1
|
Xu X, Hu J, Xue H, Hu Y, Liu YN, Lin G, Liu L, Xu RA. Applications of human and bovine serum albumins in biomedical engineering: A review. Int J Biol Macromol 2023; 253:126914. [PMID: 37716666 DOI: 10.1016/j.ijbiomac.2023.126914] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/18/2023]
Abstract
Serum albumin, commonly recognized as a predominant major plasma protein, is ubiquitously distributed among vertebrates, demonstrating versatility and widespread accessibility. Numerous studies have discussed the composition and attributes of human and bovine serum albumin; nonetheless, few systematic and comprehensive summaries on human and bovine serum albumin exist. This paper reviews the applications of human and bovine serum albumin in biomedical engineering. First, we introduce the differences in the structure of human and bovine serum albumin. Next, we describe the extraction methods for human and bovine serum albumin (fractionation process separation, magnetic adsorption, reverse micellar (RM) extraction, and genetic engineering) and the advantages and disadvantages of recently developed extraction methods. The characteristics of different processing forms of human and bovine serum albumin are also discussed, concomitantly elucidating their intrinsic properties, functions, and applications in biomedicine. Notably, their pivotal functions as carriers for drugs and tissue-engineered scaffolds, as well as their contributions to cell reproduction and bioimaging, are critically examined. Finally, to provide guidance for researchers in their future work, this review summarizes the current state of human and bovine serum albumin research and outlines potential future research topics.
Collapse
Affiliation(s)
- Xinhao Xu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Jinyu Hu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Huaqian Xue
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China; School of Pharmacy, Ningxia Medical University, Ningxia 750004, China
| | - Yingying Hu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Ya-Nan Liu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Guanyang Lin
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Liangle Liu
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China.
| | - Ren-Ai Xu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| |
Collapse
|
2
|
Fakih HH, Tang Q, Summers A, Shin M, Buchwald JE, Gagnon R, Hariharan VN, Echeverria D, Cooper DA, Watts JK, Khvorova A, Sleiman HF. Dendritic amphiphilic siRNA: Selective albumin binding, in vivo efficacy, and low toxicity. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 34:102080. [PMID: 38089931 PMCID: PMC10711485 DOI: 10.1016/j.omtn.2023.102080] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 11/14/2023] [Indexed: 01/12/2024]
Abstract
Although an increasing number of small interfering RNA (siRNA) therapies are reaching the market, the challenge of efficient extra-hepatic delivery continues to limit their full therapeutic potential. Drug delivery vehicles and hydrophobic conjugates are being used to overcome the delivery bottleneck. Previously, we reported a novel dendritic conjugate that can be appended efficiently to oligonucleotides, allowing them to bind albumin with nanomolar affinity. Here, we explore the ability of this novel albumin-binding conjugate to improve the delivery of siRNA in vivo. We demonstrate that the conjugate binds albumin exclusively in circulation and extravasates to various organs, enabling effective gene silencing. Notably, we show that the conjugate achieves a balance between hydrophobicity and safety, as it significantly reduces the side effects associated with siRNA interactions with blood components, which are commonly observed in some hydrophobically conjugated siRNAs. In addition, it reduces siRNA monocyte uptake, which may lead to cytokine/inflammatory responses. This work showcases the potential of using this dendritic conjugate as a selective albumin binding handle for the effective and safe delivery of nucleic acid therapeutics. We envision that these properties may pave the way for new opportunities to overcome delivery hurdles of oligonucleotides in future applications.
Collapse
Affiliation(s)
- Hassan H. Fakih
- Department of Chemistry, McGill University, Montreal, QC H3A 0B8, Canada
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Qi Tang
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Ashley Summers
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Minwook Shin
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- College of Pharmacy, Sookmyung Women’s University, Yongsan-gu, Seoul, Korea
| | - Julianna E. Buchwald
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Rosemary Gagnon
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Vignesh N. Hariharan
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Dimas Echeverria
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - David A. Cooper
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Jonathan K. Watts
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Anastasia Khvorova
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Hanadi F. Sleiman
- Department of Chemistry, McGill University, Montreal, QC H3A 0B8, Canada
| |
Collapse
|
3
|
Wu B, Yu J, Luo Y, Wu L, Zhang Z, Deng L. An Albumin-Enriched Nanocomplex Achieves Systemic Delivery of Clopidogrel Bisulfate to Ameliorate Renal Ischemia Reperfusion Injury in Rats. Mol Pharm 2022; 19:3934-3947. [PMID: 36067352 DOI: 10.1021/acs.molpharmaceut.2c00401] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein, an albumin-enriched nanocomplex was developed for the solubilization and intravascular administration of clopidogrel bisulfate (CLP). In particular, CLP nanoparticles (HS-CLP-NPs) were synthesized via an improved nab-technology method using Solutol HS-15, and bovine serum albumin (BSA) was further enriched on the nanoparticle surface forming a protein corona (BH-CLP-NPs). BH-CLP-NPs displayed an average size of 163.4 ± 10.5 nm, a zeta potential of 1.85 ± 0.03 mV, an encapsulation efficiency of 99.9%, and a drug loading capacity of 32.9%. The cumulative release of CLP from BH-CLP-NPs reached about 60% within 168 h. The pharmacokinetic study on the CLP metabolite indicated that the BSA-enriched nanoparticle showed greater in vivo exposure. Pharmacodynamic studies in the renal ischemia/reperfusion injury rat model further demonstrated the renal protective effect of systemically administered BH-CLP-NPs against acute kidney injury with significantly downregulated blood urea nitrogen and creatinine levels. Overall, the albumin-enriched nanocomplexes offer a neat and efficient strategy for the development of poorly water-soluble drugs to achieve intravascular administration.
Collapse
Affiliation(s)
- Bangqing Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.,Guiyang Public Health Clinical Center, Guiyang 550000, China
| | - Jiaojiao Yu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yiting Luo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.,College of Pharmacy, Southwest Minzu University, Chengdu 610041, China
| | - Lijun Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhirong Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Li Deng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
4
|
Vita GM, De Simone G, De Marinis E, Nervi C, Ascenzi P, di Masi A. Serum albumin and nucleic acids biodistribution: from molecular aspects to biotechnological applications. IUBMB Life 2022; 74:866-879. [PMID: 35580148 DOI: 10.1002/iub.2653] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/06/2022] [Indexed: 11/06/2022]
Abstract
Serum albumin (SA) is the most abundant protein in plasma and represents the main carrier of endogenous and exogenous compounds. Several evidence supports the notion that SA binds single and double stranded deoxy- and ribonucleotides at two sites, with values of the dissociation equilibrium constant (i.e., Kd ) ranging from micromolar to nanomolar values. This can be relevant from a physiological and pathological point of view as in human plasma circulate cell-free nucleic acids (cfNAs), which are single and double stranded NAs released by different tissues via apoptosis, necrosis, and secretions. Albeit SA shows low hydrolytic reactivity toward DNA and RNA, the high plasma concentration of this protein and the occurrence of several SA receptors may be pivotal for sequestering and hydrolyzing cfNAs. Therefore, pathological conditions like cancer, characterized by altered levels of human SA or by altered SA post-translational modifications, may influence cfNAs distribution and metabolism. Besides, the stability, solubility, biocompatibility, and low immunogenicity make SA a golden share for biotechnological applications related to the delivery of therapeutic NAs (TNAs). Indeed, pre-clinical studies report the therapeutic potential of SA:TNAs complexes in precision cancer therapy. Here, the molecular and biotechnological implications of SA:NAs interaction are discussed, highlighting new perspectives into SA plasmatic functions. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Gian Marco Vita
- Department of Science, Section of Biomedical Sciences and Technologies, Roma Tre University, Roma, Italy
| | - Giovanna De Simone
- Department of Science, Section of Biomedical Sciences and Technologies, Roma Tre University, Roma, Italy
| | - Elisabetta De Marinis
- Department of Medical and Surgical Sciences and Biotechnologies, University of Roma "La Sapienza", Latina, Italy
| | - Clara Nervi
- Department of Medical and Surgical Sciences and Biotechnologies, University of Roma "La Sapienza", Latina, Italy
| | - Paolo Ascenzi
- Department of Science, Section of Biomedical Sciences and Technologies, Roma Tre University, Roma, Italy.,Accademia Nazionale dei Lincei, Roma, Italy
| | - Alessandra di Masi
- Department of Science, Section of Biomedical Sciences and Technologies, Roma Tre University, Roma, Italy
| |
Collapse
|
5
|
Bai Z, Xu Y, Gu M, Cai W, Zhang Y, Qin Y, Chen R, Sun Y, Wu Y, Wang Z. Proteomic analysis of coarse and fine skin tissues of Liaoning cashmere goat. Funct Integr Genomics 2022; 22:503-513. [PMID: 35366687 DOI: 10.1007/s10142-022-00856-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 03/08/2022] [Accepted: 03/22/2022] [Indexed: 11/04/2022]
Abstract
Proteomics is the study of all proteins expressed by a cell or even an organism. However, knowledge of proteins that regulate the fineness of cashmere is limited. Liaoning cashmere goat (LCG) is a valuable genetic resource of China. The skin samples of Liaoning cashmere goats during the growing period were collected, performed tandem mass tag (TMT) method, and identified 117 differentially expressed proteins in CT_LCG (course type) and FT_LCG (fine type). To verify proteins differentially expressed in LCG, we performed PRM validation on three candidate proteins (ALB, SDC1, and ITGB4) in CT-LCG and FT-LCG. Furthermore, primary metabolic process and lysosome are most enriched in the GO and KEGG pathways, respectively. In addition, we also derived a protein-protein interaction (PPI) regulatory network from the perspective of bioinformatics. This study sought to elucidate the molecular mechanism of differential proteins regulating cashmere fineness of Liaoning cashmere goats by using TMT quantitative proteomics analysis. Differentially expressed proteins ALB and SDC1 may regulate cashmere fineness; ITGB4 can become a promising protein for further study. They can be used as key proteins to lay a foundation for studying cashmere fineness of Liaoning cashmere goats.
Collapse
Affiliation(s)
- Zhixian Bai
- College of Animal Science &Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yanan Xu
- College of Animal Science &Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Ming Gu
- College of Animal Science &Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Weidong Cai
- College of Animal Science &Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yu Zhang
- College of Animal Science &Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yuting Qin
- College of Animal Science &Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Rui Chen
- College of Animal Science &Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yinggang Sun
- College of Animal Science &Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yanzhi Wu
- College of Animal Science &Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Zeying Wang
- College of Animal Science &Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
6
|
Prajapati R, Somoza Á. Albumin Nanostructures for Nucleic Acid Delivery in Cancer: Current Trend, Emerging Issues, and Possible Solutions. Cancers (Basel) 2021; 13:3454. [PMID: 34298666 PMCID: PMC8304767 DOI: 10.3390/cancers13143454] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/29/2021] [Accepted: 07/07/2021] [Indexed: 12/14/2022] Open
Abstract
Cancer is one of the major health problems worldwide, and hence, suitable therapies with enhanced efficacy and reduced side effects are desired. Gene therapy, involving plasmids, small interfering RNAs, and antisense oligonucleotides have been showing promising potential in cancer therapy. In recent years, the preparation of various carriers for nucleic acid delivery to the tumor sites is gaining attention since intracellular and extracellular barriers impart major challenges in the delivery of naked nucleic acids. Albumin is a versatile protein being used widely for developing carriers for nucleic acids. It provides biocompatibility, tumor specificity, the possibility for surface modification, and reduces toxicity. In this review, the advantages of using nucleic acids in cancer therapy and the challenges associated with their delivery are presented. The focus of this article is on the different types of albumin nanocarriers, such as nanoparticles, polyplexes, and nanoconjugates, employed to overcome the limitations of the direct use of nucleic acids in vivo. This review also highlights various approaches for the modification of the surface of albumin to enhance its transfection efficiency and targeted delivery in the tumor sites.
Collapse
Affiliation(s)
| | - Álvaro Somoza
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Faraday 9, 28049 Madrid, Spain;
| |
Collapse
|
7
|
Chow MYT, Qiu Y, Liao Q, Kwok PCL, Chow SF, Chan HK, Lam JKW. High siRNA loading powder for inhalation prepared by co-spray drying with human serum albumin. Int J Pharm 2019; 572:118818. [PMID: 31678379 DOI: 10.1016/j.ijpharm.2019.118818] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/25/2019] [Accepted: 10/20/2019] [Indexed: 01/09/2023]
Abstract
The development of small interfering RNA (siRNA) formulation for pulmonary delivery is a key to the clinical translation of siRNA therapeutics for the treatment of respiratory diseases. Most inhalable siRNA powder formulations published to date were limited by the siRNA content which was often too low to be clinically relevant. This study aimed to prepare inhalable siRNA powder formulations that contained high siRNA loading of over 6% w/w by spray drying, with human serum albumin (HSA) investigated as a dispersion enhancer to improve the aerosol performance. The effect of siRNA, HSA and solute concentrations in the formulations were evaluated systemically using factorial analyses. All the spray dried siRNA powders exhibited excellent aerosol performance with fine particle fraction (FPF) consistently over 50% in all the formulations. An enrichment of HSA on the particle surface was observed. Surface corrugation was more prominent as HSA composition increased. Importantly, the bioactivity of siRNA was successfully preserved upon spray drying as demonstrated in the in vitro transfection study, and up to 78% of intact siRNA retained in the spray dried powder. Overall, HSA is an effective dispersion enhancer and spray drying is an appropriate technique to produce inhalable dry powder with high siRNA loading for further investigation.
Collapse
Affiliation(s)
- Michael Y T Chow
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong; Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and Health, Pharmacy and Bank Building A15, The University of Sydney, NSW 2006, Australia
| | - Yingshan Qiu
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong
| | - Qiuying Liao
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong
| | - Philip C L Kwok
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and Health, Pharmacy and Bank Building A15, The University of Sydney, NSW 2006, Australia
| | - Shing Fung Chow
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong
| | - Hak-Kim Chan
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and Health, Pharmacy and Bank Building A15, The University of Sydney, NSW 2006, Australia
| | - Jenny K W Lam
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong.
| |
Collapse
|
8
|
G3BP1 knockdown sensitizes U87 glioblastoma cell line to Bortezomib by inhibiting stress granules assembly and potentializing apoptosis. J Neurooncol 2019; 144:463-473. [DOI: 10.1007/s11060-019-03252-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/25/2019] [Indexed: 12/31/2022]
|
9
|
Yalcin E, Kara G, Celik E, Pinarli FA, Saylam G, Sucularli C, Ozturk S, Yilmaz E, Bayir O, Korkmaz MH, Denkbas EB. Preparation and characterization of novel albumin-sericin nanoparticles as siRNA delivery vehicle for laryngeal cancer treatment. Prep Biochem Biotechnol 2019; 49:659-670. [DOI: 10.1080/10826068.2019.1599395] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Eda Yalcin
- Nanoscience and Nanomedicine Division, Hacettepe University, Ankara, Turkey
| | - Goknur Kara
- Department of Chemistry, Biochemistry Division, Hacettepe University, Ankara, Turkey
| | - Ekin Celik
- Bioengineering Division, Hacettepe University, Ankara, Turkey
| | - Ferda Alpaslan Pinarli
- Department of Stem Cell and Genetic Diagnostic Center, Diskapi Yildirim Beyazit Training and Research Hospital, Ankara, Turkey
| | - Guleser Saylam
- Department of Otolaryngology, Head and Neck Surgery, Diskapi Yildirim Beyazit Training and Research Hospital, Ankara, Turkey
| | - Ceren Sucularli
- Department of Bioinformatics, Institute of Health Sciences, Hacettepe University, Ankara, Turkey
| | - Serhat Ozturk
- Department of Chemistry, Biochemistry Division, Hacettepe University, Ankara, Turkey
| | - Esin Yilmaz
- Advanced Technologies Application& Research Center, Hacettepe University, Ankara, Turkey
| | - Omer Bayir
- Department of Otolaryngology, Head and Neck Surgery, Diskapi Yildirim Beyazit Training and Research Hospital, Ankara, Turkey
| | - Mehmet Hakan Korkmaz
- Department of Otolaryngology, Head and Neck Surgery, Yildirim Beyazit University Medical School, Ankara, Turkey
| | - Emir Baki Denkbas
- Department of Chemistry, Biochemistry Division, Hacettepe University, Ankara, Turkey
- Faculty of Engineering, Department of Biomedical Engineering, Başkent University, Ankara, Turkey
| |
Collapse
|
10
|
Cheng WJ, Chen LC, Ho HO, Lin HL, Sheu MT. Stearyl polyethylenimine complexed with plasmids as the core of human serum albumin nanoparticles noncovalently bound to CRISPR/Cas9 plasmids or siRNA for disrupting or silencing PD-L1 expression for immunotherapy. Int J Nanomedicine 2018; 13:7079-7094. [PMID: 30464460 PMCID: PMC6220435 DOI: 10.2147/ijn.s181440] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
PURPOSE In this study, a double emulsion method for complexing plasmids with stearyl poly-ethylenimine (stPEI) as the core to form human serum albumin (HSA) (plasmid/stPEI/HSA) nanoparticles (NPs) was developed for gene delivery by non-covalently binding onto plasmid/stPEI/HSA nanoparticles with CRISPR/Cas9 or siRNA, which disrupts or silences the expression of programmed cell death ligand-1 (PD-L1) for immunotherapy. MATERIALS AND METHODS Chemically synthesized stearyl-polyethyenimine (stPEI)/plasmids/HSA nanoparticles were maded by double emulsion method. They were characterized by dynamic light scattering (DLS), transmission electron microscope and also evaluated by in vitro study on CT 26 cells. RESULTS stPEI was synthesized by an N-(3-dimethylaminopropyl)-N-ethylcarbodiimide hydrochloride (EDC)-N-hydroxysuccinimide (NHS) reaction, and we found that the degree of substitution was ~1.0 when the ratio of PEI to stearic acid was 1:7 in the reaction. Then, two sgRNA sequences were selected and evaluated for their ability to knock out PD-L1 by decreasing its expression by about 20%. Based on the trend of particle size/zeta potential values as a function of ratio, F25P1 containing 25 μg of plasmid/stPEI/HSA NPs noncovalently bound to 1 μg plasmids via charge-charge interactions was found to be optimal. Its particle size was about 202.7±4.5 nm, and zeta potential was 12.60±0.15 mV. In an in vitro study, these NPs showed little cytotoxicity but high cellular uptake. Moreover, they revealed the potential for transfection and PD-L1 knockout in an in vitro cell model. Furthermore, F25P1S0.5 containing 25 μg of plasmid/stPEI/HSA NPs noncovalently bound to 1 μg of plasmids and 0.5 μg siRNA was prepared to simultaneously deliver plasmids and siRNA. An in vitro study demonstrated that the siRNA did not interfere with the transfection of plasmids and showed a high-transfection efficiency with a synergistic effect on inhibition of PD-L1 expression by 21.95%. CONCLUSION The plasmids/stPEI/HSA NPs could be a promising tool for gene delivery and improved immunotherapy.
Collapse
Affiliation(s)
- Wei-Jie Cheng
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan,
| | - Ling-Chun Chen
- Department of Biotechnology and Pharmaceutical Technology, Yuanpei University of Medical Technology, Hsinchu, Taiwan
| | - Hsiu-O Ho
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan,
| | - Hong-Liang Lin
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan,
| | - Ming-Thau Sheu
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan,
| |
Collapse
|
11
|
Liu N, Qi YH, Cheng CT, Yang WB, Malhotra A, Zhou Q. Potential of siRNA-albumin complex against cancer. Chem Biol Interact 2018; 295:93-96. [PMID: 29709588 DOI: 10.1016/j.cbi.2018.04.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 04/20/2018] [Accepted: 04/24/2018] [Indexed: 02/06/2023]
Abstract
RNA interference is a highly specific as well as efficient technology for gene therapy application in molecular oncology. The present study was planned to develop an efficient and stable tumor selective delivery mechanism for siRNA gene therapy for the purpose of both diagnosis as well as therapy. We have used 20 Male wistar rats for the formation of colon cancer model and utilized albumin as carrier molecule for the delivery of siRNA against vascular endothelial growth factor receptor 2 (VEGF R2). The study results confirmed efficient delivery of siRNA at tumor site as confirmed by tagging of siRNA-albumin complex with 99mTC. Moreover, the expression of VEGF also showed decline after efficient delivery of siRNA at tumor site. The study concluded that albumin is an efficient molecule for the efficient delivery of siRNA at tumor sites.
Collapse
Affiliation(s)
- Na Liu
- Department of Ultrasound, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Yan-Hua Qi
- Department of Ultrasound, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Chuan-Tao Cheng
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Wen Bin Yang
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | | | - Qi Zhou
- Department of Ultrasound, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China.
| |
Collapse
|
12
|
Zhang Y, Sun T, Jiang C. Biomacromolecules as carriers in drug delivery and tissue engineering. Acta Pharm Sin B 2018; 8:34-50. [PMID: 29872621 PMCID: PMC5985630 DOI: 10.1016/j.apsb.2017.11.005] [Citation(s) in RCA: 268] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/05/2017] [Accepted: 10/07/2017] [Indexed: 12/14/2022] Open
Abstract
Natural biomacromolecules have attracted increased attention as carriers in biomedicine in recent years because of their inherent biochemical and biophysical properties including renewability, nontoxicity, biocompatibility, biodegradability, long blood circulation time and targeting ability. Recent advances in our understanding of the biological functions of natural-origin biomacromolecules and the progress in the study of biological drug carriers indicate that such carriers may have advantages over synthetic material-based carriers in terms of half-life, stability, safety and ease of manufacture. In this review, we give a brief introduction to the biochemical properties of the widely used biomacromolecule-based carriers such as albumin, lipoproteins and polysaccharides. Then examples from the clinic and in recent laboratory development are summarized. Finally the current challenges and future prospects of present biological carriers are discussed.
Collapse
Key Words
- ABD, albumin binding domain
- ACM, aclacinomycin
- ACS, absorbable collagen sponge
- ADH, adipic dihydrazide
- ART, artemisinin
- ASF, Antheraea mylitta silk fibroin
- ATRA, all-trans retinoic acid
- ATS, artesunate
- BCEC, brain capillary endothelial cells
- BMP-2, bone morphogenetic protein-2
- BSA, bovine serum albumin
- BSF, Bombyx mori silk fibroin
- Biomacromolecule
- CC-HAM, core-crosslinked polymeric micelle based hyaluronic acid
- CD, cyclodextrin
- CD-NPs, amphiphilic MMA–tBA β-CD star copolymers that are capable of forming nanoparticles
- CD-g-CS, chitosan grafted with β-cyclodextrin
- CD/BP, cyclodextrin–bisphosphonate complexes
- CIA, collagen-induced arthritis
- CM, collagen matrices
- CMD-ChNP, carboxylmethyl dextran chitosan nanoparticle
- DHA, dihydroartesunate
- DOXO-EMCH, (6-maleimidocaproyl)hydrazone derivative of doxorubicin
- DOX–TRF, doxorubincin–transferrin conjugate
- DTX-HPLGA, HA coated PLGA nanoparticulate docetaxel
- Drug delivery
- ECM, extracellular matrix
- EMT, epithelial mesenchymal transition
- EPR, enhanced permeability and retention
- FcRn, neonatal Fc receptor
- GAG, glycosaminoglycan
- GC-DOX, glycol–chitosan–doxorubicin conjugate
- GDNF, glial-derived neurotrophic factor
- GO, grapheme oxide
- GSH, glutathione
- Gd, gadolinium
- HA, hyaluronic acid
- HA-CA, catechol-modified hyaluronic acid
- HCF, heparin-conjugated fibrin
- HDL, high density lipoprotein
- HEK, human embryonic kidney
- HSA, human serum albumin
- IDL, intermediate density lipoprotein
- INF, interferon
- LDL, low density lipoprotein
- LDLR, low density lipoprotein receptor
- LDV, leucine–aspartic acid–valine
- LMWH, low molecular weight heparin
- MSA, mouse serum albumin
- MTX–HSA, methotrexate–albumin conjugate
- NIR, near-infrared
- NSCLC, non-small cell lung cancer
- OP-Gel-NS, oxidized pectin-gelatin-nanosliver
- PEC, polyelectrolyte
- PTX, paclitaxel
- Polysaccharide
- Protein
- RES, reticuloendothelial system
- RGD, Arg–Gly–Asp peptide
- SF, silk fibroin
- SF-CSNP, silk fibroin modified chitosan nanoparticle
- SFNP, silk fibroin nanoparticle
- SPARC, secreted protein acidic and rich in cysteine
- TRAIL, tumor-necrosis factor-related apoptosis-inducing ligand
- Tf, transferrin
- TfR, transferrin receptor
- Tissue engineering
- VEGF, vascular endothelial growth factor
- VLDL, very low density lipoprotein
- pDNA, plasmid DNA
- rHDL, recombinant HDL
- rhEGF-2/HA, recombinant human fibroblast growth factor type 2 in a hyaluronic acid carrier
Collapse
Affiliation(s)
| | | | - Chen Jiang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 200032, China
| |
Collapse
|
13
|
Kudarha RR, Sawant KK. Albumin based versatile multifunctional nanocarriers for cancer therapy: Fabrication, surface modification, multimodal therapeutics and imaging approaches. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 81:607-626. [DOI: 10.1016/j.msec.2017.08.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 07/13/2017] [Accepted: 08/02/2017] [Indexed: 12/30/2022]
|
14
|
Zhao MX, Zhu BJ. The Research and Applications of Quantum Dots as Nano-Carriers for Targeted Drug Delivery and Cancer Therapy. NANOSCALE RESEARCH LETTERS 2016; 11:207. [PMID: 27090658 PMCID: PMC4835414 DOI: 10.1186/s11671-016-1394-9] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 04/04/2016] [Indexed: 05/10/2023]
Abstract
Quantum dots (QDs), nano-carriers for drugs, can help realize the targeting of drugs, and improve the bioavailability of drugs in biological fields. And, a QD nano-carrier system for drugs has the potential to realize early detection, monitoring, and localized treatments of specific disease sites. In addition, QD nano-carrier systems for drugs can improve stability of drugs, lengthen circulation time in vivo, enhance targeted absorption, and improve the distribution and metabolism process of drugs in organization. So, the development of QD nano-carriers for drugs has become a hotspot in the fields of nano-drug research in recent years. In this paper, we review the advantages and applications of the QD nano-carriers for drugs in biological fields.
Collapse
Affiliation(s)
- Mei-Xia Zhao
- Key Laboratory of Natural Medicine and Immune Engineering, Henan University, Kaifeng, 475004, China.
| | - Bing-Jie Zhu
- Key Laboratory of Natural Medicine and Immune Engineering, Henan University, Kaifeng, 475004, China
| |
Collapse
|
15
|
Xie L, Tan Y, Wang Z, Liu H, Zhang N, Zou C, Liu X, Liu G, Lu J, Zheng H. ε-Caprolactone-Modified Polyethylenimine as Efficient Nanocarriers for siRNA Delivery in Vivo. ACS APPLIED MATERIALS & INTERFACES 2016; 8:29261-29269. [PMID: 27574860 DOI: 10.1021/acsami.6b08542] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
RNA interference (RNAi) therapy is a promising treatment for various diseases. However, its application is still restricted by the lack of efficient and safe delivery systems. A novel siRNA delivery vehicle based on ε-caprolactone-modified polyethylenimine (PEI-CL) is presented here. The PEI-CL macromolecules with different grafting degrees were synthesized via a simple ring-opening reaction. This macromolecule strongly protects the siRNA from degradation in serum and promotes the cellular uptake and endosomal escape detected via chemical exchange saturation transfer magnetic resonance analysis and fluorescence imaging. The in vivo measurement was performed with HCT-116 colon tumor xenograft that stably expressed luciferase. The data showed that the PEI-CL/siRNA nanocomplexes elicited strong RNAi response. More interestingly, enhanced gene transfection efficiency was achieved by simultaneous cotransfection with siRNA and DNA plasmid via this novel nanosystem. Overall, our study suggests the PEI-CL macromolecule with great promise for siRNA delivery.
Collapse
Affiliation(s)
- Lisi Xie
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055, P.R. China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University , Xiamen 361102, P.R. China
- Department of Chemical and Biomolecular Engineering and Institute for NanoBio Technology, The Johns Hopkins University , 3400 N Charles Street, Baltimore, Maryland 21218, United States
| | - Yan Tan
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055, P.R. China
| | - Zhiyong Wang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055, P.R. China
| | - Hong Liu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055, P.R. China
- School of Chemical Engineering and Light Industry, Guangdong University of Technology , Guangzhou, Guangdong 510006, P.R. China
| | - Na Zhang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055, P.R. China
| | - Chao Zou
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055, P.R. China
| | - Xin Liu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055, P.R. China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University , Xiamen 361102, P.R. China
| | - Jian Lu
- National Engineering Research Center for Biomaterials, Sichuan University , Chengdu 610064, P.R. China
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055, P.R. China
| |
Collapse
|