1
|
Yu X, Xiong W, Zhang J, Lin J, Wang B, Huang H, Du L, Xiong J. Comparison of "Huaxi-1" or "histidine-tryptophan-ketoglutarate" cardioplegia in an animal model. Front Cardiovasc Med 2024; 11:1385253. [PMID: 38903973 PMCID: PMC11188422 DOI: 10.3389/fcvm.2024.1385253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/22/2024] [Indexed: 06/22/2024] Open
Abstract
Background Using a pig model of cardiopulmonary bypass, we compared outcomes after cardioplegia either with our in-house "Huaxi-1" solution containing natural blood and crystalloid or with the entirely crystalloid, commercially available "histidine-tryptophan-ketoglutarate" solution. Methods Cardiopulmonary bypass was established in 12 healthy male pigs, who were randomized to receive a single dose of either Huaxi-1 or entirely crystalloid. All animals were then subjected to whole-heart ischemia for 90 min, followed by 2 h of reperfusion, after which myocardial injury was assessed in terms of cardiac function, myocardial pathology and levels of biomarkers in plasma, while levels of high-energy phosphate in myocardium were assayed using liquid chromatography. Results Animals given Huaxi-1 cardioplegia required significantly less time to be weaned off bypass, they received significantly lower doses of norepinephrine, and they showed significantly higher levels (mean ± SD) of adenosine triphosphate (14 ± 4 vs. 8 ± 2 µg/mg, P = 0.005), adenosine diphosphate (16 ± 2 vs. 13 ± 2 µg/mg, P = 0.046), and total adenine nucleotide (37 ± 4 vs. 30 ± 3 µg/mg, P = 0.006) in myocardium after 2 h of reperfusion. They also showed less severe bleeding, edema and injury to mitochondria and myofibers in myocardium. The two groups did not differ significantly in doses of inotropic drugs received, cardiac output or levels of biomarkers in plasma. Conclusions In this animal model of healthy hearts subjected to 90 min of ischemia, Huaxi-1 cardioplegia may be superior to entirely crystalloid cardioplegia for promoting energy generation and attenuating ischemia/reperfusion injury in myocardium.
Collapse
Affiliation(s)
- Xiang Yu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Wen Xiong
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- Department of Anesthesiology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jie Zhang
- Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Jing Lin
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Bo Wang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Hong Huang
- Chengdu Qingshan Likang Pharmaceutical Co. Ltd., Research and Development Department, Chengdu, Sichuan, China
| | - Lei Du
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Jiyue Xiong
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Malas KM, Lambert DS, Heisner JS, Camara AKS, Stowe DF. Time and charge/pH-dependent activation of K + channel-mediated K + influx and K +/H + exchange in guinea pig heart isolated mitochondria; role in bioenergetic stability. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148908. [PMID: 35961396 DOI: 10.1016/j.bbabio.2022.148908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 07/17/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Mitochondria play an important role not only in producing energy for the cell but also for regulating mitochondrial and cell function depending on the cell's needs and environment. Uptake of cations, anions, and substrates requires a stable, polarized transmembrane charge potential (ΔΨm). Chemiosmosis requires ion exchangers to remove Na+, K+, Ca2+, PO43-, and other charged species that enter mitochondria. Knowledge of the kinetics of mitochondrial (m) cation channels and exchangers is important in understanding their roles in regulating mitochondrial chemiosmosis and bioenergetics. The influx/efflux of K+, the most abundant mitochondrial cation, alters mitochondrial volume and shape by bringing in anions and H2O by osmosis. The effects of K+ uptake through ligand-specific mK+ channels stimulated/inhibited by agonists/antagonists on mitochondrial volume (swelling/contraction) are well known. However, a more important role for K+ influx is likely its effects on H+ cycling and bioenergetics facilitated by mitochondrial (m) K+/H+ exchange (mKHE), though the kinetics and consequences of K+ efflux by KHE are not well described. We hypothesized that a major role of K+ influx/efflux is stimulation of respiration via the influx of H+ by KHE. We proposed to modulate KHE activity by energizing guinea pig heart isolated mitochondria and by altering the mK+ cycle to capture changes in mitochondrial volume, pHm, ΔΨm, and respiration that would reflect a role for H+ influx via KHE to regulate bioenergetics. To test this, mitochondria were suspended in a 150 mM K+ buffer at pH 6.9, or in a 140 mM Cs+ buffer at pH 7.6 or 6.9 with added 10 mM K+, minimal Ca2+ and free of Na+. O2 content was measured by a Clark electrode, and pHm, ΔΨm, and volume, were measured by fluorescence spectrophotometry and light-scattering. Adding pyruvic acid (PA) alone caused increases in volume and respiration and a rapid decrease in the transmembrane pH gradient (ΔpHm = pHin-pHext) at pHext 6.9> > 7.6, so that ΔΨm was charged and maintained. BKCa agonist NS1619 and antagonist paxilline modified these effects, and KHE inhibitor quinine and K+ ionophore valinomycin depolarized ΔΨm. We postulate that K+ efflux-induced H+ influx via KHE causes an inward H+ leak that stimulates respiration, but at buffer pH 6.9 also utilizes the energy of ΔpHm, the smaller component of the overall proton motive force, ΔμH+. Thus ΔpHm establishes and maintains the ΔΨm required for utilization of substrates, entry of all cations, and for oxidative phosphorylation. Thus, K+ influx/efflux appears to play a pivotal role in regulating energetics while maintaining mitochondrial ionic balance and volume homeostasis.
Collapse
Affiliation(s)
- Kareem M Malas
- Department of Anesthesiology, Research Division, Medical College of Wisconsin, Milwaukee, WI, USA
| | - David S Lambert
- Department of Anesthesiology, Research Division, Medical College of Wisconsin, Milwaukee, WI, USA
| | - James S Heisner
- Department of Anesthesiology, Research Division, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Amadou K S Camara
- Department of Anesthesiology, Research Division, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA; Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - David F Stowe
- Department of Anesthesiology, Research Division, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA; Departments of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI, USA; Zablocki Veterans Administration, Research Service, Milwaukee, WI, USA.
| |
Collapse
|
3
|
Hypothermia Prevents Cardiac Dysfunction during Acute Ischemia Reperfusion by Maintaining Mitochondrial Bioenergetics and by Promoting Hexokinase II Binding to Mitochondria. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4476448. [PMID: 35873800 PMCID: PMC9301761 DOI: 10.1155/2022/4476448] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 03/04/2022] [Accepted: 06/14/2022] [Indexed: 11/18/2022]
Abstract
Background Hypothermia (H), cardioplegia (CP), and both combined (HCP) are known to be protective against myocardial ischemia reperfusion (IR) injury. Mitochondria have molecular signaling mechanisms that are associated with both cell survival and cell death. In this study, we investigated the dynamic changes in proapoptotic and prosurvival signaling pathways mediating H, CP, or HCP-induced protection of mitochondrial function after acute myocardial IR injury. Methods Rats were divided into five groups. Each group consists of 3 subgroups based on a specific reperfusion time (5, 20, or 60 min) after a 25-min global ischemia. The time control (TC) groups were not subjected to IR but were perfused with 37 °C Krebs-Ringer's (KR) buffer, containing 4.5 mM K+, in a specific perfusion protocol that corresponded with the duration of each IR protocol. The IR group (control) was perfused for 20 min with KR, followed by 25-min global ischemia, and then KR reperfusion for 5, 20, or 60 min. The treatment groups were exposed to 17 °C H, 37 °C CP (16 mM K+), or HCP (17 °C + CP) for 5 min before ischemia and for 2 min on reperfusion before switching to 37 °C KR perfusion for the remainder of each of the reperfusion times. Cardiac function and mitochondrial redox state (NADH/FAD) were monitored online in the ex vivo hearts before, during, and after ischemia. Mitochondria were isolated at the end of each specified reperfusion time, and changes in O2 consumption, membrane potential (ΔΨm), and Ca2+ retention capacity (CRC) were assessed using complex I and complex II substrates. In another set of hearts, mitochondrial and cytosolic fractions were isolated after a specified reperfusion time to conduct western blot assays to determine hexokinase II (HKII) and Bax binding/translocation to mitochondria, cytosolic pAkt levels, and cytochrome c (Cyto-c) release into the cytosol. Results H and HCP were more protective of mitochondrial integrity and, concomitantly, cardiac function than CP alone; H and HCP improved post-ischemic cardiac function by (1) maintaining mitochondrial bioenergetics, (2) maintaining HKII binding to mitochondria with an increase in pAkt levels, (3) increasing CRC, and (4) decreasing Cyto-c release during reperfusion. Bax translocation/binding to mitochondria was unaffected by any treatment, regardless of cardiac functional recovery. Conclusions Hypothermia preserved mitochondrial function and cardiac function, in part, by maintaining mitochondrial bioenergetics, by retaining HKII binding to mitochondria via upstream pAkt, and by reducing Cyto-c release independently of Bax binding to mitochondria.
Collapse
|
4
|
Ma X, Yan W, He N. Lidocaine attenuates hypoxia/reoxygenation‑induced inflammation, apoptosis and ferroptosis in lung epithelial cells by regulating the p38 MAPK pathway. Mol Med Rep 2022; 25:150. [PMID: 35244190 PMCID: PMC8941375 DOI: 10.3892/mmr.2022.12666] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 11/22/2021] [Indexed: 11/12/2022] Open
Abstract
Lung ischemia-reperfusion (I/R) injury poses a serious threat to human health, worldwide. The current study aimed to determine the role of lidocaine in A549 cells, in addition to the involvement of the p38 MAPK pathway. Oxygen deprivation/reoxygenation-induced A549 cells were utilized to simulate I/R injury in vitro. Cell viability and apoptosis were detected using MTT and TUNEL assays, respectively. The levels of IL-6, IL-8, TNF-α, malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase, iron and reactive oxygen species (ROS) were measured using corresponding commercial kits. The corresponding protein expression levels were also measured using western blotting. Moreover, a monolayer cell paracellular permeability assay was performed to determine the permeability of A549 cells. The results demonstrated that, whilst lidocaine had no influence on untreated A549 cells, it significantly increased the viability of hypoxia/reoxygenation (H/R)-induced A549 cells. A549 cell apoptosis and the release of inflammatory cytokines in the H/R group were decreased after the addition of lidocaine. When compared with the H/R group, increased MDA level and decreased SOD level were observed in H/R-induced A549 cells following lidocaine treatment. In addition, the permeability of H/R-induced A549 cells was markedly decreased following lidocaine treatment. Compared with the H/R group, the expression levels of tight junction and ferroptosis-related proteins were significantly upregulated by lidocaine, whereas the expression of transferrin was downregulated. However, p79350, an agonist of p38, reversed the effects of lidocaine on H/R-induced A549 cells. In conclusion, lidocaine exerted a protective role in HR-induced lung epithelial cell injury, which may serve as a potential agent for the treatment of patients with lung I/R injury.
Collapse
Affiliation(s)
- Xiaojun Ma
- Department of Anesthesiology, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Weihua Yan
- Department of Pathology, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Na He
- Department of Anesthesiology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010000, P.R. China
| |
Collapse
|
5
|
Ji X, Bradley JL, Zheng G, Ge W, Xu J, Hu J, He F, Shabnam R, Peberdy MA, Ornato JP, Chen Q, Lesnefsky EJ, Tang W. Cerebral and myocardial mitochondrial injury differ in a rat model of cardiac arrest and cardiopulmonary resuscitation. Biomed Pharmacother 2021; 140:111743. [PMID: 34020243 DOI: 10.1016/j.biopha.2021.111743] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 11/18/2022] Open
Abstract
Brain mitochondria are more sensitive to global ischemia compared to heart mitochondria. Complex I in the electron transport chain (ETC) is sensitive to ischemic injury and is a major control point of the rate of ADP stimulated oxygen consumption. The purpose of this study was to explore whether changes in cerebral and myocardial mitochondria differ after cardiac arrest. Animals were randomized into 4 groups (n = 6): 1) Sham 2) VF 3) VF+CPR 4) ROSC 1hr. Ventricular Fibrillation (VF) was induced through a guide wire advanced from the right jugular vein into the ventricle and untreated for 8 min. Resuscitation was attempted with a 4J defibrillation after 8 min of cardiopulmonary resuscitation (CPR). Brain mitochondria and cardiac mitochondrial subpopulations were isolated. Calcium retention capacity was measured to assess susceptibility to mitochondrial permeability transition pore opening. ADP stimulated oxygen consumption and ETC activity assays were performed. Brain mitochondria are far more sensitive to injury during cardiac arrest and resuscitation compared to cardiac mitochondria. Complex I is highly sensitive to injury in brain mitochondria. With markedly decreased calcium retention capacity, mitochondria contribute to cerebral reperfusion injury. Therapeutic preservation of cerebral mitochondrial activity and mitochondrial function during cardiac arrest may improve post-resuscitation neurologic function.
Collapse
Affiliation(s)
- Xianfei Ji
- Department of Emergency, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China; Weil Institute of Emergency and Critical Care Research, Virginia Commonwealth University, Richmond, VA, USA.
| | - Jennifer L Bradley
- Weil Institute of Emergency and Critical Care Research, Virginia Commonwealth University, Richmond, VA, USA; Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA.
| | - Guanghui Zheng
- Weil Institute of Emergency and Critical Care Research, Virginia Commonwealth University, Richmond, VA, USA.
| | - Weiwei Ge
- Weil Institute of Emergency and Critical Care Research, Virginia Commonwealth University, Richmond, VA, USA.
| | - Jing Xu
- Weil Institute of Emergency and Critical Care Research, Virginia Commonwealth University, Richmond, VA, USA.
| | - Juntao Hu
- Weil Institute of Emergency and Critical Care Research, Virginia Commonwealth University, Richmond, VA, USA.
| | - Fenglian He
- Weil Institute of Emergency and Critical Care Research, Virginia Commonwealth University, Richmond, VA, USA.
| | | | - Mary Ann Peberdy
- Weil Institute of Emergency and Critical Care Research, Virginia Commonwealth University, Richmond, VA, USA; Departments of Internal Medicine and Emergency Medicine, Virginia Commonwealth University Health System, Richmond, VA, USA; Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University Health System, Richmond, VA, USA.
| | - Joseph P Ornato
- Weil Institute of Emergency and Critical Care Research, Virginia Commonwealth University, Richmond, VA, USA; Department of Emergency Medicine, Virginia Commonwealth University Health System, Richmond, VA, USA.
| | - Qun Chen
- Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University Health System, Richmond, VA, USA.
| | - Edward J Lesnefsky
- Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University Health System, Richmond, VA, USA; Medical Service, McGuire Department of Veterans Affairs Medical Center, Richmond, VA, USA; McGuire Research Institute, Richmond, VA, USA.
| | - Wanchun Tang
- Weil Institute of Emergency and Critical Care Research, Virginia Commonwealth University, Richmond, VA, USA; Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA; Department of Emergency Medicine, Virginia Commonwealth University Health System, Richmond, VA, USA.
| |
Collapse
|
6
|
Mehrvar S, Rymut KT, Foomani FH, Mostaghimi S, Eells JT, Ranji M, Gopalakrishnan S. Fluorescence Imaging of Mitochondrial Redox State to Assess Diabetic Wounds. IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE-JTEHM 2019; 7:1800809. [PMID: 32166047 PMCID: PMC6889942 DOI: 10.1109/jtehm.2019.2945323] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 08/15/2019] [Accepted: 09/22/2019] [Indexed: 01/06/2023]
Abstract
Background: Diabetes is known to cause delayed wound healing, and
chronic non-healing lower extremity ulcers may end with lower limb amputations and
mortalities. Given the increasing prevalence of diabetes mellitus worldwide, it is
critical to focus on underlying mechanisms of these debilitating wounds to find novel
therapeutic strategies and thereby improve patient outcome. Methods: This
study aims to design a label-free optical fluorescence imager that captures metabolic
indices (NADH and FAD autofluorescence) and monitors the in vivo wound
healing progress noninvasively. Furthermore, 3D optical cryo-imaging of the mitochondrial
redox state was utilized to assess the volumetric redox state of the wound tissue.
Results: The results from our in vivo fluorescence
imager and the 3D cryo-imager quantify the differences between the redox state of wounds
on diabetic mice in comparison with the control mice. These metabolic changes are
associated with mitochondrial dysfunction and higher oxidative stress in diabetic wounds.
A significant correlation was observed between the redox state and the area of the wounds.
Conclusion: The results suggest that our developed novel optical
imaging system can successfully be used as an optical indicator of the complex wound
healing process noninvasively.
Collapse
Affiliation(s)
- Shima Mehrvar
- 1Biophotonics LabDepartment of Electrical EngineeringUniversity of Wisconsin MilwaukeeMilwaukeeWI53211USA
| | - Kevin T Rymut
- 2College of NursingUniversity of Wisconsin MilwaukeeMilwaukeeWI53211USA
| | - Farnaz H Foomani
- 1Biophotonics LabDepartment of Electrical EngineeringUniversity of Wisconsin MilwaukeeMilwaukeeWI53211USA
| | - Soudeh Mostaghimi
- 1Biophotonics LabDepartment of Electrical EngineeringUniversity of Wisconsin MilwaukeeMilwaukeeWI53211USA
| | - Janis T Eells
- 3Department of Biomedical SciencesUniversity of Wisconsin MilwaukeeMilwaukeeWI53211USA
| | - Mahsa Ranji
- 1Biophotonics LabDepartment of Electrical EngineeringUniversity of Wisconsin MilwaukeeMilwaukeeWI53211USA
| | | |
Collapse
|
7
|
Ait-Aissa K, Heisner JS, Norwood Toro LE, Bruemmer D, Doyon G, Harmann L, Geurts A, Camara AKS, Beyer AM. Telomerase Deficiency Predisposes to Heart Failure and Ischemia-Reperfusion Injury. Front Cardiovasc Med 2019; 6:31. [PMID: 31001540 PMCID: PMC6454001 DOI: 10.3389/fcvm.2019.00031] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 03/07/2019] [Indexed: 12/13/2022] Open
Abstract
Introduction: Elevated levels of mitochondrial reactive oxygen species (ROS) contribute to the development of numerous cardiovascular diseases. TERT, the catalytic subunit of telomerase, has been shown to translocate to mitochondria to suppress ROS while promoting ATP production. Acute overexpression of TERT increases survival and decreases infarct size in a mouse model of myocardial infarct, while decreased telomerase activity predisposes to mitochondrial defects and heart failure. In the present study, we examined the role of TERT on cardiac structure and function under basal conditions and conditions of acute or prolonged stress in a novel rat model of TERT deficiency. Methods: Cardiac structure and function were evaluated via transthoracic echocardiogram. Langendorff preparations were used to test the effects of acute global ischemia reperfusion injury on cardiac function and infarction. Coronary flow and left ventricular pressure were measured during and after ischemia/reperfusion (I/R). Mitochondrial DNA integrity was measured by PCR and mitochondrial respiration was assessed in isolated mitochondria using an Oxygraph. Angiotensin II infusion was used as an established model of systemic stress. Results: No structural changes (echocardiogram) or coronary flow/left ventricle pressure (isolated hearts) were observed in TERT-/- rats at baseline; however, after I/R, coronary flow was significantly reduced in TERT-/- compared to wild type (WT) rats, while diastolic Left Ventricle Pressure was significantly elevated (n = 6 in each group; p < 0.05) in the TERT-/-. Interestingly, infarct size was less in TERT-/- rats compared to WT rats, while mitochondrial respiratory control index decreased and mitochondrial DNA lesions increased in TERT-/- compared to WT. Angiotensin II treatment did not alter cardiac structure or function; however, it augmented the infarct size significantly more in TERT-/- compared to the WT. Conclusion: Absence of TERT activity increases susceptibility to stress like cardiac injury. These results suggest a critical role of telomerase in chronic heart disease.
Collapse
Affiliation(s)
- Karima Ait-Aissa
- Cardiovascular Center, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - James S. Heisner
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Laura E. Norwood Toro
- Cardiovascular Center, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Dennis Bruemmer
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - Genevieve Doyon
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - Leanne Harmann
- Cardiovascular Center, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Aron Geurts
- Cardiovascular Center, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Amadou K. S. Camara
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Andreas M. Beyer
- Cardiovascular Center, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
8
|
la Cour MF, Mehrvar S, Heisner JS, Motlagh MM, Medhora M, Ranji M, Camara AKS. Optical metabolic imaging of irradiated rat heart exposed to ischemia-reperfusion injury. JOURNAL OF BIOMEDICAL OPTICS 2018; 23:1-9. [PMID: 29352564 PMCID: PMC5774173 DOI: 10.1117/1.jbo.23.1.016011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 12/12/2017] [Indexed: 05/09/2023]
Abstract
Whole thoracic irradiation (WTI) is known to cause deterioration in cardiac function. Whether irradiation predisposes the heart to further ischemia and reperfusion (IR) injury is not well known. The aim of this study is to examine the susceptibility of rat hearts to IR injury following a single fraction of 15 Gy WTI and to investigate the role of mitochondrial metabolism in the differential susceptibility to IR injury. After day 35 of irradiation, ex vivo hearts from irradiated and nonirradiated rats (controls) were exposed to 25-min global ischemia followed by 60-min IR, or hearts were perfused without IR for the same protocol duration [time controls (TC)]. Online fluorometry of metabolic indices [redox state: reduced nicotinamide adenine dinucleotide (NADH), oxidized flavin adenine dinucleotide (FAD), and NADH/FAD redox ratio] and functional variables [systolic left ventricular pressure (LVP), diastolic LVP (diaLVP), coronary flow (CF), and heart rate were recorded in the beating heart; developed LVP (dLVP) and rate pressure product (RPP)] were derived. At the end of each experimental protocol, hearts were immediately snap frozen in liquid N2 for later three-dimensional imaging of the mitochondrial redox state using optical cryoimaging. Irradiation caused a delay in recovery of dLVP and RPP after IR when compared to nonirradiated hearts but recovered to the same level at the end of reperfusion. CF in the irradiated hearts recovered better than the control hearts after IR injury. Both fluorometry and 3-D cryoimaging showed that in WTI and control hearts, the redox ratio increased during ischemia (reduced) and decreased on reperfusion (oxidized) when compared to their respective TCs; however, there was no significant difference in the redox state between WTI and controls. In conclusion, our results show that although irradiation of rat hearts compromised baseline cardiovascular function, it did not alter cardiac mitochondrial redox state and induce greater susceptibility of these hearts to IR injury.
Collapse
Affiliation(s)
- Mette Funding la Cour
- University of Wisconsin Milwaukee, Department of Electrical Engineering, Milwaukee, Wisconsin, United States
| | - Shima Mehrvar
- University of Wisconsin Milwaukee, Department of Electrical Engineering, Milwaukee, Wisconsin, United States
| | - James S. Heisner
- Medical College of Wisconsin, Department of Anesthesiology and Cardiovascular Research Center, Milwaukee, Wisconsin, United States
| | - Mohammad Masoudi Motlagh
- University of Wisconsin Milwaukee, Department of Electrical Engineering, Milwaukee, Wisconsin, United States
| | - Meetha Medhora
- Medical College of Wisconsin, Department of Radiation Oncology, Milwaukee, Wisconsin, United States
| | - Mahsa Ranji
- University of Wisconsin Milwaukee, Department of Electrical Engineering, Milwaukee, Wisconsin, United States
| | - Amadou K. S. Camara
- Medical College of Wisconsin, Department of Anesthesiology and Cardiovascular Research Center, Milwaukee, Wisconsin, United States
| |
Collapse
|
9
|
Dremin VV, Zherebtsov EA, Sidorov VV, Krupatkin AI, Makovik IN, Zherebtsova AI, Zharkikh EV, Potapova EV, Dunaev AV, Doronin AA, Bykov AV, Rafailov IE, Litvinova KS, Sokolovski SG, Rafailov EU. Multimodal optical measurement for study of lower limb tissue viability in patients with diabetes mellitus. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:1-10. [PMID: 28825287 DOI: 10.1117/1.jbo.22.8.085003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 07/21/2017] [Indexed: 05/22/2023]
Abstract
According to the International Diabetes Federation, the challenge of early stage diagnosis and treatment effectiveness monitoring in diabetes is currently one of the highest priorities in modern healthcare. The potential of combined measurements of skin fluorescence and blood perfusion by the laser Doppler flowmetry method in diagnostics of low limb diabetes complications was evaluated. Using Monte Carlo probabilistic modeling, the diagnostic volume and depth of the diagnosis were evaluated. The experimental study involved 76 patients with type 2 diabetes mellitus. These patients were divided into two groups depending on the degree of complications. The control group consisted of 48 healthy volunteers. The local thermal stimulation was selected as a stimulus on the blood microcirculation system. The experimental studies have shown that diabetic patients have elevated values of normalized fluorescence amplitudes, as well as a lower perfusion response to local heating. In the group of people with diabetes with trophic ulcers, these parameters also significantly differ from the control and diabetes only groups. Thus, the intensity of skin fluorescence and level of tissue blood perfusion can act as markers for various degrees of complications from the beginning of diabetes to the formation of trophic ulcers.
Collapse
Affiliation(s)
- Viktor V Dremin
- Orel State University named after I.S. Turgenev, Biomedical Photonics Laboratory of University Clini, Russia
| | - Evgeny A Zherebtsov
- Aston University, Aston Institute of Photonic Technologies, Optoelectronics and Biomedical Photonics, United Kingdom
| | | | | | - Irina N Makovik
- Orel State University named after I.S. Turgenev, Biomedical Photonics Laboratory of University Clini, Russia
| | - Angelina I Zherebtsova
- Orel State University named after I.S. Turgenev, Biomedical Photonics Laboratory of University Clini, Russia
| | - Elena V Zharkikh
- Orel State University named after I.S. Turgenev, Biomedical Photonics Laboratory of University Clini, Russia
| | - Elena V Potapova
- Orel State University named after I.S. Turgenev, Biomedical Photonics Laboratory of University Clini, Russia
| | - Andrey V Dunaev
- Orel State University named after I.S. Turgenev, Biomedical Photonics Laboratory of University Clini, Russia
| | - Alexander A Doronin
- Yale University, Department of Computer Science, Computer Graphics Group, New Haven, Connecticut, United States
| | - Alexander V Bykov
- University of Oulu, Optoelectronics and Measurement Techniques Laboratory, Faculty of Information Te, Finland
| | - Ilya E Rafailov
- Aston University, School of Engineering and Applied Sciences, Aston Institute of Photonic Technologi, United Kingdom
| | | | - Sergei G Sokolovski
- Aston University, Aston Institute of Photonic Technologies, Optoelectronics and Biomedical Photonics, United Kingdom
| | - Edik U Rafailov
- Aston University, Aston Institute of Photonic Technologies, Optoelectronics and Biomedical Photonics, United Kingdom
| |
Collapse
|
10
|
Matsuura TR, Bartos JA, Tsangaris A, Shekar KC, Olson MD, Riess ML, Bienengraeber M, Aufderheide TP, Neumar RW, Rees JN, McKnite SH, Dikalova AE, Dikalov SI, Douglas HF, Yannopoulos D. Early Effects of Prolonged Cardiac Arrest and Ischemic Postconditioning during Cardiopulmonary Resuscitation on Cardiac and Brain Mitochondrial Function in Pigs. Resuscitation 2017; 116:8-15. [PMID: 28408349 PMCID: PMC5552370 DOI: 10.1016/j.resuscitation.2017.03.033] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 03/20/2017] [Accepted: 03/27/2017] [Indexed: 11/21/2022]
Abstract
BACKGROUND Out-of-hospital cardiac arrest (CA) is a prevalent medical crisis resulting in severe injury to the heart and brain and an overall survival of less than 10%. Mitochondrial dysfunction is predicted to be a key determinant of poor outcomes following prolonged CA. However, the onset and severity of mitochondrial dysfunction during CA and cardiopulmonary resuscitation (CPR) is not fully understood. Ischemic postconditioning (IPC), controlled pauses during the initiation of CPR, has been shown to improve cardiac function and neurologically favorable outcomes after 15min of CA. We tested the hypothesis that mitochondrial dysfunction develops during prolonged CA and can be rescued with IPC during CPR (IPC-CPR). METHODS A total of 63 swine were randomized to no ischemia (Naïve), 19min of ventricular fibrillation (VF) CA without CPR (Untreated VF), or 15min of CA with 4min of reperfusion with either standard CPR (S-CPR) or IPC-CPR. Mitochondria were isolated from the heart and brain to quantify respiration, rate of ATP synthesis, and calcium retention capacity (CRC). Reactive oxygen species (ROS) production was quantified from fresh frozen heart and brain tissue. RESULTS Compared to Naïve, Untreated VF induced cardiac and brain ROS overproduction concurrent with decreased mitochondrial respiratory coupling and CRC, as well as decreased cardiac ATP synthesis. Compared to Untreated VF, S-CPR attenuated brain ROS overproduction but had no other effect on mitochondrial function in the heart or brain. Compared to Untreated VF, IPC-CPR improved cardiac mitochondrial respiratory coupling and rate of ATP synthesis, and decreased ROS overproduction in the heart and brain. CONCLUSIONS Fifteen minutes of VF CA results in diminished mitochondrial respiration, ATP synthesis, CRC, and increased ROS production in the heart and brain. IPC-CPR attenuates cardiac mitochondrial dysfunction caused by prolonged VF CA after only 4min of reperfusion, suggesting that IPC-CPR is an effective intervention to reduce cardiac injury. However, reperfusion with both CPR methods had limited effect on mitochondrial function in the brain, emphasizing an important physiological divergence in post-arrest recovery between those two vital organs.
Collapse
Affiliation(s)
- Timothy R Matsuura
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - Jason A Bartos
- Department of Medicine-Cardiovascular Division, University of Minnesota, Minneapolis, MN, USA
| | - Adamantios Tsangaris
- Department of Medicine-Cardiovascular Division, University of Minnesota, Minneapolis, MN, USA
| | | | - Matthew D Olson
- Department of Medicine-Cardiovascular Division, University of Minnesota, Minneapolis, MN, USA
| | - Matthias L Riess
- Department of Anesthesiology, TVHS VA Medical Center, Nashville, TN, USA; Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Martin Bienengraeber
- Departments of Anesthesiology and Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Tom P Aufderheide
- Department of Emergency Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Robert W Neumar
- Department of Emergency Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Jennifer N Rees
- Department of Medicine-Cardiovascular Division, University of Minnesota, Minneapolis, MN, USA
| | - Scott H McKnite
- Department of Medicine-Cardiovascular Division, University of Minnesota, Minneapolis, MN, USA
| | - Anna E Dikalova
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sergey I Dikalov
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Hunter F Douglas
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Demetris Yannopoulos
- Department of Medicine-Cardiovascular Division, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
11
|
Korge P, Calmettes G, John SA, Weiss JN. Reactive oxygen species production induced by pore opening in cardiac mitochondria: The role of complex III. J Biol Chem 2017; 292:9882-9895. [PMID: 28450391 DOI: 10.1074/jbc.m116.768317] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 04/14/2017] [Indexed: 01/02/2023] Open
Abstract
Recent evidence has implicated succinate-driven reverse electron transport (RET) through complex I as a major source of damaging reactive oxygen species (ROS) underlying reperfusion injury after prolonged cardiac ischemia. However, this explanation may be incomplete, because RET on reperfusion is self-limiting and therefore transient. RET can only generate ROS when mitochondria are well polarized, and it ceases when permeability transition pores (PTP) open during reperfusion. Because prolonged ischemia/reperfusion also damages electron transport complexes, we investigated whether such damage could lead to ROS production after PTP opening has occurred. Using isolated cardiac mitochondria, we demonstrate a novel mechanism by which antimycin-inhibited complex III generates significant amounts of ROS in the presence of Mg2+ and NAD+ and the absence of exogenous substrates upon inner membrane pore formation by alamethicin or Ca2+-induced PTP opening. We show that H2O2 production under these conditions is related to Mg2+-dependent NADH generation by malic enzyme. H2O2 production is blocked by stigmatellin, indicating its origin from complex III, and by piericidin, demonstrating the importance of NADH-related ubiquinone reduction for ROS production under these conditions. For maximal ROS production, the rate of NADH generation has to be equal or below that of NADH oxidation, as further increases in [NADH] elevate ubiquinol-related complex III reduction beyond the optimal range for ROS generation. These results suggest that if complex III is damaged during ischemia, PTP opening may result in succinate/malate-fueled ROS production from complex III due to activation of malic enzyme by increases in matrix [Mg2+], [NAD+], and [ADP].
Collapse
Affiliation(s)
- Paavo Korge
- From the UCLA Cardiovascular Research Laboratory and the Departments of Medicine (Cardiology) and Physiology, David Geffen School of Medicine at UCLA, Los Angeles, California 90095
| | - Guillaume Calmettes
- From the UCLA Cardiovascular Research Laboratory and the Departments of Medicine (Cardiology) and Physiology, David Geffen School of Medicine at UCLA, Los Angeles, California 90095
| | - Scott A John
- From the UCLA Cardiovascular Research Laboratory and the Departments of Medicine (Cardiology) and Physiology, David Geffen School of Medicine at UCLA, Los Angeles, California 90095
| | - James N Weiss
- From the UCLA Cardiovascular Research Laboratory and the Departments of Medicine (Cardiology) and Physiology, David Geffen School of Medicine at UCLA, Los Angeles, California 90095
| |
Collapse
|
12
|
Salehpour F, Ghanian Z, Yang C, Zheleznova NN, Kurth T, Dash RK, Cowley AW, Ranji M. Effects of p67phox on the mitochondrial oxidative state in the kidney of Dahl salt-sensitive rats: optical fluorescence 3-D cryoimaging. Am J Physiol Renal Physiol 2015; 309:F377-82. [PMID: 26062875 DOI: 10.1152/ajprenal.00098.2015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 06/09/2015] [Indexed: 02/07/2023] Open
Abstract
The goal of the present study was to quantify and correlate the contribution of the cytosolic p67(phox) subunit of NADPH oxidase 2 to mitochondrial oxidative stress in the kidneys of the Dahl salt-sensitive (SS) hypertensive rat. Whole kidney redox states were uniquely assessed using a custom-designed optical fluorescence three-dimensional cryoimager to acquire multichannel signals of the intrinsic fluorophores NADH and FAD. SS rats were compared with SS rats in which the cytosolic subunit p67(phox) was rendered functionally inactive by zinc finger nuclease mutation of the gene (SS(p67phox)-null rats). Kidneys of SS rats fed a 0.4% NaCl diet exhibited significantly (P = 0.023) lower tissue redox ratio (NADH/FAD; 1.42 ± 0.06, n = 5) than SS(p67phox)-null rats (1.64 ± 0.07, n = 5), indicating reduced levels of mitochondrial electron transport chain metabolic activity and enhanced oxidative stress in SS rats. When fed a 4.0% salt diet for 21 days, both strains exhibited significantly lower tissue redox ratios (P < 0.001; SS rats: 1.03 ± 0.05, n = 9, vs. SS(p67phox)-null rats: 1.46 ± 0.04, n = 7) than when fed a 0.4% salt, but the ratio was still significantly higher in SS(p67phox) rats at the same salt level as SS rats. These results are consistent with results from previous studies that found elevated medullary interstitial fluid concentrations of superoxide and H2O2 in the medulla of SS rats. We conclude that the p67(phox) subunit of NADPH oxidase 2 plays an important role in the excess production of ROS from mitochondria in the renal medulla of the SS rat.
Collapse
Affiliation(s)
- F Salehpour
- Biophotonics Lab, University of Wisconsin, Milwaukee, Wisconsin; and
| | - Z Ghanian
- Biophotonics Lab, University of Wisconsin, Milwaukee, Wisconsin; and
| | - C Yang
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - N N Zheleznova
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - T Kurth
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - R K Dash
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - A W Cowley
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - M Ranji
- Biophotonics Lab, University of Wisconsin, Milwaukee, Wisconsin; and
| |
Collapse
|
13
|
Yang M, Stowe DF, Udoh KB, Heisner JS, Camara AKS. Reversible blockade of complex I or inhibition of PKCβ reduces activation and mitochondria translocation of p66Shc to preserve cardiac function after ischemia. PLoS One 2014; 9:e113534. [PMID: 25436907 PMCID: PMC4250075 DOI: 10.1371/journal.pone.0113534] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 10/26/2014] [Indexed: 01/08/2023] Open
Abstract
Aim Excess mitochondrial reactive oxygen species (mROS) play a vital role in cardiac ischemia reperfusion (IR) injury. P66Shc, a splice variant of the ShcA adaptor protein family, enhances mROS production by oxidizing reduced cytochrome c to yield H2O2. Ablation of p66Shc protects against IR injury, but it is unknown if and when p66Shc is activated during cardiac ischemia and/or reperfusion and if attenuating complex I electron transfer or deactivating PKCβ alters p66Shc activation during IR is associated with cardioprotection. Methods Isolated guinea pig hearts were perfused and subjected to increasing periods of ischemia and reperfusion with or without amobarbital, a complex I blocker, or hispidin, a PKCβ inhibitor. Phosphorylation of p66Shc at serine 36 and levels of p66Shc in mitochondria and cytosol were measured. Cardiac functional variables and redox states were monitored online before, during and after ischemia. Infarct size was assessed in some hearts after 120 min reperfusion. Results Phosphorylation of p66Shc and its translocation into mitochondria increased during reperfusion after 20 and 30 min ischemia, but not during ischemia only, or during 5 or 10 min ischemia followed by 20 min reperfusion. Correspondingly, cytosolic p66Shc levels decreased during these ischemia and reperfusion periods. Amobarbital or hispidin reduced phosphorylation of p66Shc and its mitochondrial translocation induced by 30 min ischemia and 20 min reperfusion. Decreased phosphorylation of p66Shc by amobarbital or hispidin led to better functional recovery and less infarction during reperfusion. Conclusion Our results show that IR activates p66Shc and that reversible blockade of electron transfer from complex I, or inhibition of PKCβ activation, decreases p66Shc activation and translocation and reduces IR damage. These observations support a novel potential therapeutic intervention against cardiac IR injury.
Collapse
Affiliation(s)
- Meiying Yang
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States of America
| | - David F Stowe
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States of America; Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States of America; Cardiovascular Research Center, Medical College of Wisconsin, Milwaukee, WI, United States of America; Research Service, Zablocki VA Medical Center, Milwaukee, WI, United States of America; Department of Biomedical Engineering, Marquette University, Milwaukee, WI, United States of America
| | - Kenechukwu B Udoh
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States of America
| | - James S Heisner
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States of America
| | - Amadou K S Camara
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States of America; Cardiovascular Research Center, Medical College of Wisconsin, Milwaukee, WI, United States of America
| |
Collapse
|
14
|
Pannala VR, Bazil JN, Camara AKS, Dash RK. A mechanistic mathematical model for the catalytic action of glutathione peroxidase. Free Radic Res 2014; 48:487-502. [PMID: 24456207 DOI: 10.3109/10715762.2014.886775] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Glutathione peroxidase (GPx) is a well-known seleno-enzyme that protects cells from oxidative stress (e.g., lipid peroxidation and oxidation of other cellular proteins and macromolecules), by catalyzing the reduction of harmful peroxides (e.g., hydrogen peroxide: H₂O₂) with reduced glutathione (GSH). However, the catalytic mechanism of GPx kinetics is not well characterized in terms of a mathematical model. We developed here a mechanistic mathematical model of GPx kinetics by considering a unified catalytic scheme and estimated the unknown model parameters based on different experimental data from the literature on the kinetics of the enzyme. The model predictions are consistent with the consensus that GPx operates via a ping-pong mechanism. The unified catalytic scheme proposed here for GPx kinetics clarifies various anomalies, such as what are the individual steps in the catalytic scheme by estimating their associated rate constant values and a plausible rationale for the contradicting experimental results. The developed model presents a unique opportunity to understand the effects of pH and product GSSG on the GPx activity under both physiological and pathophysiological conditions. Although model parameters related to the product GSSG were not identifiable due to lack of product-inhibition data, the preliminary model simulations with the assumed range of parameters show that the inhibition by the product GSSG is negligible, consistent with what is known in the literature. In addition, the model is able to simulate the bi-modal behavior of the GPx activity with respect to pH with the pH-range for maximal GPx activity decreasing significantly as the GSH levels decrease and H₂O₂ levels increase (characteristics of oxidative stress). The model provides a key component for an integrated model of H₂O₂ balance under normal and oxidative stress conditions.
Collapse
Affiliation(s)
- V R Pannala
- Biotechnology and Bioengineering Center and Department of Physiology , Milwaukee , US
| | | | | | | |
Collapse
|
15
|
Cordero-Reyes AM, Gupte AA, Youker KA, Loebe M, Hsueh WA, Torre-Amione G, Taegtmeyer H, Hamilton DJ. Freshly isolated mitochondria from failing human hearts exhibit preserved respiratory function. J Mol Cell Cardiol 2014; 68:98-105. [PMID: 24412531 DOI: 10.1016/j.yjmcc.2013.12.029] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 12/19/2013] [Accepted: 12/31/2013] [Indexed: 12/20/2022]
Abstract
In heart failure mitochondrial dysfunction is thought to be responsible for energy depletion and contractile dysfunction. The difficulties in procuring fresh left ventricular (LV) myocardium from humans for assessment of mitochondrial function have resulted in the reliance on surrogate markers of mitochondrial function and limited our understanding of cardiac energetics. We isolated mitochondria from fresh LV wall tissue of patients with heart failure and reduced systolic function undergoing heart transplant or left ventricular assist device placement, and compared their function to mitochondria isolated from the non-failing LV (NFLV) wall tissue with normal systolic function from patients with pulmonary hypertension undergoing heart-lung transplant. We performed detailed mitochondrial functional analyses using 4 substrates: glutamate-malate (GM), pyruvate-malate (PM) palmitoyl carnitine-malate (PC) and succinate. NFLV mitochondria showed preserved respiratory control ratios and electron chain integrity with only few differences for the 4 substrates. In contrast, HF mitochondria had greater respiration with GM, PM and PC substrates and higher electron chain capacity for PM than for PC. Surprisingly, HF mitochondria had greater respiratory control ratios and lower ADP-independent state 4 rates than NFLV mitochondria for GM, PM and PC substrates demonstrating that HF mitochondria are capable of coupled respiration ex vivo. Gene expression studies revealed decreased expression of key genes in pathways for oxidation of both fatty acids and glucose. Our results suggest that mitochondria from the failing LV myocardium are capable of tightly coupled respiration when isolated and supplied with ample substrates. Thus energy starvation in the failing heart may be the result of dysregulation of metabolic pathways, impaired substrate supply or reduced mitochondrial number but not the result of reduced mitochondrial electron transport capacity.
Collapse
Affiliation(s)
| | - Anisha A Gupte
- Bioenergetics Program, Houston Methodist Research Institute, Weill Cornell Medical College, USA
| | - Keith A Youker
- Methodist DeBakey Heart and Vascular Institute, Weill Cornell Medical College, USA
| | - Matthias Loebe
- Methodist DeBakey Heart and Vascular Institute, Weill Cornell Medical College, USA
| | - Willa A Hsueh
- Methodist Diabetes and Metabolism Institute, Houston Methodist Research Institute, Weill Cornell Medical College, USA; Houston Methodist Hospital Department of Medicine, Weill Cornell Medical College, USA
| | - Guillermo Torre-Amione
- Methodist DeBakey Heart and Vascular Institute, Weill Cornell Medical College, USA; Catedra de Cardiologia y Medicina Vascular, Tecnologico de Monterrey, Nuevo Leon, Mexico
| | - Heinrich Taegtmeyer
- The University of Texas Medical School at Houston, Department of Internal Medicine, USA
| | - Dale J Hamilton
- Bioenergetics Program, Houston Methodist Research Institute, Weill Cornell Medical College, USA; Houston Methodist Hospital Department of Medicine, Weill Cornell Medical College, USA.
| |
Collapse
|
16
|
Eroglu A. The effect of intravenous anesthetics on ischemia-reperfusion injury. BIOMED RESEARCH INTERNATIONAL 2014; 2014:821513. [PMID: 24527458 PMCID: PMC3914339 DOI: 10.1155/2014/821513] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 12/03/2013] [Indexed: 02/07/2023]
Abstract
The effects of intravenous anesthetics on ischemia-reperfusion injury (IRI) have been investigated in both animals and clinical studies. The protective effects and the dosages of the intravenous anesthetics on IRI were discussed in this paper. The prevention of the tissue injury after the IRI was demonstrated with intravenous anesthetics in some studies. In the future, the studies should be focused on the dosage of the anesthetics related to diminishing the tissue injuries. Further studies might be required in order to investigate the effects of the anesthetics on molecular levels.
Collapse
Affiliation(s)
- Ahmet Eroglu
- Karadeniz Technical University, Anesthesiology and Intensive Care Medicine, 61000 Trabzon, Turkey
- *Ahmet Eroglu:
| |
Collapse
|
17
|
Ghanian Z, Maleki S, Reiland H, Bütz DE, Chiellini G, Assadi-Porter FM, Porter FA, Ranji M. Optical imaging of mitochondrial redox state in rodent models with 3-iodothyronamine. Exp Biol Med (Maywood) 2013; 239:151-8. [PMID: 24302559 DOI: 10.1177/1535370213510252] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This study used an optical technique to measure the effects of treating low (10 mg/kg) and high (25 mg/kg) doses of 3-iodothyronamine (T₁AM) on the metabolism in the kidney and heart of mice. The ratio of two intrinsic fluorophores in tissue, (NADH/FAD), called the NADH redox ratio (NADH RR), is a marker of the metabolic state of the tissue. A cryofluorescence imaging instrument was used to provide a quantitative assessment of NADH RR in both kidneys and hearts in mice treated with 3-iodothyronamine. We compared those results to corresponding tissues in control mice. In the kidneys of mice treated with a high dose T₁AM, the mean values of the maximum projection of NADH RR were 2.6 ± 0.6 compared to 3.20 ± 0.03 in control mice, indicating a 19% (± 0.4) significant increase in oxidative stress (OS) in the high dose-treated kidneys (P = 0.047). However, kidneys treated with a low dose of T₁AM showed no difference in NADH RR compared to the kidneys of control mice. Furthermore, low versus high dose treatment of T₁AM showed different responses in the heart than in the kidneys. The mean value of the maximum projection of NADH RR in the heart changed from 3.0 ± 0.3 to 3.2 ± 0.6 for the low dose and the high dose T₁AM-treated mice, respectively, as compared to 2.8 ± 0.7 in control mice. These values correspond to a 9% (±0.5) (P = 0.045) and 14% (±0.5) (P = 0.008) significant increase in NADH RR in the T₁AM-treated hearts, indicating that the high dose T₁AM-treated tissues have reduced OS compared to the low dose-treated tissues or the control tissues. These results suggest that while T₁AM at a high dose increases oxidative response in kidneys, it has a protective effect in the heart and may exert its effect through alternative pathways at different doses and at tissue specific levels.
Collapse
Affiliation(s)
- Zahra Ghanian
- Biophotonics Laboratory, Department of Electrical Engineering and Computer Science, University of Wisconsin Milwaukee, Milwaukee, WI 53211-3029, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Sepehr R, Audi SH, Staniszewski KS, Haworth ST, Jacobs ER, Ranji M, Zablocki CJ. Novel Flurometric Tool to Assess Mitochondrial Redox State of Isolated Perfused Rat Lungs after Exposure to Hyperoxia. IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE 2013; 1:1500210. [PMID: 25379360 PMCID: PMC4219590 DOI: 10.1109/jtehm.2013.2285916] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 08/07/2013] [Accepted: 09/20/2013] [Indexed: 11/09/2022]
Abstract
Recently we demonstrated the utility of optical fluorometry to detect a change in the redox status of mitochondrial autofluorescent coenzymes NADH (Nicotinamide Adenine Dinucleotide) and FAD (oxidized form of Flavin Adenine Dinucleotide (FADH2,)) as a measure of mitochondrial function in isolated perfused rat lungs (IPL). The objective of this study was to utilize optical fluorometry to evaluate the effect of rat exposure to hyperoxia (>95% O2 for 48 hours) on lung tissue mitochondrial redox status of NADH and FAD in a nondestructive manner in IPL. Surface NADH and FAD signals were measured before and after lung perfusion with perfusate containing rotenone (ROT, complex I inhibitor), potassium cyanide (KCN, complex IV inhibitor), and/or pentachlorophenol (PCP, uncoupler). ROT- or KCN-induced increase in NADH signal is considered a measure of complex I activity, and KCN-induced decrease in FAD signal is considered a measure of complex II activity. The results show that hyperoxia decreased complex I and II activities by 63% and 55%, respectively, as compared to lungs of rats exposed to room air (normoxic rats). Mitochondrial complex I and II activities in lung homogenates were also lower (77% and 63%, respectively) for hyperoxic than for normoxic lungs. These results suggest that the mitochondrial matrix is more reduced in hyperoxic lungs than in normoxic lungs, and demonstrate the ability of optical fluorometry to detect a change in mitochondrial redox state of hyperoxic lungs prior to histological changes characteristic of hyperoxia.
Collapse
Affiliation(s)
- Reyhaneh Sepehr
- University of Wisconsin MilwaukeeDepartment of Electrical EngineeringMilwaukeeWIUSA53211
| | - Said H. Audi
- Marquette UniversityDepartment of Biomedical EngineeringMilwaukeeWIUSA53233
- Medical College of WisconsinDivision of Pulmonary and Critical CareMilwaukeeWIUSA53226
| | - Kevin S. Staniszewski
- University of Wisconsin MilwaukeeDepartment of Electrical EngineeringMilwaukeeWIUSA53211
| | - Steven T. Haworth
- VA Medical CenterDivision of Pulmonary and Critical CareMilwaukeeWIUSA53295
| | | | - Mahsa Ranji
- University of Wisconsin MilwaukeeDepartment of Electrical EngineeringMilwaukeeWIUSA53211
| | - Clement J. Zablocki
- University of Wisconsin MilwaukeeDepartment of Electrical EngineeringMilwaukeeWIUSA53211
| |
Collapse
|
19
|
Staniszewski K, Audi SH, Sepehr R, Jacobs ER, Ranji M. Surface fluorescence studies of tissue mitochondrial redox state in isolated perfused rat lungs. Ann Biomed Eng 2013; 41:827-36. [PMID: 23238793 PMCID: PMC3606690 DOI: 10.1007/s10439-012-0716-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 11/28/2012] [Indexed: 12/24/2022]
Abstract
We designed a fiber-optic-based optoelectronic fluorometer to measure emitted fluorescence from the auto-fluorescent electron carriers NADH and FAD of the mitochondrial electron transport chain (ETC). The ratio of NADH to FAD is called the redox ratio (RR = NADH/FAD) and is an indicator of the oxidoreductive state of tissue. We evaluated the fluorometer by measuring the fluorescence intensities of NADH and FAD at the surface of isolated, perfused rat lungs. Alterations of lung mitochondrial metabolic state were achieved by the addition of rotenone (complex I inhibitor), potassium cyanide (KCN, complex IV inhibitor) and/or pentachlorophenol (PCP, uncoupler) into the perfusate recirculating through the lung. Rotenone- or KCN-containing perfusate increased RR by 21 and 30%, respectively. In contrast, PCP-containing perfusate decreased RR by 27%. These changes are consistent with the established effects of rotenone, KCN, and PCP on the redox status of the ETC. Addition of blood to perfusate quenched NADH and FAD signal, but had no effect on RR. This study demonstrates the capacity of fluorometry to detect a change in mitochondrial redox state in isolated perfused lungs, and suggests the potential of fluorometry for use in in vivo experiments to extract a sensitive measure of lung tissue health in real-time.
Collapse
Affiliation(s)
- Kevin Staniszewski
- Biophotonics Lab, Department of Electrical Engineering, University of Wisconsin Milwaukee, 3200 N Cramer St., Milwaukee, WI 53211
| | - Said H. Audi
- Department of Biomedical Engineering, Marquette University, 1515 West Wisconsin Avenue, Milwaukee, WI, 53233
| | - Reyhaneh Sepehr
- Biophotonics Lab, Department of Electrical Engineering, University of Wisconsin Milwaukee, 3200 N Cramer St., Milwaukee, WI 53211
| | - Elizabeth R. Jacobs
- Associate Chief of Staff, Research and Development, Clement J. Zablocki VA Medical Center, 5000 W. National Avenue Milwaukee, WI 5329 and Associate Dean Research, Medical College of Wisconsin
| | - Mahsa Ranji
- Biophotonics Lab, Department of Electrical Engineering, University of Wisconsin Milwaukee, 3200 N Cramer St., Milwaukee, WI 53211
| |
Collapse
|
20
|
Aldakkak M, Camara AKS, Heisner JS, Yang M, Stowe DF. Ranolazine reduces Ca2+ overload and oxidative stress and improves mitochondrial integrity to protect against ischemia reperfusion injury in isolated hearts. Pharmacol Res 2011; 64:381-92. [PMID: 21741479 PMCID: PMC3233383 DOI: 10.1016/j.phrs.2011.06.018] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 06/21/2011] [Accepted: 06/22/2011] [Indexed: 10/18/2022]
Abstract
Ranolazine is a clinically approved drug for treating cardiac ventricular dysrhythmias and angina. Its mechanism(s) of protection is not clearly understood but evidence points to blocking the late Na+ current that arises during ischemia, blocking mitochondrial complex I activity, or modulating mitochondrial metabolism. Here we tested the effect of ranolazine treatment before ischemia at the mitochondrial level in intact isolated hearts and in mitochondria isolated from hearts at different times of reperfusion. Left ventricular (LV) pressure (LVP), coronary flow (CF), and O2 metabolism were measured in guinea pig isolated hearts perfused with Krebs-Ringer's solution; mitochondrial (m) superoxide (O2·-), Ca2+, NADH/FAD (redox state), and cytosolic (c) Ca2+ were assessed on-line in the LV free wall by fluorescence spectrophotometry. Ranolazine (5 μM), infused for 1 min just before 30 min of global ischemia, itself did not change O2·-, cCa2+, mCa2+ or redox state. During late ischemia and reperfusion (IR) O2·- emission and m[Ca2+] increased less in the ranolazine group vs. the control group. Ranolazine decreased c[Ca2+] only during ischemia while NADH and FAD were not different during IR in the ranolazine vs. control groups. Throughout reperfusion LVP and CF were higher, and ventricular fibrillation was less frequent. Infarct size was smaller in the ranolazine group than in the control group. Mitochondria isolated from ranolazine-treated hearts had mild resistance to permeability transition pore (mPTP) opening and less cytochrome c release than control hearts. Ranolazine may provide functional protection of the heart during IR injury by reducing cCa2+ and mCa2+ loading secondary to its effect to block the late Na+ current. Subsequently it indirectly reduces O2·- emission, preserves bioenergetics, delays mPTP opening, and restricts loss of cytochrome c, thereby reducing necrosis and apoptosis.
Collapse
Affiliation(s)
- Mohammed Aldakkak
- Department of Anesthesiology, 8701 Watertown Plank Road, The Medical College of Wisconsin, Milwaukee, Wisconsin, 53226, USA
| | - Amadou KS Camara
- Department of Anesthesiology, 8701 Watertown Plank Road, The Medical College of Wisconsin, Milwaukee, Wisconsin, 53226, USA
| | - James S Heisner
- Department of Anesthesiology, 8701 Watertown Plank Road, The Medical College of Wisconsin, Milwaukee, Wisconsin, 53226, USA
| | - Meiying Yang
- Department of Anesthesiology, 8701 Watertown Plank Road, The Medical College of Wisconsin, Milwaukee, Wisconsin, 53226, USA
| | - David F Stowe
- Department of Anesthesiology, 8701 Watertown Plank Road, The Medical College of Wisconsin, Milwaukee, Wisconsin, 53226, USA
- Department of Physiology, 8701 Watertown Plank Road, The Medical College of Wisconsin, Milwaukee, Wisconsin, 53226, USA
- Cardiovascular Research Center, 8701 Watertown Plank Road, The Medical College of Wisconsin, Milwaukee, Wisconsin, 53226, USA
- Department of Anesthesiology, VA Medical Center Research Service, 5000 W. National Ave. Milwaukee, Wisconsin, 53295, USA
- Department of Biomedical Engineering, Marquette University, 615 N 11Th St, Milwaukee, Wisconsin, 53233, USA
| |
Collapse
|
21
|
Dedkova EN, Blatter LA. Measuring mitochondrial function in intact cardiac myocytes. J Mol Cell Cardiol 2011; 52:48-61. [PMID: 21964191 DOI: 10.1016/j.yjmcc.2011.08.030] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 07/30/2011] [Accepted: 08/09/2011] [Indexed: 12/01/2022]
Abstract
Mitochondria are involved in cellular functions that go beyond the traditional role of these organelles as the power plants of the cell. Mitochondria have been implicated in several human diseases, including cardiac dysfunction, and play a role in the aging process. Many aspects of our knowledge of mitochondria stem from studies performed on the isolated organelle. Their relative inaccessibility imposes experimental difficulties to study mitochondria in their natural environment-the cytosol of intact cells-and has hampered a comprehensive understanding of the plethora of mitochondrial functions. Here we review currently available methods to study mitochondrial function in intact cardiomyocytes. These methods primarily use different flavors of fluorescent dyes and genetically encoded fluorescent proteins in conjunction with high-resolution imaging techniques. We review methods to study mitochondrial morphology, mitochondrial membrane potential, Ca(2+) and Na(+) signaling, mitochondrial pH regulation, redox state and ROS production, NO signaling, oxygen consumption, ATP generation and the activity of the mitochondrial permeability transition pore. Where appropriate we complement this review on intact myocytes with seminal studies that were performed on isolated mitochondria, permeabilized cells, and in whole hearts.
Collapse
Affiliation(s)
- Elena N Dedkova
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, IL 60612, USA
| | | |
Collapse
|
22
|
Lee EH, Lee HM, Chung CH, Chin JH, Choi DK, Chung HJ, Sim JY, Choi IC. Impact of intravenous lidocaine on myocardial injury after off-pump coronary artery surgery. Br J Anaesth 2011; 106:487-93. [DOI: 10.1093/bja/aeq416] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|