1
|
Młynarska E, Bojdo K, Frankenstein H, Kustosik N, Mstowska W, Przybylak A, Rysz J, Franczyk B. Nanotechnology and Artificial Intelligence in Dyslipidemia Management-Cardiovascular Disease: Advances, Challenges, and Future Perspectives. J Clin Med 2025; 14:887. [PMID: 39941558 PMCID: PMC11818864 DOI: 10.3390/jcm14030887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/11/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
This narrative review explores emerging technologies in dyslipidemia management, focusing on nanotechnology and artificial intelligence (AI). It examines the current treatment recommendations and contrasts them with the future prospects enabled by these innovations. Nanotechnology shows significant potential in enhancing drug delivery systems, enabling more targeted and efficient lipid-lowering therapies. In parallel, AI offers advancements in diagnostics, cardiovascular risk prediction, and personalized treatment strategies. AI-based decision support systems and machine learning algorithms are particularly promising for analyzing large datasets and delivering evidence-based recommendations. Together, these technologies hold the potential to revolutionize dyslipidemia management, improving outcomes and optimizing patient care. In addition, this review covers key topics such as cardiovascular disease biomarkers and risk factors, providing insights into the current methods for assessing cardiovascular risk. It also discusses the current understanding of dyslipidemia, including pathophysiology and clinical management. Together, these insights and technologies hold the potential to revolutionize dyslipidemia management, improving outcomes and optimizing patient care.
Collapse
Affiliation(s)
- Ewelina Młynarska
- Department of Nephrocardiology, Medical University of Lodz, 90-549 Łódź, Poland
| | - Kinga Bojdo
- Department of Nephrocardiology, Medical University of Lodz, 90-549 Łódź, Poland
| | - Hanna Frankenstein
- Department of Nephrocardiology, Medical University of Lodz, 90-549 Łódź, Poland
| | - Natalia Kustosik
- Department of Nephrocardiology, Medical University of Lodz, 90-549 Łódź, Poland
| | - Weronika Mstowska
- Department of Nephrocardiology, Medical University of Lodz, 90-549 Łódź, Poland
| | | | - Jacek Rysz
- Department of Nephrology, Hypertension and Internal Medicine, Medical University of Lodz, 90-549 Łodz, Poland
| | - Beata Franczyk
- Department of Nephrocardiology, Medical University of Lodz, 90-549 Łódź, Poland
| |
Collapse
|
2
|
Liu Y, Xue Y, Tang J, Zhang P, Liu C, Wu D, Liu J. Porphyrin-Camptothecin (CPT) Grafted Polyoxazoline Amphiphiles for Tumor Photodynamic-Chemotherapy Combination Treatment. ACS APPLIED MATERIALS & INTERFACES 2024; 16:64617-64627. [PMID: 39547789 DOI: 10.1021/acsami.4c17267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Porphyrin-based photosensitizers are extensively utilized in the realm of photodynamic therapy, capitalizing on their advantageous optical, chemical, and electronic properties. Nonetheless, their application is often constrained by their pronounced hydrophobicity. Structures with a high load capacity and excellent biocompatibility are preferred options to circumvent this obstacle. Herein, we constructed a novel porphyrin-camptothecin (CPT) polymer, which is composed of amphiphilic oxazoline segments, and the drug monomers containing disulfide bonds are modified on the hydrophobic chain of polyoxazoline. The polyoxazoline-porphyrin-CPT (OPC) polymer can self-assemble into nanoparticles in the aqueous phase, possesses excellent stability, and generates abundant singlet oxygen (1O2) under laser irradiation. Additionally, the OPC nanoparticles exhibit satisfactory biocompatibility and high light toxicity against 4T1 cells. In the microenvironment of the tumor, drugs were released from the OPC nanoparticles owing to the high concentration of GSH, causing direct damage to the tumor cell, achieving the combination of photo-chemotherapy. The findings of this research indicate that polyoxazoline porphyrin demonstrates adaptability as a nanoplatform for cancer treatment.
Collapse
Affiliation(s)
- Yadong Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, China
| | - Yifan Xue
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, China
| | - Junjie Tang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, China
| | - Peng Zhang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, China
| | - Changjiang Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, China
| | - Dalin Wu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, China
| | - Jie Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, China
| |
Collapse
|
3
|
Lou Z, Mu C, Corpstein CD, Li T. In vivo deposition of poorly soluble drugs. Adv Drug Deliv Rev 2024; 211:115358. [PMID: 38851590 DOI: 10.1016/j.addr.2024.115358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/12/2024] [Accepted: 06/05/2024] [Indexed: 06/10/2024]
Abstract
Administered drug molecules, whether dissolved or solubilized, have the potential to precipitate and accumulate as solid forms in tissues and cells within the body. This phase transition can significantly impact the pharmacokinetics of treatment. It is thus crucial to gain an understanding of how drug solubility/permeability, drug formulations and routes of administration affect in vivo behaviors of drug deposition. This review examines literature reports on the drug deposition in tissues and cells of poorly water-soluble drugs, as well as underlying physical mechanisms that lead to precipitation. Our work particularly highlights drug deposition in macrophages and the subcellular fate of precipitated drugs. We also propose a tissue permeability-based classification framework to evaluate precipitation potentials of poorly soluble drugs in major organs and tissues. The impact on pharmacokinetics is further discussed and needs to be considered in developing drug delivery systems. Finally, bioimaging techniques that are used to examine aggregated states and the intracellular trafficking of absorbed drugs are summarized.
Collapse
Affiliation(s)
- Zhaohuan Lou
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Zhejiang, Hangzhou 310053, China; Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47906, USA
| | - Chaofeng Mu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Zhejiang, Hangzhou 310053, China
| | - Clairissa D Corpstein
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47906, USA
| | - Tonglei Li
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47906, USA.
| |
Collapse
|
4
|
Montelione N, Loreni F, Nenna A, Catanese V, Scurto L, Ferrisi C, Jawabra M, Gabellini T, Codispoti FA, Spinelli F, Chello M, Stilo F. Tissue Engineering and Targeted Drug Delivery in Cardiovascular Disease: The Role of Polymer Nanocarrier for Statin Therapy. Biomedicines 2023; 11:798. [PMID: 36979777 PMCID: PMC10045667 DOI: 10.3390/biomedicines11030798] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 03/09/2023] Open
Abstract
Atherosclerosis-related coronary artery disease (CAD) is the leading cause of mortality and morbidity worldwide. This requires effective primary and secondary prevention in reducing the complications related to CAD; the regression or stabilization of the pathology remains the mainstay of treatment. Statins have proved to be the most effective treatment in reducing adverse effects, but there are limitations related to the administration and achievement of effective doses as well as side effects due to the lack of target-related molecular specificity. The implemented technological steps are polymers and nanoparticles for the administration of statins, as it has been seen how the conjugation of drug delivery systems (DDSs) with statins increases bioavailability by circumventing the hepatic-renal filter and increases the related target specificity, enhancing their action and decreasing side effects. Reduction of endothelial dysfunction, reduced intimal hyperplasia, reduced ischemia-reperfusion injury, cardiac regeneration, positive remodeling in the extracellular matrix, reduced neointimal growth, and increased reendothelialization are all drug-related effects of statins enhanced by binding with DDSs. Recent preclinical studies demonstrate how the effect of statins stimulates the differentiation of endogenous cardiac stem cells. Poly-lactic-co-glycolic acid (PLGA) seems to be the most promising DDS as it succeeds more than the others in enhancing the effect of the bound drug. This review intends to summarize the current evidence on polymers and nanoparticles for statin delivery in the field of cardiovascular disease, trying to shed light on this topic and identify new avenues for future studies.
Collapse
Affiliation(s)
- Nunzio Montelione
- Unit of Vascular Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Francesco Loreni
- Unit of Cardiac Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Antonio Nenna
- Unit of Cardiac Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Vincenzo Catanese
- Unit of Vascular Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Lucia Scurto
- Unit of Vascular Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Chiara Ferrisi
- Unit of Cardiac Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Mohamad Jawabra
- Unit of Cardiac Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Teresa Gabellini
- Residency Program of Vascular and Endovascular Surgery, University of Ferrara, 44121 Ferrara, Italy
| | | | - Francesco Spinelli
- Unit of Vascular Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Massimo Chello
- Unit of Cardiac Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Francesco Stilo
- Unit of Vascular Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
- Head of Research Unit of Vascular Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| |
Collapse
|
5
|
Soumya RS, Raghu KG. Recent advances on nanoparticle-based therapies for cardiovascular diseases. J Cardiol 2023; 81:10-18. [PMID: 35210166 DOI: 10.1016/j.jjcc.2022.02.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/09/2022] [Accepted: 02/08/2022] [Indexed: 11/17/2022]
Abstract
Nanoparticles are exclusively suitable for studying and developing potential therapies against cardiovascular diseases (CVD) because of their size, fine-tunable properties, and ability to incorporate therapeutic and imaging modalities. Recent advancements in nanomaterials open new avenues for treating CVD. In cardiology, the use of nanoparticles and nanocarriers has gathered significant consideration owing to characteristic features such as active and passive targeting to the cardiac tissues, greater target specificity, and sensitivity. It has been reported that through the use of nanotechnology, more than 50% of CVDs can be treated efficiently. Heart-targeted nano carrier-based drug delivery is an effective and efficient approach for treating cardiac-related disorders such as atherosclerosis, hypertension, and myocardial infarction. In this review, the authors focus on nanoparticle-based therapies used in CVD and provide an outline of essential knowledge and critical concerns on polymer-based nanomaterials in treating CVD.
Collapse
Affiliation(s)
- Rema Sreenivasan Soumya
- Biochemistry and Molecular Mechanism Laboratory, Agroprocessing and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, Kerala, India
| | - Kozhiparambil Gopalan Raghu
- Biochemistry and Molecular Mechanism Laboratory, Agroprocessing and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, Kerala, India.
| |
Collapse
|
6
|
Marson D, Aulic S, Fermeglia A, Laurini E, Pricl S. Nanovesicles for the delivery of cardiovascular drugs. APPLICATIONS OF NANOVESICULAR DRUG DELIVERY 2022:341-369. [DOI: 10.1016/b978-0-323-91865-7.00009-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
7
|
Mertz M, Castiglione K. Increased Protein Encapsulation in Polymersomes with Hydrophobic Membrane Anchoring Peptides in a Scalable Process. Int J Mol Sci 2021; 22:7134. [PMID: 34281201 PMCID: PMC8268381 DOI: 10.3390/ijms22137134] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/28/2021] [Accepted: 06/28/2021] [Indexed: 11/17/2022] Open
Abstract
Hollow vesicles made from a single or double layer of block-copolymer molecules, called polymersomes, represent an important technological platform for new developments in nano-medicine and nano-biotechnology. A central aspect in creating functional polymersomes is their combination with proteins, especially through encapsulation in the inner cavity of the vesicles. When producing polymersomes by techniques such as film rehydration, significant proportions of the proteins used are trapped in the vesicle lumen, resulting in high encapsulation efficiencies. However, because of the difficulty of scaling up, such methods are limited to laboratory experiments and are not suitable for industrial scale production. Recently, we developed a scalable polymersome production process in stirred-tank reactors, but the statistical encapsulation of proteins resulted in fairly low encapsulation efficiencies of around 0.5%. To increase encapsulation in this process, proteins were genetically fused with hydrophobic membrane anchoring peptides. This resulted in encapsulation efficiencies of up to 25.68%. Since proteins are deposited on the outside and inside of the polymer membrane in this process, two methods for the targeted removal of protein domains by proteolysis with tobacco etch virus protease and intein splicing were evaluated. This study demonstrates the proof-of-principle for production of protein-functionalized polymersomes in a scalable process.
Collapse
Affiliation(s)
| | - Kathrin Castiglione
- Institute of Bioprocess Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91052 Erlangen, Germany;
| |
Collapse
|
8
|
Yan J, Gao T, Lu Z, Yin J, Zhang Y, Pei R. Aptamer-Targeted Photodynamic Platforms for Tumor Therapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:27749-27773. [PMID: 34110790 DOI: 10.1021/acsami.1c06818] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Achieving controlled and accurate delivery of photosensitizers (PSs) into tumor sites is a major challenge in conventional photodynamic therapy (PDT). Aptamer is a short oligonucleotide sequence (DNA or RNA) with a folded three-dimensional structure, which can selectively bind to specific small molecules, proteins, or the whole cells. Aptamers could act as ligands and be modified onto PSs or nanocarriers, enabling specific recognition and binding to tumor cells or their membrane proteins. The resultant aptamer-modified PSs or PSs-containing nanocarriers generate amounts of reactive oxygen species with light irradiation and obtain superior photodynamic therapeutic efficiency in tumors. Herein, we overview the recent progress in the designs and applications of aptamer-targeted photodynamic platforms for tumor therapy. First, we focus on the progress on the rational selection of aptamers and summarize the applications of aptamers which have been applied for targeted tumor diagnosis and therapy. Then, aptamer-targeted photodynamic therapies including various aptamer-PSs, aptamer-nanocarriers containing PSs, and aptamer-nano-photosensitizers are highlighted. The aptamer-targeted synergistically therapeutic platforms including PDT, photothermal therapy, and chemotherapy, as well as the imaging-guided theranostics, are also discussed. Finally, we offer an insight into the development trends and future perspectives of aptamer-targeted photodynamic platforms for tumor therapy.
Collapse
Affiliation(s)
- Jincong Yan
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, 200444 Shanghai, China
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, 215123 Suzhou, China
| | - Tian Gao
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, 215123 Suzhou, China
| | - Zhongzhong Lu
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, 215123 Suzhou, China
| | - Jingbo Yin
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, 200444 Shanghai, China
| | - Ye Zhang
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, 215123 Suzhou, China
| | - Renjun Pei
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, 215123 Suzhou, China
| |
Collapse
|
9
|
Hesari M, Mohammadi P, Khademi F, Shackebaei D, Momtaz S, Moasefi N, Farzaei MH, Abdollahi M. Current Advances in the Use of Nanophytomedicine Therapies for Human Cardiovascular Diseases. Int J Nanomedicine 2021; 16:3293-3315. [PMID: 34007178 PMCID: PMC8123960 DOI: 10.2147/ijn.s295508] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 04/16/2021] [Indexed: 12/15/2022] Open
Abstract
Considering the high prevalence of cardiovascular diseases (CVDs), the primary cause of death during the last several decades, it is necessary to develop proper strategies for the prevention and treatment of CVDs. Given the excessive side effects of current therapies, alternative therapeutic approaches like medicinal plants and natural products are preferred. Lower toxicity, chemical diversity, cost-effectiveness, and proven therapeutic potentials make natural products superior compared to other products. Nanoformulation methods improve the solubility, bioavailability, circulation time, surface area-to-volume ratio, systemic adverse side effects, and drug delivery efficiency of these medications. This study intended to review the functionality of the most recent nanoformulated medicinal plants and/or natural products against various cardiovascular conditions such as hypertension, atherosclerosis, thrombosis, and myocardial infarction. Literature review revealed that curcumin, quercetin, and resveratrol were the most applied natural products, respectively. Combination therapy, conjugation, or fabrication of nanoparticles and nanocarriers improved the applications and therapeutic efficacy of herbal- or natural-based nanoformulations. In the context of CVDs prevention and/or treatment, available data suggest that natural-based nanoformulations are considerably efficient, alone or in blend with other herbal/synthetic medicines. However, clinical trials are mandatory to elucidate the safety, cardioprotective effect, and mechanism of actions of nanophytomedicines.
Collapse
Affiliation(s)
- Mahvash Hesari
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Pantea Mohammadi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Khademi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Dareuosh Shackebaei
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Tehran, Iran.,Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.,Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Gastrointestinal Pharmacology Interest Group, Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Narges Moasefi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Hosein Farzaei
- Medical Technology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.,Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Groner J, Goepferich A, Breunig M. Atherosclerosis: Conventional intake of cardiovascular drugs versus delivery using nanotechnology - A new chance for causative therapy? J Control Release 2021; 333:536-559. [PMID: 33794270 DOI: 10.1016/j.jconrel.2021.03.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 02/06/2023]
Abstract
Atherosclerosis is the leading cause of death in developed countries. The pathogenetic mechanism relies on a macrophage-based immune reaction to low density lipoprotein (LDL) deposition in blood vessels with dysfunctional endothelia. Thus, atherosclerosis is defined as a chronic inflammatory disease. A plethora of cardiovascular drugs have been developed and are on the market, but the major shortcoming of standard medications is that they do not address the root cause of the disease. Statins and thiazolidinediones that have recently been recognized to exert specific anti-atherosclerotic effects represent a potential breakthrough on the horizon. But their whole potential cannot be realized due to insufficient availability at the pathological site and severe off-target effects. The focus of this review will be to elaborate how both groups of drugs could immensely profit from nanoparticulate carriers. This delivery principle would allow for their accumulation in target macrophages and endothelial cells of the atherosclerotic plaque, increasing bioavailability where it is needed most. Based on the analyzed literature we conclude design criteria for the delivery of statins and thiazolidinediones with nanoparticles for anti-atherosclerotic therapy. Nanoparticles need to be below a diameter of 100 nm to accumulate in the atherosclerotic plaque and should be fabricated using biodegradable materials. Further, the thiazolidinediones or statins must be encapsulated into the particle core, because especially for thiazolidindiones the uptake into cells is prerequisite for their mechanism of action. For optimal uptake into targeted macrophages and endothelial cells, the ideal particle should present ligands on its surface which bind specifically to scavenger receptors. The impact of statins on the lectin-type oxidized LDL receptor 1 (LOX1) seems particularly promising because of its outstanding role in the inflammatory process. Using this pioneering concept, it will be possible to promote the impact of statins and thiazolidinediones on macrophages and endothelial cells and significantly enhance their anti-atherosclerotic therapeutic potential.
Collapse
Affiliation(s)
- Jonas Groner
- Department of Pharmaceutical Technology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Achim Goepferich
- Department of Pharmaceutical Technology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Miriam Breunig
- Department of Pharmaceutical Technology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany.
| |
Collapse
|
11
|
Polymers and Nanoparticles for Statin Delivery: Current Use and Future Perspectives in Cardiovascular Disease. Polymers (Basel) 2021; 13:polym13050711. [PMID: 33652927 PMCID: PMC7956757 DOI: 10.3390/polym13050711] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/20/2021] [Accepted: 02/21/2021] [Indexed: 12/20/2022] Open
Abstract
Atherosclerosis-related coronary artery disease (CAD) is one of the leading sources of mortality and morbidity in the world. Primary and secondary prevention appear crucial to reduce CAD-related complications. In this scenario, statin treatment was shown to be clinically effective in the reduction of adverse events, but systemic administration provides suboptimal results. As an attempt to improve bioavailability and effectiveness, polymers and nanoparticles for statin delivery were recently investigated. Polymers and nanoparticles can help statin delivery and their effects by increasing oral bioavailability or enhancing target-specific interaction, leading to reduced vascular endothelial dysfunction, reduced intimal hyperplasia, reduced ischemia-reperfusion injury, increased cardiac regeneration, positive remodeling in the extracellular matrix, reduced neointimal growth and increased re-endothelization. Moreover, some innovative aspects described in other cardiovascular fields could be translated into the CAD scenario. Recent preclinical studies are underlining the effect of statins in the stimulation and differentiation of endogenous cardiac stem cells, as well as in targeting of local adverse conditions implicated in atherosclerosis, and statin delivery through poly-lactic-co-glycolic acid (PLGA) appears the most promising aspect of current research to enhance drug activity. The present review intends to summarize the current evidence about polymers and nanoparticles for statin delivery in the field of cardiovascular disease, trying to shed light on this topic and identify new avenues for future studies.
Collapse
|
12
|
Najahi-Missaoui W, Arnold RD, Cummings BS. Safe Nanoparticles: Are We There Yet? Int J Mol Sci 2020; 22:ijms22010385. [PMID: 33396561 PMCID: PMC7794803 DOI: 10.3390/ijms22010385] [Citation(s) in RCA: 249] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/24/2020] [Accepted: 12/27/2020] [Indexed: 12/14/2022] Open
Abstract
The field of nanotechnology has grown over the last two decades and made the transition from the benchtop to applied technologies. Nanoscale-sized particles, or nanoparticles, have emerged as promising tools with broad applications in drug delivery, diagnostics, cosmetics and several other biological and non-biological areas. These advances lead to questions about nanoparticle safety. Despite considerable efforts to understand the toxicity and safety of these nanoparticles, many of these questions are not yet fully answered. Nevertheless, these efforts have identified several approaches to minimize and prevent nanoparticle toxicity to promote safer nanotechnology. This review summarizes our current knowledge on nanoparticles, their toxic effects, their interactions with mammalian cells and finally current approaches to minimizing their toxicity.
Collapse
Affiliation(s)
- Wided Najahi-Missaoui
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, USA;
- Correspondence: ; Tel.: +1-706-542-6552; Fax: +70-6542-5358
| | - Robert D. Arnold
- Department of Drug Discovery & Development, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849, USA;
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602, USA
| | - Brian S. Cummings
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, USA;
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
13
|
Jadczyk T, Caluori G, Wojakowski W, Starek Z. Nanotechnology and stem cells in vascular biology. VASCULAR BIOLOGY 2020; 1:H103-H109. [PMID: 32923961 PMCID: PMC7439937 DOI: 10.1530/vb-19-0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 09/24/2019] [Indexed: 12/03/2022]
Abstract
Nanotechnology and stem cells are one of the most promising strategies for clinical medicine applications. The article provides an up-to-date view on advances in the field of regenerative and targeted vascular therapies describing a molecular design (propulsion mechanism, composition, target identification) and applications of nanorobots. Stem cell paragraph presents current clinical application of various cell types involved in vascular biology including mesenchymal stem cells, very small embryonic-like stem cells, induced pluripotent stem cells, mononuclear stem cells, amniotic fluid-derived stem cells and endothelial progenitor cells. A possible bridging between the two fields is also envisioned, where bio-inspired, safe, long-lasting nanorobots can fully target the cellular specific cues and even drive vascular process in a timely manner.
Collapse
Affiliation(s)
- Tomasz Jadczyk
- Department of Cardiology and Structural Heart Diseases, Medical University of Silesia, Katowice, Poland.,Interventional Cardiac Electrophysiology Group, International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Guido Caluori
- Department of Cardiology and Structural Heart Diseases, Medical University of Silesia, Katowice, Poland.,Nanobiotechnology, CEITEC-MU, Brno, Czech Republic
| | - Wojciech Wojakowski
- Department of Cardiology and Structural Heart Diseases, Medical University of Silesia, Katowice, Poland
| | - Zdenek Starek
- Interventional Cardiac Electrophysiology Group, International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic.,First Department of Internal Medicine, Cardioangiology, St. Anne's University Hospital Brno, Masaryk University, Brno, Czech Republic
| |
Collapse
|
14
|
Oxidative Stress and New Pathogenetic Mechanisms in Endothelial Dysfunction: Potential Diagnostic Biomarkers and Therapeutic Targets. J Clin Med 2020; 9:jcm9061995. [PMID: 32630452 PMCID: PMC7355625 DOI: 10.3390/jcm9061995] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/15/2020] [Accepted: 06/23/2020] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular diseases (CVD), including heart and pathological circulatory conditions, are the world's leading cause of mortality and morbidity. Endothelial dysfunction involved in CVD pathogenesis is a trigger, or consequence, of oxidative stress and inflammation. Endothelial dysfunction is defined as a diminished production/availability of nitric oxide, with or without an imbalance between endothelium-derived contracting, and relaxing factors associated with a pro-inflammatory and prothrombotic status. Endothelial dysfunction-induced phenotypic changes include up-regulated expression of adhesion molecules and increased chemokine secretion, leukocyte adherence, cell permeability, low-density lipoprotein oxidation, platelet activation, and vascular smooth muscle cell proliferation and migration. Inflammation-induced oxidative stress results in an increased accumulation of reactive oxygen species (ROS), mainly derived from mitochondria. Excessive ROS production causes oxidation of macromolecules inducing cell apoptosis mediated by cytochrome-c release. Oxidation of mitochondrial cardiolipin loosens cytochrome-c binding, thus, favoring its cytosolic release and activation of the apoptotic cascade. Oxidative stress increases vascular permeability, promotes leukocyte adhesion, and induces alterations in endothelial signal transduction and redox-regulated transcription factors. Identification of new endothelial dysfunction-related oxidative stress markers represents a research goal for better prevention and therapy of CVD. New-generation therapeutic approaches based on carriers, gene therapy, cardiolipin stabilizer, and enzyme inhibitors have proved useful in clinical practice to counteract endothelial dysfunction. Experimental studies are in continuous development to discover new personalized treatments. Gene regulatory mechanisms, implicated in endothelial dysfunction, represent potential new targets for developing drugs able to prevent and counteract CVD-related endothelial dysfunction. Nevertheless, many challenges remain to overcome before these technologies and personalized therapeutic strategies can be used in CVD management.
Collapse
|
15
|
Pala R, Anju VT, Dyavaiah M, Busi S, Nauli SM. Nanoparticle-Mediated Drug Delivery for the Treatment of Cardiovascular Diseases. Int J Nanomedicine 2020; 15:3741-3769. [PMID: 32547026 PMCID: PMC7266400 DOI: 10.2147/ijn.s250872] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases (CVDs) are one of the foremost causes of high morbidity and mortality globally. Preventive, diagnostic, and treatment measures available for CVDs are not very useful, which demands promising alternative methods. Nanoscience and nanotechnology open a new window in the area of CVDs with an opportunity to achieve effective treatment, better prognosis, and less adverse effects on non-target tissues. The application of nanoparticles and nanocarriers in the area of cardiology has gathered much attention due to the properties such as passive and active targeting to the cardiac tissues, improved target specificity, and sensitivity. It has reported that more than 50% of CVDs can be treated effectively through the use of nanotechnology. The main goal of this review is to explore the recent advancements in nanoparticle-based cardiovascular drug carriers. This review also summarizes the difficulties associated with the conventional treatment modalities in comparison to the nanomedicine for CVDs.
Collapse
Affiliation(s)
- Rajasekharreddy Pala
- Department of Biomedical and Pharmaceutical Sciences, Harry and Diane Rinker Health Science Campus, Chapman University, Irvine, CA92618, USA
- Department of Medicine, University of California Irvine, Irvine, CA92868, USA
| | - V T Anju
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Madhu Dyavaiah
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Siddhardha Busi
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Surya M Nauli
- Department of Biomedical and Pharmaceutical Sciences, Harry and Diane Rinker Health Science Campus, Chapman University, Irvine, CA92618, USA
- Department of Medicine, University of California Irvine, Irvine, CA92868, USA
| |
Collapse
|
16
|
Atherosclerosis: Insights into Vascular Pathobiology and Outlook to Novel Treatments. J Cardiovasc Transl Res 2020; 13:744-757. [PMID: 32072564 DOI: 10.1007/s12265-020-09961-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 01/22/2020] [Indexed: 12/14/2022]
Abstract
The pathobiology of atherosclerosis and its current and potential future treatments are summarized, with a spotlight on three central cell types involved: (i) endothelial cells (ECs), (ii) macrophages, and (iii) vascular smooth muscle cells (VSMCs). (i) EC behaviour is regulated by the central transcription factors YAP/TAZ in reaction to biomechanical forces, such as hemodynamic shear stress. (ii) VSMC transdifferentiation (phenotype switching) to a macrophage-like phenotype contributes to the majority of cells positive for common cell surface macrophage markers in atherosclerotic plaques. (iii) Intra-plaque macrophages originate in a significant number from vascular resident macrophages. They can be activated via pattern recognition receptors on cell membrane (e.g. toll-like receptors) and inside cells (e.g. inflammasomes), requiring priming by neutrophil extracellular traps (NETs). ECs and macrophages can also be characterized by single-cell RNA sequencing. Adaptive immunity plays an important role in the inflammatory process. Future therapeutic options include vaccination, TRAF-STOPs, senolysis, or CD47 blockade. Graphical Abstract.
Collapse
|
17
|
Tan KX, Pan S, Jeevanandam J, Danquah MK. Cardiovascular therapies utilizing targeted delivery of nanomedicines and aptamers. Int J Pharm 2019; 558:413-425. [PMID: 30660748 DOI: 10.1016/j.ijpharm.2019.01.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/03/2019] [Accepted: 01/05/2019] [Indexed: 01/01/2023]
Abstract
Cardiovascular ailments are the foremost trigger of death in the world today, including myocardial infarction and ischemic heart diseases. To date, extraordinary measures have been prescribed, from the perspectives of both conventional medical therapies and surgeries, to enforce cardiac cell regeneration post cardiac traumas, albeit with limited long-term success. The prospects of successful heart transplants are also grim, considering exorbitant costs and unavailability of suitable donors in most cases. From the perspective of cardiac revascularization, use of nanoparticles and nanoparticle mediated targeted drug delivery have garnered substantial attention, attributing to both active and passive heart targeting, with enhanced target specificity and sensitivity. This review focuses on this aspect, while outlining the progress in targeted delivery of nanomedicines in the prognosis and subsequent therapy of cardiovascular disorders, and recapitulating the benefits and intrinsic challenges associated with the incorporation of nanoparticles. This article categorically provides an overview of nanoparticle-mediated targeted delivery systems and their implications in handling cardiovascular diseases, including their intrinsic benefits and encountered procedural trials and challenges. Additionally, the solicitations of aptamers in targeted drug delivery with identical objectives, are presented. This includes a detailed appraisal on various aptamer-navigated nanoparticle targeted delivery platforms in the diagnosis and treatment of cardiovascular maladies. Despite a few impending challenges, subject to additional investigations, both nanoparticles as well as aptamers show a high degree of promise, and pose as the next generation of drug delivery vehicles, in targeted cardiovascular therapy.
Collapse
Affiliation(s)
- Kei Xian Tan
- Department of Chemical Engineering, Curtin University of Technology, 98009 Sarawak, Malaysia.
| | - Sharadwata Pan
- School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany.
| | - Jaison Jeevanandam
- Department of Chemical Engineering, Curtin University of Technology, 98009 Sarawak, Malaysia.
| | - Michael K Danquah
- Department of Chemical Engineering, University of Tennessee, Chattanooga, TN 37403, United States.
| |
Collapse
|
18
|
Wong YS, Czarny B, Venkatraman SS. Precision nanomedicine in atherosclerosis therapy: how far are we from reality? PRECISION NANOMEDICINE 2019. [DOI: 10.33218/prnano2(1).181114.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Atherosclerosis, characterized by build-up of lipids and chronic inflammation of the arterial wall, is the primary cause of cardiovascular disease and is a leading cause of death worldwide. Currently available therapies are inadequate and warrant the demand for improved technologies for more effective treatment. Although primarily the domain of antitumor therapy, recent advances have shown the considerable potential of nanomedicine to advance atherosclerosis treatment. This Review details the arsenal of nanocarriers and molecules available for selective targeting in atherosclerosis, and emphasize the challenges in atherosclerosis treatment.
Collapse
|
19
|
Moreno Raja M, Lim PQ, Wong YS, Xiong GM, Zhang Y, Venkatraman S, Huang Y. Polymeric Nanomaterials. NANOCARRIERS FOR DRUG DELIVERY 2019:557-653. [DOI: 10.1016/b978-0-12-814033-8.00018-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
20
|
Taneja G, Sud A, Pendse N, Panigrahi B, Kumar A, Sharma AK. Nano-medicine and Vascular Endothelial Dysfunction: Options and Delivery Strategies. Cardiovasc Toxicol 2018; 19:1-12. [DOI: 10.1007/s12012-018-9491-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
21
|
Rzeczycki P, Woldemichael T, Willmer A, Murashov MD, Baik J, Keswani R, Yoon GS, Stringer KA, Rodriguez-Hornedo N, Rosania GR. An Expandable Mechanopharmaceutical Device (1): Measuring the Cargo Capacity of Macrophages in a Living Organism. Pharm Res 2018; 36:12. [PMID: 30421091 PMCID: PMC6501569 DOI: 10.1007/s11095-018-2539-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 10/31/2018] [Indexed: 12/14/2022]
Abstract
PURPOSE Clofazimine (CFZ) is an FDA-approved, poorly soluble small molecule drug that precipitates as crystal-like drug inclusions (CLDIs) which accumulate in acidic cytoplasmic organelles of macrophages. In this study, we considered CLDIs as an expandable mechanopharmaceutical device, to study how macrophages respond to an increasingly massive load of endophagolysosomal cargo. METHODS First, we experimentally tested how the accumulation of CFZ in CLDIs impacted different immune cell subpopulations of different organs. Second, to further investigate the mechanism of CLDI formation, we asked whether specific accumulation of CFZ hydrochloride crystals in lysosomes could be explained as a passive, thermodynamic equilibrium phenomenon. A cellular pharmacokinetic model was constructed, simulating CFZ accumulation driven by pH-dependent ion trapping of the protonated drug in the acidic lysosomes, followed by the precipitation of CFZ hydrochloride salt via a common ion effect caused by high chloride concentrations. RESULTS While lower loads of CFZ were mostly accommodated in lung macrophages, increased CFZ loading was accompanied by organ-specific changes in macrophage numbers, size and intracellular membrane architecture, maximizing the cargo storage capabilities. With increasing loads, the total cargo mass and concentrations of CFZ in different organs diverged, while that of individual macrophages converged. The simulation results support the notion that the proton and chloride ion concentrations of macrophage lysosomes are sufficient to drive the massive, cell type-selective accumulation and growth of CFZ hydrochloride biocrystals. CONCLUSION CLDIs effectively function as an expandable mechanopharmaceutical device, revealing the coordinated response of the macrophage population to an increasingly massive, whole-organism endophagolysosomal cargo load.
Collapse
Affiliation(s)
- Phillip Rzeczycki
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Tehetina Woldemichael
- Biophysics Program, College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI, USA
| | - Andrew Willmer
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Mikhail D Murashov
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jason Baik
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Rahul Keswani
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Gi Sang Yoon
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Kathleen A Stringer
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
| | - Nair Rodriguez-Hornedo
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Gus R Rosania
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
22
|
Li T, Liang W, Xiao X, Qian Y. Nanotechnology, an alternative with promising prospects and advantages for the treatment of cardiovascular diseases. Int J Nanomedicine 2018; 13:7349-7362. [PMID: 30519019 PMCID: PMC6233477 DOI: 10.2147/ijn.s179678] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Cardiovascular diseases (CVDs) are one of the most important causes of mortality and affecting the health status of patients. At the same time, CVDs cause a huge health and economic burden to the whole world. Although a variety of therapeutic drugs and measures have been produced to delay the progress of the disease and improve the quality of life of patients, most of the traditional therapeutic strategies can only cure the symptoms and cannot repair or regenerate the damaged ischemic myocardium. In addition, they may bring some unpleasant side effects. Therefore, it is vital to find and explore new technologies and drugs to solve the shortcomings of conventional treatments. Nanotechnology is a new way of using and manipulating the matter at the molecular scale, whose functional organization is measured in nanometers. Because nanoscale phenomena play an important role in cell signal transduction, enzyme action and cell cycle, nanotechnology is closely related to medical research. The application of nanotechnology in the field of medicine provides an alternative and novel direction for the treatment of CVDs, and shows excellent performance in the field of targeted drug therapy and the development of biomaterials. This review will briefly introduce the latest applications of nanotechnology in the diagnosis and treatment of common CVDs.
Collapse
Affiliation(s)
- Tao Li
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China,
| | - Weitao Liang
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China,
| | - Xijun Xiao
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China,
| | - Yongjun Qian
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China,
| |
Collapse
|
23
|
Abstract
The field of nanotechnology has grown exponentially during the last few decades, due in part to the use of nanoparticles in many manufacturing processes, as well as their potential as clinical agents for treatment of diseases and for drug delivery. This has created several new avenues by which humans can be exposed to nanoparticles. Unfortunately, investigations assessing the toxicological impacts of nanoparticles (i.e. nanotoxicity), as well as their possible risks to human health and the environment, have not kept pace with the rapid rise in their use. This has created a gap-in-knowledge and a substantial need for more research. Studies are needed to help complete our understanding of the mechanisms of toxicity of nanoparticles, as well as the mechanisms mediating their distribution and accumulation in cells and tissues and their elimination from the body. This review summarizes our knowledge on nanoparticles, including their various applications, routes of exposure, their potential toxicity and risks to human health.
Collapse
|
24
|
Montgomery KS, Davidson RWM, Cao B, Williams B, Simpson GW, Nilsson SK, Chiefari J, Fuchter MJ. Effective macrophage delivery using RAFT copolymer derived nanoparticles. Polym Chem 2018. [DOI: 10.1039/c7py01363a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We use reversible addition fragmentation chain transfer (RAFT) polymerisation to prepare block copolymers that are subsequently assembled into nanoparticles. The prepared nanoparticles were extensively taken up by primary murine macrophages and are effective in the delivery of a cell impenetrable cargo.
Collapse
Affiliation(s)
- K. S. Montgomery
- Chemistry Department
- Imperial College London
- UK
- CSIRO Manufacturing
- Australia
| | | | - B. Cao
- CSIRO Manufacturing
- Australia
- ARMI
- Monash University
- Clayton
| | - B. Williams
- CSIRO Manufacturing
- Australia
- ARMI
- Monash University
- Clayton
| | | | - S. K. Nilsson
- CSIRO Manufacturing
- Australia
- ARMI
- Monash University
- Clayton
| | | | | |
Collapse
|
25
|
Wu T, Tang M. Review of the effects of manufactured nanoparticles on mammalian target organs. J Appl Toxicol 2017; 38:25-40. [DOI: 10.1002/jat.3499] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 05/22/2017] [Accepted: 05/22/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Tianshu Wu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, & Collaborative Innovation Center of Suzhou Nano Science and Technology; Southeast University; Nanjing 210009 China
- Jiangsu Key Laboratory for Biomaterials and Devices; Southeast University; Nanjing 210009 China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, & Collaborative Innovation Center of Suzhou Nano Science and Technology; Southeast University; Nanjing 210009 China
- Jiangsu Key Laboratory for Biomaterials and Devices; Southeast University; Nanjing 210009 China
| |
Collapse
|
26
|
|
27
|
Ambesh P, Campia U, Obiagwu C, Bansal R, Shetty V, Hollander G, Shani J. Nanomedicine in coronary artery disease. Indian Heart J 2017; 69:244-251. [PMID: 28460774 PMCID: PMC5414944 DOI: 10.1016/j.ihj.2017.02.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 01/21/2017] [Accepted: 02/10/2017] [Indexed: 12/25/2022] Open
Abstract
Nanomedicine is one of the most promising therapeutic modalities researchers are working on. It involves development of drugs and devices that work at the nanoscale (10-9m). Coronary artery disease (CAD) is responsible for more than a third of all deaths in age group >35 years. With such a huge burden of mortality, CAD is one of the diseases where nanomedicine is being employed for preventive and therapeutic interventions. Nanomedicine can effectively deliver focused drug payload at sites of local plaque formation. Non-invasive strategies include thwarting angiogenesis, intra-arterial thrombosis and local inflammation. Invasive strategies following percutaneous coronary intervention (PCI) include anti-restenosis and healing enhancement. However, before practical application becomes widespread, many challenges need to be dealt with. These include manufacturing at the nanoscale, direct nanomaterial cellular toxicity and visualization.
Collapse
Affiliation(s)
- Paurush Ambesh
- Department of Internal Medicine, Maimonides Medical Center, New York City, USA.
| | - Umberto Campia
- Department of Cardiology, Brigham and Women's Hospital, Boston, USA
| | - Chukwudi Obiagwu
- Department of Cardiology, Maimonides Medical Center, New York City, USA
| | - Rashika Bansal
- Department of Internal Medicine, St. Joseph Regional Medical Center, NJ, USA
| | - Vijay Shetty
- Department of Cardiology, Maimonides Medical Center, New York City, USA
| | - Gerald Hollander
- Department of Cardiology, Maimonides Medical Center, New York City, USA
| | - Jacob Shani
- Department of Cardiology, Maimonides Medical Center, New York City, USA
| |
Collapse
|
28
|
Martín Giménez VM, Kassuha DE, Manucha W. Nanomedicine applied to cardiovascular diseases: latest developments. Ther Adv Cardiovasc Dis 2017; 11:133-142. [PMID: 28198204 DOI: 10.1177/1753944717692293] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases are a major cause of disability and they are currently responsible for a significant number of deaths in a large percentage of the world population. A large number of therapeutic options have been developed for the management of cardiovascular diseases. However, they are insufficient to stop or significantly reduce the progression of these diseases, and may produce unpleasant side effects. In this situation, the need arises to continue exploring new technologies and strategies in order to overcome the disadvantages and limitations of conventional therapeutic options. Thus, treatment of cardiovascular diseases has become one of the major focuses of scientific and technological development in recent times. More specifically, there have been important advances in the area of nanotechnology and the controlled release of drugs, destined to circumvent many limitations of conventional therapies for the treatment of diseases such as hyperlipidemia, hypertension, myocardial infarction, stroke and thrombosis.
Collapse
Affiliation(s)
- Virna Margarita Martín Giménez
- Instituto de Investigaciones en Ciencias Químicas, Facultad de Ciencias de la Alimentación, Bioquímicas y Farmacéuticas, Universidad Católica de Cuyo, Sede San Juan, Argentina
| | - Diego E Kassuha
- Instituto de Investigaciones en Ciencias Químicas, Facultad de Ciencias de la Alimentación, Bioquímicas y Farmacéuticas, Universidad Católica de Cuyo, Sede San Juan, Argentina
| | - Walter Manucha
- Instituto de Medicina y Biología Experimental de Cuyo, Consejo Nacional de Investigación Científica y Tecnológica (IMBECU-CONICET), Argentina.,Laboratorio de Farmacología Experimental Básica y Traslacional, Área de Farmacología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Centro Universitario, CP 5500, Mendoza, Argentina
| |
Collapse
|
29
|
Abstract
OBJECTIVE Antigen persistence due to HIV is a major source of inflammation and substantial immune activation, both of which are linked to accelerated aging. This illustrates the need to reduce immune activation in these patients and subsequently decrease the risk of cardiovascular diseases and other non-AIDS-defining comorbidities. METHODS CD4 T cells were infected with HIV-1 isolates in the presence or absence of atorvastatin (0.25 to 1 μg/ml) for 24-48 h. Atorvastatin-induced anti-inflammatory functions and anti-viral replication were measured in vitro. RESULTS Atorvastatin, a lipid-lowering medication, exerted a broad spectrum of anti-inflammatory functions by reducing T-cell immune activation markers (e.g. CD38, HLA-DR and Ki67), lowering HIV-1 co-receptor CCR-5, and decreasing proliferative capabilities of CD4 T cells in vitro. In contrast, atorvastatin expanded regulatory T cells (Tregs) and upregulated the expression of T-cell immunoglobulin and ITIM domain (TIGIT), which enhanced the suppressive activity of Tregs. Furthermore, atorvastatin upregulated the cyclin-dependent kinase inhibitor p21, which is also known as cip-1 and waf-1, in the CD4 T cells. Upregulation of p21 in CD4 T cells rendered them less susceptible to HIV-1 infection and replication whereas siRNA-mediated p21 depletion and/or p21 selective inhibitor rescued viral replication. Interestingly, atorvastatin reduced HIV infection in both rested and phytohemagglutinin-activated CD4 T cells in vitro. Finally, atorvastatin mediated p21 upregulation occurred via mevalonate pathway, but independent of p53. CONCLUSION The results demonstrate a novel mechanism by which atorvastatin induced resistance of CD4 T cells to HIV-1 infection via p21 upregulation and suggest that statins may hold particular promise for some HIV-infected individuals.
Collapse
|
30
|
Koskinas KC, Windecker S, Räber L. Regression of coronary atherosclerosis: Current evidence and future perspectives. Trends Cardiovasc Med 2015; 26:150-61. [PMID: 26089122 DOI: 10.1016/j.tcm.2015.05.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 05/09/2015] [Accepted: 05/09/2015] [Indexed: 12/20/2022]
Abstract
Coronary atherosclerosis has been considered a chronic disease characterized by ongoing progression in response to systemic risk factors and local pro-atherogenic stimuli. As our understanding of the pathobiological mechanisms implicated in atherogenesis and plaque progression is evolving, effective treatment strategies have been developed that led to substantial reduction of the clinical manifestations and acute complications of coronary atherosclerotic disease. More recently, intracoronary imaging modalities have enabled detailed in vivo quantification and characterization of coronary atherosclerotic plaque, serial evaluation of atherosclerotic changes over time, and assessment of vascular responses to effective anti-atherosclerotic medications. The use of intracoronary imaging modalities has demonstrated that intensive lipid lowering can halt plaque progression and may even result in regression of coronary atheroma when the highest doses of the most potent statins are used. While current evidence indicates the feasibility of atheroma regression and of reversal of presumed high-risk plaque characteristics in response to intensive anti-atherosclerotic therapies, these changes of plaque size and composition are modest and their clinical implications remain largely elusive. Growing interest has focused on achieving more pronounced regression of coronary plaque using novel anti-atherosclerotic medications, and more importantly on elucidating ways toward clinical translation of favorable changes of plaque anatomy into more favorable clinical outcomes for our patients.
Collapse
Affiliation(s)
| | - Stephan Windecker
- Department of Cardiology, Bern University Hospital, Bern, Switzerland
| | - Lorenz Räber
- Department of Cardiology, Bern University Hospital, Bern, Switzerland.
| |
Collapse
|
31
|
Churchward MA, Todd KG. Statin treatment affects cytokine release and phagocytic activity in primary cultured microglia through two separable mechanisms. Mol Brain 2014; 7:85. [PMID: 25424483 PMCID: PMC4247600 DOI: 10.1186/s13041-014-0085-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 11/08/2014] [Indexed: 12/14/2022] Open
Abstract
Background As the primary immune cells of the central nervous system, microglia contribute to development, homeostasis, and plasticity of the central nervous system, in addition to their well characterized roles in the foreign body and inflammatory responses. Increasingly, inappropriate activation of microglia is being reported as a component of inflammation in neurodegenerative and neuropsychiatric disorders. The statin class of cholesterol-lowering drugs have been observed to have anti-inflammatory and protective effects in both neurodegenerative diseases and ischemic stroke, and are suggested to act by attenuating microglial activity. Results We sought to investigate the effects of simvastatin treatment on the secretory profile and phagocytic activity of primary cultured rat microglia, and to dissect the mechanism of action of simvastatin on microglial activity. Simvastatin treatment altered the release of cytokines and trophic factors from microglia, including interleukin-1-β, tumour necrosis factor-α, and brain derived neurotrophic factor in a cholesterol-dependent manner. Conversely, simvastatin inhibited phagocytosis in microglia in a cholesterol-independent manner. Conclusions The disparity in cholesterol dependence of cytokine release and phagocytosis suggests the two effects occur through distinct molecular mechanisms. These two pathways may provide an opportunity for further refinement of pharmacotherapies for neuroinflammatory, neurodegenerative, and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Matthew A Churchward
- Neurochemical Research Unit, University of Alberta Faculty of Medicine, Edmonton, AB, Canada, T6G 2R3. .,Department of Psychiatry, University of Alberta Faculty of Medicine, Edmonton, AB, Canada, T6G 2R3.
| | - Kathryn G Todd
- Neurochemical Research Unit, University of Alberta Faculty of Medicine, Edmonton, AB, Canada, T6G 2R3. .,Department of Psychiatry, University of Alberta Faculty of Medicine, Edmonton, AB, Canada, T6G 2R3. .,Neuroscience and Mental Health Institute, University of Alberta Faculty of Medicine, Edmonton, AB, Canada, T6G 2R3.
| |
Collapse
|
32
|
Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nat Rev Drug Discov 2014; 13:813-27. [PMID: 25287120 DOI: 10.1038/nrd4333] [Citation(s) in RCA: 1063] [Impact Index Per Article: 96.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The use of nanoparticulate pharmaceutical drug delivery systems (NDDSs) to enhance the in vivo effectiveness of drugs is now well established. The development of multifunctional and stimulus-sensitive NDDSs is an active area of current research. Such NDDSs can have long circulation times, target the site of the disease and enhance the intracellular delivery of a drug. This type of NDDS can also respond to local stimuli that are characteristic of the pathological site by, for example, releasing an entrapped drug or shedding a protective coating, thus facilitating the interaction between drug-loaded nanocarriers and target cells or tissues. In addition, imaging contrast moieties can be attached to these carriers to track their real-time biodistribution and accumulation in target cells or tissues. Here, I highlight recent developments with multifunctional and stimuli-sensitive NDDSs and their therapeutic potential for diseases including cancer, cardiovascular diseases and infectious diseases.
Collapse
|
33
|
Abstract
The use of nanoparticulate pharmaceutical drug delivery systems (NDDSs) to enhance the in vivo effectiveness of drugs is now well established. The development of multifunctional and stimulus-sensitive NDDSs is an active area of current research. Such NDDSs can have long circulation times, target the site of the disease and enhance the intracellular delivery of a drug. This type of NDDS can also respond to local stimuli that are characteristic of the pathological site by, for example, releasing an entrapped drug or shedding a protective coating, thus facilitating the interaction between drug-loaded nanocarriers and target cells or tissues. In addition, imaging contrast moieties can be attached to these carriers to track their real-time biodistribution and accumulation in target cells or tissues. Here, I highlight recent developments with multifunctional and stimuli-sensitive NDDSs and their therapeutic potential for diseases including cancer, cardiovascular diseases and infectious diseases.
Collapse
|
34
|
de la Rosa VR. Poly(2-oxazoline)s as materials for biomedical applications. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2014; 25:1211-1225. [PMID: 23975334 DOI: 10.1007/s10856-013-5034-y] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 08/14/2013] [Indexed: 06/02/2023]
Abstract
The conjunction of polymers and medicine enables the development of new materials that display novel features, opening new ways to administrate drugs, design implants and biosensors, to deliver pharmaceuticals impacting cancer treatment, regenerative medicine or gene therapy. Poly(2-oxazoline)s (POx) constitute a polymer class with exceptional properties for their use in a plethora of different biomedical applications and are proposed as a versatile platform for the development of new medicine. Herein, a global vision of POx as a platform for novel biomaterials is offered, by highlighting the recent advances and breakthroughs in this fascinating field.
Collapse
Affiliation(s)
- Victor R de la Rosa
- Supramolecular Chemistry Group, Department of Organic Chemistry, Ghent University, Krijgslaan 281-S4, 9000, Ghent, Belgium,
| |
Collapse
|
35
|
Kihara Y, Ichikawa T, Abe S, Nemoto N, Ishihara T, Hirano N, Haruki M. Synthesis of alkyne-functionalized amphiphilic polysiloxane polymers and formation of nanoemulsions conjugated with bioactive molecules by click reactions. Polym J 2013. [DOI: 10.1038/pj.2013.86] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
36
|
Kumar S, Randhawa JK. High melting lipid based approach for drug delivery: Solid lipid nanoparticles. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 33:1842-52. [DOI: 10.1016/j.msec.2013.01.037] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 01/11/2013] [Accepted: 01/16/2013] [Indexed: 12/13/2022]
|
37
|
Pawar PV, Gohil SV, Jain JP, Kumar N. Functionalized polymersomes for biomedical applications. Polym Chem 2013. [DOI: 10.1039/c3py00023k] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
38
|
Rhee JW, Wu JC. Advances in nanotechnology for the management of coronary artery disease. Trends Cardiovasc Med 2012; 23:39-45. [PMID: 23245913 DOI: 10.1016/j.tcm.2012.08.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 08/15/2012] [Accepted: 08/15/2012] [Indexed: 12/23/2022]
Abstract
Nanotechnology holds tremendous potential to advance the current treatment of coronary artery disease. Nanotechnology may assist medical therapies by providing a safe and efficacious delivery platform for a variety of drugs aimed at modulating lipid disorders, decreasing inflammation and angiogenesis within atherosclerotic plaques, and preventing plaque thrombosis. Nanotechnology may improve coronary stent applications by promoting endothelial recovery on a stent surface utilizing bio-mimetic nanofibrous scaffolds, and also by preventing in-stent restenosis using nanoparticle-based delivery of drugs that are decoupled from stents. Additionally, nanotechnology may enhance tissue-engineered graft materials for application in coronary artery bypass grafting by facilitating cellular infiltration and remodeling of a graft matrix.
Collapse
Affiliation(s)
- June-Wha Rhee
- Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | |
Collapse
|
39
|
Hosta-Rigau L, Jensen BEB, Fjeldsø KS, Postma A, Li G, Goldie KN, Albericio F, Zelikin AN, Städler B. Surface-adhered composite poly(vinyl alcohol) physical hydrogels: polymersome-aided delivery of therapeutic small molecules. Adv Healthc Mater 2012. [PMID: 23184834 DOI: 10.1002/adhm.201200092] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
40
|
Luxenhofer R, Han Y, Schulz A, Tong J, He Z, Kabanov AV, Jordan R. Poly(2-oxazoline)s as polymer therapeutics. Macromol Rapid Commun 2012; 33:1613-31. [PMID: 22865555 PMCID: PMC3608391 DOI: 10.1002/marc.201200354] [Citation(s) in RCA: 337] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 06/12/2012] [Indexed: 01/21/2023]
Abstract
Poly(2-oxazoline)s (POx) are currently discussed as an upcoming polymer platform for biomaterials design and especially for polymer therapeutics. POx meet specific requirements needed for the development of next-generation polymer therapeutics such as biocompatibility, high modulation of solubility, variation of size, architecture as well as chemical functionality. Although in the early 1990s first and promising POx-based systems were presented, the field lay dormant for almost two decades. Only very recently, POx-based polymer therapeutics came back into the focus of very intensive research. In this review, we give an overview on the chemistry and physicochemical properties of POx and summarize the research of POx-protein conjugates, POx-drug conjugates, POx-based polyplexes and POx micelles for drug delivery.
Collapse
Affiliation(s)
- Robert Luxenhofer
- Professur für Makromolekulare Chemie, Department Chemie, Technische Universität Dresden, Zellescher Weg 19, 01069 Dresden, Germany
| | - Yingchao Han
- Center for Drug Delivery and Nanomedicine and Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198-5830, U.S.A
| | - Anita Schulz
- Professur für Makromolekulare Chemie, Department Chemie, Technische Universität Dresden, Zellescher Weg 19, 01069 Dresden, Germany
| | - Jing Tong
- Center for Drug Delivery and Nanomedicine and Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198-5830, U.S.A
| | - Zhijian He
- Center for Drug Delivery and Nanomedicine and Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198-5830, U.S.A
| | - Alexander V. Kabanov
- Center for Drug Delivery and Nanomedicine and Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198-5830, U.S.A
| | - Rainer Jordan
- Professur für Makromolekulare Chemie, Department Chemie, Technische Universität Dresden, Zellescher Weg 19, 01069 Dresden, Germany
| |
Collapse
|
41
|
Konradi R, Acikgoz C, Textor M. Polyoxazolines for Nonfouling Surface Coatings - A Direct Comparison to the Gold Standard PEG. Macromol Rapid Commun 2012; 33:1663-76. [DOI: 10.1002/marc.201200422] [Citation(s) in RCA: 196] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2012] [Revised: 08/14/2012] [Indexed: 11/11/2022]
|
42
|
De Oliveira H, Thevenot J, Lecommandoux S. Smart polymersomes for therapy and diagnosis: fast progress toward multifunctional biomimetic nanomedicines. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2012; 4:525-46. [DOI: 10.1002/wnan.1183] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
43
|
Isaacman MJ, Barron KA, Theogarajan LS. Clickable Amphiphilic Triblock Copolymers. JOURNAL OF POLYMER SCIENCE. PART A, POLYMER CHEMISTRY 2012; 50:2319-2329. [PMID: 23100856 PMCID: PMC3478948 DOI: 10.1002/pola.25989] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Amphiphilic polymers have recently garnered much attention due to their potential use in drug-delivery and other biomedical applications. A modular synthesis of these polymers is extremely desirable since it offers precise individual block characterization and increased yields. We present here for the first time a modular synthesis of poly(oxazoline)-poly(siloxane)-poly(oxazoline) block copolymers that have been clicked together using the copper-catalyzed azide-alkyne cycloaddition reaction. Various click methodologies for the synthesis of these polymers have been carefully evaluated and optimized. The approach using copper nanoparticles was found to be the most optimal among the methods evaluated. Furthermore, these results were extended to allow for a reactive Si-H group-based siloxane middle block to be successfully clicked. This enables the design of more complex amphiphilic block copolymers that have additional functionality, such as stimuli responsiveness, to be synthesized via a simple hydrosilylation reaction.
Collapse
Affiliation(s)
- Michael J Isaacman
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106 ; California Nanosystems Institute, University of California, Santa Barbara, California 93106
| | | | | |
Collapse
|
44
|
Malinova V, Nallani M, Meier W, Sinner E. Synthetic biology, inspired by synthetic chemistry. FEBS Lett 2012; 586:2146-56. [DOI: 10.1016/j.febslet.2012.05.033] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 05/14/2012] [Accepted: 05/16/2012] [Indexed: 12/12/2022]
|
45
|
Zhang X, Tanner P, Graff A, Palivan CG, Meier W. Mimicking the cell membrane with block copolymer membranes. ACTA ACUST UNITED AC 2012. [DOI: 10.1002/pola.26000] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
46
|
Hamidi M, Shahbazi M, Rostamizadeh K. Copolymers: Efficient Carriers for Intelligent Nanoparticulate Drug Targeting and Gene Therapy. Macromol Biosci 2012; 12:144-164. [DOI: 10.1002/mabi.201100193] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
AbstractCopolymers are among the most promising substances used in the preparation of drug/gene delivery systems. Different categories of copolymers, including block copolymers, graft copolymers, star copolymers and crosslinked copolymers, are of interest in drug delivery. A variety of nanostructures, including polymeric micelles, polymersomes and hydrogels, have been prepared from copolymers and tested successfully for their drug delivery potential. The most recent area of interest in this field is smart nanostructures, which benefit from the stimuli‐responsive properties of copolymeric moieties to achieve novel targeted drug delivery systems. Different copolymer applications in drug/gene delivery using nanotechnology‐based approaches with particular emphasis on smart nanoparticles are reviewed.magnified image
Collapse
|
47
|
Tanner P, Baumann P, Enea R, Onaca O, Palivan C, Meier W. Polymeric vesicles: from drug carriers to nanoreactors and artificial organelles. Acc Chem Res 2011; 44:1039-49. [PMID: 21608994 DOI: 10.1021/ar200036k] [Citation(s) in RCA: 507] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
One strategy in modern medicine is the development of new platforms that combine multifunctional compounds with stable, safe carriers in patient-oriented therapeutic strategies. The simultaneous detection and treatment of pathological events through interactions manipulated at the molecular level offer treatment strategies that can decrease side effects resulting from conventional therapeutic approaches. Several types of nanocarriers have been proposed for biomedical purposes, including inorganic nanoparticles, lipid aggregates, including liposomes, and synthetic polymeric systems, such as vesicles, micelles, or nanotubes. Polymeric vesicles--structures similar to lipid vesicles but created using synthetic block copolymers--represent an excellent candidate for new nanocarriers for medical applications. These structures are more stable than liposomes but retain their low immunogenicity. Significant efforts have been made to improve the size, membrane flexibility, and permeability of polymeric vesicles and to enhance their target specificity. The optimization of these properties will allow researchers to design smart compartments that can co-encapsulate sensitive molecules, such as RNA, enzymes, and proteins, and their membranes allow insertion of membrane proteins rather than simply serving as passive carriers. In this Account, we illustrate the advances that are shifting these molecular systems from simple polymeric carriers to smart-complex protein-polymer assemblies, such as nanoreactors or synthetic organelles. Polymeric vesicles generated by the self-assembly of amphiphilic copolymers (polymersomes) offer the advantage of simultaneous encapsulation of hydrophilic compounds in their aqueous cavities and the insertion of fragile, hydrophobic compounds in their membranes. This strategy has permitted us and others to design and develop new systems such as nanoreactors and artificial organelles in which active compounds are simultaneously protected and allowed to act in situ. In recent years, we have created a variety of multifunctional, proteinpolymersomes combinations for biomedical applications. The insertion of membrane proteins or biopores into the polymer membrane supported the activity of co-encapsulated enzymes that act in tandem inside the cavity or of combinations of drugs and imaging agents. Surface functionalization of these nanocarriers permitted specific targeting of the desired biological compartments. Polymeric vesicles alone are relatively easy to prepare and functionalize. Those features, along with their stability and multifunctionality, promote their use in the development of new theranostic strategies. The combination of polymer vesicles and biological entities will serve as tools to improve the observation and treatment of pathological events and the overall condition of the patient.
Collapse
Affiliation(s)
- Pascal Tanner
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Patric Baumann
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Ramona Enea
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Ozana Onaca
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Cornelia Palivan
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Wolfgang Meier
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| |
Collapse
|
48
|
Lewis DR, Kamisoglu K, York A, Moghe PV. Polymer-based therapeutics: nanoassemblies and nanoparticles for management of atherosclerosis. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2011; 3:400-20. [PMID: 21523920 PMCID: PMC3268460 DOI: 10.1002/wnan.145] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Coronary arterial disease, one of the leading causes of adult mortality, is triggered by atherosclerosis. A disease with complex etiology, atherosclerosis results from the progressive long-term combination of atherogenesis, the accumulation of modified lipoproteins within blood vessel walls, along with vascular and systemic inflammatory processes. The management of atherosclerosis is challenged by the localized flare-up of several multipronged signaling interactions between activated monocytes, atherogenic macrophages and inflamed or dysfunctional endothelial cells. A new generation of approaches is now emerging founded on multifocal, targeted therapies that seek to reverse or ameliorate the atheroinflammatory cascade within the vascular intima. This article reviews the various classes and primary examples of bioactive configurations of nanoscale assemblies. Of specific interest are polymer-based or polymer-lipid micellar assemblies designed as multimodal receptor-targeted blockers or drug carriers whose activity can be tuned by variations in polymer hydrophobicity, charge, and architecture. Also reviewed are emerging reports on multifunctional nanoassemblies and nanoparticles for improved circulation and enhanced targeting to atheroinflammatory lesions and atherosclerotic plaques.
Collapse
Affiliation(s)
- Daniel R. Lewis
- Department of Chemical & Biochemical Engineering, Rutgers University
| | - Kubra Kamisoglu
- Department of Chemical & Biochemical Engineering, Rutgers University
| | - Adam York
- Department of Biomedical Engineering, New Jersey Center for Biomaterials
| | - Prabhas V. Moghe
- Department of Biomedical Engineering, Department of Chemical and Biochemical Engineering, Rutgers University
| |
Collapse
|
49
|
Klink A, Hyafil F, Rudd J, Faries P, Fuster V, Mallat Z, Meilhac O, Mulder WJM, Michel JB, Ramirez F, Storm G, Thompson R, Turnbull IC, Egido J, Martín-Ventura JL, Zaragoza C, Letourneur D, Fayad ZA. Diagnostic and therapeutic strategies for small abdominal aortic aneurysms. Nat Rev Cardiol 2011; 8:338-47. [PMID: 21304473 DOI: 10.1038/nrcardio.2011.1] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Abdominal aortic aneurysms (AAA) affect 5% of the population in developed countries and are characterized by progressive aortic dilatation with an unpredictable time course. This condition is more common in men than in women, and in smokers than in nonsmokers. If left untreated, AAA can result in aortic rupture and death. Pathologically, aortic extracellular matrix degradation, inflammation, and neovascularization are hallmarks of AAA. Diagnosis of AAA and subsequent surveillance utilize established aortic imaging methods, such as ultrasound, CT, and MRI. More-speculative diagnostic approaches include molecular and cellular imaging methods that interrogate the underlying pathological processes at work within the aneurysm. In this Review, we explore the current diagnostic and therapeutic strategies for the management of AAA. We also describe the diagnostic potential of new imaging techniques and therapeutic potential of new treatments for the management of small AAA.
Collapse
Affiliation(s)
- Ahmed Klink
- Translational and Molecular Imaging Institute, Mount Sinai School of Medicine, 1428 Madison Avenue, New York, NY 10029, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Egli S, Nussbaumer MG, Balasubramanian V, Chami M, Bruns N, Palivan C, Meier W. Biocompatible Functionalization of Polymersome Surfaces: A New Approach to Surface Immobilization and Cell Targeting Using Polymersomes. J Am Chem Soc 2011; 133:4476-83. [DOI: 10.1021/ja110275f] [Citation(s) in RCA: 146] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Stefan Egli
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland
| | - Martin G. Nussbaumer
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland
| | | | - Mohamed Chami
- Centre for Cellular Imaging and Nano Analytics, Biozentrum, University of Basel, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Nico Bruns
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland
| | - Cornelia Palivan
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland
| | - Wolfgang Meier
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland
| |
Collapse
|