1
|
Lin CH, Ho CJ, Chen SY, Lu YT, Tsai MH. Review of pharmacogenetics of antiseizure medications: focusing on genetic variants of mechanistic targets. Front Pharmacol 2024; 15:1411487. [PMID: 39228521 PMCID: PMC11368862 DOI: 10.3389/fphar.2024.1411487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/08/2024] [Indexed: 09/05/2024] Open
Abstract
Antiseizure medications (ASMs) play a central role in seizure management, however, unpredictability in the response to treatment persists, even among patients with similar seizure manifestations and clinical backgrounds. An objective biomarker capable of reliably predicting the response to ASMs would profoundly impact epilepsy treatment. Presently, clinicians rely on a trial-and-error approach when selecting ASMs, a time-consuming process that can result in delays in receiving alternative non-pharmacological therapies such as a ketogenetic diet, epilepsy surgery, and neuromodulation therapies. Pharmacogenetic studies investigating the correlation between ASMs and genetic variants regarding their mechanistic targets offer promise in predicting the response to treatment. Sodium channel subunit genes have been extensively studied along with other ion channels and receptors as targets, however, the results have been conflicting, possibly due to methodological disparities including inconsistent definitions of drug response, variations in ASM combinations, and diversity of genetic variants/genes studied. Nonetheless, these studies underscore the potential effect of genetic variants on the mechanism of ASMs and consequently the prediction of treatment response. Recent advances in sequencing technology have led to the generation of large genetic datasets, which may be able to enhance the predictive accuracy of the response to ASMs.
Collapse
Affiliation(s)
- Chih-Hsiang Lin
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chen-Jui Ho
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Shih-Ying Chen
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yan-Ting Lu
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Meng-Han Tsai
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung, Taiwan
| |
Collapse
|
2
|
Nica A. Drug-resistant juvenile myoclonic epilepsy: A literature review. Rev Neurol (Paris) 2024; 180:271-289. [PMID: 38461125 DOI: 10.1016/j.neurol.2024.02.385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 03/11/2024]
Abstract
The ILAE's Task Force on Nosology and Definitions revised in 2022 its definition of juvenile myoclonic epilepsy (JME), the most common idiopathic generalized epilepsy disorder, but this definition may well change again in the future. Although good drug response could almost be a diagnostic criterion for JME, drug resistance (DR) is observed in up to a third of patients. It is important to distinguish this from pseudoresistance, which is often linked to psychosocial problems or psychiatric comorbidities. After summarizing these aspects and the various definitions applied to JME, the present review lists the risk factors for DR-JME that have been identified in numerous studies and meta-analyses. The factors most often cited are absence seizures, young age at onset, and catamenial seizures. By contrast, photosensitivity seems to favor good treatment response, at least in female patients. Current hypotheses on DR mechanisms in JME are based on studies of either simple (e.g., cortical excitability) or more complex (e.g., anatomical and functional connectivity) neurophysiological markers, bearing in mind that JME is regarded as a neural network disease. This research has revealed correlations between the intensity of some markers and DR, and above all shed light on the role of these markers in associated neurocognitive and neuropsychiatric disorders in both patients and their siblings. Studies of neurotransmission have mainly pointed to impaired GABAergic inhibition. Genetic studies have generally been inconclusive. Increasing restrictions have been placed on the use of valproate, the standard antiseizure medication for this syndrome, owing to its teratogenic and developmental risks. Levetiracetam and lamotrigine are prescribed as alternatives, as is vagal nerve stimulation, and there are several other promising antiseizure drugs and neuromodulation methods. The development of better alternative treatments is continuing to take place alongside advances in our knowledge of JME, as we still have much to learn and understand.
Collapse
Affiliation(s)
- A Nica
- Epilepsy Unit, Reference Center for Rare Epilepsies, Neurology Department, Clinical Investigation Center 1414, Rennes University Hospital, Rennes, France; Signal and Image Processing Laboratory (LTSI), INSERM, Rennes University, Rennes, France.
| |
Collapse
|
3
|
Asadi-Pooya AA, Malekpour M, Taherifard E, Mallahzadeh A, Farjoud Kouhanjani M. Coexistence of temporal lobe epilepsy and idiopathic generalized epilepsy. Epilepsy Behav 2024; 151:109602. [PMID: 38160579 DOI: 10.1016/j.yebeh.2023.109602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/07/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
OBJECTIVE We investigated the frequency of coexistence of temporal lobe epilepsy (TLE) and idiopathic generalized epilepsy (IGE) in a retrospective database study. We also explored the underlying pathomechanisms of the coexistence of TLE and IGE based on the available information, using bioinformatics tools. METHODS The first phase of the investigation was a retrospective study. All patients with an electro-clinical diagnosis of epilepsy were studied at the outpatient epilepsy clinic at Shiraz University of Medical Sciences, Shiraz, Iran, from 2008 until 2023. In the second phase, we searched the following databases for genetic variations (epilepsy-associated genetic polymorphisms) that are associated with TLE or syndromes of IGE: DisGeNET, genome-wide association study (GWAS) Catalog, epilepsy genetic association database (epiGAD), and UniProt. We also did a separate literature search using PubMed. RESULTS In total, 3760 patients with epilepsy were registered at our clinic; four patients with definitely mixed TLE and IGE were identified; 0.1% of all epilepsies. We could identify that rs1883415 of ALDH5A1, rs137852779 of EFHC1, rs211037 of GABRG2, rs1130183 of KCNJ10, and rs1045642 of ABCB1 genes are shared between TLE and syndromes of IGE. CONCLUSION While coexistence of TLE and IGE is a rare phenomenon, this could be explained by shared genetic variations.
Collapse
Affiliation(s)
- Ali A Asadi-Pooya
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Jefferson Comprehensive Epilepsy Center, Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA.
| | - Mahdi Malekpour
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ehsan Taherifard
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Arashk Mallahzadeh
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | |
Collapse
|
4
|
Hu X, Zhao M, Yang X, Wang D, Wu Q. Association between the SLC6A11 rs2304725 and GABRG2 rs211037 polymorphisms and drug-resistant epilepsy: a meta-analysis. Front Physiol 2023; 14:1191927. [PMID: 37275237 PMCID: PMC10235491 DOI: 10.3389/fphys.2023.1191927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/02/2023] [Indexed: 06/07/2023] Open
Abstract
Background: Previous studies have shown that SLC6A11 and GABRG2 are linked to drug-resistant epilepsy (DRE), although there have been conflicting results in the literature. In this study, we systematically assessed the relationship between DRE and these two genes. Methods: We systematically searched the PubMed, Embase, Cochrane Library, Web of Science, Google Scholar, Wanfang Data, CNKI, and VIP databases. To clarify whether heterogeneity existed between studies, tools such as the Q-test and I 2 statistic were selected. According to study heterogeneity, we chose fixed- or random-effects models for analysis. We then used the chi-squared ratio to evaluate any bias of the experimental data. Results: In total, 11 trials and 3,813 patients were selected. To investigate the relationship with DRE, we performed model tests on the two genes separately. The results showed that SLC6A11 rs2304725 had no significant correlation with DRE risk in the allele, dominant, recessive, and additive models in a pooled population. However, for the over-dominant model, DRE was correlated with rs2304725 (OR = 1.08, 95% CI: 0.92-1.27, p = 0.33) in a pooled population. Similarly, rs211037 was weakly significantly correlated with DRE for the dominant, recessive, over-dominant, and additive models in a pooled population. The subgroup analysis results showed that rs211037 expressed a genetic risk of DRE in allele (OR = 1.01, 95% CI: 0.76-1.35, p = 0.94), dominant (OR = 1.08, 95% CI: 0.77-1.50, p = 0.65), and additive models (OR = 1.14, 95% CI: 0.62-2.09, p = 0.67) in an Asian population. Conclusion: In this meta-analysis, our results showed that SLC6A11 rs2304725 and GABRG2 rs211037 are not significantly correlated with DRE. However, in the over-dominant model, rs2304725 was significantly correlated with DRE. Likewise, rs211037 conveyed a genetic risk for DRE in an Asian population in the allele, dominant, and additive models.
Collapse
Affiliation(s)
- Xuemei Hu
- Clinical Medical College of Jining Medical University, Jining, Shandong, China
- Department of Emergency, Jining No. 1 People’s Hospital, Jining, Shandong, China
| | - Mingyang Zhao
- Clinical Medical College of Jining Medical University, Jining, Shandong, China
- Department of Emergency, Jining No. 1 People’s Hospital, Jining, Shandong, China
| | - Xue Yang
- Department of Emergency, Jining No. 1 People’s Hospital, Jining, Shandong, China
| | - Dongsen Wang
- Clinical Medical College of Jining Medical University, Jining, Shandong, China
- Department of Emergency, Jining No. 1 People’s Hospital, Jining, Shandong, China
| | - Qingjian Wu
- Department of Emergency, Jining No. 1 People’s Hospital, Jining, Shandong, China
| |
Collapse
|
5
|
Effect of ANKK1 Polymorphisms on Serum Valproic Acid Concentration in Chinese Han Adult Patients in the Early Postoperative Period. Neurol Ther 2023; 12:197-209. [PMID: 36401149 PMCID: PMC9837366 DOI: 10.1007/s40120-022-00419-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/27/2022] [Indexed: 11/21/2022] Open
Abstract
INTRODUCTION This study aimed to investigate the relationship between gene polymorphisms and clinical factors with the concentrations of valproic acid (VPA) in adult patients who underwent neurosurgery in China. METHODS A total of 531 serum concentration samples at steady state were collected from 313 patients to develop a population pharmacokinetic (PPK) model. Data analysis was performed using nonlinear mixed effects modeling. Covariates included demographic parameters, biological characteristics, and genetic polymorphism. Bootstrap evaluation showed that the final model was stable. Sensitive analysis was performed to verify the relationship between gene polymorphisms and concentrations of VPA. Linear regression was used to analyze the relationship between VPA concentration, ANKK1, and daily dosage. RESULTS In the recruited patients, 17 of 25 single-nucleotide polymorphism distributions were consistent with the Hardy-Weinberg equilibrium. A one-compartment model with first-order absorption and elimination was developed for VPA injections. VPA clearance was significantly influenced by three variables: sex (17.41% higher in male than female patients), body weight, and the ANKK1 gene. Typical values for the elimination clearance and the volume of central compartment were 0.614 L/min and 23.5 L, respectively. The model evaluation indicated the stable and precise performance of the final model. After sensitive analysis using Kruskal-Wallis and Mann-Whitney U tests, we found that patients with AA alleles had higher VPA concentrations than those with GG and AG alleles. Linear regression models showed that gene polymorphisms of ANKK1 had little effects on VPA concentration. CONCLUSION A PPK model of VPA in Chinese Han patients was successfully established; this can be helpful for model-informed precision-dosing approaches in clinical patient care, and for exploring the mechanism of VPA-induced weight gain.
Collapse
|
6
|
Jung SC, Zhou T, Ko EA. Age-dependent expression of ion channel genes in rat. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2023; 27:85-94. [PMID: 36575936 PMCID: PMC9806634 DOI: 10.4196/kjpp.2023.27.1.85] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 12/29/2022]
Abstract
Ion channels regulate a large number of cellular functions and their functional role in many diseases makes them potential therapeutic targets. Given their diverse distribution across multiple organs, the roles of ion channels, particularly in age-associated transcriptomic changes in specific organs, are yet to be fully revealed. Using RNA-seq data, we investigated the rat transcriptomic profiles of ion channel genes across 11 organs/tissues and 4 developmental stages in both sexes of Fischer 344 rats and identify tissue-specific and age-dependent changes in ion channel gene expression. Organ-enriched ion channel genes were identified. In particular, the brain showed higher tissue-specificity of ion channel genes, including Gabrd, Gabra6, Gabrg2, Grin2a, and Grin2b. Notably, age-dependent changes in ion channel gene expression were prominently observed in the thymus, including in Aqp1, Clcn4, Hvcn1, Itpr1, Kcng2, Kcnj11, Kcnn3, and Trpm2. Our comprehensive study of ion channel gene expression will serve as a primary resource for biological studies of aging-related diseases caused by abnormal ion channel functions.
Collapse
Affiliation(s)
- Sung-Cherl Jung
- Department of Physiology, School of Medicine, Jeju National University, Jeju 63243, Korea
| | - Tong Zhou
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Eun-A Ko
- Department of Physiology, School of Medicine, Jeju National University, Jeju 63243, Korea,Correspondence Eun-A Ko, E-mail:
| |
Collapse
|
7
|
Gesche J, Beier CP. Drug resistance in idiopathic generalized epilepsies: Evidence and concepts. Epilepsia 2022; 63:3007-3019. [PMID: 36102351 PMCID: PMC10092586 DOI: 10.1111/epi.17410] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/05/2022] [Accepted: 09/12/2022] [Indexed: 01/11/2023]
Abstract
Although approximately 10%-15% of patients with idiopathic generalized epilepsy (IGE)/genetic generalized epilepsy remain drug-resistant, there is no consensus or established concept regarding the underlying mechanisms and prevalence. This review summarizes the recent data and the current hypotheses on mechanisms that may contribute to drug-resistant IGE. A literature search was conducted in PubMed and Embase for studies on mechanisms of drug resistance published since 1980. The literature shows neither consensus on the definition nor a widely accepted model to explain drug resistance in IGE or one of its subsyndromes. Large-scale genetic studies have failed to identify distinct genetic causes or affected genes involved in pharmacokinetics. We found clinical and experimental evidence in support of four hypotheses: (1) "network hypothesis"-the degree of drug resistance in IGE reflects the severity of cortical network alterations, (2) "minor focal lesion in a predisposed brain hypothesis"-minor cortical lesions are important for drug resistance, (3) "interneuron hypothesis"-impaired functioning of γ-aminobutyric acidergic interneurons contributes to drug resistance, and (4) "changes in drug kinetics"-genetically impaired kinetics of antiseizure medication (ASM) reduce the effectiveness of available ASMs. In summary, the exact definition and cause of drug resistance in IGE is unknown. However, published evidence suggests four different mechanisms that may warrant further investigation.
Collapse
Affiliation(s)
- Joanna Gesche
- Department of Neurology, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Christoph P Beier
- Department of Neurology, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
8
|
Saleem T, Maqbool H, Sheikh N, Tayyeb A, Mukhtar M, Ashfaq A. GABRG2 C588T Polymorphism Is Associated with Idiopathic Generalized Epilepsy but Not with Antiepileptic Drug Resistance in Pakistani Cohort. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3460792. [PMID: 36425336 PMCID: PMC9681559 DOI: 10.1155/2022/3460792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 10/19/2022] [Accepted: 10/29/2022] [Indexed: 08/30/2023]
Abstract
Idiopathic generalized epilepsy (IGE) is the most prevalent type of epilepsy with genetic origin. Mutations in ion channel genes have been identified as a common cause of IGE. Several studies have reported various epilepsy risk variants of GABRG2 (gamma-aminobutyric acid type A receptor subunit gamma2 subunit) gene in different ethnic groups, but the results are inconsistent. The purpose of this case-control research is to determine if GABRG2 polymorphisms contribute to IGE susceptibility and antiepileptic drug resistance in Pakistani population. For this purpose, we genotyped exon2, exon5 (C540T and C588T), exon7 (T813C), exon8 (K289M), and exon9 of GABRG2 gene by restriction fragment length polymorphism and Sanger's sequencing in 87 drug-responsive idiopathic generalized epilepsy patients, 55 drug-resistant epilepsy patients, and 83 healthy controls. Restriction fragment length polymorphism (RFLP) and sequencing results indicated only C588T polymorphism in the studied subjects. The comparison of genotypic and allelic frequencies showed significant differences between IGE patients and control groups (P = 0.008 and odds ratio = 4.2) and nonsignificant association of C588T polymorphism in antiseizure medication-resistant patients (P = 0.9). Our findings showed that C588T polymorphism of GABRG2 is a risk variant for IGE in Pakistani population. Further studies are required to validate the results.
Collapse
Affiliation(s)
- Tayyaba Saleem
- Cell and Molecular Biology Laboratory, Institute of Zoology, University of the Punjab, Lahore, Pakistan
| | - Hafsa Maqbool
- Cell and Molecular Biology Laboratory, Institute of Zoology, University of the Punjab, Lahore, Pakistan
| | - Nadeem Sheikh
- Cell and Molecular Biology Laboratory, Institute of Zoology, University of the Punjab, Lahore, Pakistan
| | - Asima Tayyeb
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Maryam Mukhtar
- Cell and Molecular Biology Laboratory, Institute of Zoology, University of the Punjab, Lahore, Pakistan
| | - Aqsa Ashfaq
- Cell and Molecular Biology Laboratory, Institute of Zoology, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
9
|
Ullah S, Ali N, Ahmad S, Sha SWA, Ali S, Almarshad F. The likelihood approach for potential role of "GABRG2 (C588T, C315T) gene polymorphisms" on the poor response to carbamazepine therapy in Pakhtun population of Pakistan. Medicine (Baltimore) 2022; 101:e30948. [PMID: 36221407 PMCID: PMC9542555 DOI: 10.1097/md.0000000000030948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Gamma-aminobutyric acid A receptor, gamma 2 gene (GABRG2) encode the GABAA receptor which is responsible for fast neuronal inhibition. Polymorphisms in GABGR2 gene affect the clinical response of anti-epileptic drugs (AEDs). Therefore, we carried out an updated study to find the association GABRG2 gene polymorphisms with carbamazepine (CBZ) non-responsive therapy in the Pakhtun population. METHODS A clinical prospective cohort study was conducted in 79 CBZ treated patients upon consent after the approval of Khyber Medical University Advanced Study and Research Board. Blood sample were taken at optimal dose of CBZ at base line, third and sixth months of the treatment. Blood level of CBZ was measure through reverse phase high performance liquid chromatography (HPLC). Restriction fragment length polymorphisms techniques were used to genotype GABRG2 gene in these patients. CBZ responses were evaluated on three and six months of study by measuring the decrease in frequency of seizure per week. RESULTS The average maximum dose of CBZ was 455 ± 133 mg/day at baseline, 479 ± 142 mg/day at third month and 495 ± 133 mg/day at sixth month of the treatment. CBZ level was found within therapeutic range (4-12 mg/L) without any significant (P > .5) variations among the CC, CT and TT genotypes of GABRG2 (C588T and C315T) gene. But the poor clinical response during CBZ treatment was linked (P < .05) with CT and TT genotypes of GABRG2 (C588T and C315T) gene in Pakhtun Population. CONCLUSION A poor response to CBZ was found in variant genotypes (CT and TT) of GABRG2 (C588T and C315T) gene in Pakhtun Population.
Collapse
Affiliation(s)
- Shakir Ullah
- Department of Pharmacology Institute of Basic Medical Science, Khyber Medical University, Peshawar, Khyber Pakhtunkhwa, Pakistan
- * Correspondence: Shakir Ullah, Institute of Basic Medical Sciences/Institute of Pharmaceutical Sciences, Khyber Medical University, Peshawar, Khyber Pakhtunkhwa, Pakistan (e-mail: )
| | - Niaz Ali
- Department of Pharmacology Institute of Basic Medical Science, Khyber Medical University, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Sajjad Ahmad
- Department of Pharmacology Institute of Basic Medical Science, Khyber Medical University, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Syed Wadood Ali Sha
- Department of Pharmacy (Pharmacology), University of Malakand, Chakdara, Pakistan
| | - Saad Ali
- Department of Neurology, Govt. Lady Reading Hospital Peshawar, Khyber Pakhtunkhwa, Pakistan
| | | |
Collapse
|
10
|
Zhang T, Yang Y, Sima X. No association of GABRA1 rs2279020 and GABRA6 rs3219151 polymorphisms with risk of epilepsy and antiepileptic drug responsiveness in Asian and Arabic populations: Evidence from a meta-analysis with trial sequential analysis. Front Neurol 2022; 13:996631. [PMID: 36188399 PMCID: PMC9518753 DOI: 10.3389/fneur.2022.996631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
The γ-aminobutyric acid type A receptors (GABAAR) have been reported to contribute to the pathogenesis of epilepsy and the recurrence of chronic seizures. Genetic polymorphisms in GABRA1 and GABRA6 may confer a high risk of epilepsy and multiple drug resistance, but with conflicting results. We aimed to assess the association of GABRA1 rs2279020 and GABRA6 rs3219151 with epilepsy risk using a meta-analysis. The databases of Pubmed, Ovid, Web of Science, and China National Knowledge Infrastructure were searched. Summary odds ratios (ORs) and 95% confidence intervals (CIs) were computed to evaluate the association between the polymorphisms and epilepsy risk using a fixed- or random-effect model. Trial sequential analysis (TSA) was performed to assess the results of the meta-analysis. No significant association between the GABRA1 rs2279020 and GABRA6 rs3219151 and the risk of epilepsy was found in the Asian and Arabic populations. The negative results were also observed when comparing the GABRA1 rs2279020 and GABRA6 rs3219151 polymorphism to antiepileptic drug responsiveness. The trial sequential analysis confirmed the results of the meta-analysis. This meta-analysis suggests that GABRA1 rs2279020 and GABRA6 rs3219151 are not risk factors for the etiology of epilepsy and antiepileptic drug responsiveness in the Asian and Arabic populations.
Collapse
Affiliation(s)
- Tiejun Zhang
- Department of Neurosurgery, West China School of Medicine/West China Hospital, Sichuan University, Chengdu, China
| | - Yi Yang
- Chengdu Seventh People's Hospital, Chengdu, China
| | - Xiutian Sima
- Department of Neurosurgery, West China School of Medicine/West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Xiutian Sima
| |
Collapse
|
11
|
Amjad M, Tabassum A, Sher K, Kumar S, Zehra S, Fatima S. Impact of GABAA receptor gene variants (rs2279020 and rs211037) on the risk of predisposition to epilepsy: a case–control study. Neurol Sci 2022; 43:4431-4438. [DOI: 10.1007/s10072-022-05947-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/08/2022] [Indexed: 10/19/2022]
|
12
|
GABRA1 and GABRA6 gene mutations in idiopathic generalized epilepsy patients. Seizure 2021; 93:88-94. [PMID: 34740144 DOI: 10.1016/j.seizure.2021.10.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 10/14/2021] [Accepted: 10/16/2021] [Indexed: 12/25/2022] Open
Abstract
The GABA receptor is an important epilepsy-associated candidate gene, and has always been a focus in etiology and in the treatment of epilepsy. This study explores the genetic association between GABA receptor gene polymorphisms and epilepsy in a cohort of the Pakistani population. A case-control study was conducted on 150 patients with idiopathic generalized epilepsy (IGE) and 150 controls. Blood samples were collected, and genomic DNA was extracted and amplified using polymerase chain reaction (PCR). The amplified products were subsequently genotyped by Sanger sequencing and the results were analyzed using the chi-square test. Among the five mutational sites observed, two GABRA1 (rs2279020 and novel c.1016_1017insT) and two GABRA6 (rs3219151 and novel c.1344C>G) were found to be significantly associated with IGE. Amino acid alignment showed that a novel insertion mutation, c.1016_1017insT, in GABRA1 disrupted the reading frame and was possibly damaging, whereas c.1344C>G in GABRA6 was responsible for a synonymous mutation. Therefore, both the GABA receptor genes may play critical roles in the development of epilepsy in Pakistani patients.
Collapse
|
13
|
Lu J, Xia H, Li W, Shen X, Guo H, Zhang J, Fan X. Genetic Polymorphism of GABRG2 rs211037 is Associated with Drug Response and Adverse Drug Reactions to Valproic Acid in Chinese Southern Children with Epilepsy. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2021; 14:1141-1150. [PMID: 34552348 PMCID: PMC8450188 DOI: 10.2147/pgpm.s329594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/02/2021] [Indexed: 12/25/2022]
Abstract
Background Valproic acid (VPA) is recommended as a first-line treatment for children with epilepsy. GABRG2 polymorphism is found to be associated with epilepsy susceptibility and therapeutic response of anti-seizure medications (ASM); however, the role of GABRG2 in VPA treatment still remains unknown. Objective The purpose of this study was to explore the association of GABRG2 gene polymorphism with the drug response and adverse drug reactions (ADRs) related to VPA. Methods A retrospective study including 96 Chinese children with epilepsy treated by VPA was carried out. The ADRs were collected during VPA therapy and GABRG2 rs211037 in enrolled patients was genotyped using Sequenom MassArray system. A network pharmacological analysis involved protein–protein interaction and enrichment analysis was constructed to investigate the potential targets and pathways of GABRG2 on VPA-related ADRs. Results Among 96 patients, 41 individuals were defined as seizure together with 49 patients with seizure-free and 6 patients unclassified. Carriers of homozygote GABRG2 rs211037 CC genotype exhibited seizure-free to VPA (P = 0.042), whereas those with CT genotype showed seizure. Furthermore, CC genotype had predisposition to digestive ADRs (P = 0.037) but was a protective factor for VPA-associated weight gain (P = 0.013). Ten key genes related to digestive ADRs and weight gain induced by VPA were identified by network pharmacological analysis and mainly involved in “GABAergic synaptic signaling”, “GABA receptor signaling”, and “taste transduction” pathways/processes through enrichment analysis. Conclusion This study revealed that GABRG2 variation exerted a predictable role in the efficacy and safety of VPA treatment for Chinese children with epilepsy.
Collapse
Affiliation(s)
- Jieluan Lu
- Department of Clinical Pharmacology, College of Pharmacy, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Hanbing Xia
- Department of Pharmacy, Baoan Women's and Children's Hospital, Jinan University, Shenzhen, 518102, People's Republic of China
| | - Wenzhou Li
- Department of Pharmacy, Baoan Women's and Children's Hospital, Jinan University, Shenzhen, 518102, People's Republic of China
| | - Xianhuan Shen
- Department of Clinical Pharmacology, College of Pharmacy, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Huijuan Guo
- Department of Pharmacy, Baoan Women's and Children's Hospital, Jinan University, Shenzhen, 518102, People's Republic of China
| | - Jianping Zhang
- Department of Clinical Pharmacology, College of Pharmacy, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Xiaomei Fan
- Department of Pharmacy, Baoan Women's and Children's Hospital, Jinan University, Shenzhen, 518102, People's Republic of China
| |
Collapse
|
14
|
Bruxel EM, do Canto AM, Bruno DCF, Geraldis JC, Lopes-Cendes I. Multi-omic strategies applied to the study of pharmacoresistance in mesial temporal lobe epilepsy. Epilepsia Open 2021; 7 Suppl 1:S94-S120. [PMID: 34486831 PMCID: PMC9340306 DOI: 10.1002/epi4.12536] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 12/19/2022] Open
Abstract
Mesial temporal lobe epilepsy (MTLE) is the most common type of focal epilepsy in adults, and hippocampal sclerosis (HS) is a frequent histopathological feature in patients with MTLE. Pharmacoresistance is present in at least one-third of patients with MTLE with HS (MTLE+HS). Several hypotheses have been proposed to explain the mechanisms of pharmacoresistance in epilepsy, including the effect of genetic and molecular factors. In recent years, the increased knowledge generated by high-throughput omic technologies has significantly improved the power of molecular genetic studies to discover new mechanisms leading to disease and response to treatment. In this review, we present and discuss the contribution of different omic modalities to understand the basic mechanisms determining pharmacoresistance in patients with MTLE+HS. We provide an overview and a critical discussion of the findings, limitations, new approaches, and future directions of these studies to improve the understanding of pharmacoresistance in MTLE+HS. However, it is important to point out that, as with other complex traits, pharmacoresistance to anti-seizure medications is likely a multifactorial condition in which gene-gene and gene-environment interactions play an important role. Thus, studies using multidimensional approaches are more likely to unravel these intricate biological processes.
Collapse
Affiliation(s)
- Estela M Bruxel
- Departments of Translational Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil.,Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, Brazil
| | - Amanda M do Canto
- Departments of Translational Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil.,Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, Brazil
| | - Danielle C F Bruno
- Departments of Translational Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil.,Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, Brazil
| | - Jaqueline C Geraldis
- Departments of Translational Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil.,Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, Brazil
| | - Iscia Lopes-Cendes
- Departments of Translational Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil.,Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, Brazil
| |
Collapse
|
15
|
Multi-omics in mesial temporal lobe epilepsy with hippocampal sclerosis: Clues into the underlying mechanisms leading to disease. Seizure 2021; 90:34-50. [DOI: 10.1016/j.seizure.2021.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 02/07/2023] Open
|
16
|
Yang X, Ding H, Wei H, Liu J, Liao P, Zhang Y, Wang X, Chi X. Association between GABRG2 rs211037 polymorphism and idiopathic generalized epilepsies: a meta-analysis. ACTA EPILEPTOLOGICA 2021. [DOI: 10.1186/s42494-021-00043-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Abstract
Background
We performed this meta-analysis to investigate the association between GABRG2 rs211037polymorphism and the risk for idiopathic generalized epilepsies (IGEs).
Methods
Medline, Embase, Cochrane Library and Chinese National Knowledge Infrastructure (CNKI) databases were searched for eligible studies (until May 5, 2020) on the association between GABRG2 rs211037 polymorphism and IGE. The odds ratios were calculated using a fixed or random model in STATA 15.0 software. Subgroup analyses for ethnicity, age, source of controls, type of seizure syndrome and therapeutic responses were conducted.
Results
We found no significant associations between GABRG2 rs211037 polymorphism and the susceptibility to IGEs. In addition, no significant association was detected between GABRG2 rs211037 polymorphism and drug resistance in IGE patients. The results did not change after stratification by Asian population, healthy controls, children, juvenile myoclonic epilepsy, and childhood absence epilepsy.
Conclusion
The current studies indicated that the GABRG2 rs211037 polymorphism was not related to susceptibility or drug resistance of IGE. Further well-designed studies are needed to verify the results.
Collapse
|
17
|
Wang S, Zhang X, Zhou L, Wu Q, Han Y. Analysis of GABRG2 C588T polymorphism in genetic epilepsy and evaluation of GABRG2 in drug treatment. Clin Transl Sci 2021; 14:1725-1733. [PMID: 33650258 PMCID: PMC8504831 DOI: 10.1111/cts.12997] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/07/2021] [Accepted: 01/07/2021] [Indexed: 01/11/2023] Open
Abstract
Epilepsy is a common disorder with complex inheritance, and its treatment is very unsatisfactory. An association between the GABRG2 C588T polymorphism and genetic generalized epilepsy has been studied by several genetic association studies. However, these results were inconsistent, and the role of GABRG2 in epilepsy treatment remains unknown. To evaluate the role of GABRG2 in epilepsy, we performed meta-analysis, expression quantitative trait loci analysis, protein-protein interaction analysis, and drug-gene interaction analysis. The combined results indicated that the GABRG2 C588T polymorphism was associated with genetic generalized epilepsy risk under dominant and allelic models (odds ratio [OR] = 1.25, 95% confidence interval [CI] = 1.02-1.54, p = 0.03, I2 = 0% and OR = 1.21, 95% CI = 1.03-1.42, p = 0.02, I2 = 20%, respectively). In the Asian population, we also found similar results under dominant and allelic models (OR = 1.93, 95% CI = 1.18-3.16, p = 0.009, I2 = 0% and OR = 1.69, 95% CI = 1.20-2.37, p = 0.003, I2 = 11%, respectively). We first found that the GABRG2 C588T polymorphism regulates GABRG2 expression in human brain tissues and that the protein encoded by GABRG2 interacts with targets of approved antiepileptic drugs (AEDs). Interestingly, we also found that GABRG2 itself interacts with approved AEDs. Taken together, the results indicate that the C588T polymorphism might alter the GABAA receptor by modulating GABRG2 gene expression, resulting in increased risk for epilepsy, and that GABRG2 may be a potential therapeutic target for epilepsy.
Collapse
Affiliation(s)
- Shitao Wang
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xianjun Zhang
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Liang Zhou
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Qian Wu
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yanbing Han
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
18
|
Association between GABRG2 rs211037 polymorphism and febrile seizures: a meta-analysis. ACTA EPILEPTOLOGICA 2021. [DOI: 10.1186/s42494-021-00038-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Emerging evidence has implied that the GABRG2 gene play a role in the mechanism of febrile seizure (FS), however, the relationship between GABRG2 rs211037 polymorphism and the risk of FS remains controversial. This meta-analysis was conducted to investigate the relationship of GABRG2 rs211037 polymorphism with the susceptibility to FS.
Methods
MEDLINE, Embase, Cochrane Library and CNKI databases were searched (until April 6, 2019) for eligible studies on the relationship between GABRG2 rs211037 polymorphism and FS. We calculated the odds ratios (ORs) by a fixed or random model with the STATA 15.0 software. Subgroup analyses for the ethnicity, the source of the control, and age and sex matching of controls were conducted.
Results
A total of 8 studies consisting of 775 FS patients and 5162 controls were included in this study. Based on the overall data, he GABRG2 rs211037 polymorphism was not significantly associated with the risk of FS (TT + CT vs CC: OR = 0.95, 95%CI 0.64–1.41, P = 0.80). Notably, the GABRG2 rs211037 variant was significantly associated with decreased risk of FS in Asian populations (TT vs CT + CC: OR = 0.63, 95%CI 0.45–0.88, P = 0.006), but increased risk in Caucasian populations (CT vs CC: OR = 1.56, 95%CI 1.14–2.15, P = 0.006). Significant associations were also detected when healthy controls out of the whole controls were employed for comparison (TT vs CT + CC: OR = 0.59, 95% CI 0.45–0.77, P < 0.001) and when data from studies with age- and sex-matched controls were used (TT + CT vs CC: OR = 0.60, 95% CI 0.43–0.86, P = 0.001).
Conclusion
The GABRG2 rs211037 polymorphism may decrease the risk of FS in Asian populations, while increasing the risk in Caucasian populations. Further well-designed studies with large sample sizes are essential to verify the conclusions in other ethnicities.
Collapse
|
19
|
Effects of SCN1A and SCN2A polymorphisms on responsiveness to valproic acid monotherapy in epileptic children. Epilepsy Res 2020; 168:106485. [DOI: 10.1016/j.eplepsyres.2020.106485] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/13/2020] [Accepted: 10/07/2020] [Indexed: 11/22/2022]
|
20
|
Al-Eitan LN, Al-Dalala IM, Elshammari AK, Khreisat WH, Nimiri AF, Alnaamneh AH, Aljamal HA, Alghamdi MA. Genetic Association of Epilepsy and Anti-Epileptic Drugs Treatment in Jordanian Patients. Pharmgenomics Pers Med 2020; 13:503-510. [PMID: 33116764 PMCID: PMC7584512 DOI: 10.2147/pgpm.s273125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/06/2020] [Indexed: 12/29/2022] Open
Abstract
Purpose The aim of this study was to investigate the possible effects of single-nucleotide polymorphisms (SNPs) within SLC1A1, SLC6A1, FAM131B, GPLD1, F2, GABRG2, GABRA1, and CACNG5 genes on response to anti-epileptic drugs (AEDs) and the genetic predisposition of epilepsy in Jordanian patients. Patients and Methods A total of 299 healthy individuals and 296 pediatric patients from the Jordanian population were recruited. Blood samples are collected, and genotyping was performed using a custom platform array analysis. Results The SLC1A1 rs10815018 and FAM131B rs4236482 polymorphisms found to be associated with epilepsy susceptibility. Moreover, SLC1A1 rs10815018 and GPLD1 rs1126617 polymorphisms were associated with generalized epilepsy (GE), while FAM131B rs4236482 is associated with the focal phenotype. Regarding the therapeutic response, the genetic polymorphisms of FAM131B rs4236482, GABRA1 rs2279020, and CACNG5 rs740805 are conferred poor response (resistance) to AEDs. There was no linkage of GLPD1 haplotypes to epilepsy, its subtypes, and treatment responsiveness. Conclusion Our findings suggested that SLC1A1, FAM131B, and GPLD1 polymorphisms increasing the risk of generating epilepsy, while FAM131B, GABRA1, and CACNG5 variants may play a role in predicting drug response in patients with epilepsy (PWE).
Collapse
Affiliation(s)
- Laith N Al-Eitan
- Department of Applied Biological Sciences, Jordan University of Science and Technology, Irbid, Jordan.,Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, Jordan
| | - Islam M Al-Dalala
- Department of Blood Banking, King Hussein Medical Centre, Royal Medical Services, Amman, Jordan
| | - Afrah K Elshammari
- Queen Rania Hospital for Children, King Hussein Medical Center, Royal Medical Services, Amman, Jordan
| | - Wael H Khreisat
- Queen Rania Hospital for Children, King Hussein Medical Center, Royal Medical Services, Amman, Jordan
| | - Aseel F Nimiri
- Queen Rania Hospital for Children, King Hussein Medical Center, Royal Medical Services, Amman, Jordan
| | - Adan H Alnaamneh
- Department of Applied Biological Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Hanan A Aljamal
- Department of Applied Biological Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Mansour A Alghamdi
- Department of Anatomy, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia.,Genomics and Personalized Medicine Unit, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia
| |
Collapse
|
21
|
Wang Y, Wang G, Tao J, Li X, Hu L, Li Q, Lu J, Li Y, Li Z. Autophagy associated with the efficacy of valproic acid in PTZ-induced epileptic rats. Brain Res 2020; 1745:146923. [PMID: 32504548 DOI: 10.1016/j.brainres.2020.146923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 05/28/2020] [Accepted: 06/01/2020] [Indexed: 12/25/2022]
Abstract
Valproic acid (VPA) is a widely used antiepileptic drugs. Patients who are non-responsive to VPA often present to the clinic; however, the mechanism of resistance is unclear. In this study, we found that responder and non-responder pentylenetetrazole-induced chronic epileptic rats had no significant differences in VPA concentrations in their plasma and brain tissues. Furthermore, through an RNA-sequence method, we identified 334 differentially expressed genes between VPA-responsive and non-responsive rats, while 21 pathways were enriched. Interestingly, 16 pathways, including the phagosome pathway, were commonly enriched compared to those in patients. We used transmission electron microscopy and immunofluorescence microscopy to further assess the level of autophagy in responder and non-responder rats. Non-responders had more autophagic vacuoles and an increased level of LC3B expression. Furthermore, epileptic rats that were previously administered 3-methyadenine (an inhibitor of autophagy) exhibited a slight increase in VPA efficacy. In conclusion, autophagy was associated with the efficacy of VPA.
Collapse
Affiliation(s)
- Yan Wang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, 3 Xueyuan Road, Haikou, China; Department of Pharmacy, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai 201102, China
| | - Guangfei Wang
- Department of Pharmacy, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai 201102, China
| | - Jie Tao
- Central Laboratory, Department of Neurology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoxia Li
- Department of Pharmacy, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai 201102, China
| | - Lan Hu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, 3 Xueyuan Road, Haikou, China
| | - Qin Li
- Department of Pharmacy, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai 201102, China
| | - Jinmiao Lu
- Department of Pharmacy, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai 201102, China
| | - Youbin Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, 3 Xueyuan Road, Haikou, China.
| | - Zhiping Li
- Department of Pharmacy, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai 201102, China.
| |
Collapse
|
22
|
Fortinguerra S, Sorrenti V, Giusti P, Zusso M, Buriani A. Pharmacogenomic Characterization in Bipolar Spectrum Disorders. Pharmaceutics 2019; 12:E13. [PMID: 31877761 PMCID: PMC7022469 DOI: 10.3390/pharmaceutics12010013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/14/2019] [Accepted: 12/19/2019] [Indexed: 12/15/2022] Open
Abstract
The holistic approach of personalized medicine, merging clinical and molecular characteristics to tailor the diagnostic and therapeutic path to each individual, is steadily spreading in clinical practice. Psychiatric disorders represent one of the most difficult diagnostic challenges, given their frequent mixed nature and intrinsic variability, as in bipolar disorders and depression. Patients misdiagnosed as depressed are often initially prescribed serotonergic antidepressants, a treatment that can exacerbate a previously unrecognized bipolar condition. Thanks to the use of the patient's genomic profile, it is possible to recognize such risk and at the same time characterize specific genetic assets specifically associated with bipolar spectrum disorder, as well as with the individual response to the various therapeutic options. This provides the basis for molecular diagnosis and the definition of pharmacogenomic profiles, thus guiding therapeutic choices and allowing a safer and more effective use of psychotropic drugs. Here, we report the pharmacogenomics state of the art in bipolar disorders and suggest an algorithm for therapeutic regimen choice.
Collapse
Affiliation(s)
- Stefano Fortinguerra
- Maria Paola Belloni Center for Personalized Medicine, Data Medica Group (Synlab Limited), 35131 Padova, Italy; (S.F.); (V.S.)
- Department of Pharmaceutical & Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (P.G.); (M.Z.)
| | - Vincenzo Sorrenti
- Maria Paola Belloni Center for Personalized Medicine, Data Medica Group (Synlab Limited), 35131 Padova, Italy; (S.F.); (V.S.)
- Department of Pharmaceutical & Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (P.G.); (M.Z.)
- Bendessere™ Study Center, Solgar Italia Multinutrient S.p.A., 35131 Padova, Italy
| | - Pietro Giusti
- Department of Pharmaceutical & Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (P.G.); (M.Z.)
| | - Morena Zusso
- Department of Pharmaceutical & Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (P.G.); (M.Z.)
| | - Alessandro Buriani
- Maria Paola Belloni Center for Personalized Medicine, Data Medica Group (Synlab Limited), 35131 Padova, Italy; (S.F.); (V.S.)
- Department of Pharmaceutical & Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (P.G.); (M.Z.)
| |
Collapse
|
23
|
Wang Y, Li Z. Association of UGT2B7 and CaMK4 with response of valproic acid in Chinese children with epilepsy. Therapie 2019; 75:261-270. [PMID: 31474408 DOI: 10.1016/j.therap.2019.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 03/21/2019] [Accepted: 07/22/2019] [Indexed: 11/30/2022]
Abstract
AIM OF THE STUDY Valproic acid (VPA) is a widely used antiepileptic drug for epilepsy. However, approximately 30% of patients with epilepsy do not respond to this therapy even when it was appropriately used. In order to explore the potential genetic factors related to the VPA response, this pharmacogenetics study was conducted. METHODS A total of one hundred and fifty-seven Chinese children with epilepsy who were administered with by VPA for at least one year were enrolled. Thirteen single-nucleotide polymorphisms (SNPs) located in eight genes involving targets and metabolic enzymes of VPA were genotyped. The frequencies of these polymorphisms and the effect of genotypes on the efficacy of VPA were analyzed. RESULTS The frequencies of two SNPs, rs7668258 (uridine diphosphate glucuronosyltransferase-2B7, UGT2B7) and rs306104 (calmodulin-kinase 4, CaMK4) were associated with VPA responses. However, no association was found for the other SNPs. Furthermore, the polymorphism of UGT2B7 influenced the adjusted concentration (AC) in the responders rather than in the non-responders. CONCLUSION Two SNPs (UGT2B7 and CaMK4) were associated with VPA response, which may explain the pharmacological mechanism of VPA resistance to some extent.
Collapse
Affiliation(s)
- Yan Wang
- Department of pharmacy, children's hospital of Fudan university, Shanghai 201102, China; College of pharmacy, Hainan medical university, Haikou 571199, China
| | - Zhiping Li
- Department of pharmacy, children's hospital of Fudan university, Shanghai 201102, China.
| |
Collapse
|
24
|
Wang Y, Li Z. RNA-seq analysis of blood of valproic acid-responsive and non-responsive pediatric patients with epilepsy. Exp Ther Med 2019; 18:373-383. [PMID: 31258675 PMCID: PMC6566089 DOI: 10.3892/etm.2019.7538] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 04/09/2019] [Indexed: 12/13/2022] Open
Abstract
Epilepsy is the most common chronic neurological disorder, affecting ~70 million individuals worldwide. However, approximately one-third of the patients are refractory to epilepsy medication. Of note, 100% of patients with genetic epilepsy who are resistant to the traditional drug, valproic acid (VPA), are also refractory to the other anti-epileptic drugs. The aim of the present study was to compare the transcriptomes in VPA responders and non-responders, to explore the mechanism of action of VPA and identify possible biomarkers to predict VPA resistance. Thus, RNA-seq was employed for transcriptomic analysis, differentially expressed genes (DEGs) were analyzed using Cuffdiff software and the DAVID database was used to infer the functions of the DEGs. A protein-protein interaction network was obtained using STRING and visualized with Cytoscape. A total of 389 DEGs between VPA-responsive and non-responsive pediatric patients were identified. Of these genes, 227 were upregulated and 162 were downregulated. The upregulated DEGs were largely associated with cytokines, chemokines and chemokine receptor-binding factors, whereas the downregulated DEGs were associated with cation channels, iron ion binding proteins, and immunoglobulin E receptors. In the pathway analysis, the toll-like receptor signaling pathway, pathways in cancer, and cytokine-cytokine receptor interaction were mostly enriched by the DEGs. Furthermore, three modules were identified by protein-protein interaction analysis, and the potential hub genes, chemokine (C-C motif) ligand 3 and 4, chemokine (C-X-C motif) ligand 9, tumor necrosis factor-α and interleukin-1β, which are known to be closely associated with epilepsy, were identified. These specific chemokines may participate in processes associated with VPA resistance and may be potential biomarkers for monitoring the efficacy of VPA.
Collapse
Affiliation(s)
- Yan Wang
- Department of Pharmacy, Children's Hospital of Fudan University, Shanghai 201102, P.R. China.,Hainan Provincial Key Lab of R&D of Tropical Herbs, College of Pharmacy, Hainan Medical University, Haikou, Hainan 571199, P.R. China
| | - Zhiping Li
- Department of Pharmacy, Children's Hospital of Fudan University, Shanghai 201102, P.R. China
| |
Collapse
|
25
|
Lack of association between valproic acid response and polymorphisms of its metabolism, transport, and receptor genes in children with focal seizures. Neurol Sci 2018; 40:523-528. [DOI: 10.1007/s10072-018-3681-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 12/10/2018] [Indexed: 01/10/2023]
|
26
|
Samarut É, Swaminathan A, Riché R, Liao M, Hassan-Abdi R, Renault S, Allard M, Dufour L, Cossette P, Soussi-Yanicostas N, Drapeau P. γ-Aminobutyric acid receptor alpha 1 subunit loss of function causes genetic generalized epilepsy by impairing inhibitory network neurodevelopment. Epilepsia 2018; 59:2061-2074. [PMID: 30324621 DOI: 10.1111/epi.14576] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/13/2018] [Accepted: 09/14/2018] [Indexed: 01/31/2023]
Abstract
OBJECTIVE In humans, mutations of the γ-aminobutyric acid receptor subunit 1 (GABRA1) cause either mild or severe generalized epilepsy. Although these epilepsy-causing mutations have been shown to disrupt the receptor activity in vitro, their in vivo consequences on brain development and activity are not known. Here, we aim at unraveling the epileptogenesis mechanisms of GABRA1 loss of function. METHODS We generated a gabra1-/- zebrafish mutant line displaying highly penetrant epileptic seizures. We sought to identify the underlying molecular mechanisms through unbiased whole transcriptomic assay of gabra1-/- larval brains. RESULTS Interestingly, mutant fish show fully penetrant seizures at juvenile stages that accurately mimic tonic-clonic generalized seizures observed in patients. Moreover, highly penetrant seizures can be induced by light stimulation, thus providing us with the first zebrafish model in which evident epileptic seizures can be induced by nonchemical agents. Our transcriptomic assay identified misregulated genes in several pathways essential for correct brain development. More specifically, we show that the early development of the brain inhibitory network is specifically affected. Although the number of GABAergic neurons is not altered, we observed a drastic reduction in the number of inhibitory synapses and a decreased complexity of the GABAergic network. This is consistent with the disruption in expression of many genes involved in axon guidance and synapse formation. SIGNIFICANCE Together with the role of GABA in neurodevelopment, our data identify a novel aspect of epileptogenesis, suggesting that the substratum of GABRA1-deficiency epilepsy is a consequence of early brain neurodevelopmental defects, in particular at the level of inhibitory network wiring.
Collapse
Affiliation(s)
- Éric Samarut
- Department of Neurosciences, Research Center of the University of Montreal Hospital Center, University of Montreal, Montreal, Quebec, Canada.,DanioDesign, Montreal, Quebec, Canada
| | - Amrutha Swaminathan
- Department of Neurosciences, Research Center of the University of Montreal Hospital Center, University of Montreal, Montreal, Quebec, Canada
| | - Raphaëlle Riché
- Department of Neurosciences, Research Center of the University of Montreal Hospital Center, University of Montreal, Montreal, Quebec, Canada
| | - Meijiang Liao
- Department of Neurosciences, Research Center of the University of Montreal Hospital Center, University of Montreal, Montreal, Quebec, Canada
| | - Rahma Hassan-Abdi
- National Institute of Health and Medical Research, U1141, Paris, France.,Paris Diderot University, Sorbonne Paris Cité, Mixed Research Unit of Sciences (UMRS) 1141, Paris, France
| | - Solène Renault
- National Institute of Health and Medical Research, U1141, Paris, France.,Paris Diderot University, Sorbonne Paris Cité, Mixed Research Unit of Sciences (UMRS) 1141, Paris, France
| | - Marc Allard
- Department of Neurosciences, Research Center of the University of Montreal Hospital Center, University of Montreal, Montreal, Quebec, Canada
| | | | - Patrick Cossette
- Department of Neurosciences, Research Center of the University of Montreal Hospital Center, University of Montreal, Montreal, Quebec, Canada
| | - Nadia Soussi-Yanicostas
- National Institute of Health and Medical Research, U1141, Paris, France.,Paris Diderot University, Sorbonne Paris Cité, Mixed Research Unit of Sciences (UMRS) 1141, Paris, France
| | - Pierre Drapeau
- Department of Neurosciences, Research Center of the University of Montreal Hospital Center, University of Montreal, Montreal, Quebec, Canada.,DanioDesign, Montreal, Quebec, Canada
| |
Collapse
|
27
|
The genetic variant "C588T" of GABARG2 is linked to childhood idiopathic generalized epilepsy and resistance to antiepileptic drugs. Seizure 2018; 60:39-43. [PMID: 29894917 DOI: 10.1016/j.seizure.2018.06.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 06/03/2018] [Accepted: 06/05/2018] [Indexed: 11/21/2022] Open
Abstract
PURPOSE Previous studies have suggested that GABARG2 (Gamma-Aminobutyric acid type A Receptor Gamma 2 subunit) could be a gene of interest in genetic epilepsy; through possible associations with increased epilepsy susceptibility or resistance to antiepileptic drugs. The present study was designed to explore whether the GABARG2 C588 T (rs211037) genetic variant predicts susceptibility to epilepsy and pharmacoresistance among Egyptian children with Idiopathic Generalized Epilepsy (IGE). METHODS A cohort of 210 Egyptian children was divided into two groups for this case-control study: group (I) included 100 children with IGE, group (II) comprised of 110 paediatric healthy controls. PCR-RFLP was used to amplify the C588 T polymorphism of the GABARG2 gene, which was digested with APOI restriction enzymes. RESULTS There was a higher frequency of the TT genotype (P = 0.004) and T allele (P = 0.002) of the C588 T polymorphism of the GABARG2 gene in patients than controls. Besides, there was a substantial increase of the T allele among drug-resistant patients compared with those responding to antiepileptic drugs (P = 0.00015). Children with the C allele were four times more likely to be responsive to antiepileptic drugs than non-C-allele-carriers. CONCLUSION The C588 T polymorphism of GABARG2 is associated with an increased risk of developing childhood IGE and may modulate patients' response to antiepileptic drugs.
Collapse
|
28
|
Feng W, Mei S, Zhu L, Yu Y, Yang W, Gao B, Wu X, Zhao Z, Fang F. Effects of UGT2B7, SCN1A and CYP3A4 on the therapeutic response of sodium valproate treatment in children with generalized seizures. Seizure 2018; 58:96-100. [PMID: 29679912 DOI: 10.1016/j.seizure.2018.04.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 03/11/2018] [Accepted: 04/08/2018] [Indexed: 11/28/2022] Open
Abstract
PURPOSE This study aims to evaluate the associations between genetic polymorphisms and the effect of sodium valproate (VPA) therapy in children with generalized seizures. METHODS A total of 174 children with generalized seizures on VPA therapy were enrolled. Steady-state trough plasma concentrations of VPA were analyzed. Seventy-six single nucleotide polymorphisms involved in the absorption, metabolism, transport, and target receptor of VPA were identified, and their associations with the therapeutic effect (seizure reduction) were evaluated using logistic regression adjusted by various influence factors. RESULTS rs7668282 (UGT2B7, T > C, OR = 2.67, 95% CI: 1.19 to 5.91, P = 0.017) was more prevalent in drug-resistant patients than drug-responsive patients. rs2242480 (CYP3A4, C > T, OR = 0.27, 95% CI: 0.095 to 0.79, P = 0.017) and rs10188577 (SCN1A, T > C, OR = 0.40, 95% CI: 0.17 to 0.94, P = 0.035) were more prevalent in drug-responsive patients compared to drug-resistant patients. CONCLUSION In children with generalized seizures on VPA therapy, polymorphisms of UGT2B7, CYP3A4, and SCN1A genes were associated with seizure reduction. Larger studies are warranted to corroborate the results.
Collapse
Affiliation(s)
- Weixing Feng
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, Beijing 100045, China; Department of Pediatrics, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | - Shenghui Mei
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China; Department of Clinical Pharmacology, College of Pharmaceutical Sciences, Capital Medical University, Beijing 100045, China
| | - Leting Zhu
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | - Yazhen Yu
- Department of Pediatrics, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | - Weili Yang
- Department of Pediatrics, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | - Baoqin Gao
- Department of Pediatrics, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | - Xiaojuan Wu
- Department of Pediatrics, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | - Zhigang Zhao
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China; Department of Clinical Pharmacology, College of Pharmaceutical Sciences, Capital Medical University, Beijing 100045, China.
| | - Fang Fang
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, Beijing 100045, China.
| |
Collapse
|
29
|
dos Santos BP, Marinho CRM, Marques TEBS, Angelo LKG, Malta MVDS, Duzzioni M, de Castro OW, Leite JP, Barbosa FT, Gitaí DLG. Genetic susceptibility in Juvenile Myoclonic Epilepsy: Systematic review of genetic association studies. PLoS One 2017; 12:e0179629. [PMID: 28636645 PMCID: PMC5479548 DOI: 10.1371/journal.pone.0179629] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 06/01/2017] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Several genetic association investigations have been performed over the last three decades to identify variants underlying Juvenile Myoclonic Epilepsy (JME). Here, we evaluate the accumulating findings and provide an updated perspective of these studies. METHODOLOGY A systematic literature search was conducted using the PubMed, Embase, Scopus, Lilacs, epiGAD, Google Scholar and Sigle up to February 12, 2016. The quality of the included studies was assessed by a score and classified as low and high quality. Beyond outcome measures, information was extracted on the setting for each study, characteristics of population samples and polymorphisms. RESULTS Fifty studies met eligibility criteria and were used for data extraction. With a single exception, all studies used a candidate gene approach, providing data on 229 polymorphisms in or near 55 different genes. Of variants investigating in independent data sets, only rs2029461 SNP in GRM4, rs3743123 in CX36 and rs3918149 in BRD2 showed a significant association with JME in at least two different background populations. The lack of consistent associations might be due to variations in experimental design and/or limitations of the approach. CONCLUSIONS Thus, despite intense research evidence established, specific genetic variants in JME susceptibility remain inconclusive. We discussed several issues that may compromise the quality of the results, including methodological bias, endophenotype and potential involvement of epigenetic factors. PROSPERO REGISTRATION NUMBER CRD42016036063.
Collapse
Affiliation(s)
- Bruna Priscila dos Santos
- Department of Cellular and Molecular Biology, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceio, Alagoas, Brazil
| | - Chiara Rachel Maciel Marinho
- Department of Cellular and Molecular Biology, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceio, Alagoas, Brazil
| | | | - Layanne Kelly Gomes Angelo
- Department of Cellular and Molecular Biology, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceio, Alagoas, Brazil
| | - Maísa Vieira da Silva Malta
- Department of Cellular and Molecular Biology, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceio, Alagoas, Brazil
| | - Marcelo Duzzioni
- Department of Pharmacology, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceio, Alagoas, Brazil
| | - Olagide Wagner de Castro
- Department of Physiology, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceio, Alagoas, Brazil
| | - João Pereira Leite
- Division of Neurology, Department of Neurosciences and Behavioral Sciences, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | - Daniel Leite Góes Gitaí
- Department of Cellular and Molecular Biology, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceio, Alagoas, Brazil
| |
Collapse
|
30
|
Ang HX, Chan SL, Sani LL, Quah CB, Brunham LR, Tan BOP, Winther MD. Pharmacogenomics in Asia: a systematic review on current trends and novel discoveries. Pharmacogenomics 2017; 18:891-910. [DOI: 10.2217/pgs-2017-0009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
While early pharmacogenomic studies have primarily been carried out in Western populations, there has been a notable increase in the number of Asian studies over the past decade. We systematically reviewed all pharmacogenomic studies conducted in Asia published before 2016 to highlight trends and identify research gaps in Asia. We observed that pharmacogenomic research in Asia was dominated by larger developed countries, notably Japan and Korea, and mainly driven by local researchers. Studies were focused on drugs acting on the CNS, chemotherapeutics and anticoagulants. Significantly, several novel pharmacogenomic associations have emerged from Asian studies. These developments are highly encouraging for the strength of regional scientific and clinical community and propound the importance of discovery studies in different populations.
Collapse
Affiliation(s)
- Hazel Xiaohui Ang
- Genome Institute of Singapore, Agency for Science, Technology & Research, Singapore
| | - Sze Ling Chan
- Translational Laboratory in Genetic Medicine, Agency for Science, Technology & Research, Singapore
| | - Levana L Sani
- Genome Institute of Singapore, Agency for Science, Technology & Research, Singapore
| | | | - Liam R Brunham
- Translational Laboratory in Genetic Medicine, Agency for Science, Technology & Research, Singapore
- Department of Medicine, Centre for Heart Lung Innovation, University of British Columbia, Vancouver, BC, Canada
| | - Boon Ooi Patrick Tan
- Genome Institute of Singapore, Agency for Science, Technology & Research, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
- Cancer & Stem Cell Biology Program, Duke-NUS Graduate Medical School, Singapore
- Division of Cellular & Molecular Research, National Cancer Centre Singapore, Singapore
| | - Michael D Winther
- Genome Institute of Singapore, Agency for Science, Technology & Research, Singapore
| |
Collapse
|
31
|
Pitkänen A, Löscher W, Vezzani A, Becker AJ, Simonato M, Lukasiuk K, Gröhn O, Bankstahl JP, Friedman A, Aronica E, Gorter JA, Ravizza T, Sisodiya SM, Kokaia M, Beck H. Advances in the development of biomarkers for epilepsy. Lancet Neurol 2017; 15:843-856. [PMID: 27302363 DOI: 10.1016/s1474-4422(16)00112-5] [Citation(s) in RCA: 239] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 02/16/2016] [Accepted: 03/02/2016] [Indexed: 12/13/2022]
Abstract
Over 50 million people worldwide have epilepsy. In nearly 30% of these cases, epilepsy remains unsatisfactorily controlled despite the availability of over 20 antiepileptic drugs. Moreover, no treatments exist to prevent the development of epilepsy in those at risk, despite an increasing understanding of the underlying molecular and cellular pathways. One of the major factors that have impeded rapid progress in these areas is the complex and multifactorial nature of epilepsy, and its heterogeneity. Therefore, the vision of developing targeted treatments for epilepsy relies upon the development of biomarkers that allow individually tailored treatment. Biomarkers for epilepsy typically fall into two broad categories: diagnostic biomarkers, which provide information on the clinical status of, and potentially the sensitivity to, specific treatments, and prognostic biomarkers, which allow prediction of future clinical features, such as the speed of progression, severity of epilepsy, development of comorbidities, or prediction of remission or cure. Prognostic biomarkers are of particular importance because they could be used to identify which patients will develop epilepsy and which might benefit from preventive treatments. Biomarker research faces several challenges; however, biomarkers could substantially improve the management of people with epilepsy and could lead to prevention in the right person at the right time, rather than just symptomatic treatment.
Collapse
Affiliation(s)
- Asla Pitkänen
- Department of Neurobiology, A I Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine, Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany
| | - Annamaria Vezzani
- Department of Neuroscience, Experimental Neurology, IRCCS-Istituto di Recerche Farmacologiche "Mario Negri", Milan, Italy
| | - Albert J Becker
- Section for Translational Epilepsy Research, Department of Neuropathology, University of Bonn Medical Center, University of Bonn, Bonn, Germany
| | - Michele Simonato
- Department of Medical Sciences, Section of Pharmacology, University of Ferrara, Ferrara, Italy; Unit of Gene Therapy of Neurodegenerative Diseases, Division of Neuroscience, University Vita-Salute San Raffaele, Milan, Italy
| | - Katarzyna Lukasiuk
- The Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Olli Gröhn
- Department of Neurobiology, A I Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jens P Bankstahl
- Preclinical Molecular Imaging, Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - Alon Friedman
- Department of Brain and Cognitive Sciences, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Israel; Department of Medical Neuroscience, Dalhousie University, Halifax, NS, Canada
| | - Eleonora Aronica
- Department of Neuropathology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands; Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, Netherlands; Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, Netherlands
| | - Jan A Gorter
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, Netherlands
| | - Teresa Ravizza
- Department of Neuroscience, Experimental Neurology, IRCCS-Istituto di Recerche Farmacologiche "Mario Negri", Milan, Italy
| | - Sanjay M Sisodiya
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, UK; Epilepsy Society, Chalfont St Peter, Buckinghamshire, UK
| | - Merab Kokaia
- Epilepsy Center, Experimental Epilepsy Group, Division of Neurology, Department of Clinical Sciences, Lund University Hospital, Lund, Sweden
| | - Heinz Beck
- Laboratory for Experimental Epileptology and Cognition Research, Department of Epileptology, University of Bonn, Bonn, Germany; German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.
| |
Collapse
|
32
|
Zou F, McWalter K, Schmidt L, Decker A, Picker JD, Lincoln S, Sweetser DA, Briere LC, Harini C, Marsh E, Medne L, Wang RY, Leydiker K, Mower A, Visser G, Cuppen I, van Gassen KL, van der Smagt J, Yousaf A, Tennison M, Shanmugham A, Butler E, Richard G, McKnight D. Expanding the phenotypic spectrum of GABRG2 variants: a recurrent GABRG2 missense variant associated with a severe phenotype. J Neurogenet 2017; 31:30-36. [PMID: 28460589 DOI: 10.1080/01677063.2017.1315417] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Pathogenic missense and truncating variants in the GABRG2 gene cause a spectrum of epilepsies, from Dravet syndrome to milder simple febrile seizures. In most cases, pathogenic missense variants in the GABRG2 gene segregate with a febrile seizure phenotype. In this case series, we report a recurrent, de novo missense variant (c0.316 G > A; p.A106T) in the GABRG2 gene that was identified in five unrelated individuals. These patients were described to have a more severe phenotype than previously reported for GABRG2 missense variants. Common features include variable early-onset seizures, significant motor and speech delays, intellectual disability, hypotonia, movement disorder, dysmorphic features and vision/ocular issues. Our report further explores a recurrent pathogenic missense variant within the GABRG2 variant family and broadens the spectrum of associated phenotypes for GABRG2-associated disorders.
Collapse
Affiliation(s)
| | | | | | | | - Jonathan D Picker
- b Division of Genetics and Genomics , Boston Children's Hospital , Boston , MA , USA
| | - Sharyn Lincoln
- b Division of Genetics and Genomics , Boston Children's Hospital , Boston , MA , USA.,c NIH Common Fund , Undiagnosed Diseases Network , Bethesda , MD , USA
| | - David A Sweetser
- c NIH Common Fund , Undiagnosed Diseases Network , Bethesda , MD , USA.,d Department of Medical Genetics , Massachusetts General Hospital for Children , Boston , MA , USA
| | - Lauren C Briere
- c NIH Common Fund , Undiagnosed Diseases Network , Bethesda , MD , USA.,d Department of Medical Genetics , Massachusetts General Hospital for Children , Boston , MA , USA
| | - Chellamani Harini
- e Division of Neurophysiology , Boston Children's Hospital , Boston , MA , USA
| | -
- c NIH Common Fund , Undiagnosed Diseases Network , Bethesda , MD , USA
| | - Eric Marsh
- f Division of Child Neurology, Departments of Neurology and Pediatrics , Children's Hospital of Philadelphia , Philadelphia , PA , USA
| | - Livija Medne
- g Individualized Medical Genetics Center, Division of Human Genetics, Division of Neurology , The Children's Hospital of Philadelphia , Philadelphia , PA , USA
| | - Raymond Y Wang
- h Division of Metabolic Disorders , CHOC Children's Hospital , Orange , CA , USA
| | - Karen Leydiker
- h Division of Metabolic Disorders , CHOC Children's Hospital , Orange , CA , USA
| | - Andrew Mower
- i Neurology , CHOC Children's Hospital , Orange , CA , USA
| | - Gepke Visser
- j Wilhelmina Children's Hospital/University Medical Center , Utrecht , the Netherlands
| | - Inge Cuppen
- j Wilhelmina Children's Hospital/University Medical Center , Utrecht , the Netherlands
| | - Koen L van Gassen
- k Department of Genetics , University Medical Center Utrecht , Utrecht , the Netherlands
| | - Jasper van der Smagt
- k Department of Genetics , University Medical Center Utrecht , Utrecht , the Netherlands
| | - Adeel Yousaf
- l University of North Carolina at Chapel Hill , Chapel Hill , NC , USA
| | - Michael Tennison
- m University of North Carolina at Chapel Hill , Chapel Hill , NC , USA
| | | | | | | | | |
Collapse
|
33
|
Effects of UGT1A6 and GABRA1 on Standardized Valproic Acid Plasma Concentrations and Treatment Effect in Children With Epilepsy in China. Ther Drug Monit 2016; 38:738-743. [DOI: 10.1097/ftd.0000000000000337] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
34
|
Baghel R, Grover S, Kaur H, Jajodia A, Rawat C, Srivastava A, Kushwaha S, Agarwal R, Sharma S, Kukreti R. Evaluating the Role of Genetic Variants on first-line antiepileptic drug response in North India: Significance of SCN1A and GABRA1 Gene Variants in Phenytoin Monotherapy and its Serum Drug Levels. CNS Neurosci Ther 2016; 22:740-57. [PMID: 27245092 DOI: 10.1111/cns.12570] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 04/25/2016] [Accepted: 04/26/2016] [Indexed: 12/18/2022] Open
Abstract
AIM The present study aimed to evaluate association of genetic variants on drug response and therapy optimization parameters in patients treated with first-line antiepileptic drugs (AEDs). Genetic variants from ion channels, their functionally related genes, and synaptic vesicle cycle (SVC) genes with a potential role in epilepsy pathophysiology were thus prioritized. METHODS A total of 12 genes from ion channels and related gene set and seven genes from SVC comprising 155 SNPs were genotyped and evaluated with drug response, dose levels, and drug levels in 408 patients with epilepsy. RESULTS Both GABRA1 and SCN1A variants showed haplotypic and diplotypic associations in response to phenytoin (PHT). Diplotype analysis of GABRA1 variants revealed association of rs12658835|rs7735530 (AG/AG) (P-valuecorrected = 0.034, OR = 3.75, 95% CI = 1.36-11.05) and rs12658835|rs7735530|rs7732641|rs2279020 (AGCA/AGCA) (P-valuecorrected = 0.035, OR = 2.48, 95% CI = 0.96-6.41) with recurrent seizures. SCN1A haplotype rs6432860|rs3812718 (AC: P-valuecorrected = 0.022, OR = 2.72, 95% CI = 1.39-5.35) and diplotype (AC/AC: P-valuecorrected = 0.034, OR = 6.42, 95% CI = 1.10-65.76) were further observed to be associated with recurrent seizures. With respect to therapy optimization parameters, we observed significantly lower dose-adjusted drug levels at maximum dose of PHT in patients carrying AC/AC diplotype (P-value = 0.021). CONCLUSION The results further substantiate the role of GABRA1 in PHT mode of action and contribution of SCN1A in response and therapy optimization with PHT monotherapy.
Collapse
Affiliation(s)
- Ruchi Baghel
- Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi, India
| | - Sandeep Grover
- Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi, India.,Department of Paediatrics, Division of Pneumonology-Immunology, Charité University Medical Centre, Berlin, Germany
| | - Harpreet Kaur
- Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi, India
| | - Ajay Jajodia
- Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi, India
| | - Chitra Rawat
- Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi, India
| | - Ankit Srivastava
- Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi, India
| | - Suman Kushwaha
- Institute of Human Behavior & Allied Sciences (IHBAS), Delhi, India
| | - Rachna Agarwal
- Institute of Human Behavior & Allied Sciences (IHBAS), Delhi, India
| | - Sangeeta Sharma
- Institute of Human Behavior & Allied Sciences (IHBAS), Delhi, India
| | - Ritushree Kukreti
- Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi, India
| |
Collapse
|
35
|
Jiang P, Zhu WY, He X, Tang MM, Dang RL, Li HD, Xue Y, Zhang LH, Wu YQ, Cao LJ. Association between Vitamin D Receptor Gene Polymorphisms with Childhood Temporal Lobe Epilepsy. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:13913-22. [PMID: 26528998 PMCID: PMC4661623 DOI: 10.3390/ijerph121113913] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 10/27/2015] [Accepted: 10/28/2015] [Indexed: 12/29/2022]
Abstract
Vitamin D (VD) is implicated in multiple aspects of human physiology and vitamin D receptor (VDR) polymorphisms are associated with a variety of neuropsychiatric disorders. Although VD deficiency is highly prevalent in epilepsy patients and converging evidence indicates a role for VD in the development of epilepsy, no data is available on the possible relationship between epilepsy and genetic variations of VDR. In this study, 150 controls and 82 patients with temporal lobe epilepsy (TLE) were genotyped for five common VDR polymorphisms (Cdx-2, FokI, BsmI, ApaI and TaqI) by the polymerase chain reaction-ligase detection reaction method. Our results revealed that the frequency of FokI AC genotype was significantly higher in the control group than in the patients (p = 0.003, OR = 0.39, 95% CI = 0.21–0.73), whereas the AA genotype of ApaI SNP was more frequent in patients than in controls (p = 0.018, OR = 2.92, 95% CI = 1.2–7.1). However, no statistically significant association was found between Cdx-2, BsmI and TaqI polymorphisms and epilepsy. Additionally, in haplotype analysis, we found the haplotype GAT (BsmI/ApaI/TaqI) conferred significantly increased risk for developing TLE (p = 0.039, OR = 1.62, 95% CI = 1.02–2.56). As far as we know, these results firstly underline the importance of VDR polymorphisms for the genetic susceptibility to epilepsy.
Collapse
Affiliation(s)
- Pei Jiang
- Institute of Clinical Pharmacy and Pharmacology, Second Xiangya Hospital, Central South University, Changsha 410011, China.
- Department of Pharmacy, Jining First People's Hospital, Jining 272011, China.
| | - Wen-Ye Zhu
- Institute of Clinical Pharmacy and Pharmacology, Second Xiangya Hospital, Central South University, Changsha 410011, China.
| | - Xin He
- Institute of Clinical Pharmacy and Pharmacology, Second Xiangya Hospital, Central South University, Changsha 410011, China.
| | - Mi-Mi Tang
- Institute of Clinical Pharmacy and Pharmacology, Second Xiangya Hospital, Central South University, Changsha 410011, China.
| | - Rui-Li Dang
- Institute of Clinical Pharmacy and Pharmacology, Second Xiangya Hospital, Central South University, Changsha 410011, China.
| | - Huan-De Li
- Institute of Clinical Pharmacy and Pharmacology, Second Xiangya Hospital, Central South University, Changsha 410011, China.
| | - Ying Xue
- Institute of Clinical Pharmacy and Pharmacology, Second Xiangya Hospital, Central South University, Changsha 410011, China.
| | - Li-Hong Zhang
- Institute of Clinical Pharmacy and Pharmacology, Second Xiangya Hospital, Central South University, Changsha 410011, China.
| | - Yan-Qin Wu
- Institute of Clinical Pharmacy and Pharmacology, Second Xiangya Hospital, Central South University, Changsha 410011, China.
| | - Ling-Juan Cao
- Institute of Clinical Pharmacy and Pharmacology, Second Xiangya Hospital, Central South University, Changsha 410011, China.
| |
Collapse
|
36
|
Contribution of GABRG2 Polymorphisms to Risk of Epilepsy and Febrile Seizure: a Multicenter Cohort Study and Meta-analysis. Mol Neurobiol 2015; 53:5457-67. [DOI: 10.1007/s12035-015-9457-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 09/25/2015] [Indexed: 10/23/2022]
|
37
|
Balan S, Bharathan SP, Vellichiramal NN, Sathyan S, Joseph V, Radhakrishnan K, Banerjee M. Genetic association analysis of ATP binding cassette protein family reveals a novel association of ABCB1 genetic variants with epilepsy risk, but not with drug-resistance. PLoS One 2014; 9:e89253. [PMID: 24586633 PMCID: PMC3931716 DOI: 10.1371/journal.pone.0089253] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 01/16/2014] [Indexed: 12/20/2022] Open
Abstract
Epilepsy constitutes a heterogeneous group of disorders that is characterized by recurrent unprovoked seizures due to widely different etiologies. Multidrug resistance remains a major issue in clinical epileptology, where one third of patients with epilepsy continue to have seizures. Role of efflux transporters in multidrug resistant epilepsy has been attributed to drug-resistant epilepsy although, with discrepant observation in genetic studies. These discrepancies could be attributed to variety of factors such as variable definition of the anti-epileptic drug (AED)-resistance, variable epilepsy phenotypes and ethnicities among the studies. In the present study we inquired the role of multidrug transporters ABCB1 and ABCG2 variants in determining AED-resistance and susceptibility to epilepsy in three well-characterized cohorts comprising of mesial temporal lobe epilepsy with hippocampal sclerosis (MTLE-HS) (prototype for AED-resistant epilepsy); juvenile myoclonic epilepsy (JME) (prototype for AED-responsive epilepsy); and healthy non-epileptic controls, in 738 subjects of Malayalam speaking south Indian ancestry. ABCB1 and ABCG2 variants were not found to be associated with drug resistance when AED-resistant and AED-responsive cohorts were compared. However, a significant association was observed between ABCB1 (C3435T) rs1045642 and risk of having epilepsy (MTLE-HS and JME pooled cohort; genotypic p-value = 0.0002; allelic p-value = 0.004). This association was seen persistent with MTLE-HS (genotypic p-value = 0.0008; allelic p-value = 0.004) and also with JME (genotypic p-value = 0.01; allelic p-value = 0.05) cohort individually. In-silico functional prediction indicated that ABCB1 rs1045642 has a deleterious impact on protein coding function and in splicing regulation. We conclude that the ABCB1 and ABCG2 variants do not confer to AED-resistance in the study population. However, ABCB1 rs1045642 increases vulnerability to epilepsy with greater tendency for MTLE-HS in south Indian ancestry from Kerala.
Collapse
Affiliation(s)
- Shabeesh Balan
- Human Molecular Genetics Laboratory, Rajiv Gandhi Center for Biotechnology, Trivandrum, Kerala, India
- R. Madhavan Nayar Center for Comprehensive Epilepsy Care, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, India
| | | | | | - Sanish Sathyan
- Human Molecular Genetics Laboratory, Rajiv Gandhi Center for Biotechnology, Trivandrum, Kerala, India
| | - Vijai Joseph
- Department of Medicine, Memorial-Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Kurupath Radhakrishnan
- R. Madhavan Nayar Center for Comprehensive Epilepsy Care, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, India
| | - Moinak Banerjee
- Human Molecular Genetics Laboratory, Rajiv Gandhi Center for Biotechnology, Trivandrum, Kerala, India
| |
Collapse
|
38
|
Ferraro TN. The relationship between genes affecting the development of epilepsy and approaches to epilepsy therapy. Expert Rev Neurother 2014; 14:329-52. [DOI: 10.1586/14737175.2014.888651] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|