1
|
Yokoyama S, Nakagawa J, Kudo M, Aiuchi N, Seito T, Isida M, Mikami T, Ihara K, Nakaji S, Niioka T. Impact of solute carrier transporter gene polymorphisms on serum creatinine concentrations in healthy volunteers. Pharmacol Res Perspect 2023; 11:e01048. [PMID: 36594679 PMCID: PMC9809111 DOI: 10.1002/prp2.1048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/11/2022] [Indexed: 01/04/2023] Open
Abstract
In this study, we investigated the impact of single nucleotide polymorphisms in solute carrier (SLC) transporters, that is, SLC22A7 c.1586 + 206A > G, SLC22A2 c.808G > T, SLC22A3 c.1233G > A, SLC47A1 c.922-158G > A, and SLC47A2 c.-130G > A, on serum creatinine (SCr) concentrations. This cross-sectional study included residents who participated as volunteers in a health promotion study. Lifestyle data, blood chemical analysis data, and SLC gene polymorphism information were collected from each participant. Univariate analyses were carried out to determine differences between groups and correlations in SCr. Stepwise multiple regression analysis was performed to confirm the independence of factors that were significantly different in the univariate analyses. In multiple regression analyses, muscle mass, serum cystatin C concentrations, body fat percentage, serum albumin concentrations, and SLC47A2 c.-130G/G had the highest contribution to SCr concentrations, in that order (standardized regression coefficients = .505, .332, -.234, .123, and .084, respectively). The final model explained 72.2% of the variability in SCr concentrations. The SLC47A2 c.-130G > A polymorphism may affect creatinine dynamics in the proximal tubules. Further studies are needed to determine the effects of SLC transporter gene polymorphisms on SCr concentrations in patients with various diseases in real-world clinical settings.
Collapse
Affiliation(s)
- Satoshi Yokoyama
- Department of Pharmaceutical ScienceHirosaki University Graduate School of MedicineHirosakiAomoriJapan
- Department of PharmacyHirosaki Central HospitalHirosakiAomoriJapan
| | - Junichi Nakagawa
- Department of PharmacyHirosaki University HospitalHirosakiAomoriJapan
| | - Masakiyo Kudo
- Department of PharmacyHirosaki University HospitalHirosakiAomoriJapan
| | - Naoya Aiuchi
- Department of PharmacyHirosaki University HospitalHirosakiAomoriJapan
| | - Tatsuya Seito
- Department of PharmacyHirosaki Central HospitalHirosakiAomoriJapan
| | - Mizuri Isida
- Department of Innovation Center for Health PromotionHirosaki University Graduate School of MedicineHirosakiAomoriJapan
| | - Tatsuya Mikami
- Department of Innovation Center for Health PromotionHirosaki University Graduate School of MedicineHirosakiAomoriJapan
| | - Kazushige Ihara
- Department of Social MedicineHirosaki University Graduate School of MedicineHirosakiAomoriJapan
| | - Shigeyuki Nakaji
- Department of Social MedicineHirosaki University Graduate School of MedicineHirosakiAomoriJapan
| | - Takenori Niioka
- Department of Pharmaceutical ScienceHirosaki University Graduate School of MedicineHirosakiAomoriJapan
- Department of PharmacyHirosaki University HospitalHirosakiAomoriJapan
| |
Collapse
|
2
|
Li S, Xu B, Fan S, Kang B, Deng L, Chen D, Yang B, Tang F, He Z, Xue Y, Zhou JC. Effects of single-nucleotide polymorphism on the pharmacokinetics and pharmacodynamics of metformin. Expert Rev Clin Pharmacol 2022; 15:1107-1117. [PMID: 36065506 DOI: 10.1080/17512433.2022.2118714] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Metformin has been recognized as the first-choice drug for type 2 diabetes mellitus (T2DM). The potency of metformin in the treatment of type 2 diabetes has always been in the spotlight and shown significant individual differences. Based on previous studies, the efficacy of metformin is related to the single-nucleotide polymorphisms of transporter genes carried by patients, amongst which a variety of gene polymorphisms of transporter and target protein genes affect the effectiveness and adverse repercussion of metformin. AREAS COVERED Here, we reviewed the current knowledge about gene polymorphisms impacting metformin efficacy based on transporter and drug target proteins. EXPERT OPINION The reason for the difference in clinical drug potency of metformin can be attributed to the gene polymorphism of drug transporters and drug target proteins in the human body. Substantial evidence shows that genetic polymorphisms in transporters such as organic cation transporter 1 (OCT1) and organic cation transporter 2 (OCT2) affect the glucose-lowering effectiveness of metformin. However, optimization of individualized dosing regimens of metformin is necessary to clarify the role of several polymorphisms.
Collapse
Affiliation(s)
- Shaoqian Li
- The First Affiliated Hospital, Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,The First Affiliated Hospital, Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Bo Xu
- The First Affiliated Hospital, Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Shangzhi Fan
- The First Affiliated Hospital, Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,The First Affiliated Hospital, Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Bo Kang
- The First Affiliated Hospital, Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,The First Affiliated Hospital, Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Lijing Deng
- The First Affiliated Hospital, Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,The First Affiliated Hospital, Pharmacy Department, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Danjun Chen
- The First Affiliated Hospital, Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,The First Affiliated Hospital, Pharmacy Department, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Bo Yang
- The First Affiliated Hospital, Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,The First Affiliated Hospital, Pharmacy Department, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Fan Tang
- The First Affiliated Hospital, Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,The First Affiliated Hospital, Pharmacy Department, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Zunbo He
- The First Affiliated Hospital, Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,The First Affiliated Hospital, Department of Anesthesiology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yong Xue
- The Second Affiliated Hospital, Pharmacy Department, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jie-Can Zhou
- The First Affiliated Hospital, Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,The First Affiliated Hospital, Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,The First Affiliated Hospital, Pharmacy Department, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
3
|
Abrahams-October Z, Xhakaza L, Pearce B, Mandisa Masilela C, Benjeddou M, Vincent Adeniyi O, Johnson R, Jebio Ongole J. Genetic Association of Solute Carrier Transporter Gene Variants with Metformin Response. Balkan J Med Genet 2021; 24:47-56. [PMID: 34447659 PMCID: PMC8366475 DOI: 10.2478/bjmg-2021-0004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disorder characterized by elevated blood glucose levels and is influenced by both genetic and environmental factors. It is treated with various classes of oral antidiabetic drugs, however, response to treatment is highly variable with patients failing to achieve adequate glycemic control. Treatment response variability has been associated with single nucleotide polymorphisms (SNPs) which influence the pharma-cokinetics and pharmacodynamics of drug(s). The aim of this study was to evaluate the genetic association of 17 SNPs and the response to metformin therapy in patients diagnosed with diabetes from the indigenous Nguni population of South Africa. One hundred and forty indigenous African patients diagnosed with T2DM were recruited and genotyped using the MassARRAY® system. Therapeutic response of patients was ascertained by a change in Hb A1c. Two SNPs (rs1801282 and rs6265) were monomorphic. All other variants were within the Hardy-Weinberg equilibrium (HWE). The T allele of the SLC variant rs316009 [odds ratio (OR) = 0.25, 95% confidence interval (95% CI) = 0.01-0.09, p value = 0.044] and the CT genotype of the PCK1 variant rs4810083 (OR = 2.80, 95% CI = 1.01-7.79, p value = 0.049) were associated with an improved response to treatment after adjustment. No association was observed with post Bonferroni correction. Moreover, this study provides important additional data regarding possible associations between genetic variants and metformin therapy outcomes. In addition, this is one of the first studies providing genetic data from the understudied indigenous sub-Saharan African populations.
Collapse
Affiliation(s)
- Z Abrahams-October
- Precision Medicine Unit, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
| | - L Xhakaza
- Precision Medicine Unit, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
| | - B Pearce
- Precision Medicine Unit, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
| | - C Mandisa Masilela
- Precision Medicine Unit, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
| | - M Benjeddou
- Precision Medicine Unit, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
| | - O Vincent Adeniyi
- Department of Family Medicine, Walter Sisulu University, East London, South Africa
| | - R Johnson
- South African Medical Research Council, Parow, Cape Town, South Africa
- Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - J Jebio Ongole
- Department of Family Medicine, Piet Retief Hospital, Mkhondo, Mpumalanga, South Africa
| |
Collapse
|
4
|
Shuster DL, Shireman LM, Ma X, Shen DD, Flood Nichols SK, Ahmed MS, Clark S, Caritis S, Venkataramanan R, Haas DM, Quinney SK, Haneline LS, Tita AT, Manuck TA, Thummel KE, Brown LM, Ren Z, Brown Z, Easterling TR, Hebert MF. Pharmacodynamics of Glyburide, Metformin, and Glyburide/Metformin Combination Therapy in the Treatment of Gestational Diabetes Mellitus. Clin Pharmacol Ther 2020; 107:1362-1372. [PMID: 31869430 DOI: 10.1002/cpt.1749] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 10/23/2019] [Indexed: 12/16/2022]
Abstract
In gestational diabetes mellitus (GDM), women are unable to compensate for the increased insulin resistance during pregnancy. Data are limited regarding the pharmacodynamic effects of metformin and glyburide during pregnancy. This study characterized insulin sensitivity (SI), β-cell responsivity, and disposition index (DI) in women with GDM utilizing a mixed-meal tolerance test (MMTT) before and during treatment with glyburide monotherapy (GLY, n = 38), metformin monotherapy (MET, n = 34), or GLY and MET combination therapy (COMBO; n = 36). GLY significantly decreased dynamic β-cell responsivity (31%). MET and COMBO significantly increased SI (121% and 83%, respectively). Whereas GLY, MET, and COMBO improved DI, metformin (MET and COMBO) demonstrated a larger increase in DI (P = 0.05) and a larger decrease in MMTT peak glucose concentrations (P = 0.03) than subjects taking only GLY. Maximizing SI with MET followed by increasing β-cell responsivity with GLY or supplementing with insulin might be a more optimal strategy for GDM management than monotherapy.
Collapse
Affiliation(s)
- Diana L Shuster
- Clinical Pharmacology - Scientific Affairs, PRA Health Sciences, Lenexa, Kansas, USA
| | - Laura M Shireman
- Departments of Pharmaceutics, University of Washington, Seattle, Washington, USA
| | - Xiaosu Ma
- Global PK/PD & Pharmacometrics, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Danny D Shen
- Departments of Pharmaceutics, University of Washington, Seattle, Washington, USA
| | - Shannon K Flood Nichols
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Madigan Army Medical Center, Tacoma, Washington, USA
| | - Mahmoud S Ahmed
- Department of Obstetrics & Gynecology, University of Texas Medical Branch in Galveston, Galveston, Texas, USA
| | - Shannon Clark
- Department of Obstetrics & Gynecology, University of Texas Medical Branch in Galveston, Galveston, Texas, USA
| | - Steve Caritis
- Departments of Obstetrics & Gynecology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Raman Venkataramanan
- Departments of Obstetrics & Gynecology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Pharmacy, Pharmaceutical Sciences and Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - David M Haas
- Departments of Obstetrics & Gynecology, Indiana University, Indianapolis, Indiana, USA
| | - Sara K Quinney
- Departments of Obstetrics & Gynecology, Indiana University, Indianapolis, Indiana, USA
| | - Laura S Haneline
- Department of Pediatrics, Indiana University, Indianapolis, Indiana, USA
| | - Alan T Tita
- Department of Obstetrics & Gynecology, Center for Women's Reproductive Health, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Tracy A Manuck
- Department of Obstetrics & Gynecology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Kenneth E Thummel
- Departments of Pharmaceutics, University of Washington, Seattle, Washington, USA
| | - Linda Morris Brown
- RTI International, Environmental, and Health Science Unit, Biostatistics and Epidemiology Division, Rockville, Maryland, USA
| | - Zhaoxia Ren
- Obstetric and Pediatric Pharmacology and Therapeutic Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA
| | - Zane Brown
- Department of Obstetrics & Gynecology, University of Washington, Seattle, Washington, USA
| | - Thomas R Easterling
- Department of Obstetrics & Gynecology, University of Washington, Seattle, Washington, USA.,Department of Pharmacy, University of Washington, Seattle, Washington, USA
| | - Mary F Hebert
- Department of Obstetrics & Gynecology, University of Washington, Seattle, Washington, USA.,Department of Pharmacy, University of Washington, Seattle, Washington, USA
| |
Collapse
|
5
|
|
6
|
Mannino GC, Andreozzi F, Sesti G. Pharmacogenetics of type 2 diabetes mellitus, the route toward tailored medicine. Diabetes Metab Res Rev 2019; 35:e3109. [PMID: 30515958 PMCID: PMC6590177 DOI: 10.1002/dmrr.3109] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 11/27/2018] [Accepted: 11/30/2018] [Indexed: 12/11/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic disease that has reached the levels of a global epidemic. In order to achieve optimal glucose control, it is often necessary to rely on combination therapy of multiple drugs or insulin because uncontrolled glucose levels result in T2DM progression and enhanced risk of complications and mortality. Several antihyperglycemic agents have been developed over time, and T2DM pharmacotherapy should be prescribed based on suitability for the individual patient's characteristics. Pharmacogenetics is the branch of genetics that investigates how our genome influences individual responses to drugs, therapeutic outcomes, and incidence of adverse effects. In this review, we evaluated the pharmacogenetic evidences currently available in the literature, and we identified the top informative genetic variants associated with response to the most common anti-diabetic drugs: metformin, DPP-4 inhibitors/GLP1R agonists, thiazolidinediones, and sulfonylureas/meglitinides. Overall, we found 40 polymorphisms for each drug class in a total of 71 loci, and we examined the possibility of encouraging genetic screening of these variants/loci in order to critically implement decision-making about the therapeutic approach through precision medicine strategies. It is possible then to anticipate that when the clinical practice will take advantage of the genetic information of the diabetic patients, this will provide a useful resource for the prevention of T2DM progression, enabling the identification of the precise drug that is most likely to be effective and safe for each patient and the reduction of the economic impact on a global scale.
Collapse
Affiliation(s)
- Gaia Chiara Mannino
- Department of Medical and Surgical SciencesUniversity Magna Graecia of CatanzaroCatanzaroItaly
| | - Francesco Andreozzi
- Department of Medical and Surgical SciencesUniversity Magna Graecia of CatanzaroCatanzaroItaly
| | - Giorgio Sesti
- Department of Medical and Surgical SciencesUniversity Magna Graecia of CatanzaroCatanzaroItaly
| |
Collapse
|
7
|
Lam YWF, Duggirala R, Jenkinson CP, Arya R. The Role of Pharmacogenomics in Diabetes. Pharmacogenomics 2019. [DOI: 10.1016/b978-0-12-812626-4.00009-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
8
|
Bokelmann K, Brockmöller J, Tzvetkov MV. Impact of Promoter Polymorphisms on the Transcriptional Regulation of the Organic Cation Transporter OCT1 (SLC22A1). J Pers Med 2018; 8:jpm8040042. [PMID: 30544975 PMCID: PMC6313513 DOI: 10.3390/jpm8040042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/20/2018] [Accepted: 12/05/2018] [Indexed: 01/12/2023] Open
Abstract
The organic cation transporter 1 (OCT1, SLC22A1) is strongly expressed in the human liver and facilitates the hepatic uptake of drugs such as morphine, metformin, tropisetron, sumatriptan and fenoterol and of endogenous substances such as thiamine. OCT1 expression is inter-individually highly variable. Here, we analyzed SNPs in the OCT1 promoter concerning their potential contribution to the variability in OCT1 expression. Using electrophoretic mobility shift and luciferase reporter gene assays in HepG2, Hep3B, and Huh7 cell lines, we identified the SNPs −1795G>A (rs6935207) and −201C>G (rs58812592) as having effects on transcription factor binding and/or promoter activity. The A-allele of the −1795G>A SNP showed allele-specific binding of the transcription factor NF-Y leading to 2.5-fold increased enhancer activity of the artificial SV40 promoter. However, the −1795G>A SNP showed no significant effects on the native OCT1 promoter activity. Furthermore, the −1795G>A SNP was not associated with the pharmacokinetics of metformin, fenoterol, sumatriptan and proguanil in healthy individuals or tropisetron efficacy in patients undergoing chemotherapy. Allele-dependent differences in USF1/2 binding and nearly total loss in OCT1 promoter activity were detected for the G-allele of −201C>G, but the SNP is apparently very rare. In conclusion, common OCT1 promoter SNPs have only minor effects on OCT1 expression.
Collapse
Affiliation(s)
- Kristin Bokelmann
- Institute of Clinical Pharmacology, University Medical Center, Georg-August-University, 37075 Göttingen, Germany.
| | - Jürgen Brockmöller
- Institute of Clinical Pharmacology, University Medical Center, Georg-August-University, 37075 Göttingen, Germany.
| | - Mladen V Tzvetkov
- Institute of Pharmacology, Center of Drug Absorption and Transport (C_DAT), University Medicine Greifswald, 17487 Greifswald, Germany.
| |
Collapse
|
9
|
OCT3 promoter haplotype is associated with metformin pharmacokinetics in Koreans. Sci Rep 2018; 8:16965. [PMID: 30446679 PMCID: PMC6240047 DOI: 10.1038/s41598-018-35322-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 10/31/2018] [Indexed: 12/13/2022] Open
Abstract
Organic cation transporter 3 (OCT3) is expressed in various organs in humans and plays an important role in the transport of organic cations and drugs including metformin. In this study, we identified genetic variations of the OCT3 promoter and functionally characterized each variant by in vitro assays. Next, the association between the functional haplotype of the OCT3 promoter and pharmacokinetics of metformin was evaluated. In our study population, 7 variations and 2 major haplotypes were identified, of which H2 haplotype yielded a significantly higher luciferase activity than did the wild type. Two variants of H2, c.-1603G > A and c.-1547T > G, yielded significantly lower luciferase activities, whereas the luciferase activity of another variant, c.-29G > A, was significantly higher. Two transcription factors, Sp1 and USF1, were involved in the regulation of OCT3 transcription. Analysis of clinical data revealed that 25 subjects, either homozygous or heterozygous for H2, showed increased AUCinf and Cmax by 17.2% and 15.9%, respectively [P = 0.016 and 0.031, GMR (90% CI) = 1.17 (1.06–1.29) and 1.17 (1.04–1.31), respectively], compared to the 20 subjects in the control group. Our study suggests that an OCT3 promoter haplotype affects the pharmacokinetics of metformin in Koreans as well as the OCT3 transcription rate.
Collapse
|
10
|
Chan P, Shao L, Tomlinson B, Zhang Y, Liu ZM. Metformin transporter pharmacogenomics: insights into drug disposition-where are we now? Expert Opin Drug Metab Toxicol 2018; 14:1149-1159. [PMID: 30375241 DOI: 10.1080/17425255.2018.1541981] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Metformin is recommended as first-line treatment for type 2 diabetes (T2D) by all major diabetes guidelines. With appropriate usage it is safe and effective overall, but its efficacy and tolerability show considerable variation between individuals. It is a substrate for several drug transporters and polymorphisms in these transporter genes have shown effects on metformin pharmacokinetics and pharmacodynamics. Areas covered: This article provides a review of the current status of the influence of transporter pharmacogenomics on metformin efficacy and tolerability. The transporter variants identified to have an important influence on the absorption, distribution, and elimination of metformin, particularly those in organic cation transporter 1 (OCT1, gene SLC22A1), are reviewed. Expert opinion: Candidate gene studies have shown that genetic variations in SLC22A1 and other drug transporters influence the pharmacokinetics, glycemic responses, and gastrointestinal intolerance to metformin, although results are somewhat discordant. Conversely, genome-wide association studies of metformin response have identified signals in the pharmacodynamic pathways rather than the transporters involved in metformin disposition. Currently, pharmacogenomic testing to predict metformin response and tolerability may not have a clinical role, but with additional data from larger studies and availability of safe and effective alternative antidiabetic agents, this is likely to change.
Collapse
Affiliation(s)
- Paul Chan
- a Division of Cardiology, Department of Internal Medicine, Wan Fang Hospital , Taipei Medical University , Taipei City , Taiwan
| | - Li Shao
- b The VIP Department, Shanghai East Hospital , Tongji University School of Medicine , Shanghai , China
| | - Brian Tomlinson
- c Research Center for Translational Medicine , Shanghai East Hospital Affiliated to Tongji University School of Medicine , Shanghai , China.,d Department of Medicine & Therapeutics , The Chinese University of Hong Kong , Shatin , Hong Kong
| | - Yuzhen Zhang
- c Research Center for Translational Medicine , Shanghai East Hospital Affiliated to Tongji University School of Medicine , Shanghai , China
| | - Zhong-Min Liu
- e Department of Cardiac Surgery, Shanghai East Hospital , Tongji University , Shanghai , China
| |
Collapse
|
11
|
Moon SJ, Oh J, Lee SH, Choi Y, Yu KS, Chung JY. Effect of plasma membrane monoamine transporter genetic variants on pharmacokinetics of metformin in humans. Transl Clin Pharmacol 2018; 26:79-85. [PMID: 32055553 PMCID: PMC6989255 DOI: 10.12793/tcp.2018.26.2.79] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 05/31/2018] [Accepted: 06/04/2018] [Indexed: 11/29/2022] Open
Abstract
Metformin, an oral hypoglycemic agent belonging to biguanide class, is widely used to treat type 2 diabetes mellitus, and several drug transporters such as organic cation transporters (OCTs), multidrug and toxin extrusion transporter (MATE), and plasma membrane monoamine transporter (PMAT) are thought to affect its disposition. We evaluated the role of PMAT genetic variations on the pharmacokinetic characteristics of metformin in a Korean population. In this retrospective study, 91 healthy subjects from four different metformin pharmacokinetic studies were analyzed; in each study, the subjects were administered two oral doses of metformin at intervals of 12 hours and dose-normalized pharmacokinetic parameters were compared between the subjects' genotypes. Subjects who had more than one allele of c.883-144A>G single nucleotide polymorphism (SNP) in PMAT gene (rs3889348) showed increased renal clearance of metformin compared to wild-type subjects (814.79 ± 391.73 vs. 619.90 ± 195.43 mL/min, p=0.003), whereas no differences in metformin exposure were observed between the PMAT variant subjects and wild-type subjects. Similarly, subjects with variant rs316019 SNP in OCT2 showed decreased renal clearance of metformin compared to wild-type subjects (586.01 ± 160.54 vs. 699.13 ± 291.40 mL/min, p=0.048). Other SNPs in PMAT and MATE1/2-K genes did not significantly affect metformin pharmacokinetics. In conclusion, the genetic variation of c.883-144A>G SNP in PMAT significantly affects the renal clearance of metformin in healthy Korean male subjects.
Collapse
Affiliation(s)
- Seol Ju Moon
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul 03080, Republic of Korea
| | - Jaeseong Oh
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul 03080, Republic of Korea
| | - Seung Hwan Lee
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul 03080, Republic of Korea
| | - Yewon Choi
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul 03080, Republic of Korea
| | - Kyung-Sang Yu
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul 03080, Republic of Korea
| | - Jae-Yong Chung
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Bundang Hospital, Seongnam 13620, Republic of Korea
| |
Collapse
|
12
|
Chung H, Oh J, Yoon SH, Yu KS, Cho JY, Chung JY. A non-linear pharmacokinetic-pharmacodynamic relationship of metformin in healthy volunteers: An open-label, parallel group, randomized clinical study. PLoS One 2018; 13:e0191258. [PMID: 29342199 PMCID: PMC5771593 DOI: 10.1371/journal.pone.0191258] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 12/26/2017] [Indexed: 11/19/2022] Open
Abstract
Background The aim of this study was to explore the pharmacokinetic-pharmacodynamic (PK-PD) relationship of metformin on glucose levels after the administration of 250 mg and 1000 mg of metformin in healthy volunteers. Methods A total of 20 healthy male volunteers were randomized to receive two doses of either a low dose (375 mg followed by 250 mg) or a high dose (1000 mg followed by 1000 mg) of metformin at 12-h intervals. The pharmacodynamics of metformin was assessed using oral glucose tolerance tests before and after metformin administration. The PK parameters after the second dose were evaluated through noncompartmental analyses. Four single nucleotide polymorphisms in MATE1, MATE2-K, and OCT2 were genotyped, and their effects on PK characteristics were additionally evaluated. Results The plasma exposure of metformin increased as the metformin dose increased. The mean values for the area under the concentration-time curve from dosing to 12 hours post-dose (AUC0-12h) were 3160.4 and 8808.2 h·μg/L for the low- and high-dose groups, respectively. Non-linear relationships were found between the glucose-lowering effect and PK parameters with a significant inverse trend at high metformin exposure. The PK parameters were comparable among subjects with the genetic polymorphisms. Conclusions This study showed a non-linear PK-PD relationship on plasma glucose levels after the administration of metformin. The inverse relationship between systemic exposure and the glucose-lowering effect at a high exposure indicates a possible role for the intestines as an action site for metformin. Trial registration ClinicalTrials.gov NCT02712619
Collapse
Affiliation(s)
- Hyewon Chung
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine, Seoul, Korea
- Department of Clinical Pharmacology and Toxicology, Korea University Guro Hospital, Seoul, Korea
| | - Jaeseong Oh
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine, Seoul, Korea
- Department of Clinical Pharmacology and Therapeutics, Seoul National University Hospital, Seoul, Korea
| | - Seo Hyun Yoon
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine, Seoul, Korea
- Department of Clinical Pharmacology and Therapeutics, Seoul National University Hospital, Seoul, Korea
| | - Kyung-Sang Yu
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine, Seoul, Korea
- Department of Clinical Pharmacology and Therapeutics, Seoul National University Hospital, Seoul, Korea
| | - Joo-Youn Cho
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine, Seoul, Korea
- Department of Clinical Pharmacology and Therapeutics, Seoul National University Hospital, Seoul, Korea
| | - Jae-Yong Chung
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine, Seoul, Korea
- Clinical Trials Center, Seoul National University Bundang Hospital, Seongnam, Korea
- * E-mail:
| |
Collapse
|
13
|
Abstract
Transporters in proximal renal tubules contribute to the disposition of numerous drugs. Furthermore, the molecular mechanisms of tubular secretion have been progressively elucidated during the past decades. Organic anions tend to be secreted by the transport proteins OAT1, OAT3 and OATP4C1 on the basolateral side of tubular cells, and multidrug resistance protein (MRP) 2, MRP4, OATP1A2 and breast cancer resistance protein (BCRP) on the apical side. Organic cations are secreted by organic cation transporter (OCT) 2 on the basolateral side, and multidrug and toxic compound extrusion (MATE) proteins MATE1, MATE2/2-K, P-glycoprotein, organic cation and carnitine transporter (OCTN) 1 and OCTN2 on the apical side. Significant drug-drug interactions (DDIs) may affect any of these transporters, altering the clearance and, consequently, the efficacy and/or toxicity of substrate drugs. Interactions at the level of basolateral transporters typically decrease the clearance of the victim drug, causing higher systemic exposure. Interactions at the apical level can also lower drug clearance, but may be associated with higher renal toxicity, due to intracellular accumulation. Whereas the importance of glomerular filtration in drug disposition is largely appreciated among clinicians, DDIs involving renal transporters are less well recognized. This review summarizes current knowledge on the roles, quantitative importance and clinical relevance of these transporters in drug therapy. It proposes an approach based on substrate-inhibitor associations for predicting potential tubular-based DDIs and preventing their adverse consequences. We provide a comprehensive list of known drug interactions with renally-expressed transporters. While many of these interactions have limited clinical consequences, some involving high-risk drugs (e.g. methotrexate) definitely deserve the attention of prescribers.
Collapse
Affiliation(s)
- Anton Ivanyuk
- Division of Clinical Pharmacology, Lausanne University Hospital (CHUV), Bugnon 17, 1011, Lausanne, Switzerland.
| | - Françoise Livio
- Division of Clinical Pharmacology, Lausanne University Hospital (CHUV), Bugnon 17, 1011, Lausanne, Switzerland
| | - Jérôme Biollaz
- Division of Clinical Pharmacology, Lausanne University Hospital (CHUV), Bugnon 17, 1011, Lausanne, Switzerland
| | - Thierry Buclin
- Division of Clinical Pharmacology, Lausanne University Hospital (CHUV), Bugnon 17, 1011, Lausanne, Switzerland
| |
Collapse
|
14
|
Yu Q, Liu Y, Zheng X, Zhu Q, Shen Z, Wang H, He H, Lin N, Jiang H, Yu L, Zeng S. Histone H3 Lysine 4 Trimethylation, Lysine 27 Trimethylation, and Lysine 27 Acetylation Contribute to the Transcriptional Repression of Solute Carrier Family 47 Member 2 in Renal Cell Carcinoma. Drug Metab Dispos 2017; 45:109-117. [PMID: 27821436 DOI: 10.1124/dmd.116.073734] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 11/02/2016] [Indexed: 02/13/2025] Open
Abstract
In recent years, finding effective biomarkers for identifying early stage cancer and predicating prognosis is crucial for renal cell carcinoma (RCC) diagnosis and treatment. In this study, a dramatic decrease of the solute carrier family 47 member 2 (SLC47A2) mRNA in RCC comparing with the paired adjacent nontumor tissues from patients at low Tumor Node Metastasis stage was observed. Thus, patients with SLC47A2 transcriptional repression are susceptible to RCC. Little is known about the regulation mechanism of SLC47A2 We found that it was a bivalent gene that was enriched with both histone H3 lysine 4 trimethylation (H3K4me3) and lysine 27 trimethylation (H3K27me3). Loss of mixed lineage leukemia 1 binding at the gene promoter caused decreased H3K4me3 enrichment and H3K4me3/H3K27me3 ratio, and subsequently repressed the expression of SLC47A2 These two epigenetic markers modulated the expression of SLC47A2 simultaneously, suggesting the regulation pattern for bivalent genes. Histone H3 lysine 27 acetylation also contributed to the expression of SLC47A2 An E2F1-histone deacetylase 10 complex catalyzed deacetylation of H3K27, then prevented the enrichment of H3K4me3, and finally reduced SLC47A2 expression. Consequently, the combined effect of all these factors determined SLC47A2 transcriptional repression in RCC tissues.
Collapse
Affiliation(s)
- Qinqin Yu
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China (Q.Y., Y.L., X.Z., Q.Z., Z.S., H.J., L.Y., S.Z.); Department of Urology, Cancer Hospital of Zhejiang Province, Hangzhou, China (H.W.); and Department of Urology, Hangzhou First People's Hospital, Hangzhou, China (H.H., N.L.)
| | - Yanqing Liu
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China (Q.Y., Y.L., X.Z., Q.Z., Z.S., H.J., L.Y., S.Z.); Department of Urology, Cancer Hospital of Zhejiang Province, Hangzhou, China (H.W.); and Department of Urology, Hangzhou First People's Hospital, Hangzhou, China (H.H., N.L.)
| | - Xiaoli Zheng
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China (Q.Y., Y.L., X.Z., Q.Z., Z.S., H.J., L.Y., S.Z.); Department of Urology, Cancer Hospital of Zhejiang Province, Hangzhou, China (H.W.); and Department of Urology, Hangzhou First People's Hospital, Hangzhou, China (H.H., N.L.)
| | - Qianying Zhu
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China (Q.Y., Y.L., X.Z., Q.Z., Z.S., H.J., L.Y., S.Z.); Department of Urology, Cancer Hospital of Zhejiang Province, Hangzhou, China (H.W.); and Department of Urology, Hangzhou First People's Hospital, Hangzhou, China (H.H., N.L.)
| | - Zhuowei Shen
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China (Q.Y., Y.L., X.Z., Q.Z., Z.S., H.J., L.Y., S.Z.); Department of Urology, Cancer Hospital of Zhejiang Province, Hangzhou, China (H.W.); and Department of Urology, Hangzhou First People's Hospital, Hangzhou, China (H.H., N.L.)
| | - Hua Wang
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China (Q.Y., Y.L., X.Z., Q.Z., Z.S., H.J., L.Y., S.Z.); Department of Urology, Cancer Hospital of Zhejiang Province, Hangzhou, China (H.W.); and Department of Urology, Hangzhou First People's Hospital, Hangzhou, China (H.H., N.L.)
| | - Huadong He
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China (Q.Y., Y.L., X.Z., Q.Z., Z.S., H.J., L.Y., S.Z.); Department of Urology, Cancer Hospital of Zhejiang Province, Hangzhou, China (H.W.); and Department of Urology, Hangzhou First People's Hospital, Hangzhou, China (H.H., N.L.)
| | - Nengming Lin
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China (Q.Y., Y.L., X.Z., Q.Z., Z.S., H.J., L.Y., S.Z.); Department of Urology, Cancer Hospital of Zhejiang Province, Hangzhou, China (H.W.); and Department of Urology, Hangzhou First People's Hospital, Hangzhou, China (H.H., N.L.)
| | - Huidi Jiang
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China (Q.Y., Y.L., X.Z., Q.Z., Z.S., H.J., L.Y., S.Z.); Department of Urology, Cancer Hospital of Zhejiang Province, Hangzhou, China (H.W.); and Department of Urology, Hangzhou First People's Hospital, Hangzhou, China (H.H., N.L.)
| | - Lushan Yu
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China (Q.Y., Y.L., X.Z., Q.Z., Z.S., H.J., L.Y., S.Z.); Department of Urology, Cancer Hospital of Zhejiang Province, Hangzhou, China (H.W.); and Department of Urology, Hangzhou First People's Hospital, Hangzhou, China (H.H., N.L.)
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China (Q.Y., Y.L., X.Z., Q.Z., Z.S., H.J., L.Y., S.Z.); Department of Urology, Cancer Hospital of Zhejiang Province, Hangzhou, China (H.W.); and Department of Urology, Hangzhou First People's Hospital, Hangzhou, China (H.H., N.L.)
| |
Collapse
|
15
|
The Effect of Nizatidine, a MATE2K Selective Inhibitor, on the Pharmacokinetics and Pharmacodynamics of Metformin in Healthy Volunteers. Clin Pharmacokinet 2016; 55:495-506. [PMID: 26507723 DOI: 10.1007/s40262-015-0332-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND AND OBJECTIVES In the proximal tubule, basic drugs are transported from the renal cells to the tubule lumen through the concerted action of the H(+)/organic cation antiporters, multidrug and toxin extrusion (MATE) 1 and MATE2K. Dual inhibitors of the MATE transporters have been shown to have a clinically relevant effect on the pharmacokinetics of concomitantly administered basic drugs. However, the clinical impact of selective renal organic cation transport inhibition on the pharmacokinetics and pharmacodynamics of basic drugs, such as metformin, is unknown. This study sought to identify a selective MATE2K inhibitor in vitro and to determine its clinical impact on the pharmacokinetics and pharmacodynamics of metformin in healthy subjects. METHODS Strategic cell-based screening of 71 US Food and Drug Administration (FDA)-approved medications was conducted to identify selective inhibitors of renal organic cation transporters that are capable of inhibiting at clinically relevant concentrations. From this screen, nizatidine was identified and predicted to be a clinically potent and selective inhibitor of MATE2K-mediated transport. The effect of nizatidine on the pharmacokinetics and pharmacodynamics of metformin was evaluated in 12 healthy volunteers in an open-label, randomized, two-phase crossover drug-drug interaction (DDI) study. RESULTS In healthy volunteers, the MATE2K-selective inhibitor nizatidine significantly increased the apparent volume of distribution, half-life, and hypoglycemic activity of metformin. However, despite achieving unbound maximum concentrations greater than the in vitro inhibition potency (concentration of drug producing 50% inhibition [IC50]) of MATE2K-mediated transport, nizatidine did not affect the renal clearance (CLR) or net secretory clearance of metformin. CONCLUSION This study demonstrates that a selective inhibition of MATE2K by nizatidine affected the apparent volume of distribution, tissue concentrations, and peripheral effects of metformin. However, nizatidine did not alter systemic concentrations or the CLR of metformin, suggesting that specific MATE2K inhibition may not be sufficient to cause renal DDIs with metformin.
Collapse
|
16
|
Structure and function of multidrug and toxin extrusion proteins (MATEs) and their relevance to drug therapy and personalized medicine. Arch Toxicol 2016; 90:1555-84. [PMID: 27165417 DOI: 10.1007/s00204-016-1728-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 04/27/2016] [Indexed: 12/15/2022]
Abstract
Multidrug and toxin extrusion (MATE; SLC47A) proteins are membrane transporters mediating the excretion of organic cations and zwitterions into bile and urine and thereby contributing to the hepatic and renal elimination of many xenobiotics. Transported substrates include creatinine as endogenous substrate, the vitamin thiamine and a number of drug agents with in part chemically different structures such as the antidiabetic metformin, the antiviral agents acyclovir and ganciclovir as well as the antibiotics cephalexin and cephradine. This review summarizes current knowledge on the structural and molecular features of human MATE transporters including data on expression and localization in different tissues, important aspects on regulation and their functional role in drug transport. The role of genetic variation of MATE proteins for drug pharmacokinetics and drug response will be discussed with consequences for personalized medicine.
Collapse
|
17
|
Clarke JD, Dzierlenga AL, Nelson NR, Li H, Werts S, Goedken MJ, Cherrington NJ. Mechanism of Altered Metformin Distribution in Nonalcoholic Steatohepatitis. Diabetes 2015; 64:3305-13. [PMID: 26016715 PMCID: PMC4542448 DOI: 10.2337/db14-1947] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Accepted: 05/19/2015] [Indexed: 12/13/2022]
Abstract
Metformin is an antihyperglycemic drug that is widely prescribed for type 2 diabetes mellitus and is currently being investigated for the treatment of nonalcoholic steatohepatitis (NASH). NASH is known to alter hepatic membrane transporter expression and drug disposition similarly in humans and rodent models of NASH. Metformin is almost exclusively eliminated through the kidney primarily through active secretion mediated by Oct1, Oct2, and Mate1. The purpose of this study was to determine how NASH affects kidney transporter expression and metformin pharmacokinetics. A single oral dose of [(14)C]metformin was administered to C57BL/6J (wild type [WT]) and diabetic ob/ob mice fed either a control diet or a methionine- and choline-deficient (MCD) diet. Metformin plasma concentrations were slightly increased in the WT/MCD and ob/control groups, whereas plasma concentrations were 4.8-fold higher in ob/MCD mice compared with WT/control. The MCD diet significantly increased plasma half-life and mean residence time and correspondingly decreased oral clearance in both genotypes. These changes in disposition were caused by ob/ob- and MCD diet-specific decreases in the kidney mRNA expression of Oct2 and Mate1, whereas Oct1 mRNA expression was only decreased in ob/MCD mice. These results indicate that the diabetic ob/ob genotype and the MCD disease model alter kidney transporter expression and alter the pharmacokinetics of metformin, potentially increasing the risk of drug toxicity.
Collapse
Affiliation(s)
- John D Clarke
- Department of Pharmacology and Toxicology, The University of Arizona, Tucson, AZ
| | - Anika L Dzierlenga
- Department of Pharmacology and Toxicology, The University of Arizona, Tucson, AZ
| | - Nicholas R Nelson
- Department of Pharmacology and Toxicology, The University of Arizona, Tucson, AZ
| | - Hui Li
- Department of Pharmacology and Toxicology, The University of Arizona, Tucson, AZ
| | - Samantha Werts
- Department of Pharmacology and Toxicology, The University of Arizona, Tucson, AZ
| | - Michael J Goedken
- Translational Sciences, Research Pathology Services, Rutgers University, New Brunswick, NJ
| | - Nathan J Cherrington
- Department of Pharmacology and Toxicology, The University of Arizona, Tucson, AZ
| |
Collapse
|
18
|
Goswami S, Yee SW, Stocker S, Mosley JD, Kubo M, Castro R, Mefford JA, Wen C, Liang X, Witte J, Brett C, Maeda S, Simpson MD, Hedderson MM, Davis RL, Roden DM, Giacomini KM, Savic RM. Genetic variants in transcription factors are associated with the pharmacokinetics and pharmacodynamics of metformin. Clin Pharmacol Ther 2014; 96:370-9. [PMID: 24853734 PMCID: PMC4171106 DOI: 10.1038/clpt.2014.109] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 05/07/2014] [Indexed: 12/26/2022]
Abstract
One-third of type 2 diabetes patients do not respond to metformin. Genetic variants in metformin transporters have been extensively studied as a likely contributor to this high failure rate. Here, we investigate, for the first time, the effect of genetic variants in transcription factors on metformin pharmacokinetics (PK) and response. Overall, 546 patients and healthy volunteers contributed their genome-wide, pharmacokinetic (235 subjects), and HbA1c data (440 patients) for this analysis. Five variants in specificity protein 1 (SP1), a transcription factor that modulates the expression of metformin transporters, were associated with changes in treatment HbA1c (P < 0.01) and metformin secretory clearance (P < 0.05). Population pharmacokinetic modeling further confirmed a 24% reduction in apparent clearance in homozygous carriers of one such variant, rs784888. Genetic variants in other transcription factors, peroxisome proliferator-activated receptor-α and hepatocyte nuclear factor 4-α, were significantly associated with HbA1c change only. Overall, our study highlights the importance of genetic variants in transcription factors as modulators of metformin PK and response.
Collapse
Affiliation(s)
- S Goswami
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA
| | - SW Yee
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA
| | - S Stocker
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA
| | - JD Mosley
- Department of Pharmacology and Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - M Kubo
- Center of Genomic Medicine, RIKEN, Yokohama City, Japan
| | - R Castro
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA
| | - JA Mefford
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA
| | - C Wen
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA
| | - X Liang
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA
| | - J Witte
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA
| | - C Brett
- Department of Anesthesiology, University of California, San Francisco, San Francisco, California, USA
| | - S Maeda
- Center of Genomic Medicine, RIKEN, Yokohama City, Japan
| | - MD Simpson
- Marshfield Clinic Research Foundation, Marshfield, Wisconsin, USA
| | - MM Hedderson
- Division of Research, Kaiser Permanente Northern California, Oakland, California, USA
| | - RL Davis
- Center for Health Research Southeast, Kaiser Permanente Georgia, Atlanta, Georgia, USA
| | - DM Roden
- Department of Pharmacology and Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - KM Giacomini
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA
| | - RM Savic
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
19
|
Nishimura K, Ide R, Hirota T, Kawazu K, Kodama S, Takesue H, Ieiri I. Identification and functional characterization of novel nonsynonymous variants in the human multidrug and toxin extrusion 2-K. Drug Metab Dispos 2014; 42:1432-7. [PMID: 24985703 DOI: 10.1124/dmd.114.056887] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study was performed to identify genetic polymorphisms in multidrug and toxin extrusion 2-K (MATE2-K, SLC47A2), a proton/organic cation antiporter that plays a role in the transport of organic cations across the apical membrane in kidney epithelial cells into the urine, and to demonstrate their effects on MATE2-K functions in vitro. Four of the thirty single nucleotide polymorphisms (SNPs) we identified in three ethnic groups (Caucasian, African American, and Japanese) were novel [308C>G (P103R), c.487-8C>T, 818A>G (Y273C), and c.1018+14T>C]. The transport activities of the prototypical substrates, tetraethylammonium and metformin, for four nonsynonymous SNPs (P103R, P162L, G211V, and Y273C) were significantly different from those of the wild-type. In particular, transport activity was higher in P103R than in the wild-type, which is the first time elevated transport activity was demonstrated due to these coding SNPs. Kinetic analysis revealed that P103R had a higher Vmax value, whereas Y273C had a lower value than that in the wild-type. Cell surface protein expression levels were higher for P103R than for the wild-type, whereas Y273C expression was decreased. Immunofluorescence analysis revealed that the P103R protein was localized to the plasma membrane, whereas Y273C showed cytoplasmic localization. Therefore, the difference in transport activities between P103R and Y273C variants was suggested to be responsible for the different protein expression levels observed at the plasma membrane. Four nonsynonymous SNPs in this study showed relatively low allelic frequencies (0.5 to 2.1%), but these were associated with markedly reduced or increased MATE2-K function.
Collapse
Affiliation(s)
- Kenta Nishimura
- Department of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Ryosuke Ide
- Department of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Takeshi Hirota
- Department of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Kana Kawazu
- Department of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Sho Kodama
- Department of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroaki Takesue
- Department of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Ichiro Ieiri
- Department of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|