1
|
Iguidbashian J, Zakrzewski J, Lu L, Garcia AM, Khailova L, Deng X, Plenter R, La Rosa FG, Nakano S, Lynch K, Jaggers J, Davidson J, Stone ML. Targeted immunotherapy with sphingosine-1-phosphate improves myocardial contractility and mitochondrial function in a novel murine ex vivo perfusion and transplantation model. J Thorac Cardiovasc Surg 2025:S0022-5223(25)00181-3. [PMID: 40043942 DOI: 10.1016/j.jtcvs.2025.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/26/2025] [Accepted: 02/24/2025] [Indexed: 03/27/2025]
Abstract
OBJECTIVE To develop a reproducible ex vivo heart perfusion (EVHP) and murine heart transplantation model and to evaluate the efficacy of hypothermic, acellular ex vivo perfusion with sphingosine-1-phosphate (S1P) as a strategy to mitigate transplantation-associated ischemia-reperfusion injury (IRI). METHODS Donor hearts from wild-type mice were stratified by preservation technique. Group 1 hearts (n = 4) served as nontransplanted controls. Group 2 hearts (n = 10) underwent 90 minutes of cold static preservation (CSP) following cardioplegic arrest in donor mice. Group 3 to 5 hearts (n = 10/group) underwent EVHP with hypothermic acellular solution (Krebs-Henseleit buffer [KH]) alone (group 3), with KH plus S1P (FTY-720) (group 4), or with KH plus S1P plus S1P receptor subtype 2 antagonist (JTE-013) (group 5). Group 2 to 5 hearts were then transplanted into recipient mice with 120 minutes of reperfusion. Hearts were evaluated for function by echocardiography, for histopathologic injury by neutrophil infiltration, and for mitochondrial bioenergetics by Seahorse bioanalysis. RESULTS Functional assessment demonstrated comparable post-transplantation allograft function as defined by fractional shortening (FS) and fractional area change (FAC) for CSP and KH-only EVHP mice (P > .05). EVHP with S1P improved post-transplantation function by both FS and FAC (P < .05). Coadministration of S1P with S1PR2 antagonist abrogated the functional improvement of S1P alone (P < .05). EVHP with S1P also reduced injury severity scores based on neutrophil infiltration (P < .05). Finally, EVHP with S1P transplanted hearts demonstrated improved mitochondrial function compared to hearts transplanted after standard CSP (P < .05). CONCLUSIONS Donor hearts perfused with hypothermic acellular perfusate and S1P demonstrated improved post-transplantation heart function, decreased histologic injury, and increased mitochondrial performance compared to hearts preserved with cold-static CSP, representing a potential strategy to mitigate IRI occurring in heart transplantation.
Collapse
Affiliation(s)
- John Iguidbashian
- Division of General Surgery, Department of Surgery, University of Colorado, Anschutz Medical Campus, Aurora, Colo
| | - Jack Zakrzewski
- Division of General Surgery, Department of Surgery, University of Colorado, Anschutz Medical Campus, Aurora, Colo
| | - Li Lu
- Division of Cardiothoracic Surgery, Department of Surgery, Children's Hospital of Colorado, Anschutz Medical Campus, Aurora, Colo
| | - Anastacia M Garcia
- Division of Cardiology, Department of Pediatrics, Children's Hospital of Colorado, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colo
| | - Ludmila Khailova
- Division of Cardiology, Department of Pediatrics, Children's Hospital of Colorado, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colo
| | - Xinsheng Deng
- Division of Cardiothoracic Surgery, Department of Surgery, Children's Hospital of Colorado, Anschutz Medical Campus, Aurora, Colo
| | - Robert Plenter
- Division of Cardiology, Department of Pediatrics, Children's Hospital of Colorado, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colo
| | - Francisco G La Rosa
- Department of Pathology, University of Colorado, Anschutz Medical Campus, Aurora, Colo
| | - Stephanie Nakano
- Division of Cardiology, Department of Pediatrics, Children's Hospital of Colorado, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colo
| | - Kevin Lynch
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Va
| | - James Jaggers
- Division of Cardiothoracic Surgery, Department of Surgery, Children's Hospital of Colorado, Anschutz Medical Campus, Aurora, Colo
| | - Jesse Davidson
- Division of Cardiology, Department of Pediatrics, Children's Hospital of Colorado, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colo
| | - Matthew L Stone
- Division of Cardiothoracic Surgery, Department of Surgery, Children's Hospital of Colorado, Anschutz Medical Campus, Aurora, Colo.
| |
Collapse
|
2
|
Lu S, She M, Zeng Q, Yi G, Zhang J. Sphingosine 1-phosphate and its receptors in ischemia. Clin Chim Acta 2021; 521:25-33. [PMID: 34153277 DOI: 10.1016/j.cca.2021.06.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/13/2021] [Accepted: 06/14/2021] [Indexed: 10/21/2022]
Abstract
Sphingosine 1-phosphate (S1P), a metabolite of sphingolipids, is mainly derived from red blood cells (RBCs), platelets and endothelial cells (ECs). It plays important roles in regulating cell survival, vascular integrity and inflammatory responses through its receptors. S1P receptors (S1PRs), including 5 subtypes (S1PR1-5), are G protein-coupled receptors and have been proved to mediate various and complex roles of S1P in atherosclerosis, myocardial infarction (MI) and ischemic stroke by regulating endothelial function and inflammatory response as well as immune cell behavior. This review emphasizes the functions of S1PRs in atherosclerosis and ischemic diseases such as MI and ischemic stroke, enabling mechanistic studies and new S1PRs targeted therapies in atherosclerosis and ischemia in the future.
Collapse
Affiliation(s)
- Shishu Lu
- Hengyang Medical College, University of South China, Hengyang, China
| | - Meihua She
- Hengyang Medical College, University of South China, Hengyang, China; Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, University of South China, Hengyang, China.
| | - Qun Zeng
- Hengyang Medical College, University of South China, Hengyang, China
| | - Guanghui Yi
- Hengyang Medical College, University of South China, Hengyang, China; Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, University of South China, Hengyang, China
| | - Jiawei Zhang
- Hengyang Medical College, University of South China, Hengyang, China
| |
Collapse
|
3
|
Qi Y, Li JJ, Di XH, Zhang Y, Chen JL, Wu ZX, Man ZY, Bai RY, Lu F, Tong J, Liu XL, Deng XL, Zhang J, Zhang X, Zhang Y, Xie W. Excess sarcoplasmic reticulum-mitochondria calcium transport induced by Sphingosine-1-phosphate contributes to cardiomyocyte hypertrophy. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:118970. [PMID: 33529640 DOI: 10.1016/j.bbamcr.2021.118970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 10/22/2022]
Abstract
Sphingosine-1-phosphate (S1P) has been shown to possess pro-hypertrophic properties in the heart, but the detailed molecular mechanism that underlies the pathological process is rarely explored. In the present study, we aim to explore the role of S1P-mediated intracellular Ca2+ signaling, with a focus on sarcoplasmic reticulum (SR)-mitochondria communication, in cardiomyocyte hypertrophy. Cultured neonatal rat ventricular myocytes (NRVMs) displayed significantly hypertrophic growth after treatment with 1 μmol/L S1P for 48 h, as indicated by the cell surface area or mRNA expressions of hypertrophic marker genes (ANP, BNP and β-MHC). Importantly, mitochondrial Ca2+ and reactive oxygen species (ROS) levels were dramatically elevated upon S1P stimulation, and pharmacological blockage of which abolished NRVM hypertrophy. 0.5 Hz electrical pacing induced similar cytosolic Ca2+ kinetics to S1P stimulation, but unaffected the peak of mitochondrial [Ca2+]. With interference of the expression of type 2 inositol 1,4,5-trisphosphate receptors (IP3R2), which are unemployed in electrical paced Ca2+ activity but may be activated by S1P, alteration in mitochondrial Ca2+ as well as the hypertrophic effect in NRVMs under S1P stimulation were attenuated. The hypertrophic effect of S1P can also be abolished by pharmacological block of S1PR1 or Gi signaling. Collectively, our study highlights the mechanistic role of IP3R2-mediated excess SR-mitochondria Ca2+ transport in S1P-induced cardiomyocyte hypertrophy.
Collapse
Affiliation(s)
- Ying Qi
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Jing-Jing Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Xiao-Hui Di
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Yu Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Jie-Long Chen
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Zi-Xuan Wu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Zi-Yue Man
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Ru-Yue Bai
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Fujian Lu
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Jie Tong
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Xue-Liang Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Xiu-Ling Deng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Jianbao Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Xing Zhang
- Department of Aerospace Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yi Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China.
| | - Wenjun Xie
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| |
Collapse
|
4
|
Diarte-Añazco EMG, Méndez-Lara KA, Pérez A, Alonso N, Blanco-Vaca F, Julve J. Novel Insights into the Role of HDL-Associated Sphingosine-1-Phosphate in Cardiometabolic Diseases. Int J Mol Sci 2019; 20:ijms20246273. [PMID: 31842389 PMCID: PMC6940915 DOI: 10.3390/ijms20246273] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 02/07/2023] Open
Abstract
Sphingolipids are key signaling molecules involved in the regulation of cell physiology. These species are found in tissues and in circulation. Although they only constitute a small fraction in lipid composition of circulating lipoproteins, their concentration in plasma and distribution among plasma lipoproteins appears distorted under adverse cardiometabolic conditions such as diabetes mellitus. Sphingosine-1-phosphate (S1P), one of their main representatives, is involved in regulating cardiomyocyte homeostasis in different models of experimental cardiomyopathy. Cardiomyopathy is a common complication of diabetes mellitus and represents a main risk factor for heart failure. Notably, plasma concentration of S1P, particularly high-density lipoprotein (HDL)-bound S1P, may be decreased in patients with diabetes mellitus, and hence, inversely related to cardiac alterations. Despite this, little attention has been given to the circulating levels of either total S1P or HDL-bound S1P as potential biomarkers of diabetic cardiomyopathy. Thus, this review will focus on the potential role of HDL-bound S1P as a circulating biomarker in the diagnosis of main cardiometabolic complications frequently associated with systemic metabolic syndromes with impaired insulin signaling. Given the bioactive nature of these molecules, we also evaluated its potential of HDL-bound S1P-raising strategies for the treatment of cardiometabolic disease.
Collapse
Affiliation(s)
- Elena M. G. Diarte-Añazco
- Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau, and Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain;
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain;
| | - Karen Alejandra Méndez-Lara
- Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau, and Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain;
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain;
- Correspondence: (K.A.M.-L.); (F.B.-V.); (J.J.)
| | - Antonio Pérez
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain;
- Centro de Investigación Biomédica en Red (CIBER) de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, 28029 Madrid, Spain;
- Servei d’Endocrinologia, Hospital de la Santa Creu i Sant Pau, IIB Sant Pau, 08041 Barcelona, Spain
| | - Núria Alonso
- Centro de Investigación Biomédica en Red (CIBER) de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, 28029 Madrid, Spain;
- Servei d’Endocrinologia, Hospital Universitari Germans Trias i Pujol, Badalona, 08916 Barcelona, Spain
| | - Francisco Blanco-Vaca
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain;
- Centro de Investigación Biomédica en Red (CIBER) de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, 28029 Madrid, Spain;
- Servei de Bioquímica, Hospital de la Santa Creu i Sant Pau, IIB Sant Pau, 08041 Barcelona, Spain
- Correspondence: (K.A.M.-L.); (F.B.-V.); (J.J.)
| | - Josep Julve
- Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau, and Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain;
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain;
- Centro de Investigación Biomédica en Red (CIBER) de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, 28029 Madrid, Spain;
- Correspondence: (K.A.M.-L.); (F.B.-V.); (J.J.)
| |
Collapse
|
5
|
Marciniak A, Camp SM, Garcia JGN, Polt R. An update on sphingosine-1-phosphate receptor 1 modulators. Bioorg Med Chem Lett 2018; 28:3585-3591. [PMID: 30409535 DOI: 10.1016/j.bmcl.2018.10.042] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 10/22/2018] [Accepted: 10/25/2018] [Indexed: 12/14/2022]
Abstract
Sphingolipids represent an essential class of lipids found in all eukaryotes, and strongly influence cellular signal transduction. Autoimmune diseases like asthma and multiple sclerosis (MS) are mediated by the sphingosine-1-phosphate receptor 1 (S1P1) to express a variety of symptoms and disease patterns. Inspired by its natural substrate, an array of artificial sphingolipid derivatives has been developed to target this specific G protein-coupled receptor (GPCR) in an attempt to suppress autoimmune disorders. FTY720, also known as fingolimod, is the first oral disease-modifying therapy for MS on the market. In pursuit of improved stability, bioavailability, and efficiency, structural analogues of this initial prodrug have emerged over time. This review covers a brief introduction to the sphingolipid metabolism, the mechanism of action on S1P1, and an updated overview of synthetic sphingosine S1P1 agonists.
Collapse
Affiliation(s)
- Alexander Marciniak
- Department of Chemistry & Biochemistry, The University of Arizona, Tucson, AZ 85721, United States.
| | - Sara M Camp
- Department of Medicine, The University of Arizona, Tucson, AZ 85724, United States.
| | - Joe G N Garcia
- Department of Medicine, The University of Arizona, Tucson, AZ 85724, United States.
| | - Robin Polt
- Department of Chemistry & Biochemistry, The University of Arizona, Tucson, AZ 85721, United States.
| |
Collapse
|
6
|
Yang T, Zhang X, Ma C, Chen Y. TGF-β/Smad3 pathway enhances the cardio-protection of S1R/SIPR1 in in vitro ischemia-reperfusion myocardial cell model. Exp Ther Med 2018; 16:178-184. [PMID: 29896238 PMCID: PMC5995059 DOI: 10.3892/etm.2018.6192] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 08/16/2017] [Indexed: 02/07/2023] Open
Abstract
Ischemia-reperfusion (IR) injury is usually associated with a high risk of cardiomyocyte death in patients with acute myocardial infarction. Sphingosine 1-phosphate (S1P) and transforming growth factor (TGF)-β are thought to be involved in the protection of cardiomyocyte and heart function following IR-induced injury. However, the possible association of S1P and S1P receptor 1 (S1PR1) with the TGF-β/Smad3 pathway as the potential protective mechanism has remained to be investigated. In the present study, an in vitro ischemia/reperfusion injury model was established and evaluated by analysis of apoptosis, lactate dehydrogenase (LDH) release and caspase3 activity. The mRNA and protein levels of S1PR1, TGF-β and Smad3 after treatment with 1 µM S1P alone or combined with 0.4 µM W146 (a specific S1PR1 antagonist) were assessed. The mRNA expression of five S1PRs (S1PR1-5) and the protein levels of S1PR1 were also assayed following treatment with 1 ng/ml TGF-β for 0, 4 or 24 h. The mRNA expression of S1PR1 and the levels of S1P were further assessed following exposure to 10 µM SB4 (TGFβR1 inhibitor) plus 1 ng/ml TGF-β and 2 µM SIS3 (Smad3 inhibitor) plus 1 ng/ml TGF-β. The results indicated that apoptosis, LDH release and caspase3 activity were all increased in the established IR model. Exogenous S1P increased the mRNA and protein levels of S1PR1, TGF-β and Smad3, which was abolished by addition of W146. Extraneous TGF-β resulted in the stimulation of several S1PRs, most prominently of S1PR1, while supplementation with SB4 and SIS3 offset the stimulation by TGF-β. These results suggested that the TGF-β/Smad3 pathway was closely associated with S1P/S1PR1 in the protection of myocardial cells from IR injury.
Collapse
Affiliation(s)
- Tingfang Yang
- Department of Pediatrics, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Xianfeng Zhang
- Department of Psychiatry, Jining Mental Health Hospital/Daizhuang Hospital of Shandong, Jining, Shandong 272051, P.R. China
| | - Cuimei Ma
- Department of Pediatrics, Affiliated Hospital of Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Yan Chen
- Department of Pediatrics, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| |
Collapse
|
7
|
Flemming S, Burkard N, Meir M, Schick MA, Germer CT, Schlegel N. Sphingosine-1-Phosphate Receptor-1 Agonist Sew2871 Causes Severe Cardiac Side Effects and Does Not Improve Microvascular Barrier Breakdown in Sepsis. Shock 2018; 49:71-81. [PMID: 28538086 DOI: 10.1097/shk.0000000000000908] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND Endothelial barrier dysfunction is a hallmark in the pathogenesis of sepsis. Sphingosine-1-phosphate (S1P) has been proposed to be critically involved in the maintenance of endothelial barrier function predominately by activating S1P receptor-1 (S1P1). Previous studies have shown that the specific S1P1 agonist SEW2871 improves endothelial barrier function under inflammatory conditions. However, the effectiveness of SEW2871 and potential side effects remained largely unexplored in a clinically relevant model of sepsis. Therefore, this study aimed to evaluate the effects of SEW2871 in the Colon ascendens stent peritonitis (CASP) model. METHODS Polymicrobial sepsis was induced in Sprague-Dawley rats using CASP model that enabled the monitoring of macro-hemodynamic parameters. Twelve hours after surgery, animals received either SEW2871 or sodium chloride. Mesenteric endothelial barrier function was evaluated 24 h after sepsis induction by intravital microscopy. Organ pathology was assessed in lungs. S1P levels, blood gas analyses, and blood values were measured at different time points. In parallel the effect of SEW2871 was evaluated in human dermal microvascular endothelial cells. RESULT In vitro SEW2871 partially stabilized TNF-α-induced endothelial barrier breakdown. However, in vivo SEW2871 caused severe cardiac side effects in septic animals leading to an increased lethality. Sepsis-induced endothelial barrier dysfunction was not attenuated by SEW2871 as revealed by increased FITC-albumin extra-vasation, requirement of intravasal fluid replacement, and pulmonary edema. Interestingly, Sham-operated animals did not present any side effects after SEW2871 treatment. CONCLUSION Our study demonstrates that the application of SEW2871 causes severe cardiac side effects and cannot attenuate the inflammation-induced endothelial barrier breakdown in a clinically relevant sepsis model, suggesting that the time point of administration and the pro-inflammatory milieu play a pivotal role in the therapeutic benefit of SEW2871.
Collapse
Affiliation(s)
- Sven Flemming
- Department of General Visceral, Vascular and Paediatric Surgery (Department of Surgery I), University of Würzburg, Würzburg, Germany
| | - Natalie Burkard
- Department of General Visceral, Vascular and Paediatric Surgery (Department of Surgery I), University of Würzburg, Würzburg, Germany
| | - Michael Meir
- Department of General Visceral, Vascular and Paediatric Surgery (Department of Surgery I), University of Würzburg, Würzburg, Germany
| | - Martin Alexander Schick
- Department of Anaesthesia and Critical Care, University of Würzburg, Würzburg, Germany
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center, Freiburg, Germany
| | - Christoph-Thomas Germer
- Department of General Visceral, Vascular and Paediatric Surgery (Department of Surgery I), University of Würzburg, Würzburg, Germany
| | - Nicolas Schlegel
- Department of General Visceral, Vascular and Paediatric Surgery (Department of Surgery I), University of Würzburg, Würzburg, Germany
| |
Collapse
|
8
|
Swendeman SL, Xiong Y, Cantalupo A, Yuan H, Burg N, Hisano Y, Cartier A, Liu CH, Engelbrecht E, Blaho V, Zhang Y, Yanagida K, Galvani S, Obinata H, Salmon JE, Sanchez T, Di Lorenzo A, Hla T. An engineered S1P chaperone attenuates hypertension and ischemic injury. Sci Signal 2017; 10:10/492/eaal2722. [PMID: 28811382 DOI: 10.1126/scisignal.aal2722] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Endothelial dysfunction, a hallmark of vascular disease, is restored by plasma high-density lipoprotein (HDL). However, a generalized increase in HDL abundance is not beneficial, suggesting that specific HDL species mediate protective effects. Apolipoprotein M-containing HDL (ApoM+HDL), which carries the bioactive lipid sphingosine 1-phosphate (S1P), promotes endothelial function by activating G protein-coupled S1P receptors. Moreover, HDL-bound S1P is limiting in several inflammatory, metabolic, and vascular diseases. We report the development of a soluble carrier for S1P, ApoM-Fc, which activated S1P receptors in a sustained manner and promoted endothelial function. In contrast, ApoM-Fc did not modulate circulating lymphocyte numbers, suggesting that it specifically activated endothelial S1P receptors. ApoM-Fc administration reduced blood pressure in hypertensive mice, attenuated myocardial damage after ischemia/reperfusion injury, and reduced brain infarct volume in the middle cerebral artery occlusion model of stroke. Our proof-of-concept study suggests that selective and sustained targeting of endothelial S1P receptors by ApoM-Fc could be a viable therapeutic strategy in vascular diseases.
Collapse
Affiliation(s)
- Steven L Swendeman
- Vascular Biology Program, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Yuquan Xiong
- Vascular Biology Program, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Anna Cantalupo
- Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | - Hui Yuan
- Vascular Biology Program, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Nathalie Burg
- Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA.,Hospital for Special Surgery, New York, NY 10021, USA
| | - Yu Hisano
- Vascular Biology Program, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Andreane Cartier
- Vascular Biology Program, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Catherine H Liu
- Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | - Eric Engelbrecht
- Vascular Biology Program, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Victoria Blaho
- Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | - Yi Zhang
- Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | - Keisuke Yanagida
- Vascular Biology Program, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Sylvain Galvani
- Vascular Biology Program, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Hideru Obinata
- Gunma University Initiative for Advanced Research, Gunma 371-8511, Japan
| | - Jane E Salmon
- Hospital for Special Surgery, New York, NY 10021, USA
| | - Teresa Sanchez
- Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | - Annarita Di Lorenzo
- Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | - Timothy Hla
- Vascular Biology Program, Boston Children's Hospital, Boston, MA 02115, USA. .,Department of Surgery, Harvard Medical School, Boston, MA 02115, USA.,Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| |
Collapse
|
9
|
Vestri A, Pierucci F, Frati A, Monaco L, Meacci E. Sphingosine 1-Phosphate Receptors: Do They Have a Therapeutic Potential in Cardiac Fibrosis? Front Pharmacol 2017. [PMID: 28626422 PMCID: PMC5454082 DOI: 10.3389/fphar.2017.00296] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Sphingosine 1-phosphate (S1P) is a bioactive lipid that is characterized by a peculiar mechanism of action. In fact, S1P, which is produced inside the cell, can act as an intracellular mediator, whereas after its export outside the cell, it can act as ligand of specific G-protein coupled receptors, which were initially named endothelial differentiation gene (Edg) and eventually renamed sphingosine 1-phosphate receptors (S1PRs). Among the five S1PR subtypes, S1PR1, S1PR2 and S1PR3 isoforms show broad tissue gene expression, while S1PR4 is primarily expressed in immune system cells, and S1PR5 is expressed in the central nervous system. There is accumulating evidence for the important role of S1P as a mediator of many processes, such as angiogenesis, carcinogenesis and immunity, and, ultimately, fibrosis. After a tissue injury, the imbalance between the production of extracellular matrix (ECM) and its degradation, which occurs due to chronic inflammatory conditions, leads to an accumulation of ECM and, consequential, organ dysfunction. In these pathological conditions, many factors have been described to act as pro- and anti-fibrotic agents, including S1P. This bioactive lipid exhibits both pro- and anti-fibrotic effects, depending on its site of action. In this review, after a brief description of sphingolipid metabolism and signaling, we emphasize the involvement of the S1P/S1PR axis and the downstream signaling pathways in the development of fibrosis. The current knowledge of the therapeutic potential of S1PR subtype modulators in the treatment of the cardiac functions and fibrinogenesis are also examined.
Collapse
Affiliation(s)
- Ambra Vestri
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Molecular and Applied Biology Research Unit, University of FlorenceFlorence, Italy
| | - Federica Pierucci
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Molecular and Applied Biology Research Unit, University of FlorenceFlorence, Italy.,Interuniversity Institutes of MyologyFirenze, Italy
| | - Alessia Frati
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Molecular and Applied Biology Research Unit, University of FlorenceFlorence, Italy
| | - Lucia Monaco
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of RomeRome, Italy
| | - Elisabetta Meacci
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Molecular and Applied Biology Research Unit, University of FlorenceFlorence, Italy.,Interuniversity Institutes of MyologyFirenze, Italy
| |
Collapse
|
10
|
Tölle M, Klöckl L, Wiedon A, Zidek W, van der Giet M, Schuchardt M. Regulation of endothelial nitric oxide synthase activation in endothelial cells by S1P1 and S1P3. Biochem Biophys Res Commun 2016; 476:627-634. [DOI: 10.1016/j.bbrc.2016.06.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 06/01/2016] [Indexed: 12/16/2022]
|
11
|
Li N, Zhang F. Implication of sphingosin-1-phosphate in cardiovascular regulation. Front Biosci (Landmark Ed) 2016; 21:1296-313. [PMID: 27100508 DOI: 10.2741/4458] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid metabolite generated by phosphorylation of sphingosine catalyzed by sphingosine kinase. S1P acts mainly through its high affinity G-protein-coupled receptors and participates in the regulation of multiple systems, including cardiovascular system. It has been shown that S1P signaling is involved in the regulation of cardiac chronotropy and inotropy and contributes to cardioprotection as well as cardiac remodeling; S1P signaling regulates vascular function, such as vascular tone and endothelial barrier, and possesses an anti-atherosclerotic effect; S1P signaling is also implicated in the regulation of blood pressure. Therefore, manipulation of S1P signaling may offer novel therapeutic approaches to cardiovascular diseases. As several S1P receptor modulators and sphingosine kinase inhibitors have been approved or under clinical trials for the treatment of other diseases, it may expedite the test and implementation of these S1P-based drugs in cardiovascular diseases.
Collapse
Affiliation(s)
- Ningjun Li
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia, USA,
| | - Fan Zhang
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
12
|
Waeber C, Walther T. Sphingosine-1-phosphate as a potential target for the treatment of myocardial infarction. Circ J 2014; 78:795-802. [PMID: 24632793 DOI: 10.1253/circj.cj-14-0178] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This review focuses on the role of sphingosine-1-phosphate (S1P) signaling in the heart, with particular emphasis on how it could be modulated therapeutically in the context of myocardial infarction (MI). After a brief general description of sphingolipid metabolism and signaling, this review will examine the relationship between S1P and the beneficial effects of high-density lipoprotein (HDL), and finally focus on the known actions of S1P on different mechanisms relevant to MI pathophysiology (cardiomyocyte protection, fibrosis, remodeling, arrhythmia, control of vascular tone and potential repair mechanisms). The potential of particular enzyme isoforms or receptor subtypes for the development of therapeutic agents for MI will also be explored.
Collapse
Affiliation(s)
- Christian Waeber
- Department of Pharmacology and Therapeutics, School of Medicine, School of Pharmacy, University College Cork
| | | |
Collapse
|
13
|
Morozov VI, Sakuta GA, Kalinski MI. Sphingosine-1-phosphate: distribution, metabolism and role in the regulation of cellular functions. UKRAINIAN BIOCHEMICAL JOURNAL 2013; 85:5-21. [PMID: 23534286 DOI: 10.15407/ubj85.01.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The role of sphingosine-1-phosphate (S1P) in regulation of cellular functions and cell protection is reviewed. S1P, along with other sphingolipid metabolites, is believed to act as an intracellular second messenger and as an extracellular mediator molecule. S1P chemistry, production and metabolism are described. Cellular receptors for S1P and their tissue specificity are described. Platelets and erythrocytes have a crucial significance in blood transport of S1P. Hypoxic conditions induce an increase in S1P, which initiates a set of cytoprotective events via its cellular receptors. S1P involvement in regulation of cell migration, myogenesis, control of skeletal muscle function is described. It is shown that S1P balance disturbances may mediate pathological state. S1P system implication in regulation of the most important cellular functions allows considering it as a prospective remedial target.
Collapse
Affiliation(s)
- V I Morozov
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, St. Petersburg, Russia.
| | | | | |
Collapse
|
14
|
Abstract
Sphingosine-1-phosphate (S1P) regulates important functions in cardiac and vascular homeostasis. It has been implied to play causal roles in the pathogenesis of many cardiovascular disorders such as coronary artery disease, atherosclerosis, myocardial infarction, and heart failure. The majority of S1P in plasma is associated with high-density lipoproteins (HDL), and their S1P content has been shown to be responsible, at least in part, for several of the beneficial effects of HDL on cardiovascular risk. The attractiveness of S1P-based drugs for potential cardiovascular applications is increasing in the wake of the clinical approval of FTY720, but answers to important questions on the effects of S1P in cardiovascular biology and medicine must still be found. This chapter focuses on the current understanding of the role of S1P and its receptors in cardiovascular physiology, pathology, and disease.
Collapse
Affiliation(s)
- Bodo Levkau
- University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
15
|
Xiang SY, Dusaban SS, Brown JH. Lysophospholipid receptor activation of RhoA and lipid signaling pathways. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1831:213-22. [PMID: 22986288 DOI: 10.1016/j.bbalip.2012.09.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Revised: 09/08/2012] [Accepted: 09/08/2012] [Indexed: 01/08/2023]
Abstract
The lysophospholipids sphingosine 1-phosphate (S1P) and lysophosphatidic acid (LPA) signal through G-protein coupled receptors (GPCRs) which couple to multiple G-proteins and their effectors. These GPCRs are quite efficacious in coupling to the Gα(12/13) family of G-proteins, which stimulate guanine nucleotide exchange factors (GEFs) for RhoA. Activated RhoA subsequently regulates downstream enzymes that transduce signals which affect the actin cytoskeleton, gene expression, cell proliferation and cell survival. Remarkably many of the enzymes regulated downstream of RhoA either use phospholipids as substrates (e.g. phospholipase D, phospholipase C-epsilon, PTEN, PI3 kinase) or are regulated by phospholipid products (e.g. protein kinase D, Akt). Thus lysophospholipids signal from outside of the cell and control phospholipid signaling processes within the cell that they target. Here we review evidence suggesting an integrative role for RhoA in responding to lysophospholipids upregulated in the pathophysiological environment, and in transducing this signal to cellular responses through effects on phospholipid regulatory or phospholipid regulated enzymes. This article is part of a Special Issue entitled Advances in Lysophospholipid Research.
Collapse
Affiliation(s)
- Sunny Yang Xiang
- Department of Pharmacology, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
| | | | | |
Collapse
|
16
|
Karliner JS. Sphingosine kinase and sphingosine 1-phosphate in the heart: a decade of progress. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1831:203-12. [PMID: 22735359 DOI: 10.1016/j.bbalip.2012.06.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 06/14/2012] [Accepted: 06/17/2012] [Indexed: 12/11/2022]
Abstract
Activation of sphingosine kinase/sphingosine 1-phosphate (SK/S1P)-mediated signaling has emerged as a critical cardioprotective pathway in response to acute ischemia/reperfusion injury. S1P is released in both ischemic pre- and post-conditioning. Application of exogenous S1P to cultured cardiac myocytes subjected to hypoxia or treatment of isolated hearts either before ischemia or at the onset of reperfusion exerts prosurvival effects. Synthetic congeners of S1P such as FTY720 mimic these responses. Gene targeted mice null for the SK1 isoform whose hearts are subjected to ischemia/reperfusion injury exhibit increased infarct size and respond poorly either to ischemic pre- or postconditioning. Measurements of cardiac SK activity and S1P parallel these observations. Experiments in SK2 knockout mice have revealed that this isoform is necessary for survival in the heart. High density lipoprotein (HDL) is a major carrier of S1P, and studies of hearts in which selected S1P receptors have been inhibited implicate the S1P cargo of HDL in cardioprotection. Inhibition of S1P lyase, an endogenous enzyme that degrades S1P, also leads to cardioprotection. These observations have considerable relevance for future therapeutic approaches to acute and chronic myocardial injury. This article is part of a Special Issue entitled Advances in Lysophospholipid Research.
Collapse
|
17
|
Baranowski M, Górski J. Heart sphingolipids in health and disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 721:41-56. [PMID: 21910081 DOI: 10.1007/978-1-4614-0650-1_3] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In recent years, the role of sphingolipids in physiology and pathophysiology of the heart attracted much attention. Ceramide was found to be involved in the pathogenesis of cardiac dysfunction in animal models of ischemia/reperfusion injury, Type 2 diabetes and lipotoxic cardiomyopathy. On the other hand, another member of this lipid family, namely sphingosine-1-phosphate, has been shown to possess potent cardioprotective properties. This chapter provides a review of the role of ceramide and other bioactive sphingolipids in physiology and pathophysiology of the heart. We describe the role of PPARs and exercise in regulation of myocardial sphingolipid metabolism. We also summarize the present state of knowledge on the involvement of ceramide and sphingosine-1-phosphate in the development and prevention of ischemia/reperfusion injury of the heart. In the last section of this chapter we discuss the evidence for a role of ceramide in myocardial lipotoxicity.
Collapse
|
18
|
Hofmann U, Hu K, Walter F, Burkard N, Ertl G, Bauersachs J, Ritter O, Frantz S, Bonz A. Pharmacological pre- and post-conditioning with the sphingosine-1-phosphate receptor modulator FTY720 after myocardial ischaemia-reperfusion. Br J Pharmacol 2010; 160:1243-51. [PMID: 20590616 DOI: 10.1111/j.1476-5381.2010.00767.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Our recent experiments demonstrated that the Sphingosine-1-phosphate (S1P) receptor agonist FTY720 (2-amino-2-[2-(4-octylphenyl)ethyl]-1,3-propanediol hydrochloride) improves recovery of function after myocardial ischaemia-reperfusion ex vivo. Therefore, we tested the hypothesis that pharmacological post-conditioning with FTY720 reduces infarct size after myocardial ischaemia-reperfusion in vivo. EXPERIMENTAL APPROACH Myocardial ischaemia was induced in Wistar rats by ligation of the left coronary artery for 45 min. FTY720 (0.5 mg kg(-1)) was applied i.p. either once, before reperfusion, or twice, 24 h before myocardial ischaemia and before reperfusion. After 24 h reperfusion, we determined infarct size by triphenyltetrazolium chloride staining and granulocyte infiltration by immunohistochemistry. Tumour necrosis factor-alpha (TNF)-alpha concentration was determined by elisa. S1P receptor expression was studied by Western blot. Calcium transients were evaluated in Indo-1-loaded cardiomyocytes. KEY RESULTS In both groups, FTY720 significantly reduced lymphocyte count in peripheral blood. FTY720 treatment attenuated granulocyte infiltration and TNF-alpha protein expression in reperfused myocardium. However, both treatment regimens were not able to reduce infarct size. FTY720 increased mortality due to induction of fatal ventricular tachyarrhythmias when administered once before reperfusion, but protected against reperfusion arrhythmias when given 24 h prior to ischaemia. Pretreatment selectively down-regulated S1P(1) receptor expression within the myocardium. S1P receptor agonists did not induce calcium deregulation in cardiomyocytes. CONCLUSIONS AND IMPLICATIONS FTY720 applied during reperfusion did not reduce infarct size but increased mortality during myocardial ischaemia-reperfusion due to induction of arrhythmias. Pretreatment with FTY720 before ischaemia abrogated the deleterious pro-arrhythmic effects without reducing infarct size.
Collapse
Affiliation(s)
- U Hofmann
- Department of Internal Medicine I, University Hospital Wuerzburg, Würzburg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
He X, H'ng SC, Leong DT, Hutmacher DW, Melendez AJ. Sphingosine-1-Phosphate Mediates Proliferation Maintaining the Multipotency of Human Adult Bone Marrow and Adipose Tissue-derived Stem Cells. J Mol Cell Biol 2010; 2:199-208. [DOI: 10.1093/jmcb/mjq011] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
20
|
Tao R, Hoover HE, Honbo N, Kalinowski M, Alano CC, Karliner JS, Raffai R. High-density lipoprotein determines adult mouse cardiomyocyte fate after hypoxia-reoxygenation through lipoprotein-associated sphingosine 1-phosphate. Am J Physiol Heart Circ Physiol 2010; 298:H1022-8. [PMID: 20061542 DOI: 10.1152/ajpheart.00902.2009] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The lipid mediator sphingosine 1-phosphate (S1P) confers survival benefits in cardiomyocytes and isolated hearts subjected to oxidative stress. High-density lipoprotein (HDL) is a major carrier of S1P in the serum, but whether HDL-associated S1P directly mediates survival in a preparation composed exclusively of cardiomyocytes has not been demonstrated. Accordingly, we tested the hypothesis that signal activation and survival during simulated ischemia-reperfusion injury in response to HDL require lipoprotein-associated S1P. As a model, we used adult mouse cardiomyocytes subjected to hypoxia-reoxygenation. Cells were treated or not with autologous mouse HDL, which significantly increased myocyte viability as measured by trypan blue exclusion. This survival effect was abrogated by the S1P(1) and SIP(3) receptor antagonist VPC 23019. The selective S1P(3) antagonist CAY10444, the G(i) antagonist pertussis toxin, the MEK (MAPK/ERK) kinase inhibitor PD-98059, and the phosphoinositide-3 kinase inhibitor wortmannin also inhibited the prosurvival effect of HDL. We observed that HDL activated both Akt (protein kinase B) and the MEK1/2-ERK1/2 pathway and also stimulated phosphorylation of glycogen synthase kinase-3beta. ERK1/2 activation was through an S1P(1) subtype receptor-G(i) protein-dependent pathway, whereas the activation of Akt was inhibited by CAY10444, indicating mediation by S1P(3) subtype receptors. We conclude that HDL, via its cargo of S1P, can directly protect cardiomyocytes against simulated oxidative injury in the absence of vascular effects and that prosurvival signal activation is dependent on both S1P(1) and S1P(3) subtype receptors.
Collapse
Affiliation(s)
- Rong Tao
- Veterans Affairs Medical Center and Department of Medicine, University of California, San Francisco, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Cardiomyocyte S1P1 receptor-mediated extracellular signal-related kinase signaling and desensitization. J Cardiovasc Pharmacol 2009; 53:486-94. [PMID: 19433984 DOI: 10.1097/fjc.0b013e3181a7b58a] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We examined the ability of sphingosine-1-phosphate (S1P) to desensitize extracellular signal-related kinase (ERK), a mitogen-activated protein kinase linked to antiapoptotic responses in the heart. In isolated adult mouse cardiomyocytes, S1P (10 nM-5 microM) induced ERK phosphorylation in a time- and dose-dependent manner. S1P stimulation of ERK was completely inhibited by an S1P1/3 subtype receptor antagonist (VPC23019), by a Gi protein inhibitor (pertussis toxin) and by a mitogen-activated protein kinase/ERK kinase inhibitor (PD98059). A selective S1P3 receptor antagonist (CAY10444) had no effect on S1P-induced ERK activation. The selective S1P1 agonist SEW2871 also induced ERK phosphorylation. Activation of ERK by restimulation with 100 nM S1P was suppressed after 1 hour of preincubation with 100 nM S1P but recovered fully the next day, suggesting receptor recycling. Similar results were obtained in protein kinase C epsilon-null cardiomyocytes. Treatment with the nonselective S1P receptor agonist FTY720 for 1 hour also reduced phospho-ERK expression in response to subsequent S1P stimulation. In contrast to S1P, some desensitization to FTY720 persisted after overnight exposure. Cell death induced by hypoxia/reoxygenation was reduced by pretreatment with exogenous S1P. This enhanced survival was abrogated by pretreatment with PD98059, VPC23019, or pertussis toxin. Thus, exogenous S1P induces rapid and reversible S1P1-mediated ERK phosphorylation. S1P-induced adult mouse cardiomyocyte survival requires ERK activation mediated via an S1P1-Gi pathway.
Collapse
|
22
|
Rosen H, Gonzalez-Cabrera PJ, Sanna MG, Brown S. Sphingosine 1-phosphate receptor signaling. Annu Rev Biochem 2009; 78:743-68. [PMID: 19231986 DOI: 10.1146/annurev.biochem.78.072407.103733] [Citation(s) in RCA: 327] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The sphingosine 1-phosphate (S1P) receptor signaling system is a productive model system. A hydrophobic zwitterionic lysophospholipid ligand with difficult physical properties interacts with five high-affinity G protein-coupled receptors to generate multiple downstream signals. These signals modulate homeostasis and pathology on a steep agonist concentration-response curve. Ligand presence is essential for vascular development and endothelial integrity, while acute increases in ligand concentrations result in cardiac death. Understanding this integrated biochemical system has exemplified the impact of both genetics and chemistry. Developing specific tools with defined biochemical properties for the reversible modulation of signals in real time has been essential to complement insights gained from genetic approaches that may be irreversible and compensated. Despite its knife-edge between life and death, this system, based in part on receptor subtype-selectivity and in part on differential attenuation of deleterious signals, now appears to be on the cusp of meaningful therapy for multiple sclerosis.
Collapse
Affiliation(s)
- Hugh Rosen
- Departments of Chemical Physiology and Immunology and The Scripps Research Institute Molecular Screening Center, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | | | | | |
Collapse
|
23
|
Abstract
Activation of sphingosine kinase/sphingosine 1-phosphate-mediated signaling has emerged as a critical cardioprotective pathway in response to acute ischemia/reperfusion injury. Application of exogenous sphingosine 1-phosphate (S1P) in cultured cardiac myocytes subjected to hypoxia or treatment of isolated hearts either before ischemia or at the onset of reperfusion (pharmacologic preconditioning or postconditioning) exerts prosurvival effects. Synthetic congeners of S1P mimic these responses. Gene-targeted mice null for the sphingosine kinase 1 isoform whose hearts are subjected to ischemia/reperfusion injury exhibit increased infarct size and respond poorly either to ischemic preconditioning or to ischemic postconditioning. Measurements of cardiac sphingosine kinase activity and S1P parallel these observations. High-density lipoprotein is a major carrier of S1P, and studies of hearts in which selected S1P receptors have been deleted implicate the S1P cargo of high-density lipoprotein in cardioprotection. These observations have considerable relevance for future therapeutic approaches to acute and chronic myocardial injury.
Collapse
|
24
|
Marsolais D, Rosen H. Chemical modulators of sphingosine-1-phosphate receptors as barrier-oriented therapeutic molecules. Nat Rev Drug Discov 2009; 8:297-307. [PMID: 19300460 PMCID: PMC4455967 DOI: 10.1038/nrd2356] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Biological barriers regulate the passage of cells, pathogens, fluids, nutrients, ions and signalling molecules between anatomical compartments during homeostasis and disease. Yet strategies that allow for reversible therapeutic modulation of these barriers are still in their infancy. The enhancement or protection of natural barriers is desirable in conditions such as acute respiratory distress syndrome or ischaemia-reperfusion injuries, whereas a temporary disruption could facilitate the penetration of drugs across such barriers. This Review discusses the role of sphingosine-1-phosphate receptors in the regulation and protection of biological barriers, and the potential of therapeutic strategies that target this receptor family.
Collapse
Affiliation(s)
- David Marsolais
- Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | |
Collapse
|
25
|
Abstract
The five known members of the sphingosine-1-phosphate (S1P) receptor family exhibit diverse tissue expression profiles and couple to distinct G-protein-mediated signalling pathways. S1P1, S1P2, and S1P3 receptors are all present in the heart, but the ratio of these subtypes differs for various cardiac cells. The goal of this review is to summarize data concerning which S1P receptor subtypes regulate cardiac physiology and pathophysiology, which G-proteins and signalling pathways they couple to, and in which cell types they are expressed. The available information is based on studies using a lamentably limited set of pharmacological agonists/antagonists, but is complemented by work with S1P receptor subtype-specific knockout mice and sphingosine kinase knockout mice. In cardiac myocytes, the S1P1 receptor subtype is the predominant subtype expressed, and the activation of this receptor inhibits cAMP formation and antagonizes adrenergic receptor-mediated contractility. The S1P3 receptor, while expressed at lower levels, mediates the bradycardic effect of S1P agonists. Studies using knockout mice indicate that S1P2 and S1P3 receptors play a major role in mediating cardioprotection from ischaemia/reperfusion injury in vivo. S1P receptors are also involved in remodelling, proliferation, and differentiation of cardiac fibroblasts, a cell type in which the S1P3 receptor predominates. Receptors for S1P are also present in endothelial and smooth muscle cells where they mediate peripheral vascular tone and endothelial responses, but the role of this regulatory system in the cardiac vasculature is unknown. Further understanding of the contributions of each cell and receptor subtype to cardiac function and pathophysiology should expedite consideration of the endogenous S1P signalling pathway as a therapeutic target for cardiovascular disease.
Collapse
Affiliation(s)
- Christopher K Means
- Department of Pharmacology, University of California San Diego, School of Medicine, 9500 Gilman Dr., La Jolla, CA 92093-0636, USA
| | | |
Collapse
|
26
|
Sattler K, Levkau B. Sphingosine-1-phosphate as a mediator of high-density lipoprotein effects in cardiovascular protection. Cardiovasc Res 2009; 82:201-11. [PMID: 19233866 DOI: 10.1093/cvr/cvp070] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Sphingosine-1-phosphate (S1P) has gained special attention in the high-density lipoprotein (HDL) field because HDL is the most prominent plasma carrier of S1P and because the S1P content of HDL may be responsible for many of the pleiotropic functions of HDL. This revelation has come from the evidence that HDL employ S1P receptors and signalling pathways to implement several HDL-ascribed biological effects as diverse as endothelial nitric oxide production, vasodilation, survival, and cardioprotection. This review focuses on HDL effects that are completely or partially mediated by the S1P content of the HDL particle and differentiates them from genuine HDL effects that are S1P-independent. In addition, the functional properties of 'free', HDL-unbound S1P are sometimes different from or even contrary to those of HDL-associated S1P. The nature of the physical interactions between HDL and local and systemic S1P production will be discussed as well as their consequences for organ function. Finally, we will elucidate the potential benefits and limitations of S1P analogues as a new class of functional HDL mimetics for cardiovascular therapy.
Collapse
Affiliation(s)
- Katherine Sattler
- Institute of Pathophysiology, Zentrum für Innere Medizin, Universitätsklinikum Essen, Hufelandstr. 55, 45122 Essen, Germany
| | | |
Collapse
|
27
|
Current World Literature. Curr Opin Cardiol 2009; 24:95-101. [DOI: 10.1097/hco.0b013e32831fb366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Alewijnse AE, Peters SLM. Sphingolipid signalling in the cardiovascular system: good, bad or both? Eur J Pharmacol 2008; 585:292-302. [PMID: 18420192 DOI: 10.1016/j.ejphar.2008.02.089] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Revised: 01/21/2008] [Accepted: 02/06/2008] [Indexed: 12/25/2022]
Abstract
Sphingolipids are biologically active lipids that play important roles in various cellular processes and the sphingomyelin metabolites ceramide, sphingosine and sphingosine-1-phosphate can act as signalling molecules in most cell types. With the recent development of the immunosuppressant drug FTY720 (Fingolimod) which after phosphorylation in vivo acts as a sphingosine-1-phosphate receptor agonist, research on the role of sphingolipids in the immune and other organ systems was triggered enormously. Since it was reported that FTY720 induced a modest, but significant transient decrease in heart rate in animals and humans, the question was raised which pharmacological properties of drugs targeting sphingolipid signalling will affect cardiovascular function in vivo. The answer to this question will most likely also indicate what type of drug could be used to treat cardiovascular disease. The latter is becoming increasingly important because of the increasing population carrying characteristics of the metabolic syndrome. This syndrome is, amongst others, characterized by obesity, hypertension, atherosclerosis and diabetes. As such, individuals with this syndrome are at increased risk of heart disease. Now numerous studies have investigated sphingolipid effects in the cardiovascular system, can we speculate whether certain sphingolipids under specific conditions are good, bad or maybe both? In this review we will give a brief overview of the pathophysiological role of sphingolipids in cardiovascular disease. In addition, we will try to answer how drugs that target sphingolipid signalling will potentially influence cardiovascular function and whether these drugs would be useful to treat cardiovascular disease.
Collapse
Affiliation(s)
- Astrid E Alewijnse
- Department of Pharmacology and Pharmacotherapy, Academic Medical Center, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | | |
Collapse
|