1
|
Mostafa M, Disouky A, Lazarov O. Therapeutic modulation of neurogenesis to improve hippocampal plasticity and cognition in aging and Alzheimer's disease. Neurotherapeutics 2025; 22:e00580. [PMID: 40180804 PMCID: PMC12047516 DOI: 10.1016/j.neurot.2025.e00580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/14/2025] [Accepted: 03/17/2025] [Indexed: 04/05/2025] Open
Abstract
Alzheimer's disease is characterized by progressive memory loss and cognitive decline. The hippocampal formation is the most vulnerable brain area in Alzheimer's disease. Neurons in layer II of the entorhinal cortex and the CA1 region of the hippocampus are lost at early stages of the disease. A unique feature of the hippocampus is the formation of new neurons that incorporate in the dentate gyrus of the hippocampus. New neurons form synapses with neurons in layer II of the entorhinal cortex and with the CA3 region. Immature and new neurons are characterized by high level of plasticity. They play important roles in learning and memory. Hippocampal neurogenesis is impaired early in mouse models of Alzheimer's disease and in human patients. In fact, neurogenesis is compromised in mild cognitive impairment (MCI), suggesting that rescuing neurogenesis may restore hippocampal plasticity and attenuate neuronal vulnerability and memory loss. This review will discuss the current understanding of therapies that target neurogenesis or modulate it, for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Mostafa Mostafa
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Ahmed Disouky
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Orly Lazarov
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
2
|
Liu H, Yu Y, Qin Y, Han B. PBPK modelling for the evaluation of drug-drug interaction between meropenem and valproic acid. Br J Clin Pharmacol 2025; 91:1198-1207. [PMID: 39578702 DOI: 10.1111/bcp.16350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 11/01/2024] [Accepted: 11/06/2024] [Indexed: 11/24/2024] Open
Abstract
AIMS The present study aimed to quantitatively investigate the potential drug-drug interaction (DDI) mechanism between meropenem (MEPM) and valproic acid (VPA). METHODS In the present study, we firstly developed a physiologically based pharmacokinetic (PBPK) model of MEPM and VPA. The verified PBPK model was then used to quantitatively investigate the potential DDI between MEPM and VPA. The effect of genetic polymorphisms of acylpeptide hydrolase (APEH) on DDI was also evaluated. RESULTS In our simulation, the plasma concentration of hydrolysate of VPAG decreased to 63% when combined with MEPM. Total plasma concentration of VPA before carbapenem use was 53.61 mg/L, whereas it was 45.42 mg/L during carbapenem use. The inhibition of hydrolysis of VPAG by MEPM alone could not result in a rapid and substantial decrease in the plasma concentration of VPA. Parameter sensitivity analysis showed that the changes of absorption played an important role in the maximum plasma concentration (Cmax) of VPA, whereas area under the plasma concentration-time profile (AUC) was more susceptible to elimination changes. In addition, a decrease in APEH activity had little impact on the plasma pharmacokinetics of VPA. CONCLUSIONS The DDI between MEPM and VPA might be a comprehensive result of multiple factors. On the basis of our simulation, interval medication of MEPM injection and VPA immediate release tablet at 4-6 h timed interval was recommended, or intravenous administration of VPA solution was preferred when combination regimen was necessary in a clinical setting.
Collapse
Affiliation(s)
- Hongrui Liu
- Department of Pharmacy, Minhang Hospital, Fudan University, Shanghai, China
| | - Yiqun Yu
- Department of Pharmacy, Minhang Hospital, Fudan University, Shanghai, China
| | - Yulin Qin
- Department of Pharmacy, Minhang Hospital, Fudan University, Shanghai, China
| | - Bing Han
- Department of Pharmacy, Minhang Hospital, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Sarawi WS, Alhusaini AM, Barwaished GS, Altamimi MM, Hasan IH, Aljarboa AS, Algarzae NK, Bakheet SA, Alhabardi SA, Ahmad SF. Indole-3-acetic acid and chenodeoxycholic acid attenuate TLR4/NF-κB signaling and endoplasmic reticulum stress in valproic acid-induced neurotoxicity. Front Pharmacol 2025; 16:1570125. [PMID: 40196372 PMCID: PMC11973296 DOI: 10.3389/fphar.2025.1570125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Accepted: 03/06/2025] [Indexed: 04/09/2025] Open
Abstract
Valproic acid (VA) is a commonly prescribed medication for epilepsy and other neurological conditions. Although effective, VA use can lead to neurotoxicity, especially with chronic use. This study aimed to investigate the potential neuroprotective properties of indole-3-acetic acid (IAA) and chenodeoxycholic acid (CDCA) in an animal model of VA-induced brain injury. Rats received intraperitoneal injections of VA at a dose of 500 mg/kg/day for 3 weeks. Concurrently, they were orally treated with IAA (40 mg/kg/day) and/or CDCA (90 mg/kg/day). The results showed significantly increased oxidative stress and inflammation markers in the VA-exposed group indicated by the reduced levels of glutathione (GSH, P < 0.0001) and superoxide dismutase (SOD, P < 0.01) and the elevated inflammatory cytokines Interleukin-6 (IL-6, P < 0.0001) and tumor necrosis factor-alpha (TNFα, P < 0.01). VA also induced nuclear factor kappa B (NF-κB, P < 0.01), toll-like receptor 4 (TLR4, P < 0.05), and endoplasmic reticulum (ER) stress markers, as evidenced by increased immunoreactivity of GRP78 (glucose-regulated protein 78, P < 0.0001), transcription factor 6 (ATF-6, P < 0.05) and CHOP (C/EBP homologous protein, P < 0.0001). Treatment with IAA or CDCA attenuated VA-induced neurotoxicity, to a variable extent, by improving oxidative, inflammatory, and ER stress markers. This study demonstrates that IAA and CDCA exert protective effects against VA-induced neurotoxicity by mitigating oxidative stress, inflammation, and ER stress. Further investigations are recommended to validate these findings in other neurotoxicity models.
Collapse
Affiliation(s)
- Wedad S. Sarawi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ahlam M. Alhusaini
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | | | | | - Iman H. Hasan
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Amjad S. Aljarboa
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Norah K. Algarzae
- Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Saleh A. Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Samiah A. Alhabardi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sheikh F. Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Dias da Costa M, Nunes Vicente B, Dourado Sotero F, Pavão Martins I. Recurrent Syncope During Migraine Attacks. ACTA MEDICA PORT 2025; 38:182-184. [PMID: 39607362 DOI: 10.20344/amp.22134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/16/2024] [Indexed: 11/29/2024]
Abstract
Migraine is a cyclic condition with attacks consisting mainly of intense headaches, sensory intolerance, and nausea or vomiting. Loss of consciousness during attacks is often attributed exclusively to a neurally mediated reflex to pain, although it may also be due to migraine's autonomic impairment, with cardiac conduction abnormalities, probably in relation to a degree of reduced sympathetic function. We report the case of a 51-year-old woman presenting episodes of syncope exclusively after vomiting during migraine attacks. A 24-hour Holter monitoring performed during a migraine attack disclosed an intermittent complete atrioventricular block coincident with an episode of syncope. The patient was implanted with a pacemaker without further syncopes on subsequent attacks. This case highlights the importance of clinical suspicion and investigation of syncope during migraine attacks. Recurrent syncope during migraine should not be attributed to pain to avoid misdiagnosis and ensure the treatment of other important causes of syncope.
Collapse
Affiliation(s)
- Mariana Dias da Costa
- Service of Neurology. Department of Neurosciences and Mental Health. Hospital de Santa Maria. Unidade Local de Saúde Santa Maria. Lisbon. Portugal
| | - Beatriz Nunes Vicente
- Service of Neurology. Department of Neurosciences and Mental Health. Hospital de Santa Maria. Unidade Local de Saúde Santa Maria. Lisbon. Portugal
| | - Filipa Dourado Sotero
- Service of Neurology. Department of Neurosciences and Mental Health. Hospital de Santa Maria. Unidade Local de Saúde Santa Maria. Lisbon; Centro de Estudos Egas Moniz. Faculdade de Medicina. Universidade de Lisboa. Lisbon; Faculty of Medicine. Universidade de Lisboa. Lisbon. Portugal
| | - Isabel Pavão Martins
- Service of Neurology. Department of Neurosciences and Mental Health. Hospital de Santa Maria. Unidade Local de Saúde Santa Maria. Lisbon; Centro de Estudos Egas Moniz. Faculdade de Medicina. Universidade de Lisboa. Lisbon; Faculty of Medicine. Universidade de Lisboa. Lisbon. Portugal
| |
Collapse
|
5
|
Kadam R, Palkar M, Pingili RB. Mechanisms involved in the valproic acid-induced hepatotoxicity: a comprehensive review. Toxicol Mech Methods 2025:1-16. [PMID: 39871487 DOI: 10.1080/15376516.2025.2459176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 01/29/2025]
Abstract
Adverse drug reactions (ADR) remain a challenge in modern healthcare, particularly given the increasing complexity of therapeutics. An anticonvulsant medicine which is frequently used in treatment of epilepsy and other neurological conditions is valproic acid (VPA), is frequently associated with hepatotoxicity, a severe ADR that complicates its clinical use, which can take two different forms: Type I, which is defined by dose-dependent and reversible liver damage, and Type II, an idiosyncratic reaction that can result in severe liver failure, frequently complicates its clinical application. Oxidative stress, the creation of reactive metabolites, mitochondrial dysfunction, carnitine shortage, immune-mediated reactions, glutathione depletion, and blockage of the bile salt export pump (BSEP) are some of the numerous underlying mechanisms of VA-induced hepatic damage. The production of reactive oxygen species and the liver's antioxidant protection are out of balance as a cause of oxidative stress, which is a significant factor in VPA intoxication. VPA can also accelerate the build-up of fatty acids, which increases the risk of steatosis, due to its interaction with the metabolism of carnitine. Immune-mediated processes have been shown to increase liver injury, implying that the immunity system may possibly be involved in VPA hepatotoxicity. Hepatocyte injury and cholestasis are caused by BSEP inhibition, which impairs bile flow. The complex interaction between biochemical and cellular mechanisms that underlie valproic acid's hepatotoxic potential calls for additional research to clarify the precise pathways implicated and create mitigation techniques for this ADR.
Collapse
Affiliation(s)
- Rohan Kadam
- Department of Pharmacology, SVKM's NMIMS School of Pharmacy and Technology Management, Babulde, Shirpur, India
| | - Mahesh Palkar
- Department of Pharmaceutical Chemistry, SVKM's NMIMS Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, Mumbai, India
| | - Ravindra Babu Pingili
- Department of Pharmacology, SVKM's NMIMS School of Pharmacy and Technology Management, Babulde, Shirpur, India
| |
Collapse
|
6
|
Benli ET, Babur E, Dursun N, Saray H, Barutçu Ö, Süer C. Genetic machinery which accompanies metaplasticity operates differentially in experimental model of autism. Int J Dev Neurosci 2025; 85:e10398. [PMID: 39617393 DOI: 10.1002/jdn.10398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/08/2024] [Accepted: 11/19/2024] [Indexed: 12/28/2024] Open
Abstract
The present study investigated metaplasticity-related mRNA expressions in valproic acid (VPA)-rats, focusing on the PI3K/AKT pathway. Wistar dams were treated with a single intraperitoneal injection of 600 mg/kg VPA or saline on embryonic day E12.5 or an equal volume of saline solution. Three behavioral tests were conducted on these males' offspring: grid-walking test, negative geotaxis test, and three-chamber social interaction test. Metaplasticity was induced in 60-day-old male progeny by giving high-frequency stimulation for 5 minutes following low-frequency stimulation to the perforant pathway. For the baseline stimulation protocol (n = 6), stimulation was delivered to the dentate gyrus at the previously determined stimulation intensity (0.33 Hz 0.175 msec 30 s) for 75 min. The percent change of slope of field excitatory postsynaptic potential (fEPSP) and amplitude of population spike were calculated 55-60 min after induction protocol. The mRNA levels of PI3K, PTEN, AKT, GSK-3β, and MAPT were measured in the hippocampus by using quantitative rt-PCR. We found that offspring of VPA-treated rats showed significantly impaired sensorimotor coordination, decreased sociability, impaired preference for social novelty, and reduced input-output curve of fEPSP slope, compared to control animals. Despite a similar metaplastic response, mRNA levels of genes of interest were similar but considerably down-regulated after induction in offspring of VPA-treated dams. Our study provides evidence that the induced expression of autism-related genes has evolved to enable an adaptation mechanism during metaplastic control of long-term potentiation.
Collapse
Affiliation(s)
- Esra Tufan Benli
- Faculty of Medicine, Department of Physiology, Institute of Health Sciences COHE 100/2000 Doctorate Program, Human Brain and Neuroscience Sub-Field, Recites University, Kayseri, Turkey
| | - Ercan Babur
- Physiology Department of Medical School, University of Erciyes, Kayseri, Turkey
| | - Nurcan Dursun
- Physiology Department of Medical School, University of Erciyes, Kayseri, Turkey
| | - Hatice Saray
- Physiology Department of Medical School, University of Erciyes, Kayseri, Turkey
| | - Özlem Barutçu
- Physiology Department of Medical School, University of Erciyes, Kayseri, Turkey
| | - Cem Süer
- Physiology Department of Medical School, University of Erciyes, Kayseri, Turkey
| |
Collapse
|
7
|
Ezhilarasan D, Karthikeyan S, Najimi M, Vijayalakshmi P, Bhavani G, Jansi Rani M. Preclinical liver toxicity models: Advantages, limitations and recommendations. Toxicology 2025; 511:154020. [PMID: 39637935 DOI: 10.1016/j.tox.2024.154020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Experimental animal models are crucial for elucidating the pathophysiology of liver injuries and for assessing new hepatoprotective agents. Drugs and chemicals such as acetaminophen, isoniazid, valproic acid, ethanol, carbon tetrachloride (CCl4), dimethylnitrosamine (DMN), and thioacetamide (TAA) are metabolized by the CYP2E1 enzyme, producing hepatotoxic metabolites that lead to both acute and chronic liver injuries. In experimental settings, acetaminophen (centrilobular necrosis), carbamazepine (centrilobular necrosis and inflammation), sodium valproate (necrosis, hydropic degeneration and mild inflammation), methotrexate (sinusoidal congestion and inflammation), and TAA (centrilobular necrosis and inflammation) are commonly used to induce various types of acute liver injuries. Repeated and intermittent low-dose administration of CCl4, TAA, and DMN activates quiescent hepatic stellate cells, transdifferentiating them into myofibroblasts, which results in abnormal extracellular matrix production and fibrosis induction, more rapidly with DMN and CCL4 than TAA (DMN > CCl4 > TAA). Regarding toxicity and mortality, CCl4 is more toxic than DMN and TAA (CCl4 > DMN > TAA). Models used to induce metabolic dysfunction-associated liver disease (MAFLD) vary, but MAFLD's multifactorial nature driven by factors like obesity, fatty liver, dyslipidaemia, type II diabetes, hypertension, and cardiovascular disease makes it challenging to replicate human metabolic dysfunction-associated steatohepatitis accurately. From an experimental point of view, the degree and pattern of liver injury are influenced by various factors, including the type of hepatotoxic agent, exposure duration, route of exposure, dosage, frequency of administration, and the animal model utilized. Therefore, there is a pressing need for standardized protocols and regulatory guidelines to streamline the selection of animal models in preclinical studies.
Collapse
Affiliation(s)
- Devaraj Ezhilarasan
- Department of Pharmacology, Hepatology and Molecular Medicine Lab, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India.
| | - Sivanesan Karthikeyan
- Department of Pharmacology and Environmental Toxicology, Dr. A.L.M. Postgraduate Institute of Basic Medical Sciences, University of Madras, Chennai, India
| | - Mustapha Najimi
- Laboratory of Pediatric Hepatology and Cell Therapy, Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium
| | - Paramasivan Vijayalakshmi
- Department of Pharmacology and Environmental Toxicology, Dr. A.L.M. Postgraduate Institute of Basic Medical Sciences, University of Madras, Chennai, India; Department of Pharmacology, Asan Memorial Dental College and Hospital, Chengalpattu, Tamil Nadu, India
| | - Ganapathy Bhavani
- Department of Pharmacology and Environmental Toxicology, Dr. A.L.M. Postgraduate Institute of Basic Medical Sciences, University of Madras, Chennai, India; Department of Pharmacology, Meenakshi Ammal Dental College and Hospital, Meenakshi Academy of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Muthukrishnan Jansi Rani
- Department of Pharmacology and Environmental Toxicology, Dr. A.L.M. Postgraduate Institute of Basic Medical Sciences, University of Madras, Chennai, India
| |
Collapse
|
8
|
Aljadeed R, Gilbert BW, Karaze T, Rech MA. Intravenous push administration of anti-seizure medications. Front Neurol 2025; 15:1503025. [PMID: 39931099 PMCID: PMC11807826 DOI: 10.3389/fneur.2024.1503025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 12/30/2024] [Indexed: 02/13/2025] Open
Abstract
Intravenous push (IVP) administration of anti-seizure medications is becoming increasingly popular among emergency departments. IVP administration eliminates the need for compounding and preparation by the pharmacy department, as well as the need to gather infusion materials or set up a patient's tubing and pump, all of which translate to faster drug administration. This is important given the time-sensitive nature of status epilepticus treatment. This review will discuss several anti-seizure medications, including phenytoin, fosphenytoin, valproic acid, levetiracetam, brivaracetam and lacosamide, for which evidence supports the safe and efficacious use of IV push administration.
Collapse
Affiliation(s)
- Raniah Aljadeed
- King Saud University, Riyadh, Saudi Arabia
- King Saud University Medical City, Riyadh, Saudi Arabia
| | - Brian W. Gilbert
- Department of Pharmacy, Wesley Medical Center, Wichita, KS, United States
| | - Tallib Karaze
- Loyola University Medical Center, Maywood, IL, United States
| | - Megan A. Rech
- Center of Innovation for Complex Chronic Healthcare, Edward Hines Jr. VA Hospital, Hines, IL, United States
| |
Collapse
|
9
|
Camussi D, Marchese M, Nicoletti F, Santorelli FM, Ogi A. Valproate-Induced Model of Autism in Adult Zebrafish: A Systematic Review. Cells 2025; 14:109. [PMID: 39851536 PMCID: PMC11764007 DOI: 10.3390/cells14020109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/16/2024] [Accepted: 01/06/2025] [Indexed: 01/26/2025] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by deficits in social skills and the presence of repetitive and restricted behaviors and interests. The social behavior of the zebrafish (Danio rerio) makes this organism a valuable tool for modeling ASD in order to explore the social impairment typical of this disorder. In addition to transgenic models, exposure of zebrafish embryos to valproic acid (VPA) has been found to produce ASD-like symptoms. This review first sets out to examine the existing literature on adult social behavior in the zebrafish VPA-induced model of autism, and the authors also aim to identify the ideal VPA dosage able to induce a persistent and long-lasting ASD-like phenotype while minimizing the suffering and distress of research animals in compliance with the principles of replacement, refinement, and reduction (3Rs).
Collapse
Affiliation(s)
- Diletta Camussi
- IRCCS Stella Maris Foundation, 56128 Pisa, Italy
- Department of Physiology and Pharmacology Vittorio Erspamer, “La Sapienza” University of Rome, 00185 Rome, Italy
| | | | - Ferdinando Nicoletti
- Department of Physiology and Pharmacology Vittorio Erspamer, “La Sapienza” University of Rome, 00185 Rome, Italy
- IRCCS Neuromed, 86077 Isernia, Italy
| | | | - Asahi Ogi
- IRCCS Stella Maris Foundation, 56128 Pisa, Italy
| |
Collapse
|
10
|
Yao N, Zhao Q, Cao Y, Gu D, Zhang N. Prediction Trough Concentrations of Valproic Acid Among Chinese Adult Patients with Epilepsy Using Machine Learning Techniques. Pharm Res 2025; 42:79-91. [PMID: 39843764 DOI: 10.1007/s11095-025-03817-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 01/02/2025] [Indexed: 01/24/2025]
Abstract
OBJECTIVE This study aimed to establish an optimal model based on machine learning (ML) to predict Valproic acid (VPA) trough concentrations in Chinese adult epilepsy patients. METHODS A single-center retrospective study was carried out at the Jinshan Hospital affiliated with Fudan University from January 2022 to December 2023. A total of 102 VPA trough concentrations were split into a derivation cohort and a validation cohort at a ratio of 8:2. Thirteen ML algorithms were developed using 27 variables in the derivation cohort and were filtered by the lowest mean absolute error (MAE) value. In addition, feature selection was applied to optimize the model. RESULTS Ultimately, the extra tree algorithm was chosen to establish the personalized VPA trough concentration prediction model due to its best performance (MAE = 13.08). The SHapley Additive exPlanations (SHAP) plots were used to visualize and rank the importance of features, providing insights into how each feature influences the model's predictions. After feature selection, we found that the model with the top 9 variables [including daily dose, last dose, uric acid (UA), platelet (PLT), combination, gender, weight, albumin (ALB), aspartate aminotransferase (AST)] outperformed the model with 27 variables, with MAE of 6.82, RMSE of 9.62, R2 value of 0.720, relative accuracy (±20%) of 61.90%, and absolute accuracy (±20 mg/L) of 90.48%. CONCLUSION In conclusion, the trough concentration prediction model for VPA in Chinese adult epileptic patients based on the extra tree algorithm demonstrated strong predictive ability which is valuable for clinicians in medication guidance.
Collapse
Affiliation(s)
- Nannan Yao
- Department of Pharmacy, Jinshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Qiongyue Zhao
- Department of Pharmacy, Jinshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Ying Cao
- Department of Pharmacy, Jinshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Dongshi Gu
- Department of Pharmacy, Jinshan Hospital Affiliated to Fudan University, Shanghai, China.
| | - Ning Zhang
- Department of Pharmacy, Jinshan Hospital Affiliated to Fudan University, Shanghai, China.
| |
Collapse
|
11
|
Duan ZH, He CY, Chen J, Jiang JJ, Zhu ZX, Li J, Wang FC. A Clinical Nomogram for Predicting Substandard Serum Valproic Acid Concentrations in Chinese Patients With Epilepsy. CURRENT THERAPEUTIC RESEARCH 2024; 102:100771. [PMID: 39895998 PMCID: PMC11783061 DOI: 10.1016/j.curtheres.2024.100771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 12/15/2024] [Indexed: 02/04/2025]
Abstract
Background It is well-known that substandard serum valproic acid (VPA) concentrations may lead to treatment failure of epilepsy. However, there is still a lack of a quick method to predict whether a patient's serum VPA concentration will reach the standard. Objective The aims of this study were to investigate the factors leading to substandard serum VPA concentrations in Chinese patients with epilepsy and develop a related nomogram for risk prediction. Methods From January 2019 to March 2022, a total of 1143 serum VPA concentrations were collected from 630 hospitalized Chinese patients with epilepsy who were monitored by the Department of Pharmacy of Lu'an People's Hospital, and complete clinical data were collected from the corresponding patients for retrospective analysis. All monitored serum VPA concentrations were further divided into a training cohort and a validation cohort. For the training cohort, serum VPA concentrations below 50 µg/mL and between 50 and 100 µg/mL were classified into the subtherapeutic group and therapeutic group, respectively. The variables were selected from the clinical data, and differences between the variables of the subtherapeutic and therapeutic groups were analyzed. The influencing factors leading to substandard serum VPA concentrations were screened via logistic regression analysis, and the screened influencing factors were used to establish the nomogram prediction model. Results Multivariate logistic regression analysis revealed that the daily dose per unit of body weight (mg/kg/d), route of administration, presence of hepatic lesions, hypoalbuminemia, and combination with carbapenems or barbiturates were independent factors influencing the occurrence of substandard serum VPA concentrations. On the basis of the results of the multivariate logistic regression analysis, a nomogram risk prediction model for substandard serum VPA concentration was established. The values of the C-index and internal verification results indicated that the nomogram model had good accuracy and discrimination. The decision curve revealed that the nomogram that predicted the risk of substandard serum VPA concentration had a greater net benefit value (ranging from 12% to 94%), indicating that the model had a wide prediction interval. Conclusions Our study established a nomogram risk prediction model for substandard serum VPA concentrations in Chinese patients with epilepsy, which can help doctors or patients control the serum VPA concentration within the target concentration range as soon as possible.
Collapse
Affiliation(s)
- Zi-Hao Duan
- Department of Pharmacy, Lu'an Affiliated Hospital of Anhui Medical University & Lu'an People's Hospital, Lu'an, Anhui, China
| | - Chun-Yuan He
- Department of Pharmacy, Lu'an Affiliated Hospital of Anhui Medical University & Lu'an People's Hospital, Lu'an, Anhui, China
| | - Jie Chen
- Department of Pharmacy, Lu'an Affiliated Hospital of Anhui Medical University & Lu'an People's Hospital, Lu'an, Anhui, China
| | - Jun-Jie Jiang
- Department of Pharmacy, Lu'an Affiliated Hospital of Anhui Medical University & Lu'an People's Hospital, Lu'an, Anhui, China
| | - Zhi-Xiang Zhu
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Li
- Department of Pharmacy, Lu'an Affiliated Hospital of Anhui Medical University & Lu'an People's Hospital, Lu'an, Anhui, China
| | - Fa-Cai Wang
- Department of Pharmacy, Lu'an Affiliated Hospital of Anhui Medical University & Lu'an People's Hospital, Lu'an, Anhui, China
| |
Collapse
|
12
|
Yu M, Zhao Y, Zhou F, Li W, Liu J, Zhao L, Song Z, Tong L, Zhang Y, Wang Y, Shang S, Yu A. Effect of UGT1A6 and UGT2B7 polymorphisms on the valproic acid serum concentration and drug-induced liver injury. Pharmacogenomics 2024; 25:527-538. [PMID: 39564784 DOI: 10.1080/14622416.2024.2409061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 09/23/2024] [Indexed: 11/21/2024] Open
Abstract
Aim: Valproic acid (VPA) is a classic broad-spectrum antiepileptic drug, with significant pharmacokinetic variability. Genetic polymorphisms contribute to this variability, influencing both VPA trough serum concentration (VPA concentration) and VPA-induced liver injury. Our study aims to investigate the association between polymorphisms of uridine diphosphate glucuronyl transferase (UGT) 1A6, UGT2B7 and VPA concentration and screen for potential genetic loci affecting VPA-induced liver injury.Methods: This study included epilepsy patients treated with VPA. PCR-RFLP method was used to determine the genotypes of UGT1A6 and UGT2B7. Chemiluminescent microparticle immunoassay was used to measure VPA concentration. Multiple linear regression and logistic regression were employed to analyze factors influencing VPA concentration and VPA-induced liver injury, respectively.Results: The correlation between UGT polymorphism and VPA concentration was analyzed in 133 samples. For VPA-induced liver injury, 105 patients were analyzed, with 29 in the liver injury group and 76 in the control group. Our finding showed patients with the UGT1A6-T19G variant had significantly lower VPA concentrations compared with wild-type patients and UGT1A6-T19G, A541G, A552C and UGT2B7-C802T, G211T, A268G polymorphisms showed no impact on VPA-induced liver injury.Conclusion: This study demonstrated UGT1A6-T19G polymorphisms affected the VPA concentration, providing a theoretical basis for the individualized clinical use of VPA.
Collapse
Affiliation(s)
- Mengchen Yu
- Department of Clinical Pharmacy, General Hospital of Central Theater Command, Wuhan, Hubei Province, 430070, China
| | - Yan Zhao
- Department of Clinical Pharmacy, General Hospital of Central Theater Command, Wuhan, Hubei Province, 430070, China
| | - Fan Zhou
- Department of Clinical Pharmacy, General Hospital of Central Theater Command, Wuhan, Hubei Province, 430070, China
| | - Weiliang Li
- Department of Clinical Pharmacy, General Hospital of Central Theater Command, Wuhan, Hubei Province, 430070, China
| | - Jing Liu
- Department of Clinical Pharmacy, General Hospital of Central Theater Command, Wuhan, Hubei Province, 430070, China
| | - Linlin Zhao
- Department of Clinical Pharmacy, General Hospital of Central Theater Command, Wuhan, Hubei Province, 430070, China
| | - Zhirui Song
- Department of Clinical Pharmacy, General Hospital of Central Theater Command, Wuhan, Hubei Province, 430070, China
| | - Ling Tong
- Department of Clinical Pharmacy, General Hospital of Central Theater Command, Wuhan, Hubei Province, 430070, China
| | - Ying Zhang
- Department of Clinical Pharmacy, General Hospital of Central Theater Command, Wuhan, Hubei Province, 430070, China
| | - Yajuan Wang
- Department of Clinical Pharmacy, General Hospital of Central Theater Command, Wuhan, Hubei Province, 430070, China
| | - Shenglan Shang
- Department of Clinical Pharmacy, General Hospital of Central Theater Command, Wuhan, Hubei Province, 430070, China
| | - Airong Yu
- Department of Clinical Pharmacy, General Hospital of Central Theater Command, Wuhan, Hubei Province, 430070, China
| |
Collapse
|
13
|
Mihailovich M, Tolinački M, Soković Bajić S, Lestarevic S, Pejovic-Milovancevic M, Golić N. The Microbiome-Genetics Axis in Autism Spectrum Disorders: A Probiotic Perspective. Int J Mol Sci 2024; 25:12407. [PMID: 39596472 PMCID: PMC11594817 DOI: 10.3390/ijms252212407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/15/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Autism spectrum disorder (commonly known as autism) is a complex and prevalent neurodevelopmental condition characterized by challenges in social behavior, restricted interests, and repetitive behaviors. It is projected that the annual cost of autism spectrum disorder in the US will reach USD 461 billion by 2025. However, despite being a major public health problem, effective treatment for the underlying symptoms remains elusive. As numerous literature data indicate the role of gut microbiota in autism prognosis, particularly in terms of alleviating gastrointestinal (GI) symptoms, high hopes have been placed on probiotics for autism treatment. Approximately twenty clinical studies have been conducted using single or mixed probiotic cultures. However, unequivocal results on the effect of probiotics on people with autism have not been obtained. The small sample sizes, differences in age of participants, choice of probiotics, dose and duration of treatment, outcome measures, and analytical methods used are largely inconsistent, making it challenging to draw distinctive conclusions. Here, we discuss the experimental evidence for specific gut bacteria and their metabolites and how they affect autism in light of the phenotypic and etiological complexity and heterogeneity. We propose a personalized medicine approach for using probiotics to increase the quality of life of individuals with autism by selecting specific probiotics to improve particular features of the condition.
Collapse
Affiliation(s)
- Marija Mihailovich
- Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, 11042 Belgrade, Serbia; (M.T.); (S.S.B.); (N.G.)
- Human Technopole, 20157 Milan, Italy
| | - Maja Tolinački
- Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, 11042 Belgrade, Serbia; (M.T.); (S.S.B.); (N.G.)
| | - Svetlana Soković Bajić
- Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, 11042 Belgrade, Serbia; (M.T.); (S.S.B.); (N.G.)
| | - Sanja Lestarevic
- Institute of Mental Health, 11000 Belgrade, Serbia; (S.L.); (M.P.-M.)
| | - Milica Pejovic-Milovancevic
- Institute of Mental Health, 11000 Belgrade, Serbia; (S.L.); (M.P.-M.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Nataša Golić
- Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, 11042 Belgrade, Serbia; (M.T.); (S.S.B.); (N.G.)
| |
Collapse
|
14
|
Zhao M, Li G, Zhao L. The role of SIRT1-FXR signaling pathway in valproic acid induced liver injury: a quantitative targeted metabolomic evaluation in epileptic children. Front Pharmacol 2024; 15:1477619. [PMID: 39575388 PMCID: PMC11578826 DOI: 10.3389/fphar.2024.1477619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/23/2024] [Indexed: 11/24/2024] Open
Abstract
Aim This study aimed to gain deeper insights into the hepatotoxicity mechanisms of valproic acid (VPA), as well as to identify potential risk markers for VPA-induced hepatotoxicity. Methods Twenty-two children with epilepsy treated with VPA monotherapy were divided into a normal liver function (NLF) group, a mild abnormal liver function (ANLF1) group, and a serious abnormal liver function (ANLF2) group based on their liver function indicator levels. The full quantitative targeted metabolomics technique was used to systematically investigate how the differential endogenous metabolic components change with the development of liver injury. Results A total of 195 metabolic components were quantitatively analyzed. Nineteen identified metabolites, including five organic acids, four short-chain fatty acids, four amino acids, three fatty acids, and three benzenoids, differed significantly among the three groups, showing a strong association with VPA-induced hepatotoxicity. Only three bile acid metabolites, taurodeoxycholic acid, taurochenodeoxycholic acid, and deoxycholic acid, were significantly different between the ANLF1 and ANLF2 groups, increasing at first and then decreasing with the aggravation of liver injury. The mechanistic evaluation showed that SRT1720 activation could alleviate the severity of liver function abnormalities induced by VPA. Immunocoprecipitation indicated that VPA significantly increased the acetylation level of FXR, and the application of agonist SRT1720 can antagonize the acetylation of FXR by VPA. Conclusion Nineteen identified metabolites showed a strong association with hepatotoxicity and three bile acid metabolites changed with the development of liver injury. The SIRT1-FXR pathway was firstly proposed to participate in VPA-induced hepatotoxicity.
Collapse
Affiliation(s)
| | | | - Limei Zhao
- Department of pharmacy, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
15
|
Flanagan RJ, Obee SJ, Kim AHM, Every-Palmer S. Effect of Valproate Coprescription on Clozapine Pharmacokinetics in Clinical Practice. J Clin Psychopharmacol 2024; 44:561-569. [PMID: 39836512 DOI: 10.1097/jcp.0000000000001923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
BACKGROUND Sodium valproate has been coprescribed with clozapine for seizure prophylaxis and for augmentation in treatment-refractory schizophrenia. However, the effect of valproate on clozapine metabolism and on the incidence of clozapine-related side effects is unclear. METHODS We compared clozapine dose and plasma clozapine and N-desmethylclozapine (norclozapine) concentrations in smokers and nonsmokers of both sexes in samples submitted for clozapine therapeutic drug monitoring, 1996-2017 in relation to valproate coprescription. RESULTS There were 1217 (665 patients) and 3823 (1600 patients) samples from nonsmokers and from smokers, respectively, who were coprescribed valproate and clozapine. Data from 9774 (5065 patients) and 15,465 (7298 patients) samples from nonsmokers and from smokers, respectively, for whom drugs other than valproate were coprescribed were used as controls. Valproate coprescription in nonsmokers was associated with an increase in average plasma clozapine of 22.5%, suggesting moderate inhibition of clozapine metabolism, but there was no marked effect of valproate coprescription on plasma clozapine in smokers. In all the valproate-treated groups (male and female smokers and nonsmokers), the median plasma norclozapine concentration and the median plasma clozapine-to-norclozapine ratio were significantly lower and higher, respectively, as compared with the controls. Mixed-effects models showed a significant dose-response effect of valproate on lowering the plasma norclozapine concentration and on increasing the plasma clozapine-to-norclozapine ratio. IMPLICATIONS Given the complexity of the effect of valproate coadministration on clozapine pharmacokinetics and the possibility that the toxicity of clozapine may be enhanced in the presence of valproate, the use of these drugs in combination must now be questioned in all patients and not only in women of childbearing age.
Collapse
Affiliation(s)
- Robert James Flanagan
- From the Department of Precision Medicine, Networked Services, Bessemer Wing, King's College Hospital NHS Foundation Trust, London, England
| | - Stephen John Obee
- From the Department of Precision Medicine, Networked Services, Bessemer Wing, King's College Hospital NHS Foundation Trust, London, England
| | | | - Susanna Every-Palmer
- Department of Psychological Medicine, University of Otago, Wellington, New Zealand
| |
Collapse
|
16
|
van der Meer DH, Elting LJ, van Egmond PS. Flucloxacillin instantly decreases serum levels of valproic acid: A case report. Br J Clin Pharmacol 2024; 90:2931-2934. [PMID: 39254135 DOI: 10.1111/bcp.16244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/13/2024] [Accepted: 08/22/2024] [Indexed: 09/11/2024] Open
Abstract
Valproic acid (VPA) is used for epilepsy and bipolar disorder. It has near-complete bioavailability and is primarily metabolized by glucuronosyltransferases and mitochondrial oxidation. This case highlights a 79-year-old male with bipolar disorder on VPA therapy that started with flucloxacillin for Staphylococcus aureus bacteraemia and exhibited significantly reduced VPA serum levels. During hospitalization, flucloxacillin treatment correlated with a sharp decline of 75% in VPA total serum levels, a novel drug-drug interaction not previously reported. Nonadherence and absorption issues of VPA were ruled out, confirming flucloxacillin's role in reducing VPA levels. Because free-fraction serum levels of VPA remained within therapeutic range (5-25 mg/L) and our patient's bipolar disorder remained stable at 1000 mg twice daily, a dose increase was not necessary. Previous reports described cytochrome P450 enzyme induction as the mechanism of flucloxacillin lowering serum levels of immunosuppressants and antimycotics. Because only 10% of VPA is metabolized by cytochrome P450 enzymes, this is not plausible for this case. The proposed mechanism for the VPA-flucloxacillin drug-drug interaction is flucloxacillin as inducer of glucuronosyltransferase enzymes via the pregnane X receptor pathway, accelerating VPA metabolism. Because this case showed that free-fraction serum levels remained within therapeutic range, it underscores the need for free-fraction VPA monitoring in bipolar disorder and flucloxacillin therapy. When VPA is used for epilepsy, it is advised to consider alternative antibiotics to avoid this interaction.
Collapse
Affiliation(s)
| | - Lisa J Elting
- Department of Neurology, Isala, Zwolle, The Netherlands
| | | |
Collapse
|
17
|
Alev-Tuzuner B, Oktay S, Cergel E, Elik G, Magaji UF, Sacan O, Yanardag R, Yarat A. Moringa oleifera hydroalcoholic leaf extracts mitigate valproate-induced oxidative status in the extraorbital lacrimal gland in a rat model. Exp Eye Res 2024; 248:110104. [PMID: 39303844 DOI: 10.1016/j.exer.2024.110104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/02/2024] [Accepted: 09/18/2024] [Indexed: 09/22/2024]
Abstract
Dysfunction of the extraorbital lacrimal gland (ELG) can lead to loss of vision due to damage to the epithelium of cornea. The broad-spectrum anti-epileptic drug sodium valproate (SV) has numerous side effects. Moringa oleifera (M.oleifera) is widely used as a food and in folk medicine. The effects of orally administered SV and M. oleifera hydroalcoholic leaf extract on rat ELG were investigated in this study by analysing both antioxidant and oxidant parameters. Additionally, boron level and tissue factor (TF) activity were determined. Protein changes were detected by sodium dodecyl sulfate gel electrophoresis (SDS-PAGE). Significantly lower values of glutathione (GSH), superoxide dismutase (SOD), catalase (CAT) and total antioxidant status (TAS) were observed in the SV group compared to the control group. Treatment with Moringa extract significantly increased SOD, CAT and TAS values in the Moringa given SV group (SVM). While no significant differences were observed between the sialic acid values of the groups, lipid peroxidation (LPO), nitric oxide (NO) and total oxidant status (TOS) values were significantly elevated in the SV group compared to the control group. Due to the effect of Moringa extract, LPO, NO and TOS levels were significantly decreased in the SVM group compared to the SV group. TF activity was not meaningfully altered between groups. Compared to control rats, oxidative stress index (OSI) level significantly increased, whereas the boron level decreased in the SV group. Moringa extract treatment noticeably reduced OSI in the SVM group. According to SDS-PAGE, decreases in the density of protein bands with molecular weights of 51, 83, and 90 kDa were observed in SV given rats compared to the other groups. These decreases were reversed by the administration of Moringa extract. Moringa extract has shown protective properties arising from antioxidant potential, especially with its very low OSI value. Individuals undergoing SV treatment and having ELG complications might consider using Moringa extract to mitigate valproate induced damage.
Collapse
Affiliation(s)
- Burcin Alev-Tuzuner
- Istanbul Gelisim University, Faculty of Dentistry, Basic Medical Sciences, Biochemistry, Avcilar, Istanbul, Turkiye; Istanbul Gelisim University, Life Sciences and Biomedical Engineering Application and Research Centre, Istanbul, Turkiye.
| | - Sehkar Oktay
- Marmara University, Faculty of Dentistry, Basic Medical Sciences, Biochemistry, Maltepe, Istanbul, Turkiye.
| | - Eda Cergel
- Haliç University, Faculty of Health Sciences, Department of Nutrition and Dietetics, Eyupsultan, Istanbul, Turkiye.
| | - Gulsum Elik
- Egil District State Hospital, Department of Nutrition and Dietetics, Egil, Diyarbakir, Turkiye.
| | - Umar Faruk Magaji
- Istanbul University-Cerrahpaşa, Faculty of Engineering, Department of Chemistry, Avcilar, Istanbul, Turkiye; Federal University Birnin Kebbi, Department of Biochemistry and Molecular Biology, Birnin Kebbi, Kebbi, Nigeria.
| | - Ozlem Sacan
- Istanbul University-Cerrahpaşa, Faculty of Engineering, Department of Chemistry, Avcilar, Istanbul, Turkiye.
| | - Refiye Yanardag
- Istanbul University-Cerrahpaşa, Faculty of Engineering, Department of Chemistry, Avcilar, Istanbul, Turkiye.
| | - Aysen Yarat
- Marmara University, Faculty of Dentistry, Basic Medical Sciences, Biochemistry, Maltepe, Istanbul, Turkiye.
| |
Collapse
|
18
|
Horonyova P, Durisova I, Cermakova P, Babelova L, Buckova B, Sofrankova L, Valachovic M, Hsu YHH, Balazova M. The subtherapeutic dose of valproic acid induces the activity of cardiolipin-dependent proteins. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2024; 1865:149501. [PMID: 39079622 DOI: 10.1016/j.bbabio.2024.149501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/29/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024]
Abstract
A mood-stabilizing anticonvulsant valproic acid (VPA) is a drug with a pleiotropic effect on cells. Here, we describe the impact of VPA on the metabolic function of human HAP1 cells. We show that VPA altered the biosynthetic pathway of cardiolipin (CL) and affected the activities of mitochondrial enzymes such as pyruvate dehydrogenase, α-ketoglutarate dehydrogenase and NADH dehydrogenase. We demonstrate that a therapeutic dose of VPA (0.6 mM) has a harmful effect on cell growth and increases the production of reactive oxygen species and superoxides. On the contrary, less concentrated VPA (0.06 mM) increased the activities of CL-dependent enzymes leading to an increased level of oxidative phosphorylation and ATP production. The effect of VPA was also tested on the Barth syndrome model, which is characterized by a reduced amount of CL and an increased level of monolyso-CL. In this model, VPA treatment slightly attenuated the mitochondrial defects by altering the activities of CL-dependent enzymes. However, the presence of CL was essential for the increase in ATP production by VPA. Our findings highlight the potential therapeutic role of VPA in normalizing mitochondrial function in BTHS and shed light on the intricate interplay between lipid metabolism and mitochondrial physiology in health and disease. SUMMARY: This study investigates the dose-dependent effect of valproate, a mood-stabilizing drug, on mitochondrial function. The therapeutic concentration reduced overall cellular metabolic activity, while a subtherapeutic concentration notably improved the function of cardiolipin-dependent proteins within mitochondria. These findings shed light on novel aspects of valproate's effect and suggest potential practical applications for its use. By elucidating the differential effects of valproate doses on mitochondrial activity, this research underscores the drug's multifaceted role in cellular metabolism and highlights avenues for further exploration in therapeutic interventions.
Collapse
Affiliation(s)
- Paulina Horonyova
- Department of Membrane Biochemistry, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Ivana Durisova
- Department of Membrane Biochemistry, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Petra Cermakova
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Lenka Babelova
- Department of Membrane Biochemistry, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Barbora Buckova
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Lucia Sofrankova
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Slovakia
| | - Martin Valachovic
- Department of Membrane Biochemistry, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | | | - Maria Balazova
- Department of Membrane Biochemistry, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia.
| |
Collapse
|
19
|
Elik G, Oktay S, Turkyilmaz IB, Alev-Tuzuner B, Magaji UF, Sacan O, Yanardag R, Yarat A. Dermatoprotective effect of Moringa oleifera leaf extract on sodium valproate-induced skin damage in rats. Drug Chem Toxicol 2024; 47:1257-1266. [PMID: 38984369 DOI: 10.1080/01480545.2024.2369586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/13/2024] [Indexed: 07/11/2024]
Abstract
Valproic acid is an antiepileptic drug associated with skin-related issues like excessive hair growth, hair loss, and skin rashes. In contrast, Moringa oleifera, rich in nutrients and antioxidants, is gaining popularity worldwide for its medicinal properties. The protective properties of M. oleifera extract against skin-related side effects caused by valproic acid were investigated. Female rats were divided into control groups and experimental groups such as moringa, sodium valproate, and sodium valproate + moringa groups. A 70% ethanolic extract of moringa (0.3 g/kg/day) was given to moringa groups, and a single dose of sodium valproate (0.5 g/kg/day) was given to valproate groups for 15 days. In the skin samples, antioxidant parameters (such as glutathione, glutathione-S-transferase, superoxide dismutase, catalase, and total antioxidant capacity), as well as oxidant parameters representing oxidative stress (i.e. lipid peroxidation, sialic acid, nitric oxide, reactive oxygen species, and total oxidant capacity), were examined. Additionally, boron, hydroxyproline, sodium-potassium ATPase, and tissue factor values were determined. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis was also carried out for protein analysis in the skin samples. The results showed that moringa could increase glutathione, total antioxidant capacity, sodium-potassium ATPase, and boron levels, while decreasing lipid peroxidation, sialic acid, nitric oxide, total oxidant capacity, reactive oxygen species, hydroxyproline, and tissue factor levels. These findings imply that moringa possesses the potential to mitigate dermatological side effects.
Collapse
Affiliation(s)
- Gülsüm Elik
- State Hospital, Diyarbakir, Türkiye
- Faculty of Dentistry, Basic Medical Sciences, Biochemistry, Marmara University, Istanbul, Türkiye
| | - Sehkar Oktay
- Faculty of Dentistry, Basic Medical Sciences, Biochemistry, Marmara University, Istanbul, Türkiye
| | - Ismet Burcu Turkyilmaz
- Faculty of Engineering, Department of Chemistry, Istanbul University-Cerrahpaşa, Istanbul, Türkiye
| | - Burcin Alev-Tuzuner
- Faculty of Dentistry, Biochemistry Department, Istanbul Gelisim University, Istanbul, Türkiye
| | - Umar Faruk Magaji
- Department of Biochemistry and Molecular Biology, Federal University Birnin Kebbi, Birnin Kebbi, Kebbi, Nigeria
| | - Ozlem Sacan
- Faculty of Engineering, Department of Chemistry, Istanbul University-Cerrahpaşa, Istanbul, Türkiye
| | - Refiye Yanardag
- Faculty of Engineering, Department of Chemistry, Istanbul University-Cerrahpaşa, Istanbul, Türkiye
| | - Aysen Yarat
- Faculty of Dentistry, Basic Medical Sciences, Biochemistry, Marmara University, Istanbul, Türkiye
| |
Collapse
|
20
|
Yazbeck H, Youssef J, Nasreddine W, El Kurdi A, Zgheib N, Beydoun A. The role of candidate pharmacogenetic variants in determining valproic acid efficacy, toxicity and concentrations in patients with epilepsy. Front Pharmacol 2024; 15:1483723. [PMID: 39539630 PMCID: PMC11558073 DOI: 10.3389/fphar.2024.1483723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
Background Antiseizure medications (ASM) exhibit considerable interindividual variability in terms of efficacy and adverse events. Genetic variation is thought to contribute to these differences in clinical outcomes. Specifically, the response to valproic acid (VPA), a widely used ASM, is influenced by multiple pharmacogenetic factors. However, and in contrast to other ASMs such as phenytoin and carbamazepine, there is a paucity of data on the association between VPA and various gene variants. The aim of this study was hence to evaluate the influence of candidate pharmacogenetic variants on VPA efficacy, toxicity and serum concentrations in a homogeneous cohort of patients newly diagnosed with genetic generalized epilepsies (GGE). Methods In this prospective cohort study, demographic, clinical and treatment outcomes of GGE patients were retrieved from their medical records. Whole exome sequencing was performed in collaboration with Epi25. Gene variants associated with VPA efficacy, metabolism and toxicities were retrieved from PharmGKB. An analysis was then conducted to explore potential associations between these gene variants and VPA clinical outcomes. Results Of the 166 patients included, 60 (36.1%) experienced treatment failure while 106 (63.9%) achieved treatment success. After adjusting for VPA maintenance dose, carriers of the rs3892097 (CYP2D6) variant were 2.5 times more likely to experience treatment failure compared to wildtype (p = 0.026). The rs1057910 variant (CYP2C9*3) was associated with increased serum VPA concentrations (p = 0.034). Moreover, the rs1137101 variant (LEPR gene, a metabolism regulator) was significantly associated with a higher risk of weight gain (regression coefficient of 3.430 [0.674; 6.186], p = 0.015) and a higher frequency of hair loss (OR = 3.394 [1.157; 9.956], p = 0.026), while the rs4480 variant (SOD2 gene, encoding for a mitochondrial scavenging enzyme) was correlated with a lower frequency of hair loss (OR = 0.276 [0.089; 0.858], p = 0.026). Conclusion These findings highlight the role of genetic factors in VPA treatment and underscore the potential for developing therapeutic strategies to enhance patient outcomes and minimize adverse effects.
Collapse
Affiliation(s)
- Hady Yazbeck
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Joe Youssef
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Wassim Nasreddine
- Department of Neurology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Abdullah El Kurdi
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Nathalie Zgheib
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Ahmad Beydoun
- Department of Neurology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
21
|
Abdelgalil A, Ismail D, Eskander A, Girgis M, Farouk A, Saeedi F, Shazly M, Hasnoon A. Effect of Helicobacter pylori Eradication on Serum Level of Valproic Acid in Children with Idiopathic Generalized Epilepsy. CHILDREN (BASEL, SWITZERLAND) 2024; 11:1259. [PMID: 39457224 PMCID: PMC11506667 DOI: 10.3390/children11101259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024]
Abstract
BACKGROUND/OBJECTIVES The purpose of this study was to determine the influence of H. pylori eradication on the serum level of the orally administered valproic acid (VPA) in children with idiopathic generalized epilepsy; Methods: This prospective cohort observational study included 100 children with idiopathic generalized epilepsy, recruited from a neurology clinic from May 2021 to December 2021. The patients were divided into two groups, each containing 50 children. The first group had a positive H. pylori stool antigen and H. pylori-related symptoms, while the second group had a negative antigen. H. pylori Eradication therapy was given to the positive H. pylori group. The serum level of VPA was obtained at baseline and 4 weeks after eradication therapy. RESULTS Despite there being no significant difference between the H. pylori-positive and H. pylori-negative groups regarding the baseline VPA serum level (79.9 ± 13.9 and 77.9 ± 13.1 mcg/mL), respectively, the serum VPA level had significantly increased after H. pylori eradication therapy (99.4 ± 11 mcg/mL) (p value = 0.000), as opposed to the H. pylori-negative group (85.3 ± 10.9 mcg/mL) (p value = 0.142). Furthermore, there was a statistically significant association with a negative correlation between the VPA serum level after eradication and the number of epileptic attacks per month (p value = 0.033, R value = -0.301) and the dose of VPA (p value = 0.046, R value = -0.284). CONCLUSIONS The eradication of H. pylori resulted in a highly significant improvement in the serum level of the orally given VPA in children with idiopathic generalized epilepsy, as well as an indirect decrease in the frequency of epileptic events per month, allowing for dose reduction. Eradication therapy may have anticonvulsant properties and might indirectly aid in the management of epileptic activity. H. pylori screening for children with idiopathic generalized epilepsy can optimize serum VPA levels, potentially leading to better seizure control. To our knowledge, this is the first study in the literature to describe the effect of H. pylori eradication on the serum level of the orally administered VPA in children with idiopathic generalized epilepsy.
Collapse
Affiliation(s)
- Abobakr Abdelgalil
- Department of Pediatrics, Faculty of Medicine, Cairo University, Cairo 12613, Egypt; (D.I.); (A.E.); (M.G.); (A.H.)
| | - Doaa Ismail
- Department of Pediatrics, Faculty of Medicine, Cairo University, Cairo 12613, Egypt; (D.I.); (A.E.); (M.G.); (A.H.)
| | - Ayman Eskander
- Department of Pediatrics, Faculty of Medicine, Cairo University, Cairo 12613, Egypt; (D.I.); (A.E.); (M.G.); (A.H.)
| | - Marian Girgis
- Department of Pediatrics, Faculty of Medicine, Cairo University, Cairo 12613, Egypt; (D.I.); (A.E.); (M.G.); (A.H.)
| | - Ahmed Farouk
- Department of Clinical Pathology, Military Medical Academy, Cairo 12613, Egypt;
| | - Fajr Saeedi
- Department of Pediatrics, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Mohamed Shazly
- Department of Pediatrics, King Abdulaziz University Hospital, Jeddah 21589, Saudi Arabia;
- Department of Pediatrics, Mallwi Hospital, Minia 61631, Egypt
| | - Amera Hasnoon
- Department of Pediatrics, Faculty of Medicine, Cairo University, Cairo 12613, Egypt; (D.I.); (A.E.); (M.G.); (A.H.)
| |
Collapse
|
22
|
Ma P, Shang S, Huang Y, Liu R, Yu H, Zhou F, Yu M, Xiao Q, Zhang Y, Ding Q, Nie Y, Wang Z, Chen Y, Yu A, Shi Q. Joint use of population pharmacokinetics and machine learning for prediction of valproic acid plasma concentration in elderly epileptic patients. Eur J Pharm Sci 2024; 201:106876. [PMID: 39128815 DOI: 10.1016/j.ejps.2024.106876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/31/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
BACKGROUND Valproic acid (VPA) is a commonly used broad-spectrum antiepileptic drug. For elderly epileptic patients, VPA plasma concentrations have a considerable variation. We aim to establish a prediction model via a combination of machine learning and population pharmacokinetics (PPK) for VPA plasma concentration. METHODS A retrospective study was performed incorporating 43 variables, including PPK parameters. Recursive Feature Elimination with Cross-Validation was used for feature selection. Multiple algorithms were employed for ensemble model, and the model was interpreted by Shapley Additive exPlanations. RESULTS The inclusion of PPK parameters significantly enhances the performance of individual algorithm model. The composition of categorical boosting, light gradient boosting machine, and random forest (7:2:1) with the highest R2 (0.74) was determined as the ensemble model. The model included 11 variables after feature selection, of which the predictive performance was comparable to the model that incorporated all variables. CONCLUSIONS Our model was specifically tailored for elderly epileptic patients, providing an efficient and cost-effective approach to predict VPA plasma concentration. The model combined classical PPK with machine learning, and underwent optimization through feature selection and algorithm integration. Our model can serve as a fundamental tool for clinicians in determining VPA plasma concentration and individualized dosing regimens accordingly.
Collapse
Affiliation(s)
- Pan Ma
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China; Department of Pharmacy, the First Affiliated Hospital of Army Medical University, No. 29 Gaotanyan Street, Chongqing 400038, China
| | - Shenglan Shang
- Department of Clinical Pharmacy, General Hospital of Central Theater Command, No. 627 Wuluo Street, Wuhan City, Hubei Province 430070, China
| | - Yifan Huang
- Medical Big Data and Artificial Intelligence Center, the First Affiliated Hospital of Army Medical University, Chongqing 400038, China
| | - Ruixiang Liu
- Department of Pharmacy, the First Affiliated Hospital of Army Medical University, No. 29 Gaotanyan Street, Chongqing 400038, China
| | - Hongfan Yu
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Fan Zhou
- Department of Clinical Pharmacy, General Hospital of Central Theater Command, No. 627 Wuluo Street, Wuhan City, Hubei Province 430070, China
| | - Mengchen Yu
- Department of Clinical Pharmacy, General Hospital of Central Theater Command, No. 627 Wuluo Street, Wuhan City, Hubei Province 430070, China
| | - Qin Xiao
- Department of Pharmacy, Shengjing Hospital, China Medical University, Shenyang 110002, China
| | - Ying Zhang
- Department of Clinical Pharmacy, General Hospital of Central Theater Command, No. 627 Wuluo Street, Wuhan City, Hubei Province 430070, China
| | - Qianxue Ding
- Department of Clinical Pharmacy, General Hospital of Central Theater Command, No. 627 Wuluo Street, Wuhan City, Hubei Province 430070, China
| | - Yuxian Nie
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Zhibiao Wang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Yongchuan Chen
- Department of Pharmacy, the First Affiliated Hospital of Army Medical University, No. 29 Gaotanyan Street, Chongqing 400038, China.
| | - Airong Yu
- Department of Clinical Pharmacy, General Hospital of Central Theater Command, No. 627 Wuluo Street, Wuhan City, Hubei Province 430070, China.
| | - Qiuling Shi
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China; School of Public Health, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
23
|
Karatza E, Sinha J, Maglalang PD, Edginton A, Gonzalez D. Physiologically-Based Pharmacokinetic Modeling of Total and Unbound Valproic Acid to Evaluate Dosing in Children With and Without Hypoalbuminemia. Clin Pharmacokinet 2024; 63:1435-1448. [PMID: 39298079 PMCID: PMC11521762 DOI: 10.1007/s40262-024-01418-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2024] [Indexed: 09/21/2024]
Abstract
BACKGROUND AND OBJECTIVE Valproic acid (VPA) demonstrates nonlinear pharmacokinetics (PK) due to a capacity-limited protein binding, which has potential implications on its total and unbound plasma concentrations, especially during hypoalbuminemia. A physiologically based pharmacokinetic (PBPK) model was developed to assess the nonlinear dose-exposure relationship of VPA with special emphasis on pediatric patients with hypoalbuminemia. METHODS A PBPK model was first developed and evaluated in adults using PK-Sim® and MoBi® (v.11) and the scaled to children 1 year and older. The capacity-limited protein binding was characterized by second-order kinetics between VPA and albumin with a 2:1 molar ratio. All drug-specific parameters were informed by literature and optimized using published PK data of VPA. PK simulations were performed in virtual populations with normal and low albumin levels. RESULTS The reported concentration-time profiles of total and unbound VPA were adequately predicted by the PBPK model across the age and dose range (3-120 mg/kg). The model was able to characterize the nonlinear PK, as the concentration-dependent fraction unbound (fu) and the related dose-dependent clearance values were well predicted. Simulated steady-state trough concentrations of total VPA were less than dose-proportional and were within the therapeutic drug monitoring range of 50-100 mg/L for doses between 30 and 45 mg/kg per day in children with normal albumin concentrations. However, virtual children with hypoalbuminemia largely failed to achieve the target exposure. CONCLUSION The PBPK model helped assess the nonlinear dose-exposure relationship of VPA and the impact of albumin concentrations on the achievement of target exposure.
Collapse
Affiliation(s)
- Eleni Karatza
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Janssen Research & Development, LLC, Spring House, PA, USA
| | - Jaydeep Sinha
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Pediatrics, UNC School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Patricia D Maglalang
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Andrea Edginton
- School of Pharmacy, University of Waterloo, Kitchener, ON, Canada
| | - Daniel Gonzalez
- Division of Clinical Pharmacology, Department of Medicine, Duke University School of Medicine, Durham, NC, USA.
- Duke Clinical Research Institute, PO Box 17969, Durham, NC, 27715, USA.
| |
Collapse
|
24
|
de Los Ángeles Cintado M, De la Casa LG, González G. Anxiolytic and sedative effects of sodium valproate with different experimental paradigms in male and female rats. Neuropsychopharmacol Rep 2024. [PMID: 39270067 DOI: 10.1002/npr2.12483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/24/2024] [Accepted: 08/31/2024] [Indexed: 09/15/2024] Open
Abstract
Valproic acid or sodium valproate is a widely used drug in the treatment of epilepsy, although it also appears to have anxiolytic and sedative properties derived from its agonistic action on the GABAergic system. To analyze these potential effects of the drug, we conducted three experiments with rats using procedures designed to assess anxiety in rodents. In the first experiment, with a fear conditioning procedure, three groups of male rats were included that received either 100 mg/kg or 300 mg/kg of valproate or an equivalent volume of saline solution. In Experiment 2, recording spontaneous activity in an open field, we compared the effects of valproic acid (300 mg/kg) on male and female rats. In the third experiment, we analyzed the effect of valproic acid using a novelty-induced hypophagia test and tested again for potential differences as a function of the sex of the animals. The results showed an anxiolytic effect restricted to the 300 mg/kg dose of the drug in Experiment 1. Such an effect was restricted to the female sample in Experiment 2, but in the third experiment affected both sexes. As for the sedative effect, it was observed in all experiments irrespective of the sex of the rats. These findings hold significant implications for the treatment of anxiety disorders since valproate may offer a novel therapeutic approach for anxiety-related conditions with distinct benefits and fewer side effects. However, clinical studies are needed to validate the translation of these findings from animal models to human patients.
Collapse
Affiliation(s)
- María de Los Ángeles Cintado
- Laboratory of Animal Behavior & Neuroscience, Department of Experimental Psychology, Universidad de Sevilla, Seville, Spain
| | - Luis Gonzalo De la Casa
- Laboratory of Animal Behavior & Neuroscience, Department of Experimental Psychology, Universidad de Sevilla, Seville, Spain
| | | |
Collapse
|
25
|
Smith DA. Teratogenicity is more likely a function of primary and secondary pharmacology than caused by chemically reactive metabolites: a critical evaluation of 40 years of scientific research. Xenobiotica 2024; 54:599-608. [PMID: 38913781 DOI: 10.1080/00498254.2024.2366302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/26/2024]
Abstract
The number of therapeutic drugs known to be human teratogens is actually relatively small. This may reflect the rigorous animal testing and well defined labelling. Some of these drugs were identified to have reactive metabolites and this has been postulated, historically, to be their teratogenic mechanism. These drugs include thalidomide, various anticonvulsants and retinoic acid derivatives.Many of these experiments were conducted in a period where chemically reactive metabolites were being intensely investigated and associated with all forms of toxicity. The legacy of this is that these examples are routinely cited as well established mechanisms.Examination of mechanism leads to the conclusion that the teratogenicity in humans of these compounds is likely due to the primary and secondary pharmacology of the parent drug and stable circulating metabolites and that association of reactive metabolites to this toxicity is unwarranted.
Collapse
|
26
|
Fernandez Robles CR, Fernandez-Robles CG, Oprea AD. Preoperative management of medications for psychiatric disorders. Panminerva Med 2024; 66:281-292. [PMID: 38757800 DOI: 10.23736/s0031-0808.24.05151-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Perioperative medication management is a complex topic. Physicians working in the perioperative space are frequently called upon to make decisions regarding continuing or stopping certain medications. For patients with psychiatric disorders, the overwhelming recommendation is to continue therapy with heightened awareness of anesthesiologists regarding potential side effects or medication interactions.
Collapse
Affiliation(s)
| | | | - Adriana D Oprea
- Department of Anesthesiology, Yale University, New Haven, CT, USA -
| |
Collapse
|
27
|
Qubad M, Dupont G, Hahn M, Martin SS, Puntmann V, Nagel E, Reif A, Bittner RA. When, Why and How to Re-challenge Clozapine in Schizophrenia Following Myocarditis. CNS Drugs 2024; 38:671-696. [PMID: 38951464 PMCID: PMC11316720 DOI: 10.1007/s40263-024-01100-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/03/2024] [Indexed: 07/03/2024]
Abstract
Clozapine-induced myocarditis (CIM) is among the most important adverse events limiting the use of clozapine as the most effective treatment for schizophrenia. CIM necessitates the immediate termination of clozapine, often resulting in its permanent discontinuation with considerable detrimental effects on patients' psychopathology and long-term outcome. Consequently, a clozapine re-challenge after CIM is increasingly regarded as a viable alternative, with published reports indicating a success rate of approximately 60%. However, published cases of re-challenges after CIM remain limited. Here, we provide a narrative review of the current state of research regarding the epidemiology, pathophysiology, risk factors, diagnosis and clinical management of CIM as well as a synthesis of current recommendations for re-challenging patients after CIM. This includes a step-by-step guide for this crucial procedure based on the current evidence regarding the pathophysiology and risk factors for CIM. Slow dose titration regimes and addressing risk factors including concomitant valproate and olanzapine are crucial both to prevent CIM and to ensure a safe and successful re-challenge. Furthermore, we discuss the utility of C-reactive protein, troponin, N-terminal-pro hormone and brain natriuretic peptide, therapeutic drug-monitoring and cardiac magnetic resonance imaging for CIM screening and diagnosis as well as for post-CIM re-challenges.
Collapse
Affiliation(s)
- Mishal Qubad
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe University Frankfurt, University Hospital, Frankfurt, Germany.
| | - Gabriele Dupont
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe University Frankfurt, University Hospital, Frankfurt, Germany
| | - Martina Hahn
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe University Frankfurt, University Hospital, Frankfurt, Germany
- Department of Mental Health, Varisano Hospital Frankfurt Hoechst, Frankfurt, Germany
| | - Simon S Martin
- Department of Radiology, Goethe University Frankfurt, University Hospital, Frankfurt, Germany
| | - Valentina Puntmann
- Department of Cardiology, Institute for Experimental and Translational Cardiovascular Imaging, Goethe University Frankfurt, University Hospital, Frankfurt, Germany
| | - Eike Nagel
- Department of Cardiology, Institute for Experimental and Translational Cardiovascular Imaging, Goethe University Frankfurt, University Hospital, Frankfurt, Germany
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe University Frankfurt, University Hospital, Frankfurt, Germany
| | - Robert A Bittner
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe University Frankfurt, University Hospital, Frankfurt, Germany.
- Ernst Strüngmann Institute for Neuroscience (ESI) in Cooperation with Max Planck Society, Frankfurt, Germany.
| |
Collapse
|
28
|
Liu Z, Shao W, Wang X, Geng K, Wang W, Li Y, Chen Y, Xie H. Physiologically based pharmacokinetic models for predicting lamotrigine exposure and dose optimization in pediatric patients receiving combination therapy with carbamazepine or valproic acid. Pharmacotherapy 2024; 44:711-721. [PMID: 39206763 DOI: 10.1002/phar.4603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/20/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION Lamotrigine (LTG) is an antiepileptic drug that has been used in pediatric epilepsy as a combination therapy or monotherapy after stabilization in recent years. However, there are significant drug-drug interactions (DDI) between LTG and combined drugs such as carbamazepine (CBZ) and valproic acid (VPA). It is particularly important to consider the risk of DDI in combination therapy for intractable epilepsy in pediatric patients. Therefore, it is necessary to adjust the dosage of LTG accordingly. The aim of this study was to establish and validate a pediatric physiologically based pharmacokinetic (PBPK) model for predicting LTG exposure. The model is designed to explore the potential for quantifying pharmacokinetic (PK) DDI of LTG when administered concurrently with CBZ or VPA in pediatric patients. METHOD Adult and pediatric PBPK models for LTG and VPA were developed using PK-Sim® software in combination with physiological information and drug-specific parameters, and a DDI model was developed in combination with the published CBZ model. The models were validated against available PK data. RESULTS Predictive and observational results in adults, children, and the DDI model were in good agreement. The recommended doses of LTG for preschool children (2-6 years) and school-aged children (6-12 years) in the absence of drug interactions were 1.47 and 1.2 times higher than those for adults, respectively; 3.1 and 2.6 times higher than those for adults in combination with CBZ; and 0.67 and 0.57 times lower than those for adults in combination with VPA. In addition, plasma exposures in adolescents (12-18 years) were similar to those in adults at the same doses. CONCLUSION We have successfully developed PBPK models and DDI models for LTG in adults and children, which provide a reference for rational drug use in the pediatric population.
Collapse
Affiliation(s)
- Zhiwei Liu
- Anhui Provincial Center for Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China
- Wannan Medical College, Wuhu, China
| | - Wenxin Shao
- Anhui Provincial Center for Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China
- Wannan Medical College, Wuhu, China
| | - Xingwen Wang
- Anhui Provincial Center for Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China
- Wannan Medical College, Wuhu, China
| | - Kuo Geng
- Anhui Provincial Center for Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China
- Wannan Medical College, Wuhu, China
| | - Wenhui Wang
- Anhui Provincial Center for Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China
- Wannan Medical College, Wuhu, China
| | - Yiming Li
- Anhui Provincial Center for Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China
- Wannan Medical College, Wuhu, China
| | - Youjun Chen
- Anhui Provincial Center for Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China
- Wannan Medical College, Wuhu, China
| | - Haitang Xie
- Anhui Provincial Center for Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China
| |
Collapse
|
29
|
Schuster J, Lu X, Dang Y, Klar J, Wenz A, Dahl N, Chen X. Epigenetic insights into GABAergic development in Dravet Syndrome iPSC and therapeutic implications. eLife 2024; 12:RP92599. [PMID: 39190448 PMCID: PMC11349296 DOI: 10.7554/elife.92599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024] Open
Abstract
Dravet syndrome (DS) is a devastating early-onset refractory epilepsy syndrome caused by variants in the SCN1A gene. A disturbed GABAergic interneuron function is implicated in the progression to DS but the underlying developmental and pathophysiological mechanisms remain elusive, in particularly at the chromatin level. Induced pluripotent stem cells (iPSCs) derived from DS cases and healthy donors were used to model disease-associated epigenetic abnormalities of GABAergic development. Chromatin accessibility was assessed at multiple time points (Day 0, Day 19, Day 35, and Day 65) of GABAergic differentiation. Additionally, the effects of the commonly used anti-seizure drug valproic acid (VPA) on chromatin accessibility were elucidated in GABAergic cells. The distinct dynamics in the chromatin profile of DS iPSC predicted accelerated early GABAergic development, evident at D19, and diverged further from the pattern in control iPSC with continued differentiation, indicating a disrupted GABAergic maturation. Exposure to VPA at D65 reshaped the chromatin landscape at a variable extent in different iPSC-lines and rescued the observed dysfunctional development of some DS iPSC-GABA. The comprehensive investigation on the chromatin landscape of GABAergic differentiation in DS-patient iPSC offers valuable insights into the epigenetic dysregulations associated with interneuronal dysfunction in DS. Moreover, the detailed analysis of the chromatin changes induced by VPA in iPSC-GABA holds the potential to improve the development of personalized and targeted anti-epileptic therapies.
Collapse
Affiliation(s)
- Jens Schuster
- Department of Immunology, Genetics and Pathology, Uppsala University and Science for Life LaboratoryUppsalaSweden
| | - Xi Lu
- Department of Immunology, Genetics and Pathology, Uppsala University and Science for Life LaboratoryUppsalaSweden
| | - Yonglong Dang
- Department of Immunology, Genetics and Pathology, Uppsala University and Science for Life LaboratoryUppsalaSweden
| | - Joakim Klar
- Department of Immunology, Genetics and Pathology, Uppsala University and Science for Life LaboratoryUppsalaSweden
| | - Amelie Wenz
- Department of Immunology, Genetics and Pathology, Uppsala University and Science for Life LaboratoryUppsalaSweden
| | - Niklas Dahl
- Department of Immunology, Genetics and Pathology, Uppsala University and Science for Life LaboratoryUppsalaSweden
| | - Xingqi Chen
- Department of Immunology, Genetics and Pathology, Uppsala University and Science for Life LaboratoryUppsalaSweden
| |
Collapse
|
30
|
Camussi D, Naef V, Brogi L, Della Vecchia S, Marchese M, Nicoletti F, Santorelli FM, Licitra R. Delving into the Complexity of Valproate-Induced Autism Spectrum Disorder: The Use of Zebrafish Models. Cells 2024; 13:1349. [PMID: 39195239 PMCID: PMC11487397 DOI: 10.3390/cells13161349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/07/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024] Open
Abstract
Autism spectrum disorder (ASD) is a multifactorial neurodevelopmental condition with several identified risk factors, both genetic and non-genetic. Among these, prenatal exposure to valproic acid (VPA) has been extensively associated with the development of the disorder. The zebrafish, a cost- and time-effective model, is useful for studying ASD features. Using validated VPA-induced ASD zebrafish models, we aimed to provide new insights into VPA exposure effects during embryonic development and to identify new potential biomarkers associated with ASD-like features. Dose-response analyses were performed in vivo to study larval phenotypes and mechanisms underlying neuroinflammation, mitochondrial dysfunction, oxidative stress, microglial cell status, and motor behaviour. Wild-type and transgenic Tg(mpeg1:EGFP) zebrafish were water-exposed to VPA doses (5 to 500 µM) from 6 to 120 h post-fertilisation (hpf). Embryos and larvae were monitored daily to assess survival and hatching rates, and numerous analyses and tests were conducted from 24 to 120 hpf. VPA doses higher than 50 µM worsened survival and hatching rates, while doses of 25 µM or more altered morphology, microglial status, and larval behaviours. VPA 50 µM also affected mRNA expression of inflammatory cytokines and neurogenesis-related genes, mitochondrial respiration, and reactive oxygen species accumulation. The study confirmed that VPA alters brain homeostasis, synaptic interconnections, and neurogenesis-related signalling pathways, contributing to ASD aetiopathogenesis. Further studies are essential to identify novel ASD biomarkers for developing new drug targets and tailored therapeutic interventions for ASD.
Collapse
Affiliation(s)
- Diletta Camussi
- Department of Neurobiology and Molecular Medicine, IRCCS Stella Maris Foundation, 56128 Pisa, Italy; (D.C.); (V.N.); (S.D.V.); (M.M.)
| | - Valentina Naef
- Department of Neurobiology and Molecular Medicine, IRCCS Stella Maris Foundation, 56128 Pisa, Italy; (D.C.); (V.N.); (S.D.V.); (M.M.)
| | - Letizia Brogi
- Bio@SNS, Department of Neurosciences, Scuola Normale Superiore, 56126 Pisa, Italy;
| | - Stefania Della Vecchia
- Department of Neurobiology and Molecular Medicine, IRCCS Stella Maris Foundation, 56128 Pisa, Italy; (D.C.); (V.N.); (S.D.V.); (M.M.)
| | - Maria Marchese
- Department of Neurobiology and Molecular Medicine, IRCCS Stella Maris Foundation, 56128 Pisa, Italy; (D.C.); (V.N.); (S.D.V.); (M.M.)
| | - Ferdinando Nicoletti
- Department of Physiology and Pharmacology Vittorio Erspamer, “La Sapienza” University of Rome, 00185 Rome, Italy;
- IRCSS Neuromed, “La Sapienza” University of Rome, 86077 Pozzilli, Italy
| | - Filippo M. Santorelli
- Department of Neurobiology and Molecular Medicine, IRCCS Stella Maris Foundation, 56128 Pisa, Italy; (D.C.); (V.N.); (S.D.V.); (M.M.)
| | - Rosario Licitra
- Department of Neurobiology and Molecular Medicine, IRCCS Stella Maris Foundation, 56128 Pisa, Italy; (D.C.); (V.N.); (S.D.V.); (M.M.)
- Department of Veterinary Sciences, University of Pisa, 56124 Pisa, Italy
| |
Collapse
|
31
|
Mavridou D, Psatha K, Aivaliotis M. Integrative Analysis of Multi-Omics Data to Identify Deregulated Molecular Pathways and Druggable Targets in Chronic Lymphocytic Leukemia. J Pers Med 2024; 14:831. [PMID: 39202022 PMCID: PMC11355716 DOI: 10.3390/jpm14080831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/25/2024] [Accepted: 07/27/2024] [Indexed: 09/03/2024] Open
Abstract
Chronic Lymphocytic Leukemia (CLL) is the most common B-cell malignancy in the Western world, characterized by frequent relapses despite temporary remissions. Our study integrated publicly available proteomic, transcriptomic, and patient survival datasets to identify key differences between healthy and CLL samples. We exposed approximately 1000 proteins that differentiate healthy from cancerous cells, with 608 upregulated and 415 downregulated in CLL cases. Notable upregulated proteins include YEATS2 (an epigenetic regulator), PIGR (Polymeric immunoglobulin receptor), and SNRPA (a splicing factor), which may serve as prognostic biomarkers for this disease. Key pathways implicated in CLL progression involve RNA processing, stress resistance, and immune response deficits. Furthermore, we identified three existing drugs-Bosutinib, Vorinostat, and Panobinostat-for potential further investigation in drug repurposing in CLL. We also found limited correlation between transcriptomic and proteomic data, emphasizing the importance of proteomics in understanding gene expression regulation mechanisms. This generally known disparity highlights once again that mRNA levels do not accurately predict protein abundance due to many regulatory factors, such as protein degradation, post-transcriptional modifications, and differing rates of translation. These results demonstrate the value of integrating omics data to uncover deregulated proteins and pathways in cancer and suggest new therapeutic avenues for CLL.
Collapse
Affiliation(s)
- Dimitra Mavridou
- Laboratory of Biological Chemistry, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece;
- Functional Proteomics and Systems Biology (FunPATh), Center for Interdisciplinary Research and Innovation (CIRI-AUTH), GR-57001 Thessaloniki, Greece;
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Konstantina Psatha
- Functional Proteomics and Systems Biology (FunPATh), Center for Interdisciplinary Research and Innovation (CIRI-AUTH), GR-57001 Thessaloniki, Greece;
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
- Laboratory of Medical Biology—Genetics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Michalis Aivaliotis
- Laboratory of Biological Chemistry, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece;
- Functional Proteomics and Systems Biology (FunPATh), Center for Interdisciplinary Research and Innovation (CIRI-AUTH), GR-57001 Thessaloniki, Greece;
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| |
Collapse
|
32
|
Milosavljević F, Manojlović M, Matković L, Molden E, Ingelman-Sundberg M, Leucht S, Jukić MM. Pharmacogenetic Variants and Plasma Concentrations of Antiseizure Drugs: A Systematic Review and Meta-Analysis. JAMA Netw Open 2024; 7:e2425593. [PMID: 39115847 PMCID: PMC11310823 DOI: 10.1001/jamanetworkopen.2024.25593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/04/2024] [Indexed: 08/11/2024] Open
Abstract
Importance Precise estimation of a patient's drug metabolism capacity is important for antiseizure dose personalization. Objective To quantify the differences in plasma concentrations for antiseizure drugs associated with variants of genes encoding drug metabolizing enzymes. Data Sources PubMed, Clinicaltrialsregister.eu, ClinicalTrials.gov, International Clinical Trials Registry Platform, and CENTRAL databases were screened for studies from January 1, 1990, to September 30, 2023, without language restrictions. Study Selection Two reviewers performed independent study screening and assessed the following inclusion criteria: appropriate genotyping was performed, genotype-based categorization into subgroups was possible, and each subgroup contained at least 3 participants. Data Extraction and Synthesis The Meta-analysis of Observational Studies in Epidemiology (MOOSE) guidelines were followed for data extraction and subsequent quality, validity, and risk-of-bias assessments. The results from the included studies were pooled with random-effect meta-analysis. Main Outcomes and Measures Plasma concentrations of antiseizure drugs were quantified with the dose-normalized area under the concentration-time curve, the dose-normalized steady state concentration, or the concentrations after a single dose at standardized dose and sampling time. The ratio of the means was calculated by dividing the mean drug plasma concentrations of carriers and noncarriers of the pharmacogenetic variant. Results Data from 98 studies involving 12 543 adult participants treated with phenytoin, valproate, lamotrigine, or carbamazepine were analyzed. Studies were mainly conducted within East Asian (69 studies) or White or European (15 studies) cohorts. Significant increases of plasma concentrations compared with the reference subgroup were observed for phenytoin, by 46% (95% CI, 33%-61%) in CYP2C9 intermediate metabolizers, 20% (95% CI, 17%-30%) in CYP2C19 intermediate metabolizers, and 39% (95% CI, 24%-56%) in CYP2C19 poor metabolizers; for valproate, by 12% (95% CI, 4%-20%) in CYP2C9 intermediate metabolizers, 12% (95% CI, 2%-24%) in CYP2C19 intermediate metabolizers, and 20% (95% CI, 2%-41%) in CYP2C19 poor metabolizers; and for carbamazepine, by 12% (95% CI, 3%-22%) in CYP3A5 poor metabolizers. Conclusions and Relevance This systematic review and meta-analysis found that CYP2C9 and CYP2C19 genotypes encoding low enzymatic capacity were associated with a clinically relevant increase in phenytoin plasma concentrations, several pharmacogenetic variants were associated with statistically significant but only marginally clinically relevant changes in valproate and carbamazepine plasma concentrations, and numerous pharmacogenetic variants were not associated with statistically significant differences in plasma concentrations of antiseizure drugs.
Collapse
Affiliation(s)
- Filip Milosavljević
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
- Department of Psychiatry and Psychotherapy, School of Medicine, Technische Universität München, München, Germany
| | - Marina Manojlović
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Lena Matković
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
- Institute for Mental Health, Belgrade, Serbia
| | - Espen Molden
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
- Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway
| | - Magnus Ingelman-Sundberg
- Pharmacogenetics Section, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Stefan Leucht
- Department of Psychiatry and Psychotherapy, School of Medicine, Technische Universität München, München, Germany
| | - Marin M. Jukić
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
- Pharmacogenetics Section, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
33
|
Sousa BSGC, de Sá ZC, Ramos J. Decoding the enigma: Valproate encephalopathy in a bipolar affective disorder without hyperammonemia. Bipolar Disord 2024; 26:507-509. [PMID: 38825712 DOI: 10.1111/bdi.13460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Affiliation(s)
| | | | - Joana Ramos
- Cova da Beira Hospital Center, Covilhã, Portugal
| |
Collapse
|
34
|
Ricarte M, Tagkalidou N, Bellot M, Bedrossiantz J, Prats E, Gomez-Canela C, Garcia-Reyero N, Raldúa D. Short- and Long-Term Neurobehavioral Effects of Developmental Exposure to Valproic Acid in Zebrafish. Int J Mol Sci 2024; 25:7688. [PMID: 39062930 PMCID: PMC11277053 DOI: 10.3390/ijms25147688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impairments in social interaction and communication, anxiety, hyperactivity, and interest restricted to specific subjects. In addition to the genetic factors, multiple environmental factors have been related to the development of ASD. Animal models can serve as crucial tools for understanding the complexity of ASD. In this study, a chemical model of ASD has been developed in zebrafish by exposing embryos to valproic acid (VPA) from 4 to 48 h post-fertilization, rearing them to the adult stage in fish water. For the first time, an integrative approach combining behavioral analysis and neurotransmitters profile has been used for determining the effects of early-life exposure to VPA both in the larval and adult stages. Larvae from VPA-treated embryos showed hyperactivity and decreased visual and vibrational escape responses, as well as an altered neurotransmitters profile, with increased glutamate and decreased acetylcholine and norepinephrine levels. Adults from VPA-treated embryos exhibited impaired social behavior characterized by larger shoal sizes and a decreased interest for their conspecifics. A neurotransmitter analysis revealed a significant decrease in dopamine and GABA levels in the brain. These results support the potential predictive validity of this model for ASD research.
Collapse
Affiliation(s)
- Marina Ricarte
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain; (M.R.); (N.T.); (J.B.)
- Department of Analytical and Applied Chemistry, School of Engineering, Institut Químic de Sarrià, Universitat Ramon Llull, 08017 Barcelona, Spain; (M.B.); (C.G.-C.)
| | - Niki Tagkalidou
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain; (M.R.); (N.T.); (J.B.)
| | - Marina Bellot
- Department of Analytical and Applied Chemistry, School of Engineering, Institut Químic de Sarrià, Universitat Ramon Llull, 08017 Barcelona, Spain; (M.B.); (C.G.-C.)
| | - Juliette Bedrossiantz
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain; (M.R.); (N.T.); (J.B.)
| | - Eva Prats
- Research and Development Center (CID-CSIC), 08034 Barcelona, Spain;
| | - Cristian Gomez-Canela
- Department of Analytical and Applied Chemistry, School of Engineering, Institut Químic de Sarrià, Universitat Ramon Llull, 08017 Barcelona, Spain; (M.B.); (C.G.-C.)
| | - Natalia Garcia-Reyero
- Institute for Genomics, Biocomputing & Biotechnology (IGBB), Mississippi State University, Starkville, MS 39762, USA;
| | - Demetrio Raldúa
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain; (M.R.); (N.T.); (J.B.)
| |
Collapse
|
35
|
Polet SS, de Koning TJ, Lambrechts RA, Tijssen MAJ, Sibon OCM, Gorter JA. Conventional and novel anti-seizure medications reveal a particular role for GABA A in a North Sea progressive myoclonus Epilepsy Drosophila model. Epilepsy Res 2024; 203:107380. [PMID: 38781737 DOI: 10.1016/j.eplepsyres.2024.107380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/01/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024]
Abstract
OBJECTIVE North Sea Progressive Myoclonus Epilepsy (NS-PME) is a rare genetic disorder characterized by ataxia, myoclonus and seizures with a progressive course. Although the cause of NS-PME is known, namely a homozygous mutation in the GOSR2 gene (c.430 G>T; p. Gly144Trp), sufficient treatment is lacking. Despite combinations of on average 3-5 anti-seizure medications (ASMs), debilitating myoclonus and seizures persist. Here we aimed to gain insight into the most effective anti-convulsive target in NS-PME by evaluating the individual effects of ASMs in a NS-PME Drosophila model. METHOD A previously generated Drosophila model for NS-PME was used displaying progressive heat-sensitive seizures. We used this model to test 1. a first-generation ASM (sodium barbital), 2. common ASMs used in NS-PME (clonazepam, valproic acid, levetiracetam, ethosuximide) and 3. a novel third-generation ASM (ganaxolone) with similar mode of action to sodium barbital. Compounds were administered by adding them to the food in a range of concentrations. After 7 days of treatment, the percentage of heat-induced seizures was determined and compared to non-treated but affected controls. RESULTS As previously reported in the NS-PME Drosophila model, sodium barbital resulted in significant seizure suppression, with increasing effect at higher dosages. Of the commonly prescribed ASMs, clonazepam and ethosuximide resulted in significant seizure suppression, whereas both valproic acid and levetiracetam did not show any changes in seizures. Interestingly, ganaxolone did result in seizure suppression as well. CONCLUSION Of the six drugs tested, three of the four that resulted in seizure suppression (sodium barbital, clonazepam, ganaxolone) are primary known for their direct effect on GABAA receptors. This suggests that GABAA could be a potentially important target in the treatment of NS-PME. Consequently, these findings add rationale to the exploration of the clinical effect of ganaxolone in NS-PME and other progressive myoclonus epilepsies.
Collapse
Affiliation(s)
- Sjoukje S Polet
- Department of Neurology, University Medical Center Groningen, University of Groningen, 30.001 AB51, Groningen 9700 RB, the Netherlands; Expertise Center Movement Disorders Groningen, University Medical Center Groningen, University of Groningen, 30.001 AB51, Groningen 9700 RB, the Netherlands.
| | - Tom J de Koning
- Expertise Center Movement Disorders Groningen, University Medical Center Groningen, University of Groningen, 30.001 AB51, Groningen 9700 RB, the Netherlands; Department of Neurology and Medical Genetics, University Medical Center Groningen, University of Groningen, 30.001 AB51, Groningen 9700 RB, the Netherlands; Department of Clinical Sciences, Pediatrics, Lund University, Lund BMC I12, 221 84, Sweden
| | - Roald A Lambrechts
- Expertise Center Movement Disorders Groningen, University Medical Center Groningen, University of Groningen, 30.001 AB51, Groningen 9700 RB, the Netherlands; Department of Neurology, University Medical Center Groningen, University of Groningen, 30.001 AB51, Groningen 9700 RB, the Netherlands
| | - Marina A J Tijssen
- Expertise Center Movement Disorders Groningen, University Medical Center Groningen, University of Groningen, 30.001 AB51, Groningen 9700 RB, the Netherlands; Department of Neurology, University Medical Center Groningen, University of Groningen, 30.001 AB51, Groningen 9700 RB, the Netherlands
| | - Ody C M Sibon
- Expertise Center Movement Disorders Groningen, University Medical Center Groningen, University of Groningen, 30.001 AB51, Groningen 9700 RB, the Netherlands; Department of Biomedical Sciences (BMS), University Medical Center Groningen, University of Groningen, 30.001 FB32, Groningen 9700 AD, the Netherlands
| | - Jenke A Gorter
- Expertise Center Movement Disorders Groningen, University Medical Center Groningen, University of Groningen, 30.001 AB51, Groningen 9700 RB, the Netherlands; Department of Biomedical Sciences (BMS), University Medical Center Groningen, University of Groningen, 30.001 FB32, Groningen 9700 AD, the Netherlands
| |
Collapse
|
36
|
Mahajan P, Palkar M, Pingili RB. Drug reactive metabolite-induced hepatotoxicity: a comprehensive review. Toxicol Mech Methods 2024; 34:607-627. [PMID: 38504503 DOI: 10.1080/15376516.2024.2332613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 03/13/2024] [Indexed: 03/21/2024]
Abstract
Nowadays, drug-induced liver toxicity (DILT) is one of the main contributing factors to severe liver disease. In the United States (US) alone, DILT is the cause of more than 50% of instances of acute liver failure. Prescription or over-the-counter drugs, xenobiotics, and herbal and nutritional supplements can cause DILT and could produce anomalies in hepatic function tests. Some drugs induce hepatotoxicity directly, and others induce it indirectly (i. e. through their toxic or reactive metabolites). Currently, the United States Food and Drug Administration (US FDA) has issued black box warnings for about 1279 drugs due to their hepatotoxicity. When we analyzed their mechanism in inducing hepatotoxicity, we found nearly 18 drugs causing hepatotoxicity by their toxic metabolites. In this review, we attempted to highlight the well-known drugs that induce hepatotoxicity indirectly through their toxic metabolites including the enzymes involved in the formation of these metabolites. The Cytochrome P-450 (CYP), Hypoxanthine phosphoribosyltransferase 1, Alcohol oxidase, Uridine diphosphate (UDP)-glucuronosyltransferases, Xanthine dehydrogenase, Purine-nucleoside phosphorylase, Xanthine oxidase, Thiopurine S-methyltransferase, Inosine-5'-monophosphate dehydrogenase, and aldehyde dehydrogenase are involving in the formation of toxic metabolites. The metabolic reactions and enzymes discussed in this review help toxicologists, pharmacologists, and chemists to design and develop hepatotoxicity-free pharmaceutical products containing the inhibitors of these enzymes to reduce hepatotoxicity and improve human health.
Collapse
Affiliation(s)
- Piyush Mahajan
- Department of Pharmaceutical Quality Assurance, SVKM's NMIMS School of Pharmacy and Technology Management, Shirpur, Maharashtra, India
| | - Mahesh Palkar
- Department of Pharmaceutical Chemistry, SVKM's NMIMS Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, Mumbai, Maharashtra, India
| | - Ravindra Babu Pingili
- Department of Pharmacology, SVKM's NMIMS School of Pharmacy and Technology Management, Shirpur, Maharashtra, India
| |
Collapse
|
37
|
Juknevičienė M, Balnytė I, Valančiūtė A, Alonso MM, Preikšaitis A, Sužiedėlis K, Stakišaitis D. Differential Impact of Valproic Acid on SLC5A8, SLC12A2, SLC12A5, CDH1, and CDH2 Expression in Adult Glioblastoma Cells. Biomedicines 2024; 12:1416. [PMID: 39061990 PMCID: PMC11274075 DOI: 10.3390/biomedicines12071416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/13/2024] [Accepted: 06/22/2024] [Indexed: 07/28/2024] Open
Abstract
Valproic acid (VPA) has anticancer, anti-inflammatory, and epigenetic effects. The study aimed to determine the expression of carcinogenesis-related SLC5A8, SLC12A2, SLC12A5, CDH1, and CDH2 in adult glioblastoma U87 MG and T98G cells and the effects of 0.5 mM, 0.75 mM, and 1.5 mM doses of VPA. RNA gene expression was determined by RT-PCR. GAPDH was used as a control. U87 and T98G control cells do not express SLC5A8 or CDH1. SLC12A5 was expressed in U87 control but not in T98G control cells. The SLC12A2 expression in the U87 control was significantly lower than in the T98G control. T98G control cells showed significantly higher CDH2 expression than U87 control cells. VPA treatment did not affect SLC12A2 expression in U87 cells, whereas treatment dose-dependently increased SLC12A2 expression in T98G cells. Treatment with 1.5 mM VPA induced SLC5A8 expression in U87 cells, while treatment of T98G cells with VPA did not affect SLC5A8 expression. Treatment of U87 cells with VPA significantly increased SLC12A5 expression. VPA increases CDH1 expression depending on the VPA dose. CDH2 expression was significantly increased only in the U87 1.5 mM VPA group. Tested VPA doses significantly increased CDH2 expression in T98G cells. When approaching treatment tactics, assessing the cell's sensitivity to the agent is essential.
Collapse
Affiliation(s)
- Milda Juknevičienė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (M.J.); (I.B.); (A.V.)
| | - Ingrida Balnytė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (M.J.); (I.B.); (A.V.)
| | - Angelija Valančiūtė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (M.J.); (I.B.); (A.V.)
| | - Marta Marija Alonso
- Department of Pediatrics, Clínica Universidad de Navarra, University of Navarra, 31008 Pamplona, Spain;
| | - Aidanas Preikšaitis
- Centre of Neurosurgery, Clinic of Neurology and Neurosurgery, Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania;
| | - Kęstutis Sužiedėlis
- Laboratory of Molecular Oncology, National Cancer Institute, 08660 Vilnius, Lithuania;
| | - Donatas Stakišaitis
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (M.J.); (I.B.); (A.V.)
- Laboratory of Molecular Oncology, National Cancer Institute, 08660 Vilnius, Lithuania;
| |
Collapse
|
38
|
Adiguzel E, Bozkurt NM, Unal G. Independent and combined effects of astaxanthin and omega-3 on behavioral deficits and molecular changes in a prenatal valproic acid model of autism in rats. Nutr Neurosci 2024; 27:590-606. [PMID: 37534957 DOI: 10.1080/1028415x.2023.2239575] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Objectives: Autism is a devastating neurodevelopmental disorder and recent studies showed that omega-3 or astaxanthin might reduce autistic symptoms due to their anti-inflammatory properties. Therefore, we investigated the effects of omega-3 and astaxanthin on the VPA-induced autism model of rats.Material and Methods: Female Wistar albino pups (n = 40) were grouped as control, autistic, astaxanthin (2 mg/kg), omega-3 (200 mg/kg), and astaxanthin (2 mg/kg)+omega-3 (200 mg/kg). All groups except the control were prenatally exposed to VPA. Astaxanthin and omega-3 were orally administered from the postnatal day 41 to 68 and behavioral tests were performed between day 69 and 73. The rats were decapitated 24 h after the behavioral tests and hippocampal and prefrontal cytokines and 5-HT levels were analyzed by ELISA.Results: VPA rats have increased grooming behavior while decreased sociability (SI), social preference index (SPI), discrimination index (DI), and prepulse inhibition (PPI) compared to control. Additionally, IL-1β, IL-6, TNF-α, and IFN-γ levels increased while IL-10 and 5-HT levels decreased in both brain regions. Astaxanthin treatment raised SI, SPI, DI, PPI, and prefrontal IL-10 levels. It also raised 5-HT levels and decreased IL-6 levels in both brain regions. Omega-3 and astaxanthin + omega-3 increased the SI, SPI, DI, and PPI and decreased grooming behavior. Moreover, they increased IL-10 and 5-HT levels whereas decreased IL-1β, IL-6, TNF-α, IFN-γ levels in both brain regions.Conclusions: Our results showed that VPA administration mimicked the behavioral and molecular changes of autism in rats. Single and combined administration of astaxanthin and omega-3 improved the autistic-like behavioral and molecular changes in the VPA model of rats.
Collapse
Affiliation(s)
- Emre Adiguzel
- Faculty of Health Sciences, Department of Nutrition and Dietetics, Karamanoğlu Mehmetbey University, Karaman, Türkiye
| | - Nuh Mehmet Bozkurt
- Faculty of Pharmacy, Department of Pharmacology, Erciyes University, Kayseri, Türkiye
- Experimental Research and Application Center (DEKAM), Brain Research Unit, Erciyes University, Kayseri, Türkiye
- e-Neuro Lab, Drug Application and Research Center (ERFARMA), Erciyes University, Kayseri, Türkiye
| | - Gokhan Unal
- Faculty of Pharmacy, Department of Pharmacology, Erciyes University, Kayseri, Türkiye
- Experimental Research and Application Center (DEKAM), Brain Research Unit, Erciyes University, Kayseri, Türkiye
- e-Neuro Lab, Drug Application and Research Center (ERFARMA), Erciyes University, Kayseri, Türkiye
| |
Collapse
|
39
|
Magaji UF, Coremen M, Karabulut Bulan O, Sacan O, Yanardag R. Biochemical and Histological Effects of Moringa oleifera Extract against Valproate-Induced Kidney Damage. J Med Food 2024; 27:533-544. [PMID: 38836511 DOI: 10.1089/jmf.2023.0091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024] Open
Abstract
Valproic acid is an effective treatment for generalized seizure and related neurological defects. Despite its efficacy and acceptability, its use is associated with adverse drug effects. Moringa oleifera leaves are rich in phytochemical and nutritional components. It has excellent antioxidant and ethnobotanical benefits, thus popular among folk medicines and nutraceuticals. In the present study, 70% ethanol extract of moringa leaves was assessed for its in vivo biochemical and histological effects against valproate-induced kidney damage. Female Sprague-Dawley rats were randomly divided into four groups: Group I: control animals given physiological saline (n = 8); Group II: Moringa extract-administered group (0.3 g/kg b.w./day, n = 8); Group III: valproate-administered animals (0.5 g/kg b.w./day, n = 15); and Group IV: valproate + moringa extract (given similar doses of both valproate and moringa extract, n = 12) administered group. Treatments were administered orally for 15 days, the animals were fasted overnight, anesthetized, and then tissue samples harvested. In the valproate-administered experimental group, serum urea and uric acid were elevated. In the kidney tissue of the valproate rats, glutathione was depleted, antioxidant enzyme activities (superoxide dismutase, catalase, glutathione reductase, glutathione S-transferase, and glutathione peroxidase) disrupted, while oxidative stress biomarker, inflammatory proteins (Tumor necrosis factor-alpha and interleukin-6), histological damage scores, and the number of PCNA-positive cells were elevated. M. oleifera attenuated all these biochemical defects through its plethora of diverse antioxidant and therapeutic properties.
Collapse
Affiliation(s)
- Umar Faruk Magaji
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpaşa, Istanbul, Türkiye
- Department of Biochemistry and Molecular Biology, Federal University Birnin Kebbi, Birnin Kebbi, Nigeria
| | - Melis Coremen
- Department of Biology, Faculty of Science, Istanbul University, Istanbul, Türkiye
| | - Omur Karabulut Bulan
- Department of Biology, Faculty of Science, Istanbul University, Istanbul, Türkiye
| | - Ozlem Sacan
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpaşa, Istanbul, Türkiye
| | - Refiye Yanardag
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpaşa, Istanbul, Türkiye
| |
Collapse
|
40
|
Ma L, Zhu J, Kong X, Chen L, Du J, Yang L, Wang D, Wang Z. Influence of the glutamate-glutamine cycle on valproic acid-associated hepatotoxicity in pediatric patients with epilepsy. Clin Toxicol (Phila) 2024; 62:364-371. [PMID: 38913595 DOI: 10.1080/15563650.2024.2366920] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/06/2024] [Indexed: 06/26/2024]
Abstract
INTRODUCTION Although valproic acid is generally well tolerated, hepatotoxicity is a common side effect in patients receiving long-term treatment. However, the mechanisms underlying valproic acid-associated hepatotoxicity remain elusive. METHODS To investigate the mechanisms and explore the potential risk factors for valproic acid-associated hepatotoxicity, 165 age-matched pediatric patients were recruited for laboratory tests and glutamate-glutamine cycle analysis. RESULTS The concentration of glutamate in patients with hepatotoxicity was significantly greater than that in control patients, while the concentration of glutamine in patients with hepatotoxicity was significantly lower than that in control patients (P <0.05). In addition, the frequencies of the heterozygous with one mutant allele and homozygous with two mutant alleles genotypes in glutamate-ammonia ligase rs10911021 were significantly higher in the hepatotoxicity group than those in the control group (47.1 percent versus 32.5 percent, P = 0.010; 17.6 percent versus 5.2 percent, P = 0.001, respectively). Moreover, heterozygous carriers with one mutant allele and homozygous carriers with two mutant alleles genotypes of glutamate-ammonia ligase rs10911021 exhibited significant differences in the concentrations of glutamine and glutamate concentrations (P ˂ 0.001 and P = 0.001, respectively) and liver function indicators (activities of aspartate aminotransferase, alanine aminotransferase, and gamma-glutamyl transferase, P <0.001, respectively). Furthermore, logistic regression analysis indicated that glutamate-ammonia ligase rs10911021 (P = 0.002, odds ratio: 3.027, 95 percent confidence interval, 1.521 - 6.023) and glutamate (P = 0.001, odds ratio: 2.235, 95 percent confidence interval, 1.369 - 3.146) were associated with a greater risk for hepatotoxicity, while glutamine concentrations were negatively associated with hepatotoxicity (P = 0.001, odds ratio: 0.711, 95 percent confidence interval, 0.629 - 0.804). DISCUSSION Understanding pharmacogenomic risks for valproic acid induced hepatotoxicity might help direct patient specific care. Limitations of our study include the exclusive use of children from one location and concomitant medication use in many patients. CONCLUSION Perturbation of the glutamate-glutamine cycle is associated with valproic acid-associated hepatotoxicity. Moreover, glutamate-ammonia ligase rs10911021, glutamate and glutamine concentrations are potential risk factors for valproic acid-associated hepatotoxicity.
Collapse
Affiliation(s)
- Linfeng Ma
- Department of Medicine, Shandong College of Traditional Chinese Medicine, Yantai, China
| | - Jingwei Zhu
- Department of Clinical Laboratory, Qingdao University Medical College Affiliated Yantai Yuhuangding Hospital, Yantai, China
| | - Xiaoni Kong
- Department of Medicine, Shandong College of Traditional Chinese Medicine, Yantai, China
| | - Li Chen
- Department of Medicine, Shandong College of Traditional Chinese Medicine, Yantai, China
| | - Jiangdong Du
- Department of Clinical Laboratory, Qingdao University Medical College Affiliated Yantai Yuhuangding Hospital, Yantai, China
| | - Liping Yang
- Department of Clinical Laboratory, Qingdao University Medical College Affiliated Yantai Yuhuangding Hospital, Yantai, China
| | - Dan Wang
- School of Life Science, Jilin university, Changchun, China
| | - Zhe Wang
- Department of Clinical Laboratory, Qingdao University Medical College Affiliated Yantai Yuhuangding Hospital, Yantai, China
| |
Collapse
|
41
|
Huchthausen J, Braasch J, Escher BI, König M, Henneberger L. Effects of Chemicals in Reporter Gene Bioassays with Different Metabolic Activities Compared to Baseline Toxicity. Chem Res Toxicol 2024; 37:744-756. [PMID: 38652132 PMCID: PMC11110108 DOI: 10.1021/acs.chemrestox.4c00017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/25/2024]
Abstract
High-throughput cell-based bioassays are used for chemical screening and risk assessment. Chemical transformation processes caused by abiotic degradation or metabolization can reduce the chemical concentration or, in some cases, lead to the formation of more toxic transformation products. Unaccounted loss processes may falsify the bioassay results. Capturing the formation and effects of transformation products is important for relating the in vitro effects to in vivo. Reporter gene cell lines are believed to have low metabolic activity, but inducibility of cytochrome P450 (CYP) enzymes has been reported. Baseline toxicity is the minimal toxicity a chemical can have and is caused by the incorporation of the chemical into cell membranes. In the present study, we improved an existing baseline toxicity model based on a newly defined critical membrane burden derived from freely dissolved effect concentrations, which are directly related to the membrane concentration. Experimental effect concentrations of 94 chemicals in three bioassays (AREc32, ARE-bla and GR-bla) were compared with baseline toxicity by calculating the toxic ratio (TR). CYP activities of all cell lines were determined by using fluorescence-based assays. Only ARE-bla showed a low basal CYP activity and inducibility and AREc32 showed a low inducibility. Overall cytotoxicity was similar in all three assays despite the different metabolic activities indicating that chemical metabolism is not relevant for the cytotoxicity of the tested chemicals in these assays. Up to 28 chemicals showed specific cytotoxicity with TR > 10 in the bioassays, but baseline toxicity could explain the effects of the majority of the remaining chemicals. Seven chemicals showed TR < 0.1 indicating inaccurate physicochemical properties or experimental artifacts like chemical precipitation, volatilization, degradation, or other loss processes during the in vitro bioassay. The new baseline model can be used not only to identify specific cytotoxicity mechanisms but also to identify potential problems in the experimental performance or evaluation of the bioassay and thus improve the quality of the bioassay data.
Collapse
Affiliation(s)
- Julia Huchthausen
- Department
of Cell Toxicology, Helmholtz Centre for
Environmental Research − UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Jenny Braasch
- Department
of Cell Toxicology, Helmholtz Centre for
Environmental Research − UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Beate I. Escher
- Department
of Cell Toxicology, Helmholtz Centre for
Environmental Research − UFZ, Permoserstr. 15, 04318 Leipzig, Germany
- Environmental
Toxicology, Department of Geosciences, Eberhard
Karls University Tübingen, 72076 Tübingen, Germany
| | - Maria König
- Department
of Cell Toxicology, Helmholtz Centre for
Environmental Research − UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Luise Henneberger
- Department
of Cell Toxicology, Helmholtz Centre for
Environmental Research − UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| |
Collapse
|
42
|
Porwal MH, Razzak AN, Kumar V, Obeidat AZ, Sharma U. An analysis of suicidal and self-injurious behavior reports with antiseizure medications in the FDA adverse event database. Epilepsy Res 2024; 203:107382. [PMID: 38761467 DOI: 10.1016/j.eplepsyres.2024.107382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
BACKGROUND Pharmacovigilance systems such as the FDA Adverse Event Reporting System (FAERS), are established models for adverse event surveillance that may have been missed during clinical trials. We aimed to analyze twenty-five anti-seizure medications (ASMs) in FAERS to assess for increased reporting of suicidal and self-injurious behavior. METHODS Twenty-five ASMs were analyzed: brivaracetam, cannabidiol, carbamazepine, clobazam, clonazepam, diazepam, eslicarbazepine, felbamate, gabapentin, lacosamide, lamotrigine, levetiracetam, oxcarbazepine, perampanel, phenobarbital, phenytoin, pregabalin, primidone, rufinamide, stiripentol, tiagabine, topiramate, valproate, vigabatrin, zonisamide. Reports of "suicidal and self-injurious behavior" were collected from January 1, 2004, to December 31, 2020, using OpenVigil 2.1 tool with indication as "Epilepsy". Relative reporting ratio, proportional reporting ratio, and reporting odds ratio were calculated utilizing all other drug reports for epilepsy patients as a control. RESULTS Significant relative operating ratio, ROR (greater than 1, p<0.05) were observed for diazepam (2.909), pregabalin (2.739), brivaracetam (2.462), gabapentin (2.185), clonazepam (1.649), zonisamide (1.462), lacosamide (1.333), and levetiracetam (1.286). CONCLUSIONS Of the 25 ASMs that were analyzed in this study, 4 (16%) were identified to have been linked with a likely true adverse event. These drugs included diazepam, brivaracetam, gabapenetin, and pregabalin. Although several limitations are present with the FAERS database, it is imperative to closely monitor patient comorbidities for increased risk of suicidality with the use of several ASMs.
Collapse
Affiliation(s)
- Mokshal H Porwal
- Department of Neurosurgery, Allegheny General Hospital, 320 E North Ave, Pittsburgh, PA 15212, USA; Department of Neurology, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226, USA
| | - Abrahim N Razzak
- Department of Neurology, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226, USA.
| | - Vinay Kumar
- Department of Neurology, Temple University, 1801 N Broad St., Philadelphia, PA 19122, USA
| | - Ahmed Z Obeidat
- Department of Neurology, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226, USA
| | - Umesh Sharma
- Department of Neurology, University of Central Florida, 4000 Central Florida Blvd, Orlando, FL 32816, USA
| |
Collapse
|
43
|
Beers JL, Zhou Z, Jackson KD. Advances and Challenges in Modeling Cannabidiol Pharmacokinetics and Hepatotoxicity. Drug Metab Dispos 2024; 52:508-515. [PMID: 38286636 PMCID: PMC11114601 DOI: 10.1124/dmd.123.001435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/15/2024] [Accepted: 01/26/2024] [Indexed: 01/31/2024] Open
Abstract
Cannabidiol (CBD) is a pharmacologically active metabolite of cannabis that is US Food and Drug Administration approved to treat seizures associated with Lennox-Gastaut syndrome, Dravet syndrome, and tuberous sclerosis complex in children aged 1 year and older. During clinical trials, CBD caused dose-dependent hepatocellular toxicity at therapeutic doses. The risk for toxicity was increased in patients taking valproate, another hepatotoxic antiepileptic drug, through an unknown mechanism. With the growing popularity of CBD in the consumer market, an improved understanding of the safety risks associated with CBD is needed to ensure public health. This review details current efforts to describe CBD pharmacokinetics and mechanisms of hepatotoxicity using both pharmacokinetic models and in vitro models of the liver. In addition, current evidence and knowledge gaps related to intracellular mechanisms of CBD-induced hepatotoxicity are described. The authors propose future directions that combine systems-based models with markers of CBD-induced hepatotoxicity to understand how CBD pharmacokinetics may influence the adverse effect profile and risk of liver injury for those taking CBD. SIGNIFICANCE STATEMENT: This review describes current pharmacokinetic modeling approaches to capture the metabolic clearance and safety profile of cannabidiol (CBD). CBD is an increasingly popular natural product and US Food and Drug Administration-approved antiepileptic drug known to cause clinically significant enzyme-mediated drug interactions and hepatotoxicity at therapeutic doses. CBD metabolism, pharmacokinetics, and putative mechanisms of CBD-induced liver injury are summarized from available preclinical data to inform future modeling efforts for understanding CBD toxicity.
Collapse
Affiliation(s)
- Jessica L Beers
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (J.L.B., K.D.J.); and Department of Chemistry, York College, City University of New York, Jamaica, New York (Z.Z.)
| | - Zhu Zhou
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (J.L.B., K.D.J.); and Department of Chemistry, York College, City University of New York, Jamaica, New York (Z.Z.)
| | - Klarissa D Jackson
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (J.L.B., K.D.J.); and Department of Chemistry, York College, City University of New York, Jamaica, New York (Z.Z.)
| |
Collapse
|
44
|
Teng JM, Qin S, Lu D, Gu Y, Tang SJ, Yan Q, Yao J, Zhang C. Evaluation of CYP2C19 Genetic Variant and Its Lack of Association with Valproic Acid Plasma Concentrations Among Zhuang and Han Schizophrenia Patients in Guangxi. Pharmgenomics Pers Med 2024; 17:225-236. [PMID: 38765788 PMCID: PMC11102100 DOI: 10.2147/pgpm.s457805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/27/2024] [Indexed: 05/22/2024] Open
Abstract
Purpose To investigate the CYP2C19 genotype distribution and allelic frequency among the Zhuang and Han schizophrenic populations in Guangxi, examine the correlation between CYP2C19 genetic variants and standardized blood levels of Valproic Acid (VPA) in schizophrenic patients, and evaluate the effects of age, gender, and Body Mass Index (BMI) on standardized VPA blood concentrations. Patients and Methods Between February and December 2022, 192 Zhuang and Han schizophrenia patients treated with VPA were studied. Steady-state VPA concentrations were determined using homogeneous enzyme immunoassays, and CYP2C19 *1, *2, and *3 loci via q-PCR. CYP2C19 genotype distributions between Zhuang and Han groups in Nanning were compared using chi-square tests and contrasted with other ethnicities. Non-parametric tests analyzed VPA variations, identifying critical factors through multivariate stepwise regression. Results The study identified five CYP2C19 genotypes at the *2 and *3 loci, with the *3/*3 genotype absent in both cohorts. The CYP2C19 distribution in Guangxi Zhuang and Han mirrors, yet diverges significantly from Hui and Kazakh groups. Among 192 subjects, VPA blood levels remained consistent across metabolic types and ages 18-60 but varied significantly by gender. Multivariate analysis revealed gender and BMI as significant factors, overshadowing CYP2C19 genotype and age. Conclusion In Guangxi, CYP2C19 genetic variants in Zhuang and Han schizophrenia patients demonstrate statistically indistinguishable allelic and metabolic distributions. Gender and BMI can influence standardized VPA blood concentrations in schizophrenia patients. However, in our study cohort, the CYP2C19 genotype and age are not the primary determinants of standardized VPA blood levels.
Collapse
Affiliation(s)
- Jun Mei Teng
- Laboratory Department, The Fifth People’s Hospital of Nanning, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Shuiqing Qin
- Department of Science and Education, The Fifth People’s Hospital of Nanning, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Danyu Lu
- Laboratory Department, The Fifth People’s Hospital of Nanning, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Yefa Gu
- Department of Psychiatry, The Fifth People’s Hospital of Nanning, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Shi Jie Tang
- Department of Psychiatry, The Fifth People’s Hospital of Nanning, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Qiong Yan
- Laboratory Department, The Fifth People’s Hospital of Nanning, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Jiawei Yao
- Laboratory Department, The Fifth People’s Hospital of Nanning, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Chao Zhang
- Laboratory Department, The Fifth People’s Hospital of Nanning, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| |
Collapse
|
45
|
Shnayder NA, Grechkina VV, Trefilova VV, Kissin MY, Narodova EA, Petrova MM, Al-Zamil M, Garganeeva NP, Nasyrova RF. Ethnic Aspects of Valproic Acid P-Oxidation. Biomedicines 2024; 12:1036. [PMID: 38790997 PMCID: PMC11117587 DOI: 10.3390/biomedicines12051036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/29/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
The safety of the use of psychotropic drugs, widely used in neurological and psychiatric practice, is an urgent problem in personalized medicine. This narrative review demonstrated the variability in allelic frequencies of low-functioning and non-functional single nucleotide variants in genes encoding key isoenzymes of valproic acid P-oxidation in the liver across different ethnic/racial groups. The sensitivity and specificity of pharmacogenetic testing panels for predicting the rate of metabolism of valproic acid by P-oxidation can be increased by prioritizing the inclusion of the most common risk allele characteristic of a particular population (country).
Collapse
Affiliation(s)
- Natalia A. Shnayder
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia; (V.V.G.); (V.V.T.)
- Shared Core Facilities “Molecular and Cell Technologies”, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia; (E.A.N.); (M.M.P.)
| | - Violetta V. Grechkina
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia; (V.V.G.); (V.V.T.)
| | - Vera V. Trefilova
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia; (V.V.G.); (V.V.T.)
| | - Mikhail Ya. Kissin
- Department of Psychiatry and Addiction, I.P. Pavlov First St. Petersburg State Medical University, 197022 Saint Petersburg, Russia;
| | - Ekaterina A. Narodova
- Shared Core Facilities “Molecular and Cell Technologies”, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia; (E.A.N.); (M.M.P.)
| | - Marina M. Petrova
- Shared Core Facilities “Molecular and Cell Technologies”, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia; (E.A.N.); (M.M.P.)
| | - Mustafa Al-Zamil
- Department of Physiotherapy, Faculty of Continuing Medical Education, Peoples’ Friendship University of Russia, 117198 Moscow, Russia;
| | - Natalia P. Garganeeva
- Department of General Medical Practice and Outpatient Therapy, Siberian State Medical University, 634050 Tomsk, Russia;
| | - Regina F. Nasyrova
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia; (V.V.G.); (V.V.T.)
- International Centre for Education and Research in Neuropsychiatry, Samara State Medical University, 443016 Samara, Russia
| |
Collapse
|
46
|
Hummel R, Dorochow E, Zander S, Ritter K, Hahnefeld L, Gurke R, Tegeder I, Schäfer MKE. Valproic Acid Treatment after Traumatic Brain Injury in Mice Alleviates Neuronal Death and Inflammation in Association with Increased Plasma Lysophosphatidylcholines. Cells 2024; 13:734. [PMID: 38727269 PMCID: PMC11083124 DOI: 10.3390/cells13090734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/15/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024] Open
Abstract
The histone deacetylase inhibitor (HDACi) valproic acid (VPA) has neuroprotective and anti-inflammatory effects in experimental traumatic brain injury (TBI), which have been partially attributed to the epigenetic disinhibition of the transcription repressor RE1-Silencing Transcription Factor/Neuron-Restrictive Silencer Factor (REST/NRSF). Additionally, VPA changes post-traumatic brain injury (TBI) brain metabolism to create a neuroprotective environment. To address the interconnection of neuroprotection, metabolism, inflammation and REST/NRSF after TBI, we subjected C57BL/6N mice to experimental TBI and intraperitoneal VPA administration or vehicle solution at 15 min, 1, 2, and 3 days post-injury (dpi). At 7 dpi, TBI-induced an up-regulation of REST/NRSF gene expression and HDACi function of VPA on histone H3 acetylation were confirmed. Neurological deficits, brain lesion size, blood-brain barrier permeability, or astrogliosis were not affected, and REST/NRSF target genes were only marginally influenced by VPA. However, VPA attenuated structural damage in the hippocampus, microgliosis and expression of the pro-inflammatory marker genes. Analyses of plasma lipidomic and polar metabolomic patterns revealed that VPA treatment increased lysophosphatidylcholines (LPCs), which were inversely associated with interleukin 1 beta (Il1b) and tumor necrosis factor (Tnf) gene expression in the brain. The results show that VPA has mild neuroprotective and anti-inflammatory effects likely originating from favorable systemic metabolic changes resulting in increased plasma LPCs that are known to be actively taken up by the brain and function as carriers for neuroprotective polyunsaturated fatty acids.
Collapse
Affiliation(s)
- Regina Hummel
- Department of Anesthesiology, University Medical Center Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (R.H.); (K.R.)
| | - Erika Dorochow
- Institute of Clinical Pharmacology, Medical Faculty, Goethe-University Frankfurt, 60596 Frankfurt am Main, Germany; (E.D.); (L.H.); (R.G.)
| | - Sonja Zander
- Department of Anesthesiology, University Medical Center Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (R.H.); (K.R.)
| | - Katharina Ritter
- Department of Anesthesiology, University Medical Center Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (R.H.); (K.R.)
| | - Lisa Hahnefeld
- Institute of Clinical Pharmacology, Medical Faculty, Goethe-University Frankfurt, 60596 Frankfurt am Main, Germany; (E.D.); (L.H.); (R.G.)
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Fraunhofer Cluster of Excellence for Immune-Mediated Diseases, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Robert Gurke
- Institute of Clinical Pharmacology, Medical Faculty, Goethe-University Frankfurt, 60596 Frankfurt am Main, Germany; (E.D.); (L.H.); (R.G.)
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Fraunhofer Cluster of Excellence for Immune-Mediated Diseases, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Irmgard Tegeder
- Institute of Clinical Pharmacology, Medical Faculty, Goethe-University Frankfurt, 60596 Frankfurt am Main, Germany; (E.D.); (L.H.); (R.G.)
| | - Michael K. E. Schäfer
- Department of Anesthesiology, University Medical Center Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (R.H.); (K.R.)
- Focus Program Translational Neurosciences (FTN), Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- Research Center for Immunotherapy (FZI), Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| |
Collapse
|
47
|
Perković Vukčević N, Mijatović Jovin V, Vuković Ercegović G, Antunović M, Kelečević I, Živanović D, Vučinić S. Carbapenems as Antidotes for the Management of Acute Valproic Acid Poisoning. Pharmaceuticals (Basel) 2024; 17:257. [PMID: 38399472 PMCID: PMC10893297 DOI: 10.3390/ph17020257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/24/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
INTRODUCTION Valproic acid (VPA) is a broad-spectrum drug primarily used in the treatment of epilepsy and bipolar disorder. It is not an uncommon occurrence for VPA to cause intoxication. The established treatment of VPA poisoning includes supportive care, multiple doses of activated charcoal, levocarnitine and hemodialysis/hemoperfusion. There is a clinically significant interaction between carbapenem antibiotics and VPA. By affecting enterohepatic recirculation, carbapenems can increase the overall VPA clearance from the blood of intoxicated patients. It is suggested that carbapenems could successfully be used as antidotes in the treatment of acute VPA poisonings. THE AIM To evaluate the effectiveness of carbapenems in the treatment of patients acutely poisoned by VPA. PATIENTS AND METHODS This retrospective study included patients acutely poisoned by VPA and treated with carbapenems at the Department of Clinical Toxicology at the Military Medicinal Academy in Serbia for a two-year period. RESULTS After the admission, blood concentrations of VPA kept increasing, reaching their peak at 114-724 mg/L, while the mental state of the patients continued to decline, prompting a decision to introduce carbapenems. After the introduction of carbapenems, the concentrations of the drug dropped by 46-93.59% (average 72%) followed by rapid recovery of consciousness. Ten out of eleven patients had positive outcomes, while one patient died. The most commonly observed complication in our group of patients was bronchopneumonia. CONCLUSIONS The application of carbapenems for the management of acute VPA poisoning might be a useful and effective treatment option.
Collapse
Affiliation(s)
- Nataša Perković Vukčević
- National Poison Control Centre, Military Medical Academy, 11000 Belgrade, Serbia
- Medical Faculty Military Medical Academy, University of Defense, 11042 Belgrade, Serbia
| | - Vesna Mijatović Jovin
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Gordana Vuković Ercegović
- National Poison Control Centre, Military Medical Academy, 11000 Belgrade, Serbia
- Medical Faculty Military Medical Academy, University of Defense, 11042 Belgrade, Serbia
| | - Marko Antunović
- National Poison Control Centre, Military Medical Academy, 11000 Belgrade, Serbia
- Medical Faculty Military Medical Academy, University of Defense, 11042 Belgrade, Serbia
| | - Igor Kelečević
- Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Dejan Živanović
- Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia
- Department of Psychology, College of Social Work, 11000 Belgrade, Serbia
| | - Slavica Vučinić
- National Poison Control Centre, Military Medical Academy, 11000 Belgrade, Serbia
- Medical Faculty Military Medical Academy, University of Defense, 11042 Belgrade, Serbia
| |
Collapse
|
48
|
Li RT, Chen ZY, Tang SY, Wen DS, Ren RN, Zhang XX, Liu SZ, Zhou S, Wang XD, Zhou LM, Huang M. Association of Valproic Acid and Its Main Metabolites' Plasma Concentrations with Clinical Outcomes among Epilepsy Patients: A 10-Year Retrospective Study Based on Therapeutic Drug Monitoring. Drug Metab Dispos 2024; 52:210-217. [PMID: 38195521 DOI: 10.1124/dmd.123.001539] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/10/2023] [Accepted: 12/11/2023] [Indexed: 01/11/2024] Open
Abstract
Valproic acid (VPA) is a first-line antiepileptic drug with broad efficacy. Due to significant individual differences in its metabolism, therapeutic drug monitoring is commonly used. However, the recommended therapeutic range (50-100 μg/mL) is inadequate for predicting clinical outcomes. Additionally, the relationship between VPA metabolites and clinical outcomes remains unclear. In this retrospective study, 485 Chinese Southern Han epilepsy patients receiving VPA monotherapy were analyzed after reaching steady-state levels. Plasma concentrations of VPA and its five main metabolites were determined by liquid chromatography-mass spectrometry (LC-MS). We assessed the relevance of the recommended therapeutic VPA range for clinical outcomes and explored the association between VPA/metabolites levels and treatment efficacy/adverse effects. Vitro experiments were conducted to assess 4-ene-VPA hepatotoxicity. The therapeutic range of VPA exhibited no significant correlation with clinical outcomes, and plasma concentrations of VPA failed to serve as predictive indicators for treatment response/adverse effects. Treatment responders had higher 2-PGA concentrations (median, 26.39 ng/mL versus 13.68 ng/mL), with a threshold of 36.5 ng/mL for optimal epilepsy treatment. Patients with abnormal liver function had a higher 4-ene-VPA median concentration (6.41 μg/mL versus 4.83 μg/mL), and the ratio of 4-ene-VPA to VPA better predicted VPA-induced hepatotoxicity (area under the curve, 0.718) than 4-ene-VPA concentration. Vitro experiments revealed that 4-ene-VPA was more hepatotoxic than VPA in HepaRG and L02 cell lines. Total plasma VPA concentration does not serve as a predictor of clinical outcomes. 2-PGA concentrations may be associated with efficacy, whereas the ratio of 4-ene-VPA to VPA may be considered a better biomarker (threshold 10.03%) for VPA-induced hepatotoxicity. SIGNIFICANCE STATEMENT: This was the first and largest observational cohort in China to explore the relationship between patients' parent and metabolites concentrations of VPA and clinical outcomes during the maintenance of VPA monotherapy in epileptic patients. This study provided feasible references of VPA for epilepsy clinical treatment with a larger sample of patients compared with previous studies for a more definitive conclusion based on real-world situations. We found two potential biomarkers in predicting efficacy and liver injury, respectively. This breakthrough has the potential to assist in the rational use of VPA.
Collapse
Affiliation(s)
- Rui-Tong Li
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China (R.L., S.T., D.W., R.R., X.Z., S.L., S.Z., X.W., M.H.); Laboratory of Drug Metabolism and Pharmacokinetics, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China (R.L., S.T., D.W., R.R., X.Z., S.L., S.Z., X.W., M.H.); Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou, China (R.L., S.T., D.W., R.R., X.Z., S.L., S.Z., X.W., M.H.); Department of Neurology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China (L.Z.); and Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China (Z.C.)
| | - Zi-Yi Chen
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China (R.L., S.T., D.W., R.R., X.Z., S.L., S.Z., X.W., M.H.); Laboratory of Drug Metabolism and Pharmacokinetics, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China (R.L., S.T., D.W., R.R., X.Z., S.L., S.Z., X.W., M.H.); Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou, China (R.L., S.T., D.W., R.R., X.Z., S.L., S.Z., X.W., M.H.); Department of Neurology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China (L.Z.); and Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China (Z.C.)
| | - Si-Yuan Tang
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China (R.L., S.T., D.W., R.R., X.Z., S.L., S.Z., X.W., M.H.); Laboratory of Drug Metabolism and Pharmacokinetics, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China (R.L., S.T., D.W., R.R., X.Z., S.L., S.Z., X.W., M.H.); Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou, China (R.L., S.T., D.W., R.R., X.Z., S.L., S.Z., X.W., M.H.); Department of Neurology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China (L.Z.); and Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China (Z.C.)
| | - Ding-Sheng Wen
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China (R.L., S.T., D.W., R.R., X.Z., S.L., S.Z., X.W., M.H.); Laboratory of Drug Metabolism and Pharmacokinetics, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China (R.L., S.T., D.W., R.R., X.Z., S.L., S.Z., X.W., M.H.); Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou, China (R.L., S.T., D.W., R.R., X.Z., S.L., S.Z., X.W., M.H.); Department of Neurology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China (L.Z.); and Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China (Z.C.)
| | - Rui-Na Ren
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China (R.L., S.T., D.W., R.R., X.Z., S.L., S.Z., X.W., M.H.); Laboratory of Drug Metabolism and Pharmacokinetics, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China (R.L., S.T., D.W., R.R., X.Z., S.L., S.Z., X.W., M.H.); Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou, China (R.L., S.T., D.W., R.R., X.Z., S.L., S.Z., X.W., M.H.); Department of Neurology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China (L.Z.); and Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China (Z.C.)
| | - Xiao-Xu Zhang
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China (R.L., S.T., D.W., R.R., X.Z., S.L., S.Z., X.W., M.H.); Laboratory of Drug Metabolism and Pharmacokinetics, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China (R.L., S.T., D.W., R.R., X.Z., S.L., S.Z., X.W., M.H.); Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou, China (R.L., S.T., D.W., R.R., X.Z., S.L., S.Z., X.W., M.H.); Department of Neurology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China (L.Z.); and Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China (Z.C.)
| | - Song-Ze Liu
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China (R.L., S.T., D.W., R.R., X.Z., S.L., S.Z., X.W., M.H.); Laboratory of Drug Metabolism and Pharmacokinetics, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China (R.L., S.T., D.W., R.R., X.Z., S.L., S.Z., X.W., M.H.); Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou, China (R.L., S.T., D.W., R.R., X.Z., S.L., S.Z., X.W., M.H.); Department of Neurology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China (L.Z.); and Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China (Z.C.)
| | - Shan Zhou
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China (R.L., S.T., D.W., R.R., X.Z., S.L., S.Z., X.W., M.H.); Laboratory of Drug Metabolism and Pharmacokinetics, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China (R.L., S.T., D.W., R.R., X.Z., S.L., S.Z., X.W., M.H.); Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou, China (R.L., S.T., D.W., R.R., X.Z., S.L., S.Z., X.W., M.H.); Department of Neurology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China (L.Z.); and Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China (Z.C.)
| | - Xue-Ding Wang
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China (R.L., S.T., D.W., R.R., X.Z., S.L., S.Z., X.W., M.H.); Laboratory of Drug Metabolism and Pharmacokinetics, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China (R.L., S.T., D.W., R.R., X.Z., S.L., S.Z., X.W., M.H.); Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou, China (R.L., S.T., D.W., R.R., X.Z., S.L., S.Z., X.W., M.H.); Department of Neurology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China (L.Z.); and Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China (Z.C.)
| | - Lie-Min Zhou
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China (R.L., S.T., D.W., R.R., X.Z., S.L., S.Z., X.W., M.H.); Laboratory of Drug Metabolism and Pharmacokinetics, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China (R.L., S.T., D.W., R.R., X.Z., S.L., S.Z., X.W., M.H.); Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou, China (R.L., S.T., D.W., R.R., X.Z., S.L., S.Z., X.W., M.H.); Department of Neurology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China (L.Z.); and Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China (Z.C.)
| | - Min Huang
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China (R.L., S.T., D.W., R.R., X.Z., S.L., S.Z., X.W., M.H.); Laboratory of Drug Metabolism and Pharmacokinetics, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China (R.L., S.T., D.W., R.R., X.Z., S.L., S.Z., X.W., M.H.); Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou, China (R.L., S.T., D.W., R.R., X.Z., S.L., S.Z., X.W., M.H.); Department of Neurology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China (L.Z.); and Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China (Z.C.)
| |
Collapse
|
49
|
Lumley LA, Nguyen DA, de Araujo Furtado M, Niquet J, Linz EO, Schultz CR, Stone MF, Wasterlain CG. Efficacy of Lacosamide and Rufinamide as Adjuncts to Midazolam-Ketamine Treatment Against Cholinergic-Induced Status Epilepticus in Rats. J Pharmacol Exp Ther 2024; 388:347-357. [PMID: 37977809 PMCID: PMC10801783 DOI: 10.1124/jpet.123.001789] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/19/2023] Open
Abstract
Benzodiazepine pharmacoresistance develops when treatment of status epilepticus (SE) is delayed. This response may result from gamma-aminobutyric acid A receptors (GABAAR) internalization that follows prolonged SE; this receptor trafficking results in fewer GABAAR in the synapse to restore inhibition. Increase in synaptic N-methyl-D-aspartate receptors (NMDAR) also occurs in rodent models of SE. Lacosamide, a third-generation antiseizure medication (ASM), acts on the slow inactivation of voltage-gated sodium channels. Another ASM, rufinamide, similarly acts on sodium channels by extending the duration of time spent in the inactivation stage. Combination therapy of the benzodiazepine midazolam, NMDAR antagonist ketamine, and ASMs lacosamide (or rufinamide) was investigated for efficacy against soman (GD)-induced SE and neuropathology. Adult male rats implanted with telemetry transmitters for monitoring electroencephalographic (EEG) activity were exposed to a seizure-inducing dose of GD and treated with an admix of atropine sulfate and HI-6 1 minute later and with midazolam monotherapy or combination therapy 40 minutes after EEG seizure onset. Rats were monitored continuously for seizure activity for two weeks, after which brains were processed for assessment of neurodegeneration, neuronal loss, and neuroinflammatory responses. Simultaneous administration of midazolam, ketamine, and lacosamide (or rufinamide) was more protective against GD-induced SE compared with midazolam monotherapy. In general, lacosamide triple therapy had more positive outcomes on measures of epileptogenesis, EEG power integral, and the number of brain regions protected from neuropathology compared with rats treated with rufinamide triple therapy. Overall, both drugs were well tolerated in these combination models. SIGNIFICANCE STATEMENT: We currently report on improved efficacy of antiseizure medications lacosamide and rufinamide, each administered in combination with ketamine (NMDAR antagonist) and midazolam (benzodiazepine), in combatting soman (GD)-induced seizure, epileptogenesis, and brain pathology over that provided by midazolam monotherapy, or dual therapy of midazolam and lacosamide (or rufinamide) in rats. Administration of lacosamide as adjunct to midazolam and ketamine was particularly effective against GD-induced toxicity. However, protection was incomplete, suggesting the need for further study.
Collapse
Affiliation(s)
- Lucille A Lumley
- Neuroscience Department, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland (L.A.L., D.A.N., E.O.L., C.R.S., M.F.S.); BioSEaD, LLC, Rockville, Maryland (M.d.A.F.); and Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California, and Epilepsy Research Laboratory, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California (J.N., C.G.W.)
| | - Donna A Nguyen
- Neuroscience Department, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland (L.A.L., D.A.N., E.O.L., C.R.S., M.F.S.); BioSEaD, LLC, Rockville, Maryland (M.d.A.F.); and Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California, and Epilepsy Research Laboratory, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California (J.N., C.G.W.)
| | - Marcio de Araujo Furtado
- Neuroscience Department, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland (L.A.L., D.A.N., E.O.L., C.R.S., M.F.S.); BioSEaD, LLC, Rockville, Maryland (M.d.A.F.); and Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California, and Epilepsy Research Laboratory, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California (J.N., C.G.W.)
| | - Jerome Niquet
- Neuroscience Department, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland (L.A.L., D.A.N., E.O.L., C.R.S., M.F.S.); BioSEaD, LLC, Rockville, Maryland (M.d.A.F.); and Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California, and Epilepsy Research Laboratory, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California (J.N., C.G.W.)
| | - Emily O Linz
- Neuroscience Department, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland (L.A.L., D.A.N., E.O.L., C.R.S., M.F.S.); BioSEaD, LLC, Rockville, Maryland (M.d.A.F.); and Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California, and Epilepsy Research Laboratory, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California (J.N., C.G.W.)
| | - Caroline R Schultz
- Neuroscience Department, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland (L.A.L., D.A.N., E.O.L., C.R.S., M.F.S.); BioSEaD, LLC, Rockville, Maryland (M.d.A.F.); and Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California, and Epilepsy Research Laboratory, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California (J.N., C.G.W.)
| | - Michael F Stone
- Neuroscience Department, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland (L.A.L., D.A.N., E.O.L., C.R.S., M.F.S.); BioSEaD, LLC, Rockville, Maryland (M.d.A.F.); and Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California, and Epilepsy Research Laboratory, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California (J.N., C.G.W.)
| | - Claude G Wasterlain
- Neuroscience Department, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland (L.A.L., D.A.N., E.O.L., C.R.S., M.F.S.); BioSEaD, LLC, Rockville, Maryland (M.d.A.F.); and Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California, and Epilepsy Research Laboratory, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California (J.N., C.G.W.)
| |
Collapse
|
50
|
Mohan KN. Editorial: New insights into investigating schizophrenia as a disorder of molecular pathways. Front Mol Neurosci 2024; 17:1360616. [PMID: 38274843 PMCID: PMC10805877 DOI: 10.3389/fnmol.2024.1360616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 01/02/2024] [Indexed: 01/27/2024] Open
Affiliation(s)
- Kommu Naga Mohan
- Molecular Biology and Genetics Laboratory, Department of Biological Sciences, BITS Pilani Hyderabad Campus, Hyderabad, India
- Centre for Human Disease Research, BITS Pilani Hyderabad Campus, Hyderabad, India
| |
Collapse
|