming should be controlled, which will not only make the animal food products much safer to the consumers, but also render the manure more benign for treatment and disposal on farmlands. While improving the sustainability of animal farming, China also needs to promote healthy food consumption, which not only improves public health from avoiding high-meat diets, but also slows down the expansion of industrial animal farming, and thus reduces the associated environmental and public health risks.
Collapse
Affiliation(s)
- Yuanan Hu
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China
| | - Hefa Cheng
- MOE Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| | - Shu Tao
- MOE Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
12
|
|
13
|
Osman KM, Ali MN, Radwan I, ElHofy F, Abed AH, Orabi A, Fawzy NM. Dispersion of the Vancomycin Resistance Genes vanA and vanC of Enterococcus Isolated from Nile Tilapia on Retail Sale: A Public Health Hazard. Front Microbiol 2016; 7:1354. [PMID: 27617012 PMCID: PMC4999479 DOI: 10.3389/fmicb.2016.01354] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 08/16/2016] [Indexed: 01/29/2023] Open
Abstract
Although normally regarded harmless commensals, enterococci may cause a range of different infections in humans, including urinary tract infections, sepsis, and endocarditis. The acquisition of vancomycin resistance by enterococci (VRE) has seriously affected the treatment and infection control of these organisms. VRE are frequently resistant to all antibiotics that are effective treatment for vancomycin-susceptible enterococci, which leaves clinicians treating VRE infections with limited therapeutic options. With VRE emerging as a global threat to public health, we aimed to isolate, identify enterococci species from tilapia and their resistance to van-mediated glycopeptide (vanA and vanC) as well as the presence of enterococcal surface protein (esp) using conventional and molecular methods. The cultural, biochemical (Vitek 2 system) and polymerase chain reaction results revealed eight Enterococcus isolates from the 80 fish samples (10%) to be further identified as E. faecalis (6/8, 75%) and E gallinarum (2/8, 25%). Intraperitoneal injection of healthy Nile tilapia with the eight Enterococcus isolates caused significant morbidity (70%) within 3 days and 100% mortality at 6 days post-injection with general signs of septicemia. All of the eight Enterococcus isolates were found to be resistant to tetracycline. The 6/6 E. faecalis isolates were susceptible for penicillin, nitrofurantoin, gentamicin, and streptomycin. On the other hand 5/6 were susceptible for ampicillin, vancomycin, chloramphenicol, and ciprofloxacin. The two isolates of E. gallinarum were sensitive to rifampicin and ciprofloxacin and resistant to vancomycin, chloramphenicol, and erythromycin. Molecular characterization proved that they all presented the prototypic vanC element. On the whole, one of the two vancomycin resistance gene was present in 3/8 of the enterococci isolates, while the esp virulence gene was present in 1/8 of the enterococci isolates. The results in this study emphasize the potential role that aquatic environments are correlated to proximity to anthropogenic activities in determining the antimicrobial resistance patterns of Enterococcus spp. recovered from fish in the river Nile in Giza, Elmounib, Egypt as a continuation of our larger study on the reservoirs of antibiotic resistance in the environment.
Collapse
Affiliation(s)
- Kamelia M Osman
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Giza Egypt
| | - Mohamed N Ali
- Department of Fish Diseases and Management, Animal Health Research Institute, Giza Egypt
| | - Ismail Radwan
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef Egypt
| | - Fatma ElHofy
- Department of Microbiology, Faculty of Veterinary Medicine, Benha University, Benha Egypt
| | - Ahmed H Abed
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef Egypt
| | - Ahmed Orabi
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Giza Egypt
| | - Nehal M Fawzy
- Department of Fish Diseases and Management, Animal Health Research Institute, Giza Egypt
| |
Collapse
|
14
|
Casey JA, Kim BF, Larsen J, Price LB, Nachman KE. Industrial Food Animal Production and Community Health. Curr Environ Health Rep 2016; 2:259-71. [PMID: 26231503 DOI: 10.1007/s40572-015-0061-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Industrial food animal production (IFAP) is a source of environmental microbial and chemical hazards. A growing body of literature suggests that populations living near these operations and manure-applied crop fields are at elevated risk for several health outcomes. We reviewed the literature published since 2000 and identified four health outcomes consistently and positively associated with living near IFAP: respiratory outcomes, methicillin-resistant Staphylococcus aureus (MRSA), Q fever, and stress/mood. We found moderate evidence of an association of IFAP with quality of life and limited evidence of an association with cognitive impairment, Clostridium difficile, Enterococcus, birth outcomes, and hypertension. Distance-based exposure metrics were used by 17/33 studies reviewed. Future work should investigate exposure through drinking water and must improve exposure assessment with direct environmental sampling, modeling, and high-resolution DNA typing methods. Investigators should not limit study to high-profile pathogens like MRSA but include a broader range of pathogens, as well as other disease outcomes.
Collapse
Affiliation(s)
- Joan A Casey
- Robert Wood Johnson Foundation Health and Society Scholars Program, UC San Francisco and UC Berkeley, 50 University Hall, Room 583, Berkeley, CA, 94720-7360, USA,
| | | | | | | | | |
Collapse
|
15
|
Neurofunctional correlates of ethical, food-related decision-making. PLoS One 2015; 10:e0120541. [PMID: 25830288 PMCID: PMC4382275 DOI: 10.1371/journal.pone.0120541] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 01/23/2015] [Indexed: 02/04/2023] Open
Abstract
For consumers today, the perceived ethicality of a food’s production method can be as important a purchasing consideration as its price. Still, few studies have examined how, neurofunctionally, consumers are making ethical, food-related decisions. We examined how consumers’ ethical concern about a food’s production method may relate to how, neurofunctionally, they make decisions whether to purchase that food. Forty-six participants completed a measure of the extent to which they took ethical concern into consideration when making food-related decisions. They then underwent a series of functional magnetic resonance imaging (fMRI) scans while performing a food-related decision-making (FRDM) task. During this task, they made 56 decisions whether to purchase a food based on either its price (i.e., high or low, the “price condition”) or production method (i.e., with or without the use of cages, the “production method condition”), but not both. For 23 randomly selected participants, we performed an exploratory, whole-brain correlation between ethical concern and differential neurofunctional activity in the price and production method conditions. Ethical concern correlated negatively and significantly with differential neurofunctional activity in the left dorsolateral prefrontal cortex (dlPFC). For the remaining 23 participants, we performed a confirmatory, region-of-interest (ROI) correlation between the same variables, using an 8-mm3 volume situated in the left dlPFC. Again, the variables correlated negatively and significantly. This suggests, when making ethical, food-related decisions, the more consumers take ethical concern into consideration, the less they may rely on neurofunctional activity in the left dlPFC, possibly because making these decisions is more routine for them, and therefore a more perfunctory process requiring fewer cognitive resources.
Collapse
|
16
|
CALPUFF and CAFOs: Air Pollution Modeling and Environmental Justice Analysis in the North Carolina Hog Industry. ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION 2015. [DOI: 10.3390/ijgi4010150] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Finley RL, Collignon P, Larsson DGJ, McEwen SA, Li XZ, Gaze WH, Reid-Smith R, Timinouni M, Graham DW, Topp E. The scourge of antibiotic resistance: the important role of the environment. Clin Infect Dis 2013; 57:704-10. [PMID: 23723195 DOI: 10.1093/cid/cit355] [Citation(s) in RCA: 383] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Antibiotic resistance and associated genes are ubiquitous and ancient, with most genes that encode resistance in human pathogens having originated in bacteria from the natural environment (eg, β-lactamases and fluoroquinolones resistance genes, such as qnr). The rapid evolution and spread of "new" antibiotic resistance genes has been enhanced by modern human activity and its influence on the environmental resistome. This highlights the importance of including the role of the environmental vectors, such as bacterial genetic diversity within soil and water, in resistance risk management. We need to take more steps to decrease the spread of resistance genes in environmental bacteria into human pathogens, to decrease the spread of resistant bacteria to people and animals via foodstuffs, wastes and water, and to minimize the levels of antibiotics and antibiotic-resistant bacteria introduced into the environment. Reducing this risk must include improved management of waste containing antibiotic residues and antibiotic-resistant microorganisms.
Collapse
Affiliation(s)
- Rita L Finley
- Centre for Food-borne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, Ontario, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Rumbeiha WK. Toxicology and "one health": opportunities for multidisciplinary collaborations. J Med Toxicol 2012; 8:91-3. [PMID: 22430202 DOI: 10.1007/s13181-012-0224-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
19
|
Hendryx M, Fedorko E. The Relationship Between Toxics Release Inventory Discharges and Mortality Rates in Rural and Urban Areas of the United States. J Rural Health 2011; 27:358-66. [DOI: 10.1111/j.1748-0361.2011.00367.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|