1
|
Abstract
The cytokine storm (CS) in hyperinflammation is characterized by high levels of cytokines, extreme activation of innate as well as adaptive immune cells and initiation of apoptosis. High levels of apoptotic cells overwhelm the proper recognition and removal system of these cells. Phosphatidylserine on the apoptotic cell surface, which normally provides a recognition signal for removal, becomes a target for hemostatic proteins and secretory phospholipase A2. The dysregulation of these normal pathways in hemostasis and the inflammasome result in a prothrombotic state, cellular death, and end-organ damage. In this review, we provide the argument that this imbalance in recognition and removal is a common denominator regardless of the inflammatory trigger. The complex reaction of the immune defense system in hyperinflammation leads to self-inflicted damage. This common endpoint may provide additional options to monitor the progression of the inflammatory syndrome, predict severity, and may add to possible treatment strategies.
Collapse
|
2
|
Exploring the Effect and Mechanism of Si-Miao-Yong-An Decoction on Abdominal Aortic Aneurysm Based on Mice Experiment and Bioinformatics Analysis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4766987. [PMID: 35685724 PMCID: PMC9173986 DOI: 10.1155/2022/4766987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 04/26/2022] [Accepted: 05/19/2022] [Indexed: 12/02/2022]
Abstract
Background Abdominal aortic aneurysm (AAA) is a fatal disease characterized by high morbidity and mortality in old population. Globally, effective drugs for AAA are still limited. Si-Miao-Yong-An decoction (SMYAD), a traditional Chinese medicine (TCM) formula with a high medical value, was reported to be successfully used in an old AAA patient. Thus, we reason that SMYAD may serve as a potential anti-AAA regime. Objective The exact effects and detailed mechanisms of SMYAD on AAA were explored by using the experimental study and bioinformatics analysis. Methods Firstly, C57BL/6N mice induced by Bap and Ang II were utilized to reproduce the AAA model, and the effects of SMYAD were systematically assessed according to histology, immunohistochemistry, and enzyme-linked immunosorbent assay (ELISA). Then, network pharmacology was applied to identify the biological processes, pathways, and hub targets of SMYAD against AAA; moreover, molecular docking was utilized to identify the binding ability and action targets. Results In an animal experiment, SMYAD was found to effectively alleviate the degree of pathological expansion of abdominal aorta and reduce the incidence of Bap/Ang II-induced AAA, along with reducing the damage to elastic lamella, attenuating infiltration of macrophage, and lowering the circulating IL-6 level corresponding to the animal study, and network pharmacology revealed the detailed mechanisms of SMYAD on AAA that were related to pathways of inflammatory response, defense response, apoptotic, cell migration and adhesion, and reactive oxygen species metabolic process. Then, seven targets, IL-6, TNF, HSP90AA1, RELA, PTGS2, ESR1, and MMP9, were identified as hub targets of SMYAD against AAA. Furthermore, molecular docking verification revealed that the active compounds of SMYAD had good binding ability and clear binding site with core targets related to AAA formation. Conclusion SMYAD can suppress AAA development through multicompound, multitarget, and multipathway, which provides a research direction for further study.
Collapse
|
3
|
Agnello F, Capodanno D. Anti-inflammatory strategies for atherosclerotic artery disease. Expert Opin Drug Saf 2022; 21:661-672. [DOI: 10.1080/14740338.2022.2036717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Federica Agnello
- Division of Cardiology, A.O.U. Policlinico “G. Rodolico-San Marco”, University of Catania, Catania, Italy
| | - Davide Capodanno
- Division of Cardiology, A.O.U. Policlinico “G. Rodolico-San Marco”, University of Catania, Catania, Italy
| |
Collapse
|
4
|
Shi D, Feng C, Xie J, Zhang X, Dai H, Yan L. Recent Progress of Nanomedicine on Secreted Phospholipase A2 as a Potential Therapeutic Target. J Mater Chem B 2022; 10:7349-7360. [DOI: 10.1039/d2tb00608a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Overexpressed secretory phospholipase A2 (sPLA2) is found in many inflammatory diseases and various types of cancer. sPLA2 can catalyze the hydrolysis of phospholipid sn-2 ester bond to lysophosphatidylcholine and free...
Collapse
|
5
|
Chen W, Xing J, Liu X, Wang S, Xing D. The role and transformative potential of IL-19 in atherosclerosis. Cytokine Growth Factor Rev 2021; 62:70-82. [PMID: 34600839 DOI: 10.1016/j.cytogfr.2021.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 12/19/2022]
Abstract
Atherosclerotic cardiovascular disease is the leading cause of death worldwide. Traditionally, IL-19 was thought to be expressed in only immune cells, but studies revealed that IL-19 is also expressed in multiple atherosclerotic plaque cell types, but not normal arteries, in humans and mice. IL-19 reduces the development of atherosclerosis via multiple mechanisms, including balancing cholesterol metabolism; enhancing Th2 immune cell polarization; reducing the inflammatory response; and reducing the proliferation, migration and chemotaxis of vascular smooth muscle cells (VSMCs). Clinical and/or animal studies have primarily aimed to achieve regression and/or stabilization of atherosclerotic plaques, with regression in particular indicating a very good drug response. Most antiatherosclerotic drugs in current clinical use, including atorvastatin and alirocumab, target hyperlipidemia. Several other drugs have also been investigated in clinical trials as anti-inflammatory agents; the development of some of these agents has been terminated (canakinumab, darapladib, varespladib, losmapimod, atreleuton, setileuton, PF-04191834, veliflapon, and methotrexate), but others remain in development (ziltivekimab, tocilizumab, Somalix, IFM-2427, anakinra, mesenchymal stem cells (MSCs), colchicine, everolimus, allopurinol, and montelukast). Most of the tested drugs have shown a limited ability to reverse atherosclerosis in animal studies. Interestingly, recombinant IL-19 (rIL-19) was shown to reduce atherosclerosis development in a time- and dose-dependent manner. A low dose of rIL-19 (1 ng/g/day) reduced aortic arch and root plaque areas by 70.1% and 32.1%, respectively, in LDLR-/- mice. At 10 ng/g/day, rIL-19 completely eliminated atherosclerotic plaques. There were no sex differences in the effects of rIL-19 on atherosclerotic mice. Thus, low-dose rIL-19 is an effective antiatherosclerotic agent, in addition to its efficacy in intimal hyperplasia, spinal cord injury, stroke, and multiple sclerosis. We propose that IL-19 is a promising biomarker and target for the diagnosis and treatment of atherosclerosis. This review considers the role and mechanism of action of IL-19 in atherosclerosis and discusses whether IL-19 is a potential therapeutic target for this condition.
Collapse
Affiliation(s)
- Wujun Chen
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266071, China
| | - Jiyao Xing
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266071, China
| | - Xinlin Liu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266071, China
| | - Shuai Wang
- School of Medical Imaging, Radiotherapy Department, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261053, China.
| | - Dongming Xing
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266071, China; School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
6
|
Kuypers FA, Rostad CA, Anderson EJ, Chahroudi A, Jaggi P, Wrammert J, Mantus G, Basu R, Harris F, Hanberry B, Camacho-Gonzalez A, Manoranjithan S, Vos M, Brown LA, Morris CR. Secretory phospholipase A2 in SARS-CoV-2 infection and multisystem inflammatory syndrome in children (MIS-C). Exp Biol Med (Maywood) 2021; 246:2543-2552. [PMID: 34255566 PMCID: PMC8649422 DOI: 10.1177/15353702211028560] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Secretory phospholipase 2 (sPLA2) acts as a mediator between proximal and distal events of the inflammatory cascade. Its role in SARS-CoV-2 infection is unknown, but could contribute to COVID-19 inflammasome activation and cellular damage. We present the first report of plasma sPLA2 levels in adults and children with COVID-19 compared with controls. Currently asymptomatic adults with a history of recent COVID-19 infection (≥4 weeks before) identified by SARS-CoV-2 IgG antibodies had sPLA2 levels similar to those who were seronegative (9 ± 6 vs.17 ± 28 ng/mL, P = 0.26). In contrast, children hospitalized with severe COVID-19 had significantly elevated sPLA2 compared with those with mild or asymptomatic SARS-CoV-2 infection (269 ± 137 vs. 2 ± 3 ng/mL, P = 0.01). Among children hospitalized with multisystem inflammatory syndrome in children (MIS-C), all had severe disease requiring pediatric intensive care unit (PICU) admission. sPLA2 levels were significantly higher in those with acute illness <10 days versus convalescent disease ≥10 days (540 ± 510 vs. 2 ± 1, P = 0.04). Thus, sPLA2 levels correlated with COVID-19 severity and acute MIS-C in children, implicating a role in inflammasome activation and disease pathogenesis. sPLA2 may be a useful biomarker to stratify risk and guide patient management for children with acute COVID-19 and MIS-C. Therapeutic compounds targeting sPLA2 and inflammasome activation warrant consideration.
Collapse
Affiliation(s)
- Frans A Kuypers
- Division of Hematology, Department of Pediatrics, University of California, San Francisco, CA 94609, USA
| | - Christina A Rostad
- Department of Pediatrics1371, School of Medicine, Emory University, Atlanta, GA 30322, USA.,Children's Healthcare of Atlanta, Atlanta, GA 30322, USA.,Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta and Emory University, Atlanta, GA 30322, USA
| | - Evan J Anderson
- Department of Pediatrics1371, School of Medicine, Emory University, Atlanta, GA 30322, USA.,Children's Healthcare of Atlanta, Atlanta, GA 30322, USA.,Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta and Emory University, Atlanta, GA 30322, USA.,Department of Medicine, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Ann Chahroudi
- Department of Pediatrics1371, School of Medicine, Emory University, Atlanta, GA 30322, USA.,Children's Healthcare of Atlanta, Atlanta, GA 30322, USA.,Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta and Emory University, Atlanta, GA 30322, USA
| | - Preeti Jaggi
- Department of Pediatrics1371, School of Medicine, Emory University, Atlanta, GA 30322, USA.,Children's Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Jens Wrammert
- Department of Pediatrics1371, School of Medicine, Emory University, Atlanta, GA 30322, USA.,Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta and Emory University, Atlanta, GA 30322, USA
| | - Grace Mantus
- Department of Pediatrics1371, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Rajit Basu
- Department of Pediatrics1371, School of Medicine, Emory University, Atlanta, GA 30322, USA.,Children's Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Frank Harris
- Department of Pediatrics1371, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Bradley Hanberry
- Department of Pediatrics1371, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Andres Camacho-Gonzalez
- Department of Pediatrics1371, School of Medicine, Emory University, Atlanta, GA 30322, USA.,Children's Healthcare of Atlanta, Atlanta, GA 30322, USA.,Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta and Emory University, Atlanta, GA 30322, USA
| | | | - Miriam Vos
- Department of Pediatrics1371, School of Medicine, Emory University, Atlanta, GA 30322, USA.,Children's Healthcare of Atlanta, Atlanta, GA 30322, USA.,Center for Clinical and Translational Research, Children's Healthcare of Atlanta and Emory University, Atlanta, GA 30322, USA
| | - Lou Ann Brown
- Department of Pediatrics1371, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Claudia R Morris
- Department of Pediatrics1371, School of Medicine, Emory University, Atlanta, GA 30322, USA.,Children's Healthcare of Atlanta, Atlanta, GA 30322, USA.,Center for Clinical and Translational Research, Children's Healthcare of Atlanta and Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
7
|
Vecchi L, Araújo TG, Azevedo FVPDV, Mota STS, Ávila VDMR, Ribeiro MA, Goulart LR. Phospholipase A 2 Drives Tumorigenesis and Cancer Aggressiveness through Its Interaction with Annexin A1. Cells 2021; 10:cells10061472. [PMID: 34208346 PMCID: PMC8231270 DOI: 10.3390/cells10061472] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/03/2021] [Accepted: 06/08/2021] [Indexed: 12/14/2022] Open
Abstract
Phospholipids are suggested to drive tumorigenesis through their essential role in inflammation. Phospholipase A2 (PLA2) is a phospholipid metabolizing enzyme that releases free fatty acids, mostly arachidonic acid, and lysophospholipids, which contribute to the development of the tumor microenvironment (TME), promoting immune evasion, angiogenesis, tumor growth, and invasiveness. The mechanisms mediated by PLA2 are not fully understood, especially because an important inhibitory molecule, Annexin A1, is present in the TME but does not exert its action. Here, we will discuss how Annexin A1 in cancer does not inhibit PLA2 leading to both pro-inflammatory and pro-tumoral signaling pathways. Moreover, Annexin A1 promotes the release of cancer-derived exosomes, which also lead to the enrichment of PLA2 and COX-1 and COX-2 enzymes, contributing to TME formation. In this review, we aim to describe the role of PLA2 in the establishment of TME, focusing on cancer-derived exosomes, and modulatory activities of Annexin A1. Unraveling how these proteins interact in the cancer context can reveal new strategies for the treatment of different tumors. We will also describe the possible strategies to inhibit PLA2 and the approaches that could be used in order to resume the anti-PLA2 function of Annexin A1.
Collapse
Affiliation(s)
- Lara Vecchi
- Laboratory of Nanobiotechnology, Federal University of Uberlandia, Uberlandia 38400-902, MG, Brazil; (L.V.); (T.G.A.); (F.V.P.d.V.A.); (S.T.S.M.)
| | - Thaise Gonçalves Araújo
- Laboratory of Nanobiotechnology, Federal University of Uberlandia, Uberlandia 38400-902, MG, Brazil; (L.V.); (T.G.A.); (F.V.P.d.V.A.); (S.T.S.M.)
- Laboratory of Genetics and Biotechnology, Federal University of Uberlandia, Patos de Minas 387400-128, MG, Brazil;
| | | | - Sara Teixeria Soares Mota
- Laboratory of Nanobiotechnology, Federal University of Uberlandia, Uberlandia 38400-902, MG, Brazil; (L.V.); (T.G.A.); (F.V.P.d.V.A.); (S.T.S.M.)
| | - Veridiana de Melo Rodrigues Ávila
- Laboratory of Biochemistry and Animal Toxins, Institute of Biotechnology, Federal University of Uberlandia, Uberlandia 38400-902, MG, Brazil;
| | - Matheus Alves Ribeiro
- Laboratory of Genetics and Biotechnology, Federal University of Uberlandia, Patos de Minas 387400-128, MG, Brazil;
| | - Luiz Ricardo Goulart
- Laboratory of Nanobiotechnology, Federal University of Uberlandia, Uberlandia 38400-902, MG, Brazil; (L.V.); (T.G.A.); (F.V.P.d.V.A.); (S.T.S.M.)
- Correspondence: ; Tel.: +55-3432258440
| |
Collapse
|
8
|
Abstract
Significance: Coronary artery disease (CAD) continues to be a leading cause of morbidity and mortality across the world despite significant progress in the prevention, diagnosis, and treatment of atherosclerotic disease. Recent Advances: The focus of the cardiovascular community has shifted toward seeking a better understanding of the inflammatory mechanisms driving residual CAD risk that is not modulated by current therapies. Significant progress has been achieved in revealing both proinflammatory and anti-inflammatory mechanisms, and how shift of the balance in favor of the former can drive the development of disease. Critical Issues: Advances in the noninvasive detection of coronary artery inflammation have been forthcoming. These advances include multiple imaging modalities, with novel applications of computed tomography both with and without positron emission tomography, and experimental ultrasound techniques. These advances will enable better selection of patients for anti-inflammatory treatments and assessment of treatment response. The rapid advancement in pharmaceutical design has enabled the production of specific antibodies against inflammatory pathways of atherosclerosis, with modest success to date. The pursuit of demonstrating the efficacy and safety of novel anti-inflammatory and/or proinflammatory resolution therapies for atherosclerotic CAD has become a major focus. Future Directions: This review seeks to provide an update of the latest evidence of all three of these highly related but disparate areas of inquiry: Our current understanding of the key mechanisms by which inflammation contributes to coronary artery atherosclerosis, the evidence for noninvasive assessment of coronary artery inflammation, and finally, the evidence for targeted therapies to treat coronary inflammation for the reduction of CAD risk. Antioxid. Redox Signal. 34, 1217-1243.
Collapse
Affiliation(s)
- Henry W West
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Charalambos Antoniades
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
9
|
Phospholipase Signaling in Breast Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021. [PMID: 33983572 DOI: 10.1007/978-981-32-9620-6_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Breast cancer progression results from subversion of multiple intra- or intercellular signaling pathways in normal mammary tissues and their microenvironment, which have an impact on cell differentiation, proliferation, migration, and angiogenesis. Phospholipases (PLC, PLD and PLA) are essential mediators of intra- and intercellular signaling. They hydrolyze phospholipids, which are major components of cell membrane that can generate many bioactive lipid mediators, such as diacylglycerol, phosphatidic acid, lysophosphatidic acid, and arachidonic acid. Enzymatic processing of phospholipids by phospholipases converts these molecules into lipid mediators that regulate multiple cellular processes, which in turn can promote breast cancer progression. Thus, dysregulation of phospholipases contributes to a number of human diseases, including cancer. This review describes how phospholipases regulate multiple cancer-associated cellular processes, and the interplay among different phospholipases in breast cancer. A thorough understanding of the breast cancer-associated signaling networks of phospholipases is necessary to determine whether these enzymes are potential targets for innovative therapeutic strategies.
Collapse
|
10
|
Liberale L, Montecucco F, Schwarz L, Lüscher TF, Camici GG. Inflammation and cardiovascular diseases: lessons from seminal clinical trials. Cardiovasc Res 2021; 117:411-422. [PMID: 32666079 DOI: 10.1093/cvr/cvaa211] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/29/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022] Open
Abstract
Inflammation has been long regarded as a key contributor to atherosclerosis. Inflammatory cells and soluble mediators play critical roles throughout arterial plaque development and accordingly, targeting inflammatory pathways effectively reduces atherosclerotic burden in animal models of cardiovascular (CV) diseases. Yet, clinical translation often led to inconclusive or even contradictory results. The Canakinumab Anti-inflammatory Thrombosis Outcome Study (CANTOS) followed by the Colchicine Cardiovascular Outcomes Trial (COLCOT) were the first two randomized clinical trials to convincingly demonstrate the effectiveness of specific anti-inflammatory treatments in the field of CV prevention, while other phase III trials-including the Cardiovascular Inflammation Reduction Trial one using methotrexate-were futile. This manuscript reviews the main characteristics and findings of recent anti-inflammatory Phase III trials in cardiology and discusses their similarities and differences in order to get further insights into the contribution of specific inflammatory pathways on CV outcomes. CANTOS and COLCOT demonstrated efficacy of two anti-inflammatory drugs (canakinumab and colchicine, respectively) in the secondary prevention of major adverse CV events (MACE) thus providing the first confirmation of the involvement of a specific inflammatory pathway in human atherosclerotic CV disease (ASCVD). Also, they highlighted the NOD-, LRR-, and pyrin domain-containing protein 3 inflammasome-related pathway as an effective therapeutic target to blunt ASCVD. In contrast, other trials interfering with a number of inflammasome-independent pathways failed to provide benefit. Lastly, all anti-inflammatory trials underscored the importance of balancing the risk of impaired host defence with an increase in infections and the prevention of MACE in CV patients with residual inflammatory risk.
Collapse
Affiliation(s)
- Luca Liberale
- Center for Molecular Cardiology, University of Zurich, 12 Wagistrasse, 8952 Schlieren, Switzerland
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy
| | - Fabrizio Montecucco
- IRCCS Ospedale Policlinico San Martino Genoa - Italian Cardiovascular Network, 10 Largo Benzi, 16132 Genoa, Italy
- First Clinic of Internal Medicine, Department of Internal Medicine, Centre of Excellence for Biomedical Research (CEBR), University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy
| | - Lena Schwarz
- Center for Molecular Cardiology, University of Zurich, 12 Wagistrasse, 8952 Schlieren, Switzerland
| | - Thomas F Lüscher
- Center for Molecular Cardiology, University of Zurich, 12 Wagistrasse, 8952 Schlieren, Switzerland
- Royal Brompton and Harefield Hospitals and Imperial College, London, UK
| | - Giovanni G Camici
- Center for Molecular Cardiology, University of Zurich, 12 Wagistrasse, 8952 Schlieren, Switzerland
- Department of Cardiology, University Heart Center, University Hospital Zurich, Rämistrasse 100, 8092 Zurich, Switzerland
- Department of Research and Education, University Hospital Zurich, Rämistrasse 100, 8092, Zurich, Switzerland
| |
Collapse
|
11
|
Affiliation(s)
- Neil Ruparelia
- Hammersmith Hospital, London, UK.,Imperial College London, London, UK
| | - Robin Choudhury
- John Radcliffe Hospital, Oxford, Oxfordshire, UK .,Radcliffe Department of Medicine Division of Cardiovascular Medicine, Oxford University, Oxford, Oxfordshire, UK
| |
Collapse
|
12
|
Watanabe K, Taketomi Y, Miki Y, Kugiyama K, Murakami M. Group V secreted phospholipase A 2 plays a protective role against aortic dissection. J Biol Chem 2020; 295:10092-10111. [PMID: 32482892 DOI: 10.1074/jbc.ra120.013753] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/22/2020] [Indexed: 12/23/2022] Open
Abstract
Aortic dissection is a life-threatening aortopathy involving separation of the aortic wall, whose underlying mechanisms are still incompletely understood. Epidemiological evidence suggests that unsaturated fatty acids improve cardiovascular health. Here, using quantitative RT-PCR, histological analyses, magnetic cell sorting and flow cytometry assays, and MS-based lipidomics, we show that the activity of a lipid-metabolizing enzyme, secreted phospholipase A2 group V (sPLA2-V), protects against aortic dissection by endogenously mobilizing vasoprotective lipids. Global and endothelial cell-specific sPLA2-V-deficient mice frequently developed aortic dissection shortly after infusion of angiotensin II (AT-II). We observed that in the AT-II-treated aorta, endothelial sPLA2-V mobilized oleic and linoleic acids, which attenuated endoplasmic reticulum stress, increased the expression of lysyl oxidase, and thereby stabilized the extracellular matrix in the aorta. Of note, dietary supplementation with oleic or linoleic acid reversed the increased susceptibility of sPLA2-V-deficient mice to aortic dissection. These findings reveal an unexplored functional link between sPLA2-driven phospholipid metabolism and aortic stability, possibly contributing to the development of improved diagnostic and/or therapeutic strategies for preventing aortic dissection.
Collapse
Affiliation(s)
- Kazuhiro Watanabe
- Department of Internal Medicine II, University of Yamanashi, Department of Internal Medicine II, Chuo, Yamanashi Japan.,Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Yoshitaka Taketomi
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.,Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Yoshimi Miki
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.,Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Kiyotaka Kugiyama
- Department of Internal Medicine II, University of Yamanashi, Department of Internal Medicine II, Chuo, Yamanashi Japan .,AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Makoto Murakami
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan .,Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan.,AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan.,FORCE, Japan Agency for Medical Research and Development, Tokyo, Japan
| |
Collapse
|
13
|
Filkin SY, Lipkin AV, Fedorov AN. Phospholipase Superfamily: Structure, Functions, and Biotechnological Applications. BIOCHEMISTRY (MOSCOW) 2020; 85:S177-S195. [DOI: 10.1134/s0006297920140096] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
14
|
Bo G, Cao F, Li M, Xing J, Su X, Zhu Y, Wu D. Exploring calcium ion-dependent effect on the intermolecular interaction between human secreted phospholipase A2 and its peptide inhibitors in coronary artery disease. J Mol Graph Model 2019; 93:107449. [PMID: 31536875 DOI: 10.1016/j.jmgm.2019.107449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 08/31/2019] [Accepted: 09/06/2019] [Indexed: 11/16/2022]
Abstract
Human secreted phospholipase A2 (hsPLA2) is a small calcium ion (Ca2+)-regulatory protein secreting from platelets, eosinophils and T-lymphocytes, which has been established as an important biomarker and potential target for the diagnosis and therapy of coronary artery disease. Short peptide inhibitors are used to competitively suppress the enzymatic activity of hsPLA2. Here, Ca2+ effect on the intermolecular recognition and interaction between hsPLA2 and its peptide inhibitors is investigated systematically by using molecular modeling and bioinformatics analysis. Dynamics simulations reveal that the hsPLA2 structure bound with Ca2+ is rather stable and has low thermal motion; removal of Ca2+ considerably increases structural flexibility and intrinsic disorder of the protein. Energetics calculations suggest that presence of Ca2+ can effectively promote the interaction of hsPLA2 with peptide inhibitors. In particular, the local substructures of hsPLA2 such as helix H1, loop L2 and double-stranded β-sheet DS that participate in peptide recognition are involved in or nearby Ca2+-coordinating site and can be directly stabilized by the Ca2+. In addition, a significant concentration-dependent effect of Ca2+ on peptide-hsPLA2 binding is observed in vitro, that is, a little of Ca2+ can largely improve peptide binding affinity, but high Ca2+ concentration does not increase the affinity substantially. The correlation between calculated free energy and experimental binding affinity over different peptide inhibitors is improved considerably by adding Ca2+ to hsPLA2. Specifically, the FLSYK peptide can generally bind to Ca2+-bound hsPLA2 with a moderate or high affinity (Kd ranges between 56 and 210 μM), but have only a modest affinity or even nonbinding to Ca2+-free hsPLA2 (Kd > 400 μM or = n.d.).
Collapse
Affiliation(s)
- Guanggan Bo
- Department of Cardiology, Nanjing Integrated Traditional Chinese and Western Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210014, China.
| | - Fang Cao
- Department of Respiration, Anhui Provincial Children's Hospital, Hefei, 230051, China
| | - Min Li
- Department of Cardiology, Nanjing Integrated Traditional Chinese and Western Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210014, China
| | - Junwu Xing
- Department of Cardiology, Nanjing Integrated Traditional Chinese and Western Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210014, China
| | - Xiaoye Su
- Department of Cardiology, Nanjing Integrated Traditional Chinese and Western Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210014, China
| | - Yunxian Zhu
- Department of Cardiology, Nanjing Integrated Traditional Chinese and Western Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210014, China
| | - Dingkun Wu
- Department of Cardiology, Nanjing Integrated Traditional Chinese and Western Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210014, China
| |
Collapse
|
15
|
Williams D, Fingleton B. Non-canonical roles for metabolic enzymes and intermediates in malignant progression and metastasis. Clin Exp Metastasis 2019; 36:211-224. [PMID: 31073762 DOI: 10.1007/s10585-019-09967-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 04/29/2019] [Indexed: 12/16/2022]
Abstract
Metabolic alterations are established as a hallmark of cancer. Such hallmark changes in cancer metabolism are characterized by reprogramming of energy-producing pathways and increases in the generation of biosynthetic intermediates to meet the needs of rapidly proliferating tumor cells. Various metabolic phenotypes such as aerobic glycolysis, increased glutamine consumption, and lipolysis have also been associated with the process of metastasis. However, in addition to the energy and biosynthetic alterations, a number of secondary functions of enzymes and metabolites are emerging that specifically contribute to metastasis. Here, we describe atypical intracellular roles of metabolic enzymes, extracellular functions of metabolic enzymes, roles of metabolites as signaling molecules, and epigenetic regulation mediated by altered metabolism, all of which can affect metastatic progression. We highlight how some of these mechanisms are already being exploited for therapeutic purposes, and discuss how others show similar potential.
Collapse
Affiliation(s)
- Demond Williams
- Program in Cancer Biology and Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Barbara Fingleton
- Program in Cancer Biology and Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
16
|
Zhao TX, Mallat Z. Targeting the Immune System in Atherosclerosis. J Am Coll Cardiol 2019; 73:1691-1706. [DOI: 10.1016/j.jacc.2018.12.083] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 12/20/2018] [Accepted: 12/30/2018] [Indexed: 02/08/2023]
|
17
|
Li X, Wang L, Fang P, Sun Y, Jiang X, Wang H, Yang XF. Lysophospholipids induce innate immune transdifferentiation of endothelial cells, resulting in prolonged endothelial activation. J Biol Chem 2018; 293:11033-11045. [PMID: 29769317 DOI: 10.1074/jbc.ra118.002752] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/18/2018] [Indexed: 12/18/2022] Open
Abstract
Innate immune cells express danger-associated molecular pattern (DAMP) receptors, T-cell costimulation/coinhibition receptors, and major histocompatibility complex II (MHC-II). We have recently proposed that endothelial cells can serve as innate immune cells, but the molecular mechanisms involved still await discovery. Here, we investigated whether human aortic endothelial cells (HAECs) could be transdifferentiated into innate immune cells by exposing them to hyperlipidemia-up-regulated DAMP molecules, i.e. lysophospholipids. Performing RNA-seq analysis of lysophospholipid-treated HAECs, we found that lysophosphatidylcholine (LPC) and lysophosphatidylinositol (LPI) regulate largely distinct gene programs as revealed by principal component analysis. Metabolically, LPC up-regulated genes that are involved in cholesterol biosynthesis, presumably through sterol regulatory element-binding protein 2 (SREBP2). By contrast, LPI up-regulated gene transcripts critical for the metabolism of glucose, lipids, and amino acids. Of note, we found that LPC and LPI both induce adhesion molecules, cytokines, and chemokines, which are all classic markers of endothelial cell activation, in HAECs. Moreover, LPC and LPI shared the ability to transdifferentiate HAECs into innate immune cells, including induction of potent DAMP receptors, such as CD36 molecule, T-cell costimulation/coinhibition receptors, and MHC-II proteins. The induction of these innate-immunity signatures by lysophospholipids correlated with their ability to induce up-regulation of cytosolic calcium and mitochondrial reactive oxygen species. In conclusion, lysophospholipids such as LPC and LPI induce innate immune cell transdifferentiation in HAECs. The concept of prolonged endothelial activation, discovered here, is relevant for designing new strategies for managing cardiovascular diseases.
Collapse
Affiliation(s)
- Xinyuan Li
- From the Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research and.,Departments of Pharmacology, Microbiology, and Immunology, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania 19140 and
| | - Luqiao Wang
- From the Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research and.,Department of Cardiovascular Medicine, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650031, China
| | - Pu Fang
- From the Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research and.,Departments of Pharmacology, Microbiology, and Immunology, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania 19140 and
| | - Yu Sun
- From the Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research and.,Departments of Pharmacology, Microbiology, and Immunology, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania 19140 and
| | - Xiaohua Jiang
- From the Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research and.,Departments of Pharmacology, Microbiology, and Immunology, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania 19140 and
| | - Hong Wang
- From the Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research and.,Departments of Pharmacology, Microbiology, and Immunology, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania 19140 and
| | - Xiao-Feng Yang
- From the Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research and .,Departments of Pharmacology, Microbiology, and Immunology, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania 19140 and
| |
Collapse
|
18
|
Chistiakov DA, Melnichenko AA, Grechko AV, Myasoedova VA, Orekhov AN. Potential of anti-inflammatory agents for treatment of atherosclerosis. Exp Mol Pathol 2018; 104:114-124. [PMID: 29378168 DOI: 10.1016/j.yexmp.2018.01.008] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 12/30/2017] [Accepted: 01/17/2018] [Indexed: 12/23/2022]
Abstract
Chronic inflammation is a central pathogenic mechanism of atherosclerosis induction and progression. Vascular inflammation is associated with accelerated onset of late atherosclerosis complications. Atherosclerosis-related inflammation is mediated by a complex cocktail of pro-inflammatory cytokines, chemokines, bioactive lipids, and adhesion molecules, and blocking the key pro-atherogenic inflammatory mechanisms can be beneficial for treatment of atherosclerosis. Therapeutic agents that specifically target some of the atherosclerosis-related inflammatory mechanisms have been evaluated in preclinical and clinical studies. The most promising anti-inflammatory compounds for treatment of atherosclerosis include non-specific anti-inflammatory drugs, phospholipase inhibitors, blockers of major inflammatory cytokines, leukotrienes, adhesion molecules, and pro-inflammatory signaling pathways, such as CCL2-CCR2 axis or p38 MAPK pathway. Ongoing studies attempt evaluating therapeutic utility of these anti-inflammatory drugs for treatment of atherosclerosis. The obtained results are important for our understanding of atherosclerosis-related inflammatory mechanisms and for designing randomized controlled studies assessing the effect of specific anti-inflammatory strategies on cardiovascular outcomes.
Collapse
Affiliation(s)
- Dimitry A Chistiakov
- Department of Neurochemistry, Division of Basic and Applied Neurobiology, Serbsky Federal Medical Research Center of Psychiatry and Narcology, Moscow 119991, Russia
| | - Alexandra A Melnichenko
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Sciences, Moscow 125315, Russia
| | - Andrey V Grechko
- Federal Scientific Clinical Center for Resuscitation and Rehabilitation, Moscow 109240, Russia
| | - Veronika A Myasoedova
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Sciences, Moscow 125315, Russia
| | - Alexander N Orekhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Sciences, Moscow 125315, Russia; Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow 121609, Russia.
| |
Collapse
|
19
|
Yap WH, Phang SW, Ahmed N, Lim YM. Differential effects of sPLA 2-GV and GX on cellular proliferation and lipid accumulation in HT29 colon cancer cells. Mol Cell Biochem 2018; 447:93-101. [PMID: 29374817 DOI: 10.1007/s11010-018-3295-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 01/23/2018] [Indexed: 11/29/2022]
Abstract
Secretory phospholipase A2 (sPLA2) group of enzymes have been shown to hydrolyze phospholipids, among which sPLA2 Group V (GV) and Group X (GX) exhibit high selectivity towards phosphatidylcholine-rich cellular plasma membranes. The enzymes have recently emerged as key regulators in lipid droplets formation and it is hypothesized that sPLA2-GV and GX enhanced cell proliferation and lipid droplet accumulation in colon cancer cells (HT29). In this study, cell viability and lipid droplet accumulation were assessed by Resazurin assay and Oil-Red-O staining. Interestingly, both sPLA2-GV and GX enzymes reduced intracellular lipid droplet accumulation and did not significantly affect cell proliferation in HT29 cells. Incubation with varespladib, a pan-inhibitor of sPLA2-Group IIA/V/X, further suppressed lipid droplets accumulation in sPLA2-GV but have no effects in sPLA2-GX-treated cells. Further studies using catalytically inactive sPLA2 enzymes showed that the enzymes intrinsic catalytic activity is required for the net reduction of lipid accumulation. Meanwhile, inhibition of intracellular phospholipases (iPLA2-γ and cPLA2-α) unexpectedly enhanced lipid droplet accumulation in both sPLA2-GV and GX-treated cells. The findings suggested an interconnected relationship between extracellular and intracellular phospholipases in lipid cycling. Previous studies indicated that sPLA2 enzymes are linked to cancer development due to their ability to induce release of arachidonic acid and eicosanoids as well as the stimulation of lipid droplet formation. This study showed that the two enzymes work in a distinct manner and they neither confer proliferative advantage nor enhanced the net lipid droplet accumulation in HT29 cells.
Collapse
Affiliation(s)
- Wei Hsum Yap
- School of Biosciences, Taylor's University, Subang Jaya, Selangor, Malaysia.
| | - Su Wen Phang
- School of Biosciences, Taylor's University, Subang Jaya, Selangor, Malaysia
| | - Nafees Ahmed
- School of Pharmacy, Monash University Malaysia, Subang Jaya, Selangor, Malaysia
| | - Yang Mooi Lim
- Department of Pre-clinical Sciences, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Kajang, Selangor, Malaysia
| |
Collapse
|
20
|
Alasmary FAS, Alnahdi FS, Ben Bacha A, El-Araby AM, Moubayed N, Alafeefy AM, El-Araby ME. New quinoxalinone inhibitors targeting secreted phospholipase A2 and α-glucosidase. J Enzyme Inhib Med Chem 2017; 32:1143-1151. [PMID: 28856929 PMCID: PMC6009887 DOI: 10.1080/14756366.2017.1363743] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 07/27/2017] [Accepted: 08/01/2017] [Indexed: 11/05/2022] Open
Abstract
Elevated blood glucose and increased activities of secreted phospholipase A2 (sPLA2) are strongly linked to coronary heart disease. In this report, our goal was to develop small heterocyclic compound that inhibit sPLA2. The title compounds were also tested against α-glucosidase and α-amylase. This array of enzymes was selected due to their implication in blood glucose regulation and diabetic cardiovascular complications. Therefore, two distinct series of quinoxalinone derivatives were synthesised; 3-[N'-(substituted-benzylidene)-hydrazino]-1H-quinoxalin-2-ones 3a-f and 1-(substituted-phenyl)-5H-[1,2,4]triazolo[4,3-a]quinoxalin-4-ones 4a-f. Four compounds showed promising enzyme inhibitory effect, compounds 3f and 4b-d potently inhibited the catalytic activities of all of the studied proinflammatory sPLA2. Compound 3e inhibited α-glucosidase (IC50 = 9.99 ± 0.18 µM); which is comparable to quercetin (IC50 = 9.93 ± 0.66 µM), a known inhibitor of this enzyme. Unfortunately, all compounds showed weak activity against α-amylase (IC50 > 200 µM). Structure-based molecular modelling tools were utilised to rationalise the SAR compared to co-crystal structures with sPLA2-GX as well as α-glucosidase. This report introduces novel compounds with dual activities on biochemically unrelated enzymes mutually involved in diabetes and its complications.
Collapse
Affiliation(s)
- Fatmah A. S. Alasmary
- Chemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Fatima S. Alnahdi
- Chemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Abir Ben Bacha
- Biochemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Nadine Moubayed
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed M. Alafeefy
- Department of Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan, Malaysia
| | - Moustafa E. El-Araby
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| |
Collapse
|
21
|
Kuefner MS, Pham K, Redd JR, Stephenson EJ, Harvey I, Deng X, Bridges D, Boilard E, Elam MB, Park EA. Secretory phospholipase A 2 group IIA modulates insulin sensitivity and metabolism. J Lipid Res 2017; 58:1822-1833. [PMID: 28663239 DOI: 10.1194/jlr.m076141] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 06/08/2017] [Indexed: 12/22/2022] Open
Abstract
Secretory phospholipase A2 group IIA (PLA2G2A) is a member of a family of secretory phospholipases that have been implicated in inflammation, atherogenesis, and antibacterial actions. Here, we evaluated the role of PLA2G2A in the metabolic response to a high fat diet. C57BL/6 (BL/6) mice do not express PLA2g2a due to a frameshift mutation. We fed BL/6 mice expressing the human PLA2G2A gene (IIA+ mice) a fat diet and assessed the physiologic response. After 10 weeks on the high fat diet, the BL/6 mice were obese, but the IIA+ mice did not gain weight or accumulate lipid. The lean mass in chow- and high fat-fed IIA+ mice was constant and similar to the BL/6 mice on a chow diet. Surprisingly, the IIA+ mice had an elevated metabolic rate, which was not due to differences in physical activity. The IIA+ mice were more insulin sensitive and glucose tolerant than the BL/6 mice, even when the IIA+ mice were provided the high fat diet. The IIA+ mice had increased expression of uncoupling protein 1 (UCP1), sirtuin 1 (SIRT1), and PPARγ coactivator 1α (PGC-1α) in brown adipose tissue (BAT), suggesting that PLA2G2A activates mitochondrial uncoupling in BAT. Our data indicate that PLA2G2A has a previously undiscovered impact on insulin sensitivity and metabolism.
Collapse
Affiliation(s)
- Michael S Kuefner
- Departments of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN.,Department of Veterans Affairs Medical Center, Memphis, TN
| | - Kevin Pham
- Departments of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN.,Department of Veterans Affairs Medical Center, Memphis, TN
| | - Jeanna R Redd
- Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN.,Pediatrics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN.,Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI
| | - Erin J Stephenson
- Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN.,Pediatrics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN
| | - Innocence Harvey
- Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN.,Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI
| | - Xiong Deng
- Departments of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN.,Department of Veterans Affairs Medical Center, Memphis, TN
| | - Dave Bridges
- Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN.,Pediatrics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN.,Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI
| | - Eric Boilard
- Department of Infectious Diseases and Immunity, Faculté de Médecine de l'Université Laval, CHUQ Research Center and Division of Rheumatology, Quebec City, Canada
| | - Marshall B Elam
- Departments of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN.,Department of Veterans Affairs Medical Center, Memphis, TN
| | - Edwards A Park
- Departments of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN .,Department of Veterans Affairs Medical Center, Memphis, TN
| |
Collapse
|
22
|
The Therapeutic Potential of Anti-Inflammatory Exerkines in the Treatment of Atherosclerosis. Int J Mol Sci 2017; 18:ijms18061260. [PMID: 28608819 PMCID: PMC5486082 DOI: 10.3390/ijms18061260] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/22/2017] [Accepted: 06/09/2017] [Indexed: 12/15/2022] Open
Abstract
Although many cardiovascular (CVD) medications, such as antithrombotics, statins, and antihypertensives, have been identified to treat atherosclerosis, at most, many of these therapeutic agents only delay its progression. A growing body of evidence suggests physical exercise could be implemented as a non-pharmacologic treatment due to its pro-metabolic, multisystemic, and anti-inflammatory benefits. Specifically, it has been discovered that certain anti-inflammatory peptides, metabolites, and RNA species (collectively termed “exerkines”) are released in response to exercise that could facilitate these benefits and could serve as potential therapeutic targets for atherosclerosis. However, much of the relationship between exercise and these exerkines remains unanswered, and there are several challenges in the discovery and validation of these exerkines. This review primarily highlights major anti-inflammatory exerkines that could serve as potential therapeutic targets for atherosclerosis. To provide some context and comparison for the therapeutic potential of exerkines, the anti-inflammatory, multisystemic benefits of exercise, the basic mechanisms of atherosclerosis, and the limited efficacies of current anti-inflammatory therapeutics for atherosclerosis are briefly summarized. Finally, key challenges and future directions for exploiting these exerkines in the treatment of atherosclerosis are discussed.
Collapse
|
23
|
Welsh P, Grassia G, Botha S, Sattar N, Maffia P. Targeting inflammation to reduce cardiovascular disease risk: a realistic clinical prospect? Br J Pharmacol 2017; 174:3898-3913. [PMID: 28409825 PMCID: PMC5660005 DOI: 10.1111/bph.13818] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 03/28/2017] [Accepted: 03/30/2017] [Indexed: 12/16/2022] Open
Abstract
Data from basic science experiments is overwhelmingly supportive of the causal role of immune-inflammatory response(s) at the core of atherosclerosis, and therefore, the theoretical potential to manipulate the inflammatory response to prevent cardiovascular events. However, extrapolation to humans requires care and we still lack definitive evidence to show that interfering in immune-inflammatory processes may safely lessen clinical atherosclerosis. In this review, we discuss key therapeutic targets in the treatment of vascular inflammation, placing basic research in a wider clinical perspective, as well as identifying outstanding questions. LINKED ARTICLES This article is part of a themed section on Targeting Inflammation to Reduce Cardiovascular Disease Risk. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.22/issuetoc and http://onlinelibrary.wiley.com/doi/10.1111/bcp.v82.4/issuetoc.
Collapse
Affiliation(s)
- Paul Welsh
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Gianluca Grassia
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Shani Botha
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom campus, South Africa
| | - Naveed Sattar
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Pasquale Maffia
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.,Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.,Department of Pharmacy, University of Naples Federico II, Naples, Italy
| |
Collapse
|
24
|
Kupreishvili K, Stooker W, Emmens RW, Vonk ABA, Sipkens JA, van Dijk A, Eijsman L, Quax PH, van Hinsbergh VWM, Krijnen PAJ, Niessen HWM. PX-18 Protects Human Saphenous Vein Endothelial Cells under Arterial Blood Pressure. Ann Vasc Surg 2017; 42:293-298. [PMID: 28300679 DOI: 10.1016/j.avsg.2016.10.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/12/2016] [Accepted: 10/17/2016] [Indexed: 11/20/2022]
Abstract
BACKGROUND Arterial blood pressure-induced shear stress causes endothelial cell apoptosis and inflammation in vein grafts after coronary artery bypass grafting. As the inflammatory protein type IIA secretory phospholipase A2 (sPLA2-IIA) has been shown to progress atherosclerosis, we hypothesized a role for sPLA2-IIA herein. METHODS The effects of PX-18, an inhibitor of both sPLA2-IIA and apoptosis, on residual endothelium and the presence of sPLA2-IIA were studied in human saphenous vein segments (n = 6) perfused at arterial blood pressure with autologous blood for 6 hrs. RESULTS The presence of PX-18 in the perfusion blood induced a significant 20% reduction in endothelial cell loss compared to veins perfused without PX18, coinciding with significantly reduced sPLA2-IIA levels in the media of the vein graft wall. In addition, PX-18 significantly attenuated caspase-3 activation in human umbilical vein endothelial cells subjected to shear stress via mechanical stretch independent of sPLA2-IIA. CONCLUSIONS In conclusion, PX-18 protects saphenous vein endothelial cells from arterial blood pressure-induced death, possibly also independent of sPLA2-IIA inhibition.
Collapse
Affiliation(s)
- Koba Kupreishvili
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands; Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center, Amsterdam, The Netherlands
| | - Wim Stooker
- Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center, Amsterdam, The Netherlands; Department of Cardiac Surgery, OLVG, Amsterdam, The Netherlands
| | - Reindert W Emmens
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands; Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center, Amsterdam, The Netherlands
| | - Alexander B A Vonk
- Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center, Amsterdam, The Netherlands; Department of Cardiac Surgery, VU University Medical Center, Amsterdam, The Netherlands
| | - Jessica A Sipkens
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands; Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center, Amsterdam, The Netherlands
| | - Annemieke van Dijk
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands; Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center, Amsterdam, The Netherlands
| | - Leon Eijsman
- Department of Cardiac Surgery, VU University Medical Center, Amsterdam, The Netherlands
| | - Paul H Quax
- Einthoven Laboratory of Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Victor W M van Hinsbergh
- Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center, Amsterdam, The Netherlands; Department of Physiology, VU University Medical Center, Amsterdam, The Netherlands
| | - Paul A J Krijnen
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands; Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center, Amsterdam, The Netherlands.
| | - Hans W M Niessen
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands; Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center, Amsterdam, The Netherlands; Department of Cardiac Surgery, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
25
|
Ruparelia N, Chai JT, Fisher EA, Choudhury RP. Inflammatory processes in cardiovascular disease: a route to targeted therapies. Nat Rev Cardiol 2016; 14:133-144. [PMID: 27905474 DOI: 10.1038/nrcardio.2016.185] [Citation(s) in RCA: 345] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Inflammatory processes are firmly established as central to the development and complications of cardiovascular diseases. Elevated levels of inflammatory markers have been shown to be predictive of future cardiovascular events. The specific targeting of these processes in experimental models has been shown to attenuate myocardial and arterial injury, reduce disease progression, and promote healing. However, the translation of these observations and the demonstration of clear efficacy in clinical practice have been disappointing. A major limitation might be that tools currently used to measure 'inflammation' are insufficiently precise and do not provide information about disease site and activity, or discriminate between functionally important activation pathways. The challenge, therefore, is to make measures of inflammation that are more meaningful, and which can guide specific targeted therapies. In this Review, we consider the roles of inflammatory processes in the related pathologies of atherosclerosis and acute myocardial infarction, by providing an evaluation of the known and emerging inflammatory pathways. We highlight contemporary techniques to characterize and quantify inflammation, and consider how they might be used to guide specific treatments. Finally, we discuss emerging opportunities in the field, including their current limitations and challenges that are the focus of ongoing study.
Collapse
Affiliation(s)
- Neil Ruparelia
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Headley Way, Oxford, OX3 9DU, UK
| | - Joshua T Chai
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Headley Way, Oxford, OX3 9DU, UK.,Acute Vascular Imaging Centre, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU, UK
| | - Edward A Fisher
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Headley Way, Oxford, OX3 9DU, UK.,The Center for the Prevention of Cardiovascular Disease and the Division of Cardiology, Department of Medicine, New York University School of Medicine, New York, New York 10016, USA
| | - Robin P Choudhury
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Headley Way, Oxford, OX3 9DU, UK.,Acute Vascular Imaging Centre, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU, UK
| |
Collapse
|
26
|
Nus M, Mallat Z. Immune-mediated mechanisms of atherosclerosis and implications for the clinic. Expert Rev Clin Immunol 2016; 12:1217-1237. [PMID: 27253721 DOI: 10.1080/1744666x.2016.1195686] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION A large body of evidence supports the inflammatory hypothesis of atherosclerosis, and both innate and adaptive immune responses play important roles in all disease stages. Areas covered: Here, we review our understanding of the role of the immune response in atherosclerosis, focusing on the pathways currently amenable to therapeutic modulation. We also discuss the advantages or undesirable effects that may be foreseen from targeting the immune response in patients at high cardiovascular risk, suggesting new avenues for research. Expert commentary: There is an extraordinary opportunity to directly test the inflammatory hypothesis of atherosclerosis in the clinic using currently available therapeutics. However, a more balanced interpretation of the experimental and translational data is needed, which may help address and identify in more detail the appropriate settings where an immune pathway can be targeted with minimal risk.
Collapse
Affiliation(s)
- Meritxell Nus
- a Division of Cardiovascular Medicine, Department of Medicine , University of Cambridge , Cambridge , UK
| | - Ziad Mallat
- a Division of Cardiovascular Medicine, Department of Medicine , University of Cambridge , Cambridge , UK
| |
Collapse
|
27
|
Li X, Fang P, Li Y, Kuo YM, Andrews AJ, Nanayakkara G, Johnson C, Fu H, Shan H, Du F, Hoffman NE, Yu D, Eguchi S, Madesh M, Koch WJ, Sun J, Jiang X, Wang H, Yang X. Mitochondrial Reactive Oxygen Species Mediate Lysophosphatidylcholine-Induced Endothelial Cell Activation. Arterioscler Thromb Vasc Biol 2016; 36:1090-100. [PMID: 27127201 DOI: 10.1161/atvbaha.115.306964] [Citation(s) in RCA: 173] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 04/15/2016] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Hyperlipidemia-induced endothelial cell (EC) activation is considered as an initial event responsible for monocyte recruitment in atherogenesis. However, it remains poorly defined what is the mechanism underlying hyperlipidemia-induced EC activation. Here, we tested a novel hypothesis that mitochondrial reactive oxygen species (mtROS) serve as signaling mediators for EC activation in early atherosclerosis. APPROACH AND RESULTS Metabolomics and transcriptomics analyses revealed that several lysophosphatidylcholine (LPC) species, such as 16:0, 18:0, and 18:1, and their processing enzymes, including Pla2g7 and Pla2g4c, were significantly induced in the aortas of apolipoprotein E knockout mice during early atherosclerosis. Using electron spin resonance and flow cytometry, we found that LPC 16:0, 18:0, and 18:1 induced mtROS in primary human aortic ECs, independently of the activities of nicotinamide adenine dinucleotide phosphate oxidase. Mechanistically, using confocal microscopy and Seahorse XF mitochondrial analyzer, we showed that LPC induced mtROS via unique calcium entry-mediated increase of proton leak and mitochondrial O2 reduction. In addition, we found that mtROS contributed to LPC-induced EC activation by regulating nuclear binding of activator protein-1 and inducing intercellular adhesion molecule-1 gene expression in vitro. Furthermore, we showed that mtROS inhibitor MitoTEMPO suppressed EC activation and aortic monocyte recruitment in apolipoprotein E knockout mice using intravital microscopy and flow cytometry methods. CONCLUSIONS ATP synthesis-uncoupled, but proton leak-coupled, mtROS increase mediates LPC-induced EC activation during early atherosclerosis. These results indicate that mitochondrial antioxidants are promising therapies for vascular inflammation and cardiovascular diseases.
Collapse
Affiliation(s)
- Xinyuan Li
- From the Centers for Metabolic Disease Research, Cardiovascular Research, Thrombosis Research (X.L., P.F., Y.L., G.N., C.J., H.F., H.S., F.D., S.E., X.J., H.W., X.Y.), Department of Pharmacology (X.L., P.F., Y.L., G.N., C.J., H.F., H.S., F.D., W.J.K., X.J., H.W., X.Y.), Department of Biochemistry (N.E.H., M.M.), Department of Physiology (S.E.), Center for Translational Medicine (N.E.H., M.M., W.J.K.), and Department of Clinical Sciences (D.Y.), Temple University School of Medicine, Philadelphia, PA; Department of Cancer Biology, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA (Y.-M.K., A.J.A.); and Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA (J.S.)
| | - Pu Fang
- From the Centers for Metabolic Disease Research, Cardiovascular Research, Thrombosis Research (X.L., P.F., Y.L., G.N., C.J., H.F., H.S., F.D., S.E., X.J., H.W., X.Y.), Department of Pharmacology (X.L., P.F., Y.L., G.N., C.J., H.F., H.S., F.D., W.J.K., X.J., H.W., X.Y.), Department of Biochemistry (N.E.H., M.M.), Department of Physiology (S.E.), Center for Translational Medicine (N.E.H., M.M., W.J.K.), and Department of Clinical Sciences (D.Y.), Temple University School of Medicine, Philadelphia, PA; Department of Cancer Biology, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA (Y.-M.K., A.J.A.); and Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA (J.S.)
| | - Yafeng Li
- From the Centers for Metabolic Disease Research, Cardiovascular Research, Thrombosis Research (X.L., P.F., Y.L., G.N., C.J., H.F., H.S., F.D., S.E., X.J., H.W., X.Y.), Department of Pharmacology (X.L., P.F., Y.L., G.N., C.J., H.F., H.S., F.D., W.J.K., X.J., H.W., X.Y.), Department of Biochemistry (N.E.H., M.M.), Department of Physiology (S.E.), Center for Translational Medicine (N.E.H., M.M., W.J.K.), and Department of Clinical Sciences (D.Y.), Temple University School of Medicine, Philadelphia, PA; Department of Cancer Biology, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA (Y.-M.K., A.J.A.); and Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA (J.S.)
| | - Yin-Ming Kuo
- From the Centers for Metabolic Disease Research, Cardiovascular Research, Thrombosis Research (X.L., P.F., Y.L., G.N., C.J., H.F., H.S., F.D., S.E., X.J., H.W., X.Y.), Department of Pharmacology (X.L., P.F., Y.L., G.N., C.J., H.F., H.S., F.D., W.J.K., X.J., H.W., X.Y.), Department of Biochemistry (N.E.H., M.M.), Department of Physiology (S.E.), Center for Translational Medicine (N.E.H., M.M., W.J.K.), and Department of Clinical Sciences (D.Y.), Temple University School of Medicine, Philadelphia, PA; Department of Cancer Biology, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA (Y.-M.K., A.J.A.); and Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA (J.S.)
| | - Andrew J Andrews
- From the Centers for Metabolic Disease Research, Cardiovascular Research, Thrombosis Research (X.L., P.F., Y.L., G.N., C.J., H.F., H.S., F.D., S.E., X.J., H.W., X.Y.), Department of Pharmacology (X.L., P.F., Y.L., G.N., C.J., H.F., H.S., F.D., W.J.K., X.J., H.W., X.Y.), Department of Biochemistry (N.E.H., M.M.), Department of Physiology (S.E.), Center for Translational Medicine (N.E.H., M.M., W.J.K.), and Department of Clinical Sciences (D.Y.), Temple University School of Medicine, Philadelphia, PA; Department of Cancer Biology, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA (Y.-M.K., A.J.A.); and Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA (J.S.)
| | - Gayani Nanayakkara
- From the Centers for Metabolic Disease Research, Cardiovascular Research, Thrombosis Research (X.L., P.F., Y.L., G.N., C.J., H.F., H.S., F.D., S.E., X.J., H.W., X.Y.), Department of Pharmacology (X.L., P.F., Y.L., G.N., C.J., H.F., H.S., F.D., W.J.K., X.J., H.W., X.Y.), Department of Biochemistry (N.E.H., M.M.), Department of Physiology (S.E.), Center for Translational Medicine (N.E.H., M.M., W.J.K.), and Department of Clinical Sciences (D.Y.), Temple University School of Medicine, Philadelphia, PA; Department of Cancer Biology, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA (Y.-M.K., A.J.A.); and Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA (J.S.)
| | - Candice Johnson
- From the Centers for Metabolic Disease Research, Cardiovascular Research, Thrombosis Research (X.L., P.F., Y.L., G.N., C.J., H.F., H.S., F.D., S.E., X.J., H.W., X.Y.), Department of Pharmacology (X.L., P.F., Y.L., G.N., C.J., H.F., H.S., F.D., W.J.K., X.J., H.W., X.Y.), Department of Biochemistry (N.E.H., M.M.), Department of Physiology (S.E.), Center for Translational Medicine (N.E.H., M.M., W.J.K.), and Department of Clinical Sciences (D.Y.), Temple University School of Medicine, Philadelphia, PA; Department of Cancer Biology, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA (Y.-M.K., A.J.A.); and Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA (J.S.)
| | - Hangfei Fu
- From the Centers for Metabolic Disease Research, Cardiovascular Research, Thrombosis Research (X.L., P.F., Y.L., G.N., C.J., H.F., H.S., F.D., S.E., X.J., H.W., X.Y.), Department of Pharmacology (X.L., P.F., Y.L., G.N., C.J., H.F., H.S., F.D., W.J.K., X.J., H.W., X.Y.), Department of Biochemistry (N.E.H., M.M.), Department of Physiology (S.E.), Center for Translational Medicine (N.E.H., M.M., W.J.K.), and Department of Clinical Sciences (D.Y.), Temple University School of Medicine, Philadelphia, PA; Department of Cancer Biology, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA (Y.-M.K., A.J.A.); and Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA (J.S.)
| | - Huimin Shan
- From the Centers for Metabolic Disease Research, Cardiovascular Research, Thrombosis Research (X.L., P.F., Y.L., G.N., C.J., H.F., H.S., F.D., S.E., X.J., H.W., X.Y.), Department of Pharmacology (X.L., P.F., Y.L., G.N., C.J., H.F., H.S., F.D., W.J.K., X.J., H.W., X.Y.), Department of Biochemistry (N.E.H., M.M.), Department of Physiology (S.E.), Center for Translational Medicine (N.E.H., M.M., W.J.K.), and Department of Clinical Sciences (D.Y.), Temple University School of Medicine, Philadelphia, PA; Department of Cancer Biology, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA (Y.-M.K., A.J.A.); and Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA (J.S.)
| | - Fuyong Du
- From the Centers for Metabolic Disease Research, Cardiovascular Research, Thrombosis Research (X.L., P.F., Y.L., G.N., C.J., H.F., H.S., F.D., S.E., X.J., H.W., X.Y.), Department of Pharmacology (X.L., P.F., Y.L., G.N., C.J., H.F., H.S., F.D., W.J.K., X.J., H.W., X.Y.), Department of Biochemistry (N.E.H., M.M.), Department of Physiology (S.E.), Center for Translational Medicine (N.E.H., M.M., W.J.K.), and Department of Clinical Sciences (D.Y.), Temple University School of Medicine, Philadelphia, PA; Department of Cancer Biology, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA (Y.-M.K., A.J.A.); and Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA (J.S.)
| | - Nicholas E Hoffman
- From the Centers for Metabolic Disease Research, Cardiovascular Research, Thrombosis Research (X.L., P.F., Y.L., G.N., C.J., H.F., H.S., F.D., S.E., X.J., H.W., X.Y.), Department of Pharmacology (X.L., P.F., Y.L., G.N., C.J., H.F., H.S., F.D., W.J.K., X.J., H.W., X.Y.), Department of Biochemistry (N.E.H., M.M.), Department of Physiology (S.E.), Center for Translational Medicine (N.E.H., M.M., W.J.K.), and Department of Clinical Sciences (D.Y.), Temple University School of Medicine, Philadelphia, PA; Department of Cancer Biology, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA (Y.-M.K., A.J.A.); and Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA (J.S.)
| | - Daohai Yu
- From the Centers for Metabolic Disease Research, Cardiovascular Research, Thrombosis Research (X.L., P.F., Y.L., G.N., C.J., H.F., H.S., F.D., S.E., X.J., H.W., X.Y.), Department of Pharmacology (X.L., P.F., Y.L., G.N., C.J., H.F., H.S., F.D., W.J.K., X.J., H.W., X.Y.), Department of Biochemistry (N.E.H., M.M.), Department of Physiology (S.E.), Center for Translational Medicine (N.E.H., M.M., W.J.K.), and Department of Clinical Sciences (D.Y.), Temple University School of Medicine, Philadelphia, PA; Department of Cancer Biology, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA (Y.-M.K., A.J.A.); and Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA (J.S.)
| | - Satoru Eguchi
- From the Centers for Metabolic Disease Research, Cardiovascular Research, Thrombosis Research (X.L., P.F., Y.L., G.N., C.J., H.F., H.S., F.D., S.E., X.J., H.W., X.Y.), Department of Pharmacology (X.L., P.F., Y.L., G.N., C.J., H.F., H.S., F.D., W.J.K., X.J., H.W., X.Y.), Department of Biochemistry (N.E.H., M.M.), Department of Physiology (S.E.), Center for Translational Medicine (N.E.H., M.M., W.J.K.), and Department of Clinical Sciences (D.Y.), Temple University School of Medicine, Philadelphia, PA; Department of Cancer Biology, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA (Y.-M.K., A.J.A.); and Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA (J.S.)
| | - Muniswamy Madesh
- From the Centers for Metabolic Disease Research, Cardiovascular Research, Thrombosis Research (X.L., P.F., Y.L., G.N., C.J., H.F., H.S., F.D., S.E., X.J., H.W., X.Y.), Department of Pharmacology (X.L., P.F., Y.L., G.N., C.J., H.F., H.S., F.D., W.J.K., X.J., H.W., X.Y.), Department of Biochemistry (N.E.H., M.M.), Department of Physiology (S.E.), Center for Translational Medicine (N.E.H., M.M., W.J.K.), and Department of Clinical Sciences (D.Y.), Temple University School of Medicine, Philadelphia, PA; Department of Cancer Biology, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA (Y.-M.K., A.J.A.); and Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA (J.S.)
| | - Walter J Koch
- From the Centers for Metabolic Disease Research, Cardiovascular Research, Thrombosis Research (X.L., P.F., Y.L., G.N., C.J., H.F., H.S., F.D., S.E., X.J., H.W., X.Y.), Department of Pharmacology (X.L., P.F., Y.L., G.N., C.J., H.F., H.S., F.D., W.J.K., X.J., H.W., X.Y.), Department of Biochemistry (N.E.H., M.M.), Department of Physiology (S.E.), Center for Translational Medicine (N.E.H., M.M., W.J.K.), and Department of Clinical Sciences (D.Y.), Temple University School of Medicine, Philadelphia, PA; Department of Cancer Biology, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA (Y.-M.K., A.J.A.); and Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA (J.S.)
| | - Jianxin Sun
- From the Centers for Metabolic Disease Research, Cardiovascular Research, Thrombosis Research (X.L., P.F., Y.L., G.N., C.J., H.F., H.S., F.D., S.E., X.J., H.W., X.Y.), Department of Pharmacology (X.L., P.F., Y.L., G.N., C.J., H.F., H.S., F.D., W.J.K., X.J., H.W., X.Y.), Department of Biochemistry (N.E.H., M.M.), Department of Physiology (S.E.), Center for Translational Medicine (N.E.H., M.M., W.J.K.), and Department of Clinical Sciences (D.Y.), Temple University School of Medicine, Philadelphia, PA; Department of Cancer Biology, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA (Y.-M.K., A.J.A.); and Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA (J.S.)
| | - Xiaohua Jiang
- From the Centers for Metabolic Disease Research, Cardiovascular Research, Thrombosis Research (X.L., P.F., Y.L., G.N., C.J., H.F., H.S., F.D., S.E., X.J., H.W., X.Y.), Department of Pharmacology (X.L., P.F., Y.L., G.N., C.J., H.F., H.S., F.D., W.J.K., X.J., H.W., X.Y.), Department of Biochemistry (N.E.H., M.M.), Department of Physiology (S.E.), Center for Translational Medicine (N.E.H., M.M., W.J.K.), and Department of Clinical Sciences (D.Y.), Temple University School of Medicine, Philadelphia, PA; Department of Cancer Biology, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA (Y.-M.K., A.J.A.); and Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA (J.S.)
| | - Hong Wang
- From the Centers for Metabolic Disease Research, Cardiovascular Research, Thrombosis Research (X.L., P.F., Y.L., G.N., C.J., H.F., H.S., F.D., S.E., X.J., H.W., X.Y.), Department of Pharmacology (X.L., P.F., Y.L., G.N., C.J., H.F., H.S., F.D., W.J.K., X.J., H.W., X.Y.), Department of Biochemistry (N.E.H., M.M.), Department of Physiology (S.E.), Center for Translational Medicine (N.E.H., M.M., W.J.K.), and Department of Clinical Sciences (D.Y.), Temple University School of Medicine, Philadelphia, PA; Department of Cancer Biology, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA (Y.-M.K., A.J.A.); and Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA (J.S.)
| | - Xiaofeng Yang
- From the Centers for Metabolic Disease Research, Cardiovascular Research, Thrombosis Research (X.L., P.F., Y.L., G.N., C.J., H.F., H.S., F.D., S.E., X.J., H.W., X.Y.), Department of Pharmacology (X.L., P.F., Y.L., G.N., C.J., H.F., H.S., F.D., W.J.K., X.J., H.W., X.Y.), Department of Biochemistry (N.E.H., M.M.), Department of Physiology (S.E.), Center for Translational Medicine (N.E.H., M.M., W.J.K.), and Department of Clinical Sciences (D.Y.), Temple University School of Medicine, Philadelphia, PA; Department of Cancer Biology, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA (Y.-M.K., A.J.A.); and Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA (J.S.).
| |
Collapse
|
28
|
Talmud PJ, Holmes MV. Deciphering the Causal Role of sPLA2s and Lp-PLA2 in Coronary Heart Disease. Arterioscler Thromb Vasc Biol 2015; 35:2281-9. [PMID: 26338298 DOI: 10.1161/atvbaha.115.305234] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 08/19/2015] [Indexed: 11/16/2022]
Abstract
Over the last 10 to 15 years, animal and human observational studies have identified elevated levels of both proinflammatory secretory phospholipase A2-IIA and lipoprotein-associated phospholipase A2 as potential risk factors for coronary heart disease. However, Mendelian randomization, a genetic tool to test causality of a biomarker, and phase III randomized controlled trials of inhibitors of theses enzymes (varespladib and darapladib) converged to indicate that elevated levels are unlikely to be themselves causal of coronary heart disease and that inhibition had little or no clinical utility. The concordance of findings from Mendelian randomization and clinical trials suggests that for these 2 drugs, and for other novel biomarkers in future, validation of potential therapeutic targets by genetic studies (such as Mendelian randomization) before embarking on costly phase III randomized controlled trials could increase efficiency and offset the high risk of drug development, thereby facilitating discovery of new therapeutics and mitigating against the exuberant costs of drug development.
Collapse
Affiliation(s)
- Philippa J Talmud
- From the Center for Cardiovascular Genetics, Institute of Cardiovascular Science, University College London, London, UK (P.J.T.); and Clinical Trial Service Unit & Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK (M.V.H.).
| | - Michael V Holmes
- From the Center for Cardiovascular Genetics, Institute of Cardiovascular Science, University College London, London, UK (P.J.T.); and Clinical Trial Service Unit & Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK (M.V.H.)
| |
Collapse
|
29
|
Cytosolic phospholipase A2 modulates TLR2 signaling in synoviocytes. PLoS One 2015; 10:e0119088. [PMID: 25893499 PMCID: PMC4404349 DOI: 10.1371/journal.pone.0119088] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 01/09/2015] [Indexed: 12/29/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic synovitis leading to destruction of cartilage and bone. PLA2 enzymes are key players in inflammation regulating the release of unsaturated fatty acids such as arachidonic acid (AA), a precursor of pro-inflammatory eicosanoids. Several lines of evidence point to toll-like receptors (TLRs) as drivers of synovitis and joint destruction in RA. However, few studies have addressed the implication of PLA2 activity downstream TLR activation in the synovium. Here, we aimed to characterize PLA2 enzyme involvement in TLR2-induced signaling in synovial fibroblast-like cells. TLRs1-7 and a range of sPLA2, iPLA2 and cPLA2 enzymes were found to be transcriptionally expressed in cultured synoviocytes. Activation of TLR2/1 and TLR2/6 led to phosphorylation of cPLA2α at Ser505, and induced AA release and PGE2 production; effects that were attenuated by cPLA2α inhibitors. In contrast, sPLA2 inhibitors did not affect AA or PGE2 release. cPLA2α inhibitors furthermore attenuated TLR-induced expression of IL-6, IL-8 and COX2. COX1/2 inhibitors attenuated TLR2/6-induced IL-6 transcription and protein production comparable to cPLA2α inhibition. Moreover, exogenously PGE2 added alone induced IL-6 production and completely rescued IL-6 transcription when added simultaneously with FSL-1 in the presence of a cPLA2α inhibitor. Our results demonstrate for the first time that cPLA2α is involved in TLR2/1- and TLR2/6-induced AA release, PGE2 production and pro-inflammatory cytokine expression in synoviocytes, possibly through COX/PGE2-dependent pathways. These findings expand our understanding of cPLA2α as a modulator of inflammatory molecular mechanisms in chronic diseases such as RA.
Collapse
|
30
|
Guardiola M, Exeter HJ, Perret C, Folkersen L, van’t Hooft F, Eriksson P, Franco-Cereceda A, Paulsson-Berne G, Palmen J, Li K, Cooper JA, Khaw KT, Mallat Z, Ninio E, Karabina SA, Humphries SE, Boekholdt SM, Holmes MV, Talmud PJ. PLA2G10
Gene Variants, sPLA2 Activity, and Coronary Heart Disease Risk. ACTA ACUST UNITED AC 2015; 8:356-62. [DOI: 10.1161/circgenetics.114.000633] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 12/17/2014] [Indexed: 11/16/2022]
Abstract
Background—
Observational studies report that secretory phospholipase A2 (sPLA2) activity is a marker for coronary heart disease (CHD) risk, and activity measures are thought to represent the composite activity of sPLA2-IIA, -V, and -X. The aim of this study was to use genetic variants of
PLA2G10
, encoding sPLA2-X, to investigate the contribution of sPLA2-X to the measure of sPLA2 activity and coronary heart disease (CHD) risk traits and outcome.
Methods and Results—
Three
PLA2G10
tagging single-nucleotide polymorphisms (rs72546339, rs72546340, and rs4003232) and a previously studied
PLA2G10
coding single-nucleotide polymorphism rs4003228, R38C, were genotyped in a nested case: control cohort drawn from the prospective EPIC-Norfolk Study (2175 cases and 2175 controls). Meta-analysis of rs4003228 (R38C) and CHD was performed using data from the Northwick Park Heart Study II and 2 published cohorts AtheroGene and SIPLAC, providing in total an additional 1884 cases and 3119 controls. EPIC-Norfolk subjects in the highest tertile of sPLA2 activity were older and had higher inflammatory markers compared with those in the lowest tertile for sPLA2 activity. None of the
PLA2G10
tagging single-nucleotide polymorphism nor R38C, a functional variant, were significantly associated with sPLA2 activity, intermediate CHD risk traits, or CHD risk. In meta-analysis, the summary odds ratio for R38C was odds ratio=0.97 (95% confidence interval, 0.77–1.22).
Conclusions—
PLA2G10
variants are not significantly associated with plasma sPLA2 activity or with CHD risk.
Collapse
Affiliation(s)
- Montse Guardiola
- From the Center for Cardiovascular Genetics, Institute of Cardiovascular Science (M.G., H.J.E., J.P., K.W.L., J.A.C., S.E.H., P.J.T.), and Genetic Epidemiology Group, Department of Epidemiology and Public Health (M.V.H.), University College London, London, UK; Unitat de Recerca en Lípids i Arteriosclerosi, Universitat Rovira i Virgili, CIBERDEM, IISPV, Reus, Spain (M.G.); Genomics and Pathophysiology of Cardiovascular Diseases Team, ICAN, Sorbonne Universités, UPMC University Paris 06, INSERM UMR_S
| | - Holly J. Exeter
- From the Center for Cardiovascular Genetics, Institute of Cardiovascular Science (M.G., H.J.E., J.P., K.W.L., J.A.C., S.E.H., P.J.T.), and Genetic Epidemiology Group, Department of Epidemiology and Public Health (M.V.H.), University College London, London, UK; Unitat de Recerca en Lípids i Arteriosclerosi, Universitat Rovira i Virgili, CIBERDEM, IISPV, Reus, Spain (M.G.); Genomics and Pathophysiology of Cardiovascular Diseases Team, ICAN, Sorbonne Universités, UPMC University Paris 06, INSERM UMR_S
| | - Claire Perret
- From the Center for Cardiovascular Genetics, Institute of Cardiovascular Science (M.G., H.J.E., J.P., K.W.L., J.A.C., S.E.H., P.J.T.), and Genetic Epidemiology Group, Department of Epidemiology and Public Health (M.V.H.), University College London, London, UK; Unitat de Recerca en Lípids i Arteriosclerosi, Universitat Rovira i Virgili, CIBERDEM, IISPV, Reus, Spain (M.G.); Genomics and Pathophysiology of Cardiovascular Diseases Team, ICAN, Sorbonne Universités, UPMC University Paris 06, INSERM UMR_S
| | - Lasse Folkersen
- From the Center for Cardiovascular Genetics, Institute of Cardiovascular Science (M.G., H.J.E., J.P., K.W.L., J.A.C., S.E.H., P.J.T.), and Genetic Epidemiology Group, Department of Epidemiology and Public Health (M.V.H.), University College London, London, UK; Unitat de Recerca en Lípids i Arteriosclerosi, Universitat Rovira i Virgili, CIBERDEM, IISPV, Reus, Spain (M.G.); Genomics and Pathophysiology of Cardiovascular Diseases Team, ICAN, Sorbonne Universités, UPMC University Paris 06, INSERM UMR_S
| | - Ferdinand van’t Hooft
- From the Center for Cardiovascular Genetics, Institute of Cardiovascular Science (M.G., H.J.E., J.P., K.W.L., J.A.C., S.E.H., P.J.T.), and Genetic Epidemiology Group, Department of Epidemiology and Public Health (M.V.H.), University College London, London, UK; Unitat de Recerca en Lípids i Arteriosclerosi, Universitat Rovira i Virgili, CIBERDEM, IISPV, Reus, Spain (M.G.); Genomics and Pathophysiology of Cardiovascular Diseases Team, ICAN, Sorbonne Universités, UPMC University Paris 06, INSERM UMR_S
| | - Per Eriksson
- From the Center for Cardiovascular Genetics, Institute of Cardiovascular Science (M.G., H.J.E., J.P., K.W.L., J.A.C., S.E.H., P.J.T.), and Genetic Epidemiology Group, Department of Epidemiology and Public Health (M.V.H.), University College London, London, UK; Unitat de Recerca en Lípids i Arteriosclerosi, Universitat Rovira i Virgili, CIBERDEM, IISPV, Reus, Spain (M.G.); Genomics and Pathophysiology of Cardiovascular Diseases Team, ICAN, Sorbonne Universités, UPMC University Paris 06, INSERM UMR_S
| | - Anders Franco-Cereceda
- From the Center for Cardiovascular Genetics, Institute of Cardiovascular Science (M.G., H.J.E., J.P., K.W.L., J.A.C., S.E.H., P.J.T.), and Genetic Epidemiology Group, Department of Epidemiology and Public Health (M.V.H.), University College London, London, UK; Unitat de Recerca en Lípids i Arteriosclerosi, Universitat Rovira i Virgili, CIBERDEM, IISPV, Reus, Spain (M.G.); Genomics and Pathophysiology of Cardiovascular Diseases Team, ICAN, Sorbonne Universités, UPMC University Paris 06, INSERM UMR_S
| | - Gabrielle Paulsson-Berne
- From the Center for Cardiovascular Genetics, Institute of Cardiovascular Science (M.G., H.J.E., J.P., K.W.L., J.A.C., S.E.H., P.J.T.), and Genetic Epidemiology Group, Department of Epidemiology and Public Health (M.V.H.), University College London, London, UK; Unitat de Recerca en Lípids i Arteriosclerosi, Universitat Rovira i Virgili, CIBERDEM, IISPV, Reus, Spain (M.G.); Genomics and Pathophysiology of Cardiovascular Diseases Team, ICAN, Sorbonne Universités, UPMC University Paris 06, INSERM UMR_S
| | - Jutta Palmen
- From the Center for Cardiovascular Genetics, Institute of Cardiovascular Science (M.G., H.J.E., J.P., K.W.L., J.A.C., S.E.H., P.J.T.), and Genetic Epidemiology Group, Department of Epidemiology and Public Health (M.V.H.), University College London, London, UK; Unitat de Recerca en Lípids i Arteriosclerosi, Universitat Rovira i Virgili, CIBERDEM, IISPV, Reus, Spain (M.G.); Genomics and Pathophysiology of Cardiovascular Diseases Team, ICAN, Sorbonne Universités, UPMC University Paris 06, INSERM UMR_S
| | - KaWah Li
- From the Center for Cardiovascular Genetics, Institute of Cardiovascular Science (M.G., H.J.E., J.P., K.W.L., J.A.C., S.E.H., P.J.T.), and Genetic Epidemiology Group, Department of Epidemiology and Public Health (M.V.H.), University College London, London, UK; Unitat de Recerca en Lípids i Arteriosclerosi, Universitat Rovira i Virgili, CIBERDEM, IISPV, Reus, Spain (M.G.); Genomics and Pathophysiology of Cardiovascular Diseases Team, ICAN, Sorbonne Universités, UPMC University Paris 06, INSERM UMR_S
| | - Jackie A. Cooper
- From the Center for Cardiovascular Genetics, Institute of Cardiovascular Science (M.G., H.J.E., J.P., K.W.L., J.A.C., S.E.H., P.J.T.), and Genetic Epidemiology Group, Department of Epidemiology and Public Health (M.V.H.), University College London, London, UK; Unitat de Recerca en Lípids i Arteriosclerosi, Universitat Rovira i Virgili, CIBERDEM, IISPV, Reus, Spain (M.G.); Genomics and Pathophysiology of Cardiovascular Diseases Team, ICAN, Sorbonne Universités, UPMC University Paris 06, INSERM UMR_S
| | - Kay-Tee Khaw
- From the Center for Cardiovascular Genetics, Institute of Cardiovascular Science (M.G., H.J.E., J.P., K.W.L., J.A.C., S.E.H., P.J.T.), and Genetic Epidemiology Group, Department of Epidemiology and Public Health (M.V.H.), University College London, London, UK; Unitat de Recerca en Lípids i Arteriosclerosi, Universitat Rovira i Virgili, CIBERDEM, IISPV, Reus, Spain (M.G.); Genomics and Pathophysiology of Cardiovascular Diseases Team, ICAN, Sorbonne Universités, UPMC University Paris 06, INSERM UMR_S
| | - Ziad Mallat
- From the Center for Cardiovascular Genetics, Institute of Cardiovascular Science (M.G., H.J.E., J.P., K.W.L., J.A.C., S.E.H., P.J.T.), and Genetic Epidemiology Group, Department of Epidemiology and Public Health (M.V.H.), University College London, London, UK; Unitat de Recerca en Lípids i Arteriosclerosi, Universitat Rovira i Virgili, CIBERDEM, IISPV, Reus, Spain (M.G.); Genomics and Pathophysiology of Cardiovascular Diseases Team, ICAN, Sorbonne Universités, UPMC University Paris 06, INSERM UMR_S
| | - Ewa Ninio
- From the Center for Cardiovascular Genetics, Institute of Cardiovascular Science (M.G., H.J.E., J.P., K.W.L., J.A.C., S.E.H., P.J.T.), and Genetic Epidemiology Group, Department of Epidemiology and Public Health (M.V.H.), University College London, London, UK; Unitat de Recerca en Lípids i Arteriosclerosi, Universitat Rovira i Virgili, CIBERDEM, IISPV, Reus, Spain (M.G.); Genomics and Pathophysiology of Cardiovascular Diseases Team, ICAN, Sorbonne Universités, UPMC University Paris 06, INSERM UMR_S
| | - Sonia-Athina Karabina
- From the Center for Cardiovascular Genetics, Institute of Cardiovascular Science (M.G., H.J.E., J.P., K.W.L., J.A.C., S.E.H., P.J.T.), and Genetic Epidemiology Group, Department of Epidemiology and Public Health (M.V.H.), University College London, London, UK; Unitat de Recerca en Lípids i Arteriosclerosi, Universitat Rovira i Virgili, CIBERDEM, IISPV, Reus, Spain (M.G.); Genomics and Pathophysiology of Cardiovascular Diseases Team, ICAN, Sorbonne Universités, UPMC University Paris 06, INSERM UMR_S
| | - Steve E. Humphries
- From the Center for Cardiovascular Genetics, Institute of Cardiovascular Science (M.G., H.J.E., J.P., K.W.L., J.A.C., S.E.H., P.J.T.), and Genetic Epidemiology Group, Department of Epidemiology and Public Health (M.V.H.), University College London, London, UK; Unitat de Recerca en Lípids i Arteriosclerosi, Universitat Rovira i Virgili, CIBERDEM, IISPV, Reus, Spain (M.G.); Genomics and Pathophysiology of Cardiovascular Diseases Team, ICAN, Sorbonne Universités, UPMC University Paris 06, INSERM UMR_S
| | - S. Matthijs Boekholdt
- From the Center for Cardiovascular Genetics, Institute of Cardiovascular Science (M.G., H.J.E., J.P., K.W.L., J.A.C., S.E.H., P.J.T.), and Genetic Epidemiology Group, Department of Epidemiology and Public Health (M.V.H.), University College London, London, UK; Unitat de Recerca en Lípids i Arteriosclerosi, Universitat Rovira i Virgili, CIBERDEM, IISPV, Reus, Spain (M.G.); Genomics and Pathophysiology of Cardiovascular Diseases Team, ICAN, Sorbonne Universités, UPMC University Paris 06, INSERM UMR_S
| | - Michael V. Holmes
- From the Center for Cardiovascular Genetics, Institute of Cardiovascular Science (M.G., H.J.E., J.P., K.W.L., J.A.C., S.E.H., P.J.T.), and Genetic Epidemiology Group, Department of Epidemiology and Public Health (M.V.H.), University College London, London, UK; Unitat de Recerca en Lípids i Arteriosclerosi, Universitat Rovira i Virgili, CIBERDEM, IISPV, Reus, Spain (M.G.); Genomics and Pathophysiology of Cardiovascular Diseases Team, ICAN, Sorbonne Universités, UPMC University Paris 06, INSERM UMR_S
| | - Philippa J. Talmud
- From the Center for Cardiovascular Genetics, Institute of Cardiovascular Science (M.G., H.J.E., J.P., K.W.L., J.A.C., S.E.H., P.J.T.), and Genetic Epidemiology Group, Department of Epidemiology and Public Health (M.V.H.), University College London, London, UK; Unitat de Recerca en Lípids i Arteriosclerosi, Universitat Rovira i Virgili, CIBERDEM, IISPV, Reus, Spain (M.G.); Genomics and Pathophysiology of Cardiovascular Diseases Team, ICAN, Sorbonne Universités, UPMC University Paris 06, INSERM UMR_S
| |
Collapse
|
31
|
Berry E, Hernandez-Anzaldo S, Ghomashchi F, Lehner R, Murakami M, Gelb MH, Kassiri Z, Wang X, Fernandez-Patron C. Matrix metalloproteinase-2 negatively regulates cardiac secreted phospholipase A2 to modulate inflammation and fever. J Am Heart Assoc 2015; 4:jah3908. [PMID: 25820137 PMCID: PMC4579961 DOI: 10.1161/jaha.115.001868] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Background Matrix metalloproteinase (MMP)‐2 deficiency makes humans and mice susceptible to inflammation. Here, we reveal an MMP‐2–mediated mechanism that modulates the inflammatory response via secretory phospholipase A2 (sPLA2), a phospholipid hydrolase that releases fatty acids, including precursors of eicosanoids. Methods and Results Mmp2−/− (and, to a lesser extent, Mmp7−/− and Mmp9−/−) mice had between 10‐ and 1000‐fold elevated sPLA2 activity in plasma and heart, increased eicosanoids and inflammatory markers (both in the liver and heart), and exacerbated lipopolysaccharide‐induced fever, all of which were blunted by adenovirus‐mediated MMP‐2 overexpression and varespladib (pharmacological sPLA2 inhibitor). Moreover, Mmp2 deficiency caused sPLA2‐mediated dysregulation of cardiac lipid metabolic gene expression. Compared with liver, kidney, and skeletal muscle, the heart was the single major source of the Ca2+‐dependent, ≈20‐kDa, varespladib‐inhibitable sPLA2 that circulates when MMP‐2 is deficient. PLA2G5, which is a major cardiac sPLA2 isoform, was proinflammatory when Mmp2 was deficient. Treatment of wild‐type (Mmp2+/+) mice with doxycycline (to inhibit MMP‐2) recapitulated the Mmp2−/− phenotype of increased cardiac sPLA2 activity, prostaglandin E2 levels, and inflammatory gene expression. Treatment with either indomethacin (to inhibit cyclooxygenase‐dependent eicosanoid production) or varespladib (which inhibited eicosanoid production) triggered acute hypertension in Mmp2−/− mice, revealing their reliance on eicosanoids for blood pressure homeostasis. Conclusions A heart‐centric MMP‐2/sPLA2 axis may modulate blood pressure homeostasis, inflammatory and metabolic gene expression, and the severity of fever. This discovery helps researchers to understand the cardiovascular and systemic effects of MMP‐2 inhibitors and suggests a disease mechanism for human MMP‐2 gene deficiency.
Collapse
Affiliation(s)
- Evan Berry
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada (E.B., S.H.A., X.W., C.F.P.)
| | - Samuel Hernandez-Anzaldo
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada (E.B., S.H.A., X.W., C.F.P.)
| | - Farideh Ghomashchi
- Department of Chemistry, University of Washington, Seattle, WA (F.G., M.H.G.)
| | - Richard Lehner
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada (R.L.) Group on Molecular and Cell Biology of Lipids, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada (R.L.)
| | - Makoto Murakami
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan (M.M.) CREST, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan (M.M.)
| | - Michael H Gelb
- Department of Chemistry, University of Washington, Seattle, WA (F.G., M.H.G.)
| | - Zamaneh Kassiri
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada (Z.K.) Cardiovascular Research Group, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada (Z.K., C.F.P.) Mazankowski Alberta Heart Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada (Z.K., C.F.P.)
| | - Xiang Wang
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada (E.B., S.H.A., X.W., C.F.P.)
| | - Carlos Fernandez-Patron
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada (E.B., S.H.A., X.W., C.F.P.) Cardiovascular Research Group, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada (Z.K., C.F.P.) Mazankowski Alberta Heart Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada (Z.K., C.F.P.)
| |
Collapse
|
32
|
Abstract
The view of atherosclerosis as an inflammatory disease has emerged from observations of immune activation and inflammatory signalling in human atherosclerotic lesions, from the definition of inflammatory biomarkers as independent risk factors for cardiovascular events, and from evidence of low-density lipoprotein-induced immune activation. Studies in animal models of hyperlipidaemia have also supported the beneficial effects of countering inflammation to delay atherosclerosis progression. Specific inflammatory pathways with relevance to human diseases have been identified, and inhibitors of these pathways are either already in use for the treatment of other diseases, or are under development and evaluation. These include 'classic' drugs (such as allopurinol, colchicine, and methotrexate), biologic therapies (for example tumour necrosis factor inhibitors and IL-1 neutralization), as well as targeting of lipid mediators (such as phospholipase inhibitors and antileukotrienes) or intracellular pathways (inhibition of NADPH oxidase, p38 mitogen-activated protein kinase, or phosphodiesterase). The evidence supporting the use of anti-inflammatory therapies for atherosclerosis is mainly based on either observational or small interventional studies evaluating surrogate markers of disease activity. Nevertheless, these data are crucial to understand the role of inflammation in atherosclerosis, and to design randomized controlled studies to evaluate the effect of specific anti-inflammatory strategies on cardiovascular outcomes.
Collapse
Affiliation(s)
- Magnus Bäck
- Experimental Cardiovascular Research Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, L8:03, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Göran K Hansson
- Experimental Cardiovascular Research Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, L8:03, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| |
Collapse
|
33
|
Quach ND, Arnold RD, Cummings BS. Secretory phospholipase A2 enzymes as pharmacological targets for treatment of disease. Biochem Pharmacol 2014; 90:338-48. [PMID: 24907600 DOI: 10.1016/j.bcp.2014.05.022] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 05/28/2014] [Accepted: 05/28/2014] [Indexed: 02/03/2023]
Abstract
Phospholipase A2 (PLA2) cleave phospholipids preferentially at the sn-2 position, liberating free fatty acids and lysophospholipids. They are classified into six main groups based on size, location, function, substrate specificity and calcium requirement. These classes include secretory PLA2 (sPLA2), cytosolic (cPLA2), Ca(2+)-independent (iPLA2), platelet activating factor acetylhydrolases (PAF-AH), lysosomal PLA2 (LyPLA2) and adipose specific PLA2 (AdPLA2). It is hypothesized that PLA2 can serve as pharmacological targets for the therapeutic treatment of several diseases, including cardiovascular diseases, atherosclerosis, immune disorders and cancer. Special emphasis has been placed on inhibitors of sPLA2 isoforms as pharmacological moieties, mostly due to the fact that these enzymes are activated during inflammatory events and because their expression is increased in several diseases. This review focuses on understanding how sPLA2 isoform expression is altered during disease progression and the possible therapeutic interventions to specifically target sPLA2 isoforms, including new approaches using nano-particulate-based strategies.
Collapse
Affiliation(s)
- Nhat D Quach
- Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602, United States
| | - Robert D Arnold
- Department of Drug Discovery & Development, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849-5503, United States
| | - Brian S Cummings
- Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602, United States.
| |
Collapse
|
34
|
Stoekenbroek RM, Kastelein JJP, Hovingh GK. Recent failures in antiatherosclerotic drug development: examples from the thyroxin receptor agonist, the secretory phospholipase A2 antagonist, and the acyl coenzyme A: cholesterol acyltransferase inhibitor programs. Curr Opin Lipidol 2013; 24:459-66. [PMID: 24184941 DOI: 10.1097/mol.0000000000000024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
PURPOSE OF REVIEW To review the published data related to the rise and fall of three different therapeutic approaches, which were investigated to lower cardiovascular disease (CVD) risk. RECENT FINDINGS CVD remains a major burden of morbidity and mortality, despite therapeutic interventions. Novel strategies to address this residual risk are eagerly awaited, and a number of novel targets for therapy have been identified. Lipids and lipoproteins have been shown to play an eminent role in atherosclerosis progression, and as such, interventions that influence these biomarkers are crucial in CVD risk prevention. In recent years, however, clinical studies investigating the effect of novel lipid-modifying drugs on cardiovascular risk prevention have not always resulted in the anticipated beneficial outcome. Moreover, the development of therapies directed toward bioactive proteins acting at the crossroads of lipids and inflammation has also been disappointing. SUMMARY In this review, we will specifically address the rationale, design, and results of the clinical trials investigating the effects of three of the failing therapies: the thyroxin receptor agonist, the secretory phospholipase A2 antagonist, and the acyl coenzyme A:cholesterol acyltransferase inhibitor.
Collapse
Affiliation(s)
- Robert M Stoekenbroek
- Department of Vascular Medicine, Academic Medical Center, Amsterdam, the Netherlands
| | | | | |
Collapse
|
35
|
Holmes MV, Simon T, Exeter HJ, Folkersen L, Asselbergs FW, Guardiola M, Cooper JA, Palmen J, Hubacek JA, Carruthers KF, Horne BD, Brunisholz KD, Mega JL, van Iperen EPA, Li M, Leusink M, Trompet S, Verschuren JJW, Hovingh GK, Dehghan A, Nelson CP, Kotti S, Danchin N, Scholz M, Haase CL, Rothenbacher D, Swerdlow DI, Kuchenbaecker KB, Staines-Urias E, Goel A, van 't Hooft F, Gertow K, de Faire U, Panayiotou AG, Tremoli E, Baldassarre D, Veglia F, Holdt LM, Beutner F, Gansevoort RT, Navis GJ, Mateo Leach I, Breitling LP, Brenner H, Thiery J, Dallmeier D, Franco-Cereceda A, Boer JMA, Stephens JW, Hofker MH, Tedgui A, Hofman A, Uitterlinden AG, Adamkova V, Pitha J, Onland-Moret NC, Cramer MJ, Nathoe HM, Spiering W, Klungel OH, Kumari M, Whincup PH, Morrow DA, Braund PS, Hall AS, Olsson AG, Doevendans PA, Trip MD, Tobin MD, Hamsten A, Watkins H, Koenig W, Nicolaides AN, Teupser D, Day INM, Carlquist JF, Gaunt TR, Ford I, Sattar N, Tsimikas S, Schwartz GG, Lawlor DA, Morris RW, Sandhu MS, Poledne R, Maitland-van der Zee AH, Khaw KT, Keating BJ, van der Harst P, Price JF, Mehta SR, Yusuf S, Witteman JCM, Franco OH, Jukema JW, de Knijff P, Tybjaerg-Hansen A, Rader DJ, Farrall M, Samani NJ, et alHolmes MV, Simon T, Exeter HJ, Folkersen L, Asselbergs FW, Guardiola M, Cooper JA, Palmen J, Hubacek JA, Carruthers KF, Horne BD, Brunisholz KD, Mega JL, van Iperen EPA, Li M, Leusink M, Trompet S, Verschuren JJW, Hovingh GK, Dehghan A, Nelson CP, Kotti S, Danchin N, Scholz M, Haase CL, Rothenbacher D, Swerdlow DI, Kuchenbaecker KB, Staines-Urias E, Goel A, van 't Hooft F, Gertow K, de Faire U, Panayiotou AG, Tremoli E, Baldassarre D, Veglia F, Holdt LM, Beutner F, Gansevoort RT, Navis GJ, Mateo Leach I, Breitling LP, Brenner H, Thiery J, Dallmeier D, Franco-Cereceda A, Boer JMA, Stephens JW, Hofker MH, Tedgui A, Hofman A, Uitterlinden AG, Adamkova V, Pitha J, Onland-Moret NC, Cramer MJ, Nathoe HM, Spiering W, Klungel OH, Kumari M, Whincup PH, Morrow DA, Braund PS, Hall AS, Olsson AG, Doevendans PA, Trip MD, Tobin MD, Hamsten A, Watkins H, Koenig W, Nicolaides AN, Teupser D, Day INM, Carlquist JF, Gaunt TR, Ford I, Sattar N, Tsimikas S, Schwartz GG, Lawlor DA, Morris RW, Sandhu MS, Poledne R, Maitland-van der Zee AH, Khaw KT, Keating BJ, van der Harst P, Price JF, Mehta SR, Yusuf S, Witteman JCM, Franco OH, Jukema JW, de Knijff P, Tybjaerg-Hansen A, Rader DJ, Farrall M, Samani NJ, Kivimaki M, Fox KAA, Humphries SE, Anderson JL, Boekholdt SM, Palmer TM, Eriksson P, Paré G, Hingorani AD, Sabatine MS, Mallat Z, Casas JP, Talmud PJ. Secretory phospholipase A(2)-IIA and cardiovascular disease: a mendelian randomization study. J Am Coll Cardiol 2013; 62:1966-1976. [PMID: 23916927 PMCID: PMC3826105 DOI: 10.1016/j.jacc.2013.06.044] [Show More Authors] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 05/22/2013] [Accepted: 06/27/2013] [Indexed: 11/19/2022]
Abstract
OBJECTIVES This study sought to investigate the role of secretory phospholipase A2 (sPLA2)-IIA in cardiovascular disease. BACKGROUND Higher circulating levels of sPLA2-IIA mass or sPLA2 enzyme activity have been associated with increased risk of cardiovascular events. However, it is not clear if this association is causal. A recent phase III clinical trial of an sPLA2 inhibitor (varespladib) was stopped prematurely for lack of efficacy. METHODS We conducted a Mendelian randomization meta-analysis of 19 general population studies (8,021 incident, 7,513 prevalent major vascular events [MVE] in 74,683 individuals) and 10 acute coronary syndrome (ACS) cohorts (2,520 recurrent MVE in 18,355 individuals) using rs11573156, a variant in PLA2G2A encoding the sPLA2-IIA isoenzyme, as an instrumental variable. RESULTS PLA2G2A rs11573156 C allele associated with lower circulating sPLA2-IIA mass (38% to 44%) and sPLA2 enzyme activity (3% to 23%) per C allele. The odds ratio (OR) for MVE per rs11573156 C allele was 1.02 (95% confidence interval [CI]: 0.98 to 1.06) in general populations and 0.96 (95% CI: 0.90 to 1.03) in ACS cohorts. In the general population studies, the OR derived from the genetic instrumental variable analysis for MVE for a 1-log unit lower sPLA2-IIA mass was 1.04 (95% CI: 0.96 to 1.13), and differed from the non-genetic observational estimate (OR: 0.69; 95% CI: 0.61 to 0.79). In the ACS cohorts, both the genetic instrumental variable and observational ORs showed a null association with MVE. Instrumental variable analysis failed to show associations between sPLA2 enzyme activity and MVE. CONCLUSIONS Reducing sPLA2-IIA mass is unlikely to be a useful therapeutic goal for preventing cardiovascular events.
Collapse
Affiliation(s)
- Michael V Holmes
- Faculty of Population Health Sciences, University College London, London, United Kingdom.
| | - Tabassome Simon
- Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Saint-Antoine, Department of Clinical Pharmacology, URC-EST, Paris, France; Université Pierre et Marie Curie, Paris, France; INSERM, U 698, Paris, France
| | - Holly J Exeter
- Centre for Cardiovascular Genetics, Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Lasse Folkersen
- Atherosclerosis Research Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Folkert W Asselbergs
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht, the Netherlands; Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, the Netherlands; Durrer Center for Cardiogenetic Research, Amsterdam, the Netherlands
| | - Montse Guardiola
- Unitat de Recerca en Lípids i Arteriosclerosi, IISPV, Universitat Rovira i Virgili, CIBERDEM, Reus, Spain
| | - Jackie A Cooper
- Centre for Cardiovascular Genetics, Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Jutta Palmen
- Centre for Cardiovascular Genetics, Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Jaroslav A Hubacek
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Kathryn F Carruthers
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Benjamin D Horne
- Intermountain Heart Institute, Intermountain Medical Center, Salt Lake City, Utah; Department of Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | | | - Jessica L Mega
- TIMI Study Group, Divison of Cardiovascular Medicine, Brigham and Women's Hospital & Harvard Medical School, Boston, Massachusetts
| | - Erik P A van Iperen
- Durrer Center for Cardiogenetic Research, Amsterdam, the Netherlands; Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Mingyao Li
- Department of Biostatistics & Epidemiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Maarten Leusink
- Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| | - Stella Trompet
- Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands; Department of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands
| | | | - G Kees Hovingh
- Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Abbas Dehghan
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands; Member of the Netherlands Consortium on Healthy Aging (NCHA), Leiden, the Netherlands
| | - Christopher P Nelson
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom; Leicester NIHR Biomedical Research Unit in Cardiovascular Disease, Glenfield Hospital, Leicester, United Kingdom
| | - Salma Kotti
- Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Saint-Antoine, Department of Clinical Pharmacology, URC-EST, Paris, France
| | - Nicolas Danchin
- Assistance Publique Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Department of Cardiology, Paris, France; Université Paris Descartes, Paris V, Paris, France
| | - Markus Scholz
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany; LIFE: Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
| | - Christiane L Haase
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Dietrich Rothenbacher
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany; Division of Clinical Epidemiology & Aging Research, German Cancer Research Center, Heidelberg, Germany
| | - Daniel I Swerdlow
- Faculty of Population Health Sciences, University College London, London, United Kingdom
| | - Karoline B Kuchenbaecker
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Eleonora Staines-Urias
- Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Anuj Goel
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom; Department of Cardiovascular Medicine, University of Oxford, Oxford, United Kingdom
| | - Ferdinand van 't Hooft
- Atherosclerosis Research Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Karl Gertow
- Atherosclerosis Research Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Ulf de Faire
- Division of Cardiovascular Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Andrie G Panayiotou
- Cyprus Cardiovascular Educational and Research Trust, Nicosia, Cyprus and Cyprus International Institute for Environmental and Public Health in association with the Harvard School of Public Health, Cyprus University of Technology, Limassol, Cyprus
| | - Elena Tremoli
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Universitá di Milano, Milan, Italy; Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | - Damiano Baldassarre
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Universitá di Milano, Milan, Italy; Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | | | - Lesca M Holdt
- LIFE: Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany; Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany; Institute of Laboratory Medicine, University Hospital Munich (LMU), Ludwig-Maximilians-University Munich, Munich, Germany
| | - Frank Beutner
- LIFE: Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany; Department of Internal Medicine/Cardiology, Heart Center, University of Leipzig, Leipzig, Germany
| | - Ron T Gansevoort
- University Medical Center Groningen, University of Groningen, Department of Internal Medicine, Groningen, the Netherlands
| | - Gerjan J Navis
- University Medical Center Groningen, University of Groningen, Department of Internal Medicine, Groningen, the Netherlands
| | - Irene Mateo Leach
- University Medical Center Groningen, University of Groningen, Department of Cardiology, Groningen, the Netherlands
| | - Lutz P Breitling
- Division of Clinical Epidemiology & Aging Research, German Cancer Research Center, Heidelberg, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology & Aging Research, German Cancer Research Center, Heidelberg, Germany
| | - Joachim Thiery
- LIFE: Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany; Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Dhayana Dallmeier
- Department of Internal Medicine II-Cardiology, University of Ulm Medical Center, Ulm, Germany
| | - Anders Franco-Cereceda
- Cardiothoracic Surgery Unit, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Jolanda M A Boer
- Department for Nutrition and Health, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Jeffrey W Stephens
- Diabetes Research Group, Institute of Life Sciences, College of Medicine, Swansea University, Swansea, Wales, United Kingdom
| | - Marten H Hofker
- Department of Pathology and Medical Biology, Medical Biology Section, Molecular Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Alain Tedgui
- Inserm U970, Paris-Cardiovascular Research Center, Paris, France
| | - Albert Hofman
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands; Member of the Netherlands Consortium on Healthy Aging (NCHA), Leiden, the Netherlands
| | - André G Uitterlinden
- Member of the Netherlands Consortium on Healthy Aging (NCHA), Leiden, the Netherlands; Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Vera Adamkova
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Jan Pitha
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - N Charlotte Onland-Moret
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, the Netherlands
| | - Maarten J Cramer
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Hendrik M Nathoe
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Wilko Spiering
- Department of Vascular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Olaf H Klungel
- Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| | - Meena Kumari
- Faculty of Population Health Sciences, University College London, London, United Kingdom
| | - Peter H Whincup
- Division of Population Health Sciences and Education, St George's, University of London, London, United Kingdom
| | - David A Morrow
- TIMI Study Group, Divison of Cardiovascular Medicine, Brigham and Women's Hospital & Harvard Medical School, Boston, Massachusetts
| | - Peter S Braund
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
| | - Alistair S Hall
- Leeds Institute of Genetics, Health and Therapeutics, University of Leeds, Leeds, United Kingdom
| | - Anders G Olsson
- Stockholm Heart Center, Stockholm, and Linköping University, Linkőping, Sweden
| | - Pieter A Doevendans
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Mieke D Trip
- Department of Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Martin D Tobin
- Departments of Health Sciences & Genetics, University of Leicester, Leicester, United Kingdom
| | - Anders Hamsten
- Atherosclerosis Research Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Hugh Watkins
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom; Department of Cardiovascular Medicine, University of Oxford, Oxford, United Kingdom
| | - Wolfgang Koenig
- Department of Internal Medicine II-Cardiology, University of Ulm Medical Center, Ulm, Germany
| | - Andrew N Nicolaides
- Department of Vascular Surgery, Imperial College, London, United Kingdom; Cyprus Cardiovascular Educational and Research Trust, Nicosia, Cyprus
| | - Daniel Teupser
- LIFE: Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany; Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany; Institute of Laboratory Medicine, University Hospital Munich (LMU), Ludwig-Maximilians-University Munich, Munich, Germany
| | - Ian N M Day
- Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Saint-Antoine, Department of Clinical Pharmacology, URC-EST, Paris, France
| | - John F Carlquist
- Intermountain Heart Institute, Intermountain Medical Center, Salt Lake City, Utah; Department of Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - Tom R Gaunt
- MRC Centre for Causal Analyses in Translational Epidemiology (CAiTE), and Bristol Genetic Epidemiology Laboratories (BGEL), School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom
| | - Ian Ford
- Robertson Centre for Biostatistics, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Naveed Sattar
- British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Sotirios Tsimikas
- Division of Cardiovascular Diseases, Department of Medicine, University of California San Diego, La Jolla, California
| | - Gregory G Schwartz
- VA Medical Center and University of Colorado School of Medicine, Denver, Colorado
| | - Debbie A Lawlor
- MRC Centre for Causal Analyses in Translational Epidemiology (CAiTE), and Bristol Genetic Epidemiology Laboratories (BGEL), School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom
| | - Richard W Morris
- Department of Primary Care & Population Health, University College London, Royal Free Campus, London, United Kingdom
| | - Manjinder S Sandhu
- VA Medical Center and University of Colorado School of Medicine, Denver, Colorado
| | - Rudolf Poledne
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Anke H Maitland-van der Zee
- Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| | - Kay-Tee Khaw
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Brendan J Keating
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Pim van der Harst
- University Medical Center Groningen, University of Groningen, Department of Cardiology, Groningen, the Netherlands
| | - Jackie F Price
- Centre for Population Health Sciences, University of Edinburgh, United Kingdom
| | - Shamir R Mehta
- Department of Clinical Epidemiology & Biostatistics, McMaster University, Hamilton, Ontario, Canada; Department of Medicine, McMaster University, Hamilton, Ontario, Canada; Interventional Cardiology, McMaster University, Hamilton, Ontario, Canada; Population Health Research Institute, McMaster University and Hamilton Health Sciences, Hamilton, Ontario, Canada
| | - Salim Yusuf
- Population Health Research Institute, McMaster University and Hamilton Health Sciences, Hamilton, Ontario, Canada
| | - Jaqueline C M Witteman
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands; Member of the Netherlands Consortium on Healthy Aging (NCHA), Leiden, the Netherlands
| | - Oscar H Franco
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands; Member of the Netherlands Consortium on Healthy Aging (NCHA), Leiden, the Netherlands
| | - J Wouter Jukema
- Durrer Center for Cardiogenetic Research, Amsterdam, the Netherlands; Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands; Interuniversity Cardiology Institute of the Netherlands, Utrecht, the Netherlands
| | - Peter de Knijff
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Anne Tybjaerg-Hansen
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Daniel J Rader
- Preventive Cardiovascular Medicine, Penn Heart and Vascular Center, Philadelphia, Pennsylvania
| | - Martin Farrall
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom; Department of Cardiovascular Medicine, University of Oxford, Oxford, United Kingdom
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom; Leicester NIHR Biomedical Research Unit in Cardiovascular Disease, Glenfield Hospital, Leicester, United Kingdom
| | - Mika Kivimaki
- Faculty of Population Health Sciences, University College London, London, United Kingdom
| | - Keith A A Fox
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Steve E Humphries
- Centre for Cardiovascular Genetics, Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Jeffrey L Anderson
- Intermountain Heart Institute, Intermountain Medical Center, Salt Lake City, Utah; Department of Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - S Matthijs Boekholdt
- Department of Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Tom M Palmer
- Division of Health Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Per Eriksson
- Atherosclerosis Research Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Guillaume Paré
- Department of Clinical Epidemiology & Biostatistics, McMaster University, Hamilton, Ontario, Canada; Population Health Research Institute, McMaster University and Hamilton Health Sciences, Hamilton, Ontario, Canada; Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada; Genetic and Molecular Epidemiology Laboratory, McMaster University, Hamilton, Ontario, Canada
| | - Aroon D Hingorani
- Faculty of Population Health Sciences, University College London, London, United Kingdom; Centre for Clinical Pharmacology, Division of Medicine, University College London, London, United Kingdom
| | - Marc S Sabatine
- TIMI Study Group, Divison of Cardiovascular Medicine, Brigham and Women's Hospital & Harvard Medical School, Boston, Massachusetts
| | - Ziad Mallat
- Inserm U970, Paris-Cardiovascular Research Center, Paris, France; Division of Cardiovascular Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Juan P Casas
- Faculty of Population Health Sciences, University College London, London, United Kingdom; Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, United Kingdom.
| | - Philippa J Talmud
- Centre for Cardiovascular Genetics, Institute of Cardiovascular Science, University College London, London, United Kingdom
| |
Collapse
|
36
|
Statin therapy and secretory phospholipase A2 in children with heterozygous familial hypercholesterolemia. Atherosclerosis 2013; 229:404-7. [DOI: 10.1016/j.atherosclerosis.2013.05.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 04/05/2013] [Accepted: 05/20/2013] [Indexed: 11/23/2022]
|
37
|
Mock JN, Costyn LJ, Wilding SL, Arnold RD, Cummings BS. Evidence for distinct mechanisms of uptake and antitumor activity of secretory phospholipase A2 responsive liposome in prostate cancer. Integr Biol (Camb) 2013; 5:172-82. [PMID: 22890797 DOI: 10.1039/c2ib20108a] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Secretory phospholipase A(2) (sPLA(2)) cleave phospholipids at sn-2 ester bonds, releasing lysophospholipids and fatty acids, and are over expressed in several pathologies, including inflammation, arthritis, sepsis and breast and prostate cancers. Herein we evaluated the therapeutic activity of liposomes engineered to be responsive to different sPLA(2) isoforms compared to clinically used long-circulating (pegylated) sterically stabilized liposomes (SSL) in vitro and in vivo, and assessed differences in roles of sPLA(2) in the mechanism of uptake and delivery of these nanoparticles. Exposing sPLA(2) responsive liposomes (SPRL) to sPLA(2) increased the release of intraluminal entrapped contents in a time-dependent manner that was inhibited by the sPLA(2) inhibitor LY3117273. Treatment of prostate cancer cells with doxorubicin encapsulated in SSL and SPRL resulted in cytotoxicity in LNCaP, DU-145 and PC-3 cells lines comparable to free drug. Interestingly, cytotoxicity was not altered by sPLA(2) inhibition. Tracking of drug and liposome delivery using fluorescence microscopy and flow cytometry, we demonstrated that drug uptake was liposome-dependent, as encapsulation of doxorubicin in SPRL resulted in 1.5 to 2-fold greater intracellular drug levels compared to SSL. Liposome uptake was cell-dependent and did not correlate to doxorubicin uptake; however, doxorubicin uptake was generally greatest in PC-3 cells, followed by DU-145 cells and then LNCaP cells. In almost all cases, uptake of one of our formulations, SPRL-E, was greater than SSL. The therapeutic activity of SPRL in vivo was demonstrated using a mouse xenograft model of human prostate cancer, which showed that doxorubicin entrapped within SPRL decreased tumor growth compared to SSL, suggesting that SPRL are more effective at slowing tumor growth than a SSL formulation similar to the FDA approved DOXIL™. Collectively, these data show the therapeutic activity of SPRL compared to SSL, yield insights into the mechanisms of action of these nanoparticles and suggest that SPRL could be useful for treatment of other pathologies that over express sPLA(2).
Collapse
Affiliation(s)
- J N Mock
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, 336 College of Pharmacy South, Athens, GA 30602, USA
| | | | | | | | | |
Collapse
|
38
|
Ait-Oufella H, Herbin O, Lahoute C, Coatrieux C, Loyer X, Joffre J, Laurans L, Ramkhelawon B, Blanc-Brude O, Karabina S, Girard CA, Payré C, Yamamoto K, Binder CJ, Murakami M, Tedgui A, Lambeau G, Mallat Z. Group X Secreted Phospholipase A2 Limits the Development of Atherosclerosis in LDL Receptor–Null Mice. Arterioscler Thromb Vasc Biol 2013; 33:466-73. [DOI: 10.1161/atvbaha.112.300309] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective—
Several secreted phospholipases A2 (sPLA2s), including group IIA, III, V, and X, have been linked to the development of atherosclerosis, which led to the clinical testing of A-002 (varespladib), a broad sPLA2 inhibitor for the treatment of coronary artery disease. Group X sPLA2 (PLA2G10) has the most potent hydrolyzing activity toward phosphatidylcholine and is believed to play a proatherogenic role.
Methods and Results—
Here, we show that
Ldlr
–/–
mice reconstituted with bone marrow from mouse group X–deficient mice (
Pla2g10
–/–
) unexpectedly display a doubling of plaque size compared with
Pla2g10
+/+
chimeric mice. Macrophages of
Pla2g10
–/–
mice are more susceptible to apoptosis in vitro, which is associated with a 4-fold increase of plaque necrotic core in vivo. In addition, chimeric
Pla2g10
–/–
mice show exaggerated T lymphocyte (Th)1 immune response, associated with enhanced T-cell infiltration in atherosclerotic plaques. Interestingly, overexpression of human PLA2G10 in murine bone marrow cells leads to significant reduction of Th1 response and to 50% reduction of lesion size.
Conclusion—
PLA2G10 expression in bone marrow cells controls a proatherogenic Th1 response and limits the development of atherosclerosis. The results may provide an explanation for the recently reported inefficacy of A-002 (varespladib) to treat patients with coronary artery disease. Indeed, A-002 is a nonselective sPLA2 inhibitor that inhibits both proatherogenic (groups IIA and V) and antiatherogenic (group X) sPLA2s. Our results suggest that selective targeting of individual sPLA2 enzymes may be a better strategy to treat cardiovascular diseases.
Collapse
Affiliation(s)
- Hafid Ait-Oufella
- From the Inserm U970, Paris Cardiovascular Research Center, Université René Descartes, Paris, France (H.A.-O., O.H., C.L., X.L., J.J., L.L., B.R., O.B.-B., A.T., Z.M.); Service de Réanimation Médicale, Hôpital Saint-Antoine, AP-HP, Université Pierre et Marie Curie, Paris, France (H.A.-O.); Institute of Molecular and Cellular Pharmacology (IPMC), UMR 7275 CNRS- and Université de Nice-Sophia Antipolis, Valbonne, France (C.C., C.A.G., C.P., G.L.); Inserm UMRS 937, Paris, France (S.K.); Lipid Metabolism
| | - Olivier Herbin
- From the Inserm U970, Paris Cardiovascular Research Center, Université René Descartes, Paris, France (H.A.-O., O.H., C.L., X.L., J.J., L.L., B.R., O.B.-B., A.T., Z.M.); Service de Réanimation Médicale, Hôpital Saint-Antoine, AP-HP, Université Pierre et Marie Curie, Paris, France (H.A.-O.); Institute of Molecular and Cellular Pharmacology (IPMC), UMR 7275 CNRS- and Université de Nice-Sophia Antipolis, Valbonne, France (C.C., C.A.G., C.P., G.L.); Inserm UMRS 937, Paris, France (S.K.); Lipid Metabolism
| | - Charlotte Lahoute
- From the Inserm U970, Paris Cardiovascular Research Center, Université René Descartes, Paris, France (H.A.-O., O.H., C.L., X.L., J.J., L.L., B.R., O.B.-B., A.T., Z.M.); Service de Réanimation Médicale, Hôpital Saint-Antoine, AP-HP, Université Pierre et Marie Curie, Paris, France (H.A.-O.); Institute of Molecular and Cellular Pharmacology (IPMC), UMR 7275 CNRS- and Université de Nice-Sophia Antipolis, Valbonne, France (C.C., C.A.G., C.P., G.L.); Inserm UMRS 937, Paris, France (S.K.); Lipid Metabolism
| | - Christelle Coatrieux
- From the Inserm U970, Paris Cardiovascular Research Center, Université René Descartes, Paris, France (H.A.-O., O.H., C.L., X.L., J.J., L.L., B.R., O.B.-B., A.T., Z.M.); Service de Réanimation Médicale, Hôpital Saint-Antoine, AP-HP, Université Pierre et Marie Curie, Paris, France (H.A.-O.); Institute of Molecular and Cellular Pharmacology (IPMC), UMR 7275 CNRS- and Université de Nice-Sophia Antipolis, Valbonne, France (C.C., C.A.G., C.P., G.L.); Inserm UMRS 937, Paris, France (S.K.); Lipid Metabolism
| | - Xavier Loyer
- From the Inserm U970, Paris Cardiovascular Research Center, Université René Descartes, Paris, France (H.A.-O., O.H., C.L., X.L., J.J., L.L., B.R., O.B.-B., A.T., Z.M.); Service de Réanimation Médicale, Hôpital Saint-Antoine, AP-HP, Université Pierre et Marie Curie, Paris, France (H.A.-O.); Institute of Molecular and Cellular Pharmacology (IPMC), UMR 7275 CNRS- and Université de Nice-Sophia Antipolis, Valbonne, France (C.C., C.A.G., C.P., G.L.); Inserm UMRS 937, Paris, France (S.K.); Lipid Metabolism
| | - Jeremie Joffre
- From the Inserm U970, Paris Cardiovascular Research Center, Université René Descartes, Paris, France (H.A.-O., O.H., C.L., X.L., J.J., L.L., B.R., O.B.-B., A.T., Z.M.); Service de Réanimation Médicale, Hôpital Saint-Antoine, AP-HP, Université Pierre et Marie Curie, Paris, France (H.A.-O.); Institute of Molecular and Cellular Pharmacology (IPMC), UMR 7275 CNRS- and Université de Nice-Sophia Antipolis, Valbonne, France (C.C., C.A.G., C.P., G.L.); Inserm UMRS 937, Paris, France (S.K.); Lipid Metabolism
| | - Ludivine Laurans
- From the Inserm U970, Paris Cardiovascular Research Center, Université René Descartes, Paris, France (H.A.-O., O.H., C.L., X.L., J.J., L.L., B.R., O.B.-B., A.T., Z.M.); Service de Réanimation Médicale, Hôpital Saint-Antoine, AP-HP, Université Pierre et Marie Curie, Paris, France (H.A.-O.); Institute of Molecular and Cellular Pharmacology (IPMC), UMR 7275 CNRS- and Université de Nice-Sophia Antipolis, Valbonne, France (C.C., C.A.G., C.P., G.L.); Inserm UMRS 937, Paris, France (S.K.); Lipid Metabolism
| | - Bhama Ramkhelawon
- From the Inserm U970, Paris Cardiovascular Research Center, Université René Descartes, Paris, France (H.A.-O., O.H., C.L., X.L., J.J., L.L., B.R., O.B.-B., A.T., Z.M.); Service de Réanimation Médicale, Hôpital Saint-Antoine, AP-HP, Université Pierre et Marie Curie, Paris, France (H.A.-O.); Institute of Molecular and Cellular Pharmacology (IPMC), UMR 7275 CNRS- and Université de Nice-Sophia Antipolis, Valbonne, France (C.C., C.A.G., C.P., G.L.); Inserm UMRS 937, Paris, France (S.K.); Lipid Metabolism
| | - Olivier Blanc-Brude
- From the Inserm U970, Paris Cardiovascular Research Center, Université René Descartes, Paris, France (H.A.-O., O.H., C.L., X.L., J.J., L.L., B.R., O.B.-B., A.T., Z.M.); Service de Réanimation Médicale, Hôpital Saint-Antoine, AP-HP, Université Pierre et Marie Curie, Paris, France (H.A.-O.); Institute of Molecular and Cellular Pharmacology (IPMC), UMR 7275 CNRS- and Université de Nice-Sophia Antipolis, Valbonne, France (C.C., C.A.G., C.P., G.L.); Inserm UMRS 937, Paris, France (S.K.); Lipid Metabolism
| | - Sonia Karabina
- From the Inserm U970, Paris Cardiovascular Research Center, Université René Descartes, Paris, France (H.A.-O., O.H., C.L., X.L., J.J., L.L., B.R., O.B.-B., A.T., Z.M.); Service de Réanimation Médicale, Hôpital Saint-Antoine, AP-HP, Université Pierre et Marie Curie, Paris, France (H.A.-O.); Institute of Molecular and Cellular Pharmacology (IPMC), UMR 7275 CNRS- and Université de Nice-Sophia Antipolis, Valbonne, France (C.C., C.A.G., C.P., G.L.); Inserm UMRS 937, Paris, France (S.K.); Lipid Metabolism
| | - Christophe A. Girard
- From the Inserm U970, Paris Cardiovascular Research Center, Université René Descartes, Paris, France (H.A.-O., O.H., C.L., X.L., J.J., L.L., B.R., O.B.-B., A.T., Z.M.); Service de Réanimation Médicale, Hôpital Saint-Antoine, AP-HP, Université Pierre et Marie Curie, Paris, France (H.A.-O.); Institute of Molecular and Cellular Pharmacology (IPMC), UMR 7275 CNRS- and Université de Nice-Sophia Antipolis, Valbonne, France (C.C., C.A.G., C.P., G.L.); Inserm UMRS 937, Paris, France (S.K.); Lipid Metabolism
| | - Christine Payré
- From the Inserm U970, Paris Cardiovascular Research Center, Université René Descartes, Paris, France (H.A.-O., O.H., C.L., X.L., J.J., L.L., B.R., O.B.-B., A.T., Z.M.); Service de Réanimation Médicale, Hôpital Saint-Antoine, AP-HP, Université Pierre et Marie Curie, Paris, France (H.A.-O.); Institute of Molecular and Cellular Pharmacology (IPMC), UMR 7275 CNRS- and Université de Nice-Sophia Antipolis, Valbonne, France (C.C., C.A.G., C.P., G.L.); Inserm UMRS 937, Paris, France (S.K.); Lipid Metabolism
| | - Kei Yamamoto
- From the Inserm U970, Paris Cardiovascular Research Center, Université René Descartes, Paris, France (H.A.-O., O.H., C.L., X.L., J.J., L.L., B.R., O.B.-B., A.T., Z.M.); Service de Réanimation Médicale, Hôpital Saint-Antoine, AP-HP, Université Pierre et Marie Curie, Paris, France (H.A.-O.); Institute of Molecular and Cellular Pharmacology (IPMC), UMR 7275 CNRS- and Université de Nice-Sophia Antipolis, Valbonne, France (C.C., C.A.G., C.P., G.L.); Inserm UMRS 937, Paris, France (S.K.); Lipid Metabolism
| | - Christoph J. Binder
- From the Inserm U970, Paris Cardiovascular Research Center, Université René Descartes, Paris, France (H.A.-O., O.H., C.L., X.L., J.J., L.L., B.R., O.B.-B., A.T., Z.M.); Service de Réanimation Médicale, Hôpital Saint-Antoine, AP-HP, Université Pierre et Marie Curie, Paris, France (H.A.-O.); Institute of Molecular and Cellular Pharmacology (IPMC), UMR 7275 CNRS- and Université de Nice-Sophia Antipolis, Valbonne, France (C.C., C.A.G., C.P., G.L.); Inserm UMRS 937, Paris, France (S.K.); Lipid Metabolism
| | - Makoto Murakami
- From the Inserm U970, Paris Cardiovascular Research Center, Université René Descartes, Paris, France (H.A.-O., O.H., C.L., X.L., J.J., L.L., B.R., O.B.-B., A.T., Z.M.); Service de Réanimation Médicale, Hôpital Saint-Antoine, AP-HP, Université Pierre et Marie Curie, Paris, France (H.A.-O.); Institute of Molecular and Cellular Pharmacology (IPMC), UMR 7275 CNRS- and Université de Nice-Sophia Antipolis, Valbonne, France (C.C., C.A.G., C.P., G.L.); Inserm UMRS 937, Paris, France (S.K.); Lipid Metabolism
| | - Alain Tedgui
- From the Inserm U970, Paris Cardiovascular Research Center, Université René Descartes, Paris, France (H.A.-O., O.H., C.L., X.L., J.J., L.L., B.R., O.B.-B., A.T., Z.M.); Service de Réanimation Médicale, Hôpital Saint-Antoine, AP-HP, Université Pierre et Marie Curie, Paris, France (H.A.-O.); Institute of Molecular and Cellular Pharmacology (IPMC), UMR 7275 CNRS- and Université de Nice-Sophia Antipolis, Valbonne, France (C.C., C.A.G., C.P., G.L.); Inserm UMRS 937, Paris, France (S.K.); Lipid Metabolism
| | - Gérard Lambeau
- From the Inserm U970, Paris Cardiovascular Research Center, Université René Descartes, Paris, France (H.A.-O., O.H., C.L., X.L., J.J., L.L., B.R., O.B.-B., A.T., Z.M.); Service de Réanimation Médicale, Hôpital Saint-Antoine, AP-HP, Université Pierre et Marie Curie, Paris, France (H.A.-O.); Institute of Molecular and Cellular Pharmacology (IPMC), UMR 7275 CNRS- and Université de Nice-Sophia Antipolis, Valbonne, France (C.C., C.A.G., C.P., G.L.); Inserm UMRS 937, Paris, France (S.K.); Lipid Metabolism
| | - Ziad Mallat
- From the Inserm U970, Paris Cardiovascular Research Center, Université René Descartes, Paris, France (H.A.-O., O.H., C.L., X.L., J.J., L.L., B.R., O.B.-B., A.T., Z.M.); Service de Réanimation Médicale, Hôpital Saint-Antoine, AP-HP, Université Pierre et Marie Curie, Paris, France (H.A.-O.); Institute of Molecular and Cellular Pharmacology (IPMC), UMR 7275 CNRS- and Université de Nice-Sophia Antipolis, Valbonne, France (C.C., C.A.G., C.P., G.L.); Inserm UMRS 937, Paris, France (S.K.); Lipid Metabolism
| |
Collapse
|
39
|
Park JB, Lee CS, Jang JH, Ghim J, Kim YJ, You S, Hwang D, Suh PG, Ryu SH. Phospholipase signalling networks in cancer. Nat Rev Cancer 2012; 12:782-92. [PMID: 23076158 DOI: 10.1038/nrc3379] [Citation(s) in RCA: 169] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Phospholipases (PLC, PLD and PLA) are essential mediators of intracellular and intercellular signalling. They can function as phospholipid-hydrolysing enzymes that can generate many bioactive lipid mediators, such as diacylglycerol, phosphatidic acid, lysophosphatidic acid and arachidonic acid. Lipid mediators generated by phospholipases regulate multiple cellular processes that can promote tumorigenesis, including proliferation, migration, invasion and angiogenesis. Although many individual phospholipases have been extensively studied, how phospholipases regulate diverse cancer-associated cellular processes and the interplay between different phospholipases have yet to be fully elucidated. A thorough understanding of the cancer-associated signalling networks of phospholipases is necessary to determine whether these enzymes can be targeted therapeutically.
Collapse
Affiliation(s)
- Jong Bae Park
- The Specific Organs Cancer Branch, Research Institute and Hospital, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si Gyeonggi-do 410-769, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Involvement of the renin-angiotensin system in abdominal and thoracic aortic aneurysms. Clin Sci (Lond) 2012; 123:531-43. [PMID: 22788237 DOI: 10.1042/cs20120097] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Aortic aneurysms are relatively common maladies that may lead to the devastating consequence of aortic rupture. AAAs (abdominal aortic aneurysms) and TAAs (thoracic aortic aneurysms) are two common forms of aneurysmal diseases in humans that appear to have distinct pathologies and mechanisms. Despite this divergence, there are numerous and consistent demonstrations that overactivation of the RAS (renin-angiotensin system) promotes both AAAs and TAAs in animal models. For example, in mice, both AAAs and TAAs are formed during infusion of AngII (angiotensin II), the major bioactive peptide in the RAS. There are many proposed mechanisms by which the RAS initiates and perpetuates aortic aneurysms, including effects of AngII on a diverse array of cell types and mediators. These experimental findings are complemented in humans by genetic association studies and retrospective analyses of clinical data that generally support a role of the RAS in both AAAs and TAAs. Given the lack of a validated pharmacological therapy for any form of aortic aneurysm, there is a pressing need to determine whether the consistent findings on the role of the RAS in animal models are translatable to humans afflicted with these diseases. The present review compiles the recent literature that has shown the RAS as a critical component in the pathogenesis of aortic aneurysms.
Collapse
|
41
|
Boyanovsky BB, Bailey W, Dixon L, Shridas P, Webb NR. Group V secretory phospholipase A2 enhances the progression of angiotensin II-induced abdominal aortic aneurysms but confers protection against angiotensin II-induced cardiac fibrosis in apoE-deficient mice. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:1088-98. [PMID: 22813854 DOI: 10.1016/j.ajpath.2012.05.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 05/02/2012] [Accepted: 05/17/2012] [Indexed: 01/23/2023]
Abstract
Abdominal aortic aneurysms (AAAs) and heart failure are complex life-threatening diseases whose etiology is not completely understood. In this study, we investigated whether deficiency of group V secretory phospholipase A(2) (GV sPLA(2)) protects from experimental AAA. The impact of GV sPLA(2) deficiency on angiotensin (Ang) II-induced cardiac fibrosis was also investigated. Apolipoprotein E (apoE)(-/-) mice and apoE(-/-) mice lacking GV sPLA(2) (GV DKO) were infused with 1000 ng/kg per minute Ang II for up to 28 days. Increases in systolic blood pressure, plasma aldosterone level, and urinary and heart prostanoids were similar in apoE(-/-) and GV DKO mice after Ang II infusion. The incidence of aortic rupture in Ang II-infused GV DKO mice (10%) was significantly reduced compared with apoE(-/-) mice (29.4%). Although the incidence of AAA in GV DKO mice (81.3%) and apoE(-/-) mice (100%) was similar, the mean percentage increase in maximal luminal diameter of abdominal aortas was significantly smaller in GV DKO mice (68.5% ± 7.7%) compared with apoE(-/-) mice (92.6% ± 8.3%). Deficiency of GV sPLA(2) resulted in increased Ang II-induced cardiac fibrosis that was most pronounced in perivascular regions. Perivascular collagen, visualized by picrosirius red staining, was associated with increased TUNEL staining and increased immunopositivity for macrophages and myofibroblasts and nicotinamide adenine dinucleotide phosphate oxidase (NOX)-2 and NOX-4, respectively. Our findings indicate that GV sPLA(2) modulates pathological responses to Ang II, with different outcomes for AAA and cardiac fibrosis.
Collapse
Affiliation(s)
- Boris B Boyanovsky
- Endocrinology Division, the Department of Internal Medicine, University of Kentucky, Lexington, USA.
| | | | | | | | | |
Collapse
|
42
|
|
43
|
Lind L, Simon T, Johansson L, Kotti S, Hansen T, Machecourt J, Ninio E, Tedgui A, Danchin N, Ahlström H, Mallat Z. Circulating levels of secretory- and lipoprotein-associated phospholipase A2 activities: relation to atherosclerotic plaques and future all-cause mortality. Eur Heart J 2012; 33:2946-54. [PMID: 22711753 DOI: 10.1093/eurheartj/ehs132] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
AIMS Secretory- and lipoprotein-associated phospholipases A2 (sPLA2 and Lp-PLA2) are enzymes both suggested to be of importance for atherosclerosis. We investigated relationships between the activities of these enzymes in the circulation and atherosclerosis as well as future clinical events. METHODS AND RESULTS The population-based Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS) study included 1016 randomly selected subjects, all aged 70. The prevalence of carotid artery plaques was recorded by ultrasound (n= 954), and arterial stenosis was assessed by whole-body magnetic resonance angiography (WBMRA, n= 302). Secretory-associated phospholipase A2 [odds ratio 1.23 for 1 SD increase, 95% confidence interval (CI): 1.05-1.44, P= 0.007], but not Lp-PLA2 (P= 0.26), activity was significantly related to carotid atherosclerosis and to the amount of stenosis at WBMRA (P= 0.006) following adjustment for multiple risk factors (waist circumference, serum triglycerides, body mass index, C-reactive protein, high density lipoprotein-C, low density lipoprotein-C, triglycerides, GFR, fasting glucose, blood pressure, statin use, and exercise habits). Secretory-associated phospholipase A2 [hazard ratio (HR) 1.45 for 1 SD increase, 95% CI: 1.15-1.84, P= 0.001], but not Lp-PLA2 (HR 0.95, P= 0.55), activity was a significant risk factor for all-cause mortality (114 had died) during 7.0 years follow-up after adjustment for the risk factors described above. In a sample of 1029 post-myocardial infarction (MI) patients (French registry of Acute ST-elevation and non-ST-elevation Myocardial Infarction), sPLA2 (adjusted HR 1.32 for 1 unit increase, 95% CI: 1.02-1.71, P= 0.036), but not Lp-PLA2 (HR 1.03, P= 0.90), activity predicted death or recurrent MI during 1-year follow-up (n= 136 cases). CONCLUSION sPLA2 activity was related to atherosclerosis and predicted all-cause mortality in a sample of elderly subjects, as well as death or MI in post-MI patients.
Collapse
Affiliation(s)
- Lars Lind
- Department of Medical Sciences, Uppsala University Hospital, Uppsala, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
De Luca D, Minucci A, Trias J, Tripodi D, Conti G, Zuppi C, Capoluongo E. Varespladib Inhibits Secretory Phospholipase A2 in Bronchoalveolar Lavage of Different Types of Neonatal Lung Injury. J Clin Pharmacol 2012; 52:729-737. [DOI: 10.1177/0091270011405498] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
45
|
Inhibition of sPLA2 and Endothelial Function: A Substudy of the SPIDER-PCI Trial. Can J Cardiol 2012; 28:215-21. [DOI: 10.1016/j.cjca.2011.11.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 11/08/2011] [Accepted: 11/08/2011] [Indexed: 01/06/2023] Open
|
46
|
Watanabe K, Fujioka D, Saito Y, Nakamura T, Obata JE, Kawabata K, Watanabe Y, Mishina H, Tamaru S, Hanasaki K, Kugiyama K. Group X secretory PLA2 in neutrophils plays a pathogenic role in abdominal aortic aneurysms in mice. Am J Physiol Heart Circ Physiol 2011; 302:H95-104. [PMID: 21984544 DOI: 10.1152/ajpheart.00695.2011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Group X secretory PLA(2) (sPLA(2)-X) is expressed in neutrophils and plays a role in the pathogenesis of neutrophil-mediated tissue inflammation and injury. This study tested the hypothesis that sPLA(2)-X in neutrophils may contribute to the pathogenesis of abdominal aortic aneurysms (AAA) using sPLA(2)-X(-/-) mice. AAA was created by application of CaCl(2) to external surface of aorta. As a result, the aortas of sPLA(2)-X(-/-) mice had smaller diameters (percent increase from baseline; 24.8 ± 3.5% vs. 49.9 ± 9.1%, respectively; P < 0.01), a reduced grade of elastin degradation, and lower activities of elastase and gelatinase (26% and 19% lower, respectively) after CaCl(2) treatment compared with sPLA(2)-X(+/+) mice. In sPLA(2)-X(+/+) mice, immunofluorescence microscopic images showed that the immunoreactivity of sPLA(2)-X was detected only in neutrophils within aortic walls 3 days, 1, 2, and 6 wk after CaCl(2) treatment, whereas the immunoreactivity was not detected in macrophages or mast cells in aortic walls. sPLA(2)-X immunoreactivity also was colocalized in cells expressing matrix metalloproteinase (MMP)-9. Neutrophils isolated from sPLA(2)-X(-/-) mice had lower activities of elastase, gelatinase, and MMP-9 in response to stimuli compared with sPLA(2)-X(+/+) mice. The attenuated release of elastase and gelatinase from sPLA(2)-X(-/-) neutrophils was reversed by exogenous addition of mouse sPLA(2)-X protein. The adoptive transfer of sPLA(2)-X(+/+) neutrophils days 0 and 3 after CaCl(2) treatment reversed aortic diameters and elastin degradation grades in the lethally irradiated sPLA(2)-X(+/+) mice reconstituted with sPLA(2)-X(-/-) bone marrow to an extent similar to that seen in sPLA(2)-X(+/+) mice. In conclusion, sPLA(2)-X in neutrophils plays a pathogenic role in AAA in a mice model.
Collapse
Affiliation(s)
- Kazuhiro Watanabe
- Department of Internal Medicine II, University of Yamanashi, Chuo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Nordon IM, Hinchliffe RJ, Malkawi AH, Pirianov G, Torsney E, Loftus IM, Cockerill GW, Thompson MM. Comparative proteomics reveals a systemic vulnerability in the vasculature of patients with abdominal aortic aneurysms. J Vasc Surg 2011; 54:1100-1108.e6. [DOI: 10.1016/j.jvs.2011.04.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2010] [Revised: 04/13/2011] [Accepted: 04/14/2011] [Indexed: 10/18/2022]
|
48
|
O'Donoghue ML, Mallat Z, Morrow DA, Benessiano J, Sloan S, Omland T, Solomon SD, Braunwald E, Tedgui A, Sabatine MS. Prognostic utility of secretory phospholipase A(2) in patients with stable coronary artery disease. Clin Chem 2011; 57:1311-7. [PMID: 21784767 DOI: 10.1373/clinchem.2011.166520] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Secretory phospholipase A(2) (sPLA(2)) may contribute to atherogenesis. To date, few prospective studies have examined the utility of sPLA(2) for risk stratification in coronary artery disease (CAD). METHODS We measured plasma sPLA(2) activity at baseline in 3708 subjects in the PEACE randomized trial of trandolapril vs placebo in stable CAD. Median follow-up was 4.8 years. We used Cox regression to adjust for demographics, clinical risk factors, apolipoprotein B, apolipoprotein A1, and medications. RESULTS After multivariable adjustment, sPLA(2) was associated with an increased risk of cardiovascular death, myocardial infarction, or stroke (adjusted hazard ratio Q4:Q1 1.55, 95% CI 1.13-2.14) and cardiovascular death or heart failure (1.91, 1.20-3.03). In further multivariable assessment, increased activity levels of sPLA(2) were associated with the risk of cardiovascular death, myocardial infarction, or stroke (adjusted hazard ratio 1.47, 95% CI 1.06-2.04), independent of lipoprotein-associated phospholipase A(2) mass and C-reactive protein, and modestly improved the area under the curve (AUC) beyond established clinical risk factors (AUC 0.668-0.675, P = 0.01). sPLA(2), N-terminal pro-B-type natriuretic peptide, and high-sensitivity cardiac troponin T all were independently associated with cardiovascular death or heart failure, and each improved risk discrimination (P = 0.02, P < 0.001, P < 0.001, respectively). CONCLUSIONS sPLA(2) activity provides independent prognostic information beyond established risk markers in patients with stable CAD. These data are encouraging for studies designed to evaluate the role of sPLA(2) as a therapeutic target.
Collapse
Affiliation(s)
- Michelle L O'Donoghue
- TIMI Study Group, Cardiovascular Division, Brigham and Women's Hospital, Boston, MA 02215, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Azar M, Valentin E, Badaoui G, Kassab R, Sarkis A, Azar RR. Comparison of the effects of combination atorvastatin (40 mg) + ezetimibe (10 mg) versus atorvastatin (40 mg) alone on secretory phospholipase A2 activity in patients with stable coronary artery disease or coronary artery disease equivalent. Am J Cardiol 2011; 107:1571-4. [PMID: 21439529 DOI: 10.1016/j.amjcard.2011.01.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2010] [Revised: 01/20/2011] [Accepted: 01/20/2011] [Indexed: 10/18/2022]
Abstract
Secretory phospholipase A2 (sPLA2) is an enzyme that plays an important role in the pathogenesis of atherosclerosis and of adverse cardiovascular events. It is currently the target of emerging therapeutic agents. Our study was designed to investigate the effect of aggressive lowering of low-density lipoprotein (LDL) cholesterol with ezetimibe and atorvastatin on sPLA2 activity. We randomized 100 patients with stable coronary artery disease (CAD) or CAD equivalent (diabetes, stroke, or peripheral vascular disease) to receive ezetimibe 10 mg/day in association with atorvastatin 40 mg/day (combination therapy group) versus atorvastatin 40 mg/day and placebo (monotherapy group). Patients on statin therapy before inclusion were allowed to enter the study as long as the potency of the statin was lower than atorvastatin 40 mg/day. Lipid profile, high-sensitivity C-reactive protein (hs-CRP), and sPLA activity were measured at baseline and after 8 weeks of therapy. The decrease in LDL cholesterol was more significant in the combination therapy group, but the decrease in hs-CRP was similar. sPLA2 activity significantly decreased in the ezetimibe/atorvastatin group from 29 U/ml (interquartile range 23 to 35) to 26 U/ml (23 to 29, p = 0.001) but remained similar in the placebo/atorvastatin group (23 U/ml, 19 to 32, vs 22 U/ml, 19 to 28, p = NS). In a multivariate stepwise linear regression model, change in sPLA2 correlated with change in hs-CRP (p <0.001), baseline LDL cholesterol level (p = 0.001), body mass index (p = 0.003), diabetes mellitus (p = 0.04) and combination therapy with ezetimibe/atorvastatin (p = 0.05). In conclusion, this study demonstrates that coadministration of ezetimibe and atorvastatin decreases sPLA2 activity.
Collapse
|
50
|
Yamamoto K, Isogai Y, Sato H, Taketomi Y, Murakami M. Secreted phospholipase A2, lipoprotein hydrolysis, and atherosclerosis: integration with lipidomics. Anal Bioanal Chem 2011; 400:1829-42. [PMID: 21445663 PMCID: PMC3098357 DOI: 10.1007/s00216-011-4864-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2010] [Revised: 02/14/2011] [Accepted: 03/01/2011] [Indexed: 01/22/2023]
Abstract
Phospholipase A2 (PLA2) is a group of enzymes that hydrolyze the sn-2 position of glycerophospholipids to yield fatty acids and lysophospholipids. Of many PLA2s or related enzymes identified to date, secreted PLA2s (sPLA2s) comprise the largest family that contains 10 catalytically active isozymes. Besides arachidonic acid released from cellular membranes for eicosanoid synthesis, several if not all sPLA2s have recently been implicated in hydrolysis of phospholipids in lipoprotein particles. The sPLA2-processed low-density lipoprotein (LDL) particles contain a large amount of lysophospholipids and exhibit the property of “small-dense” or “modified” LDL, which facilitates foam cell formation from macrophages. Transgenic overexpression of these sPLA2s leads to development of atherosclerosis in mice. More importantly, genetic deletion or pharmacological inhibition of particular sPLA2s significantly attenuates atherosclerosis and aneurysm. In this article, we will give an overview of current understanding of the role of sPLA2s in atherosclerosis, with recent lipidomics data showing the action of a subset of sPLA2s on lipoprotein phospholipids.
Collapse
Affiliation(s)
- Kei Yamamoto
- Lipid Metabolism Project, The Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan
| | | | | | | | | |
Collapse
|