1
|
Dua P, Seth S, Prasher B, Mukerji M, Maulik SK, Reeta KH. Pharmacogenomic biomarkers in coronary artery disease: a narrative review. Biomark Med 2024; 18:191-202. [PMID: 38456296 DOI: 10.2217/bmm-2023-0476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024] Open
Abstract
Coronary artery disease (CAD) has a high mortality rate. Despite various therapeutic targets, non-responsiveness to drugs remains a prevalent issue. Pharmacogenomics assesses the way an individual's genetic attributes affect their likely response to drug therapy. Single-nucleotide polymorphisms play a crucial role in determining these outcomes. This review offers an overview of single-nucleotide polymorphisms investigated in clinical studies and their associations with drug response/nonresponse in the treatment of CAD. A total of 104 studies of whole sets of chromosomes and several genes were explored. A total of 161 polymorphisms exhibited associations with drug response/nonresponse in CAD across diverse ethnic populations. This pool can serve as a pharmacogenomic biomarker for predicting response to drug therapy in patients with CAD.
Collapse
Affiliation(s)
- Pamila Dua
- All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Sandeep Seth
- All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | | | - Mitali Mukerji
- Indian Institute of Technology, Jodhpur, Rajasthan, India
| | | | - K H Reeta
- All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| |
Collapse
|
2
|
Siddiqui MK, Hall C, Cunningham SG, McCrimmon R, Morris A, Leese GP, Pearson ER. Using Data to Improve the Management of Diabetes: The Tayside Experience. Diabetes Care 2022; 45:2828-2837. [PMID: 36288800 DOI: 10.2337/dci22-0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/12/2022] [Indexed: 02/03/2023]
Abstract
Tayside is a region in the East of Scotland and forms one of nine local government regions in the country. It is home to approximately 416,000 individuals who fall under the National Health Service (NHS) Tayside health board, which provides health care services to the population. In Tayside, Scotland, a comprehensive informatics network for diabetes care and research has been established for over 25 years. This has expanded more recently to a comprehensive Scotland-wide clinical care system, Scottish Care Information - Diabetes (SCI-Diabetes). This has enabled improved diabetes screening and integrated management of diabetic retinopathy, neuropathy, nephropathy, cardiovascular health, and other comorbidities. The regional health informatics network links all of these specialized services with comprehensive laboratory testing, prescribing records, general practitioner records, and hospitalization records. Not only do patients benefit from the seamless interconnectedness of these data, but also the Tayside bioresource has enabled considerable research opportunities and the creation of biobanks. In this article we describe how health informatics has been used to improve care of people with diabetes in Tayside and Scotland and, through anonymized data linkage, our understanding of the phenotypic and genotypic etiology of diabetes and associated complications and comorbidities.
Collapse
Affiliation(s)
- Moneeza K Siddiqui
- Division of Population Health and Genomics, School of Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, U.K
| | - Christopher Hall
- Division of Population Health and Genomics, School of Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, U.K
| | - Scott G Cunningham
- Division of Population Health and Genomics, School of Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, U.K
| | - Rory McCrimmon
- Division of Systems Medicine, School of Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, U.K
| | - Andrew Morris
- Usher Institute, College of Medicine and Veterinary Medicine, Edinburgh, U.K
| | - Graham P Leese
- Division of Population Health and Genomics, School of Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, U.K
| | - Ewan R Pearson
- Division of Population Health and Genomics, School of Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, U.K
| |
Collapse
|
3
|
Kononov S, Mal G, Azarova I, Klyosova E, Bykanova M, Churnosov M, Polonikov A. Pharmacogenetic loci for rosuvastatin are associated with intima-media thickness change and coronary artery disease risk. Pharmacogenomics 2022; 23:15-34. [PMID: 34905955 DOI: 10.2217/pgs-2021-0097] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 11/09/2021] [Indexed: 11/21/2022] Open
Abstract
Aim: Polymorphisms at LPA, LDLR, APOE, APOC1, MYLIP and ABCG2 are attractive targets for assessment of their impact on lipid-lowering therapy with rosuvastatin. The present study investigated whether polymorphisms at these genes are associated with the risk of coronary artery disease (CAD) development, and reduction of atherogenic lipids and carotid intima-media thickness (CIMT) in CAD patients, taking rosuvastatin. Materials & methods: 190 CAD patients and 1697 subjects were enrolled in pharmacogenetic and genetic association study, respectively. SNP genotyping was done using the MassARRAY-4 system. Results:MYLIP rs6924995, rs3757354, APOC1 rs445925, LDLR rs6511720, APOE rs7412, ABCG2 rs2199936, rs1481012 variants were significantly associated with CAD susceptibility (p = 0.016, 0.0003, <0.0001, <0.0001, 0.013, 0.016, 0.0035, respectively), as well as with CIMT regression (except ABCG2 variants; p = 0.05, 0.039, 0.039, 0.016, 0.0065), and changes in plasma lipids during rosuvastatin therapy. Conclusion: The studied polymorphisms possess pleiotropic effects on plasma lipids and CIMT, CAD susceptibility, and determine lipid-lowering response to rosuvastatin.
Collapse
Affiliation(s)
- Stanislav Kononov
- Department of Internal Medicine N 2, Kursk State Medical University, 14 Pirogova St., Kursk 305035, Russian Federation
| | - Galina Mal
- Department of Pharmacology, Kursk State Medical University, 3 Karl Marx St., Kursk 305041, Russian Federation
| | - Iuliia Azarova
- Department of Biological Chemistry, Kursk State Medical University, 3 Karl Marx St., Kursk 305041, Russian Federation
- Laboratory of Biochemical Genetics & Metabolomics, Research Institute for Genetic & Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya St., Kursk 305041, Russian Federation
| | - Elena Klyosova
- Laboratory of Biochemical Genetics & Metabolomics, Research Institute for Genetic & Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya St., Kursk 305041, Russian Federation
- Department of Biology, Medical Genetics & Ecology, Kursk State Medical University, 3 Karl Marx St., Kursk 305041, Russian Federation
| | - Marina Bykanova
- Department of Biology, Medical Genetics & Ecology, Kursk State Medical University, 3 Karl Marx St., Kursk 305041, Russian Federation
- Laboratory of Genomic Research, Research Institute for Genetic & Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya St., Kursk 305041, Russian Federation
| | - Mikhail Churnosov
- Department of Medical Biological Disciplines, Belgorod State University, 85 Pobeda St., Belgorod 308015, Russian Federation
| | - Alexey Polonikov
- Department of Biology, Medical Genetics & Ecology, Kursk State Medical University, 3 Karl Marx St., Kursk 305041, Russian Federation
- Laboratory of Statistical Genetics & Bioinformatics, Research Institute for Genetic & Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya St., Kursk 305041, Russian Federation
| |
Collapse
|
4
|
Ruscica M, Sirtori CR, Corsini A, Watts GF, Sahebkar A. Lipoprotein(a): Knowns, unknowns and uncertainties. Pharmacol Res 2021; 173:105812. [PMID: 34450317 DOI: 10.1016/j.phrs.2021.105812] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/11/2021] [Accepted: 08/11/2021] [Indexed: 02/07/2023]
Abstract
Over the last 10 years, there have been advances on several aspects of lipoprotein(a) which are reviewed in the present article. Since the standard immunoassays for measuring lipoprotein(a) are not fully apo(a) isoform-insensitive, the application of an LC-MS/MS method for assaying molar concentrations of lipoprotein(a) has been advocated. Genome wide association, epidemiological, and clinical studies have established high lipoprotein(a) as a causal risk factor for atherosclerotic cardiovascular diseases (ASCVD). However, the relative importance of molar concentration, apo(a) isoform size or variants within the LPA gene is still controversial. Lipoprotein(a)-raising single nucleotide polymorphisms has not been shown to add on value in predicting ASCVD beyond lipoprotein(a) concentrations. Although hyperlipoproteinemia(a) represents an important confounder in the diagnosis of familial hypercholesterolemia (FH), it enhances the risk of ASCVD in these patients. Thus, identification of new cases of hyperlipoproteinemia(a) during cascade testing can increase the identification of high-risk individuals. However, it remains unclear whether FH itself increases lipoprotein(a). The ASCVD risk associated with lipoprotein(a) seems to follow a linear gradient across the distribution, regardless of racial subgroups and other risk factors. The inverse association with the risk of developing type 2 diabetes needs consideration as effective lipoprotein(a) lowering therapies are progressing towards the market. Considering that Mendelian randomization analyses have identified the degree of lipoprotein(a)-lowering that is required to achieve ASCVD benefit, the findings of the ongoing outcome trial with pelacarsen will clarify whether dramatically lowering lipoprotein(a) levels can reduce the risk of ASCVD.
Collapse
Affiliation(s)
- Massimiliano Ruscica
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Italy.
| | - Cesare R Sirtori
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Italy
| | - Alberto Corsini
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Italy; IRCCS MultiMedica, Sesto S. Giovanni, Milan, Italy
| | - Gerald F Watts
- School of Medicine, University of Western Australia, Perth, Australia; Lipid Disorders Clinic, Cardiometabolic Services, Department of Cardiology, Royal Perth Hospital, Australia
| | - Amirhossein Sahebkar
- School of Medicine, University of Western Australia, Perth, Australia; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Lipoprotein (a) and Cardiovascular Disease: A Missing Link for Premature Atherosclerotic Heart Disease and/or Residual Risk. J Cardiovasc Pharmacol 2021; 79:e18-e35. [PMID: 34694242 DOI: 10.1097/fjc.0000000000001160] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/30/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT Lipoprotein(a) or lipoprotein "little a" is an under-recognized causal risk factor for cardiovascular (CV) disease (CVD), including coronary atherosclerosis, aortic valvular stenosis, ischemic stroke, heart failure and peripheral arterial disease. Elevated plasma Lp(a) (≥50 mg/dL or ≥100 nmol/L) is commonly encountered in almost 1 in 5 individuals and confers a higher CV risk compared to those with normal Lp(a) levels, although such normal levels have not been generally agreed upon. Elevated Lp(a) is considered a cause of premature and accelerated atherosclerotic CVD. Thus, in patients with a positive family or personal history of premature coronary artery disease (CAD), Lp(a) should be measured. However, elevated Lp(a) may confer increased risk for incident CAD even in the absence of a family history of CAD, and even in those who have guideline-lowered LDL-cholesterol (<70 mg/dl) and continue to have a persisting CV residual risk. Thus, measurement of Lp(a) will have a significant clinical impact on the assessment of atherosclerotic CVD risk, and will assume a more important role in managing patients with CVD with the advent and clinical application of specific Lp(a)-lowering therapies. Conventional therapeutic approaches like lifestyle modification and statin therapy remain ineffective at lowering Lp(a). Newer treatment modalities, such as gene silencing via RNA interference with use of antisense oligonucleotide(s) or small interfering RNA molecules targeting Lp(a) seem very promising. These issues are herein reviewed, accumulated data are scrutinized, meta-analyses and current guidelines are tabulated and Lp(a)-related CVDs and newer therapeutic modalities are pictorially illustrated.
Collapse
|
6
|
Swerdlow DI, Rider DA, Yavari A, Lindholm MW, Campion GV, Nissen SE. Treatment and prevention of lipoprotein(a)-mediated cardiovascular disease: the emerging potential of RNA interference therapeutics. Cardiovasc Res 2021; 118:1218-1231. [PMID: 33769464 PMCID: PMC8953457 DOI: 10.1093/cvr/cvab100] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 02/19/2021] [Accepted: 03/24/2021] [Indexed: 12/17/2022] Open
Abstract
Lipid- and lipoprotein-modifying therapies have expanded substantially in the last 25 years, resulting in reduction in the incidence of major adverse cardiovascular events. However, no specific lipoprotein(a) [Lp(a)]-targeting therapy has yet been shown to reduce cardiovascular disease risk. Many epidemiological and genetic studies have demonstrated that Lp(a) is an important genetically determined causal risk factor for coronary heart disease, aortic valve disease, stroke, heart failure, and peripheral vascular disease. Accordingly, the need for specific Lp(a)-lowering therapy has become a major public health priority. Approximately 20% of the global population (1.4 billion people) have elevated levels of Lp(a) associated with higher cardiovascular risk, though the threshold for determining ‘high risk’ is debated. Traditional lifestyle approaches to cardiovascular risk reduction are ineffective at lowering Lp(a). To address a lifelong risk factor unmodifiable by non-pharmacological means, Lp(a)-lowering therapy needs to be safe, highly effective, and tolerable for a patient population who will likely require several decades of treatment. N-acetylgalactosamine-conjugated gene silencing therapeutics, such as small interfering RNA (siRNA) and antisense oligonucleotide targeting LPA, are ideally suited for this application, offering a highly tissue- and target transcript-specific approach with the potential for safe and durable Lp(a) lowering with as few as three or four doses per year. In this review, we evaluate the causal role of Lp(a) across the cardiovascular disease spectrum, examine the role of established lipid-modifying therapies in lowering Lp(a), and focus on the anticipated role for siRNA therapeutics in treating and preventing Lp(a)-related disease.
Collapse
Affiliation(s)
| | | | - Arash Yavari
- Experimental Therapeutics, Radcliffe, Department of Medicine, University of Oxford, UK
| | | | | | - Steven E Nissen
- Department of Cardiovascular Medicine, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| |
Collapse
|
7
|
Guan ZW, Wu KR, Li R, Yin Y, Li XL, Zhang SF, Li Y. Pharmacogenetics of statins treatment: Efficacy and safety. J Clin Pharm Ther 2019; 44:858-867. [PMID: 31436349 DOI: 10.1111/jcpt.13025] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 06/02/2019] [Accepted: 07/17/2019] [Indexed: 12/16/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVE Statins are widely used worldwide in the prevention and treatment of coronary atherosclerotic heart disease and ischaemic stroke. However, in clinical application, statins have shown great individual differences in terms of the efficacy and safety, some of which are related to genetic factors. The purpose of this article was to summarize the recent advances about the correlation between gene polymorphisms and the efficacy/safety of statins. METHODS We searched the databases including PharmGKB and PubMed (published before June 2019) using the keywords such as 'statin', 'gene polymorphism' and 'SNP' and obtained more than 100 articles. In this review, we described the clinical studies of genetic variants associated with both the efficacy and adverse reactions of statins. We also clarified the importance of taking pharmacogenetic variation into account to improve the clinical application of statins. RESULTS AND DISCUSSION The available data were collected and analysed to present the polymorphisms of candidate genes encoding the most promising proteins including SLCO1B1 (encoding uptake transporters); ABCB1, ABCC2, ABCG2 (encoding effluent transporter); APOE, APOA5 (encoding apolipoprotein); genes encoding cytochrome P450 enzyme system; KIF6, HMGCR, LDLR, LPA, PCSK9, COQ2, CETP, etc These genes were proved to be related to the pharmacodynamics and pharmacokinetics of statins, thus affecting the efficacy and safety. WHAT IS NEW AND CONCLUSION In this paper, the correlation between gene polymorphisms and the efficacy/safety of statins was summarized. The authors reached a consensus that the variants of the genes encoding uptake and effluent transporters have the most effect on the efficacy/safety of statins. It pointed out that it is desirable to do genetic testing of these transporter genes to reduce the incidence of myopathy or to achieve better outcomes before patients use statins, especially in the regions with high frequency of risk allele.
Collapse
Affiliation(s)
- Zi-Wan Guan
- School of Pharmaceutical Sciences, Shandong University, Jinan, China.,Shandong Provincial Qianfoshan Hospital Affiliated to Shandong University, Jinan, China
| | - Kun-Rong Wu
- School of Pharmaceutical Sciences, Shandong University, Jinan, China.,Shandong Provincial Qianfoshan Hospital Affiliated to Shandong University, Jinan, China
| | - Rui Li
- School of Pharmaceutical Sciences, Shandong University, Jinan, China.,Shandong Provincial Qianfoshan Hospital Affiliated to Shandong University, Jinan, China
| | - Ying Yin
- School of Pharmacy, Shandong First Medical University, Taian, China
| | - Xiao-Li Li
- School of Pharmacy, Shandong First Medical University, Taian, China
| | - Shu-Fang Zhang
- School of Pharmacy, Shandong First Medical University, Taian, China
| | - Yan Li
- Shandong Provincial Qianfoshan Hospital Affiliated to Shandong University, Jinan, China
| |
Collapse
|
8
|
Paquette M, Bernard S, Thanassoulis G, Baass A. LPA genotype is associated with premature cardiovascular disease in familial hypercholesterolemia. J Clin Lipidol 2019; 13:627-633.e1. [DOI: 10.1016/j.jacl.2019.04.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/20/2019] [Accepted: 04/16/2019] [Indexed: 12/30/2022]
|
9
|
San Mauro Martín I, Sanz Rojo S, Garicano Vilar E, Collado Yurrita L, Blumenfeld Olivares JA. Modulation of plasma triglycerides concentration by sterol-based treatment in children carrying different genes. Ann Pediatr Cardiol 2019; 12:83-89. [PMID: 31143031 PMCID: PMC6521671 DOI: 10.4103/apc.apc_86_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Dyslipidemias have increased during the last decades in children. AIM The objective of this study was to analyze the influence of different polymorphisms in plasma triglyceride levels of children following a dietary treatment with plant sterols. DESIGN A randomized, double-blind, crossover, controlled clinical trial was carried out in 26 children (16 women). MATERIALS AND METHODS Commercial milk, with 2.24 g sterols, was ingested daily during 3 weeks , and the same amount of kimmed milk without sterols, during the 3 week placebo phase. Both phases were separated by a washout period of 2 weeks. At the beginning and end of each phase, blood draws were performed. RESULTS Apolipoprotein A5 Ser19Trp (P = 0.002), peroxisome proliferator-activated receptor-alpha L162V (P = 0.003), APOE APOE2/3/4 (P = 0.012), and APOE APOE2,3,4 (P = 0.025) show statistically significant differences between their haplotypes in plasma triglyceride levels. Other genes did not show statistically significant differences. CONCLUSIONS Further studies are needed to establish which genotype combinations would be the most protective against hypertriglyceridemia.
Collapse
|
10
|
Hébert HL, Shepherd B, Milburn K, Veluchamy A, Meng W, Carr F, Donnelly LA, Tavendale R, Leese G, Colhoun HM, Dow E, Morris AD, Doney AS, Lang CC, Pearson ER, Smith BH, Palmer CNA. Cohort Profile: Genetics of Diabetes Audit and Research in Tayside Scotland (GoDARTS). Int J Epidemiol 2019; 47:380-381j. [PMID: 29025058 PMCID: PMC5913637 DOI: 10.1093/ije/dyx140] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2017] [Indexed: 12/25/2022] Open
Affiliation(s)
| | | | - Keith Milburn
- Health Informatics Centre Services, Ninewells Hospital & Medical School, University of Dundee, Dundee, UK
| | - Abirami Veluchamy
- Division of Population Health Sciences.,Pat Macpherson Centre for Pharmacogenetics and Pharmacogenomics
| | | | - Fiona Carr
- Pat Macpherson Centre for Pharmacogenetics and Pharmacogenomics
| | | | - Roger Tavendale
- Pat Macpherson Centre for Pharmacogenetics and Pharmacogenomics
| | - Graham Leese
- Pat Macpherson Centre for Pharmacogenetics and Pharmacogenomics
| | - Helen M Colhoun
- Division of Population Health Sciences.,Institute of Genetics & Molecular Medicine
| | - Ellie Dow
- Pat Macpherson Centre for Pharmacogenetics and Pharmacogenomics
| | - Andrew D Morris
- Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | | | - Chim C Lang
- Pat Macpherson Centre for Pharmacogenetics and Pharmacogenomics
| | - Ewan R Pearson
- Pat Macpherson Centre for Pharmacogenetics and Pharmacogenomics
| | | | | |
Collapse
|
11
|
San Mauro Martin I, Blumenfeld Olivares J, Vilar E, Ciudad Cabañas M, Collado Yurrita L. Modulation of plasma triglycerides concentration by sterol-based treatment in subjects carrying specific genes. Res Cardiovasc Med 2019. [DOI: 10.4103/rcm.rcm_10_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
12
|
Wei WQ, Li X, Feng Q, Kubo M, Kullo IJ, Peissig PL, Karlson EW, Jarvik GP, Lee MTM, Shang N, Larson EA, Edwards T, Shaffer C, Mosley JD, Maeda S, Horikoshi M, Ritchie M, Williams MS, Larson EB, Crosslin DR, Bland ST, Pacheco JA, Rasmussen-Torvik LJ, Cronkite D, Hripcsak G, Cox NJ, Wilke RA, Michael Stein C, Rotter JI, Momozawa Y, Roden DM, Krauss RM, Denny JC. LPA Variants Are Associated With Residual Cardiovascular Risk in Patients Receiving Statins. Circulation 2018; 138:1839-1849. [PMID: 29703846 PMCID: PMC6202211 DOI: 10.1161/circulationaha.117.031356] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 04/12/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Coronary heart disease (CHD) is a leading cause of death globally. Although therapy with statins decreases circulating levels of low-density lipoprotein cholesterol and the incidence of CHD, additional events occur despite statin therapy in some individuals. The genetic determinants of this residual cardiovascular risk remain unknown. METHODS We performed a 2-stage genome-wide association study of CHD events during statin therapy. We first identified 3099 cases who experienced CHD events (defined as acute myocardial infarction or the need for coronary revascularization) during statin therapy and 7681 controls without CHD events during comparable intensity and duration of statin therapy from 4 sites in the Electronic Medical Records and Genomics Network. We then sought replication of candidate variants in another 160 cases and 1112 controls from a fifth Electronic Medical Records and Genomics site, which joined the network after the initial genome-wide association study. Finally, we performed a phenome-wide association study for other traits linked to the most significant locus. RESULTS The meta-analysis identified 7 single nucleotide polymorphisms at a genome-wide level of significance within the LPA/PLG locus associated with CHD events on statin treatment. The most significant association was for an intronic single nucleotide polymorphism within LPA/PLG (rs10455872; minor allele frequency, 0.069; odds ratio, 1.58; 95% confidence interval, 1.35-1.86; P=2.6×10-10). In the replication cohort, rs10455872 was also associated with CHD events (odds ratio, 1.71; 95% confidence interval, 1.14-2.57; P=0.009). The association of this single nucleotide polymorphism with CHD events was independent of statin-induced change in low-density lipoprotein cholesterol (odds ratio, 1.62; 95% confidence interval, 1.17-2.24; P=0.004) and persisted in individuals with low-density lipoprotein cholesterol ≤70 mg/dL (odds ratio, 2.43; 95% confidence interval, 1.18-4.75; P=0.015). A phenome-wide association study supported the effect of this region on coronary heart disease and did not identify noncardiovascular phenotypes. CONCLUSIONS Genetic variations at the LPA locus are associated with CHD events during statin therapy independently of the extent of low-density lipoprotein cholesterol lowering. This finding provides support for exploring strategies targeting circulating concentrations of lipoprotein(a) to reduce CHD events in patients receiving statins.
Collapse
Affiliation(s)
- Wei-Qi Wei
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN
| | - Xiaohui Li
- Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute and Department of Pediatrics and Medicine at Harbor-UCLA, Torrance, CA
| | - Qiping Feng
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN
| | - Michiaki Kubo
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Iftikhar J Kullo
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN
| | - Peggy L. Peissig
- Marshfield Clinic Research Institute, Center for Precision Medicine Research, Marshfield, WI
| | - Elizabeth W. Karlson
- Division of Rheumatology, Immunology and Allergy, Brigham & Women’s Hospital and Harvard Medical School, Boston, MA
| | - Gail P. Jarvik
- Departments of Medicine (Medical Genetics) and Genome Sciences, University of Washington, Seattle, WA
| | | | - Ning Shang
- Department of Biomedical Informatics, Columbia University, New York, NY
| | - Eric A. Larson
- Sanford School of Medicine, University of South Dakota, Sioux Falls, SD
| | - Todd Edwards
- Vanderbilt Genetics Institute and the Division of Genetic Medicine, Vanderbilt University, Nashville, TN
| | - Christian Shaffer
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN
| | - Jonathan D. Mosley
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN
| | - Shiro Maeda
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Advanced Genomic and Laboratory Medicine, Graduate School of Medicine, University of the Ryukyus, Yokohama, Japan
- Division of Clinical Laboratory and Blood Transfusion, University of the Ryukyus Hospital, Yokohama, Japan
| | | | - Marylyn Ritchie
- Center for Translational Bioinformatics, Institute for Biomedical Informatics, Institute for Biomedical Informatics, Center for Precision Medicine, University of Pennsylvania, Philadelphia, PA
| | | | - Eric B. Larson
- Kaiser Permanente Washington Health Research Institute, Seattle, WA
| | - David R. Crosslin
- Department of Biomedical Informatics and Medical Education, University of Washington, Seattle, WA
| | - Sarah T. Bland
- Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center, Nashville, TN
| | | | | | - David Cronkite
- Departments of Medicine (Medical Genetics) and Genome Sciences, University of Washington, Seattle, WA
| | - George Hripcsak
- Department of Biomedical Informatics, Columbia University, New York, NY
| | - Nancy J. Cox
- Vanderbilt Genetics Institute and the Division of Genetic Medicine, Vanderbilt University, Nashville, TN
| | - Russell A Wilke
- Sanford School of Medicine, University of South Dakota, Sioux Falls, SD
| | - C. Michael Stein
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Jerome I. Rotter
- Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute and Department of Pediatrics and Medicine at Harbor-UCLA, Torrance, CA
| | | | - Dan M. Roden
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | | | - Joshua C. Denny
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
13
|
Lee SH, Choi JH. Involvement of inflammatory responses in the early development of calcific aortic valve disease: lessons from statin therapy. Anim Cells Syst (Seoul) 2018; 22:390-399. [PMID: 30533261 PMCID: PMC6282465 DOI: 10.1080/19768354.2018.1528175] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 08/09/2018] [Accepted: 08/10/2018] [Indexed: 12/15/2022] Open
Abstract
Calcific aortic valve disease (CAVD) is the most common degenerative heart valve disease. Among the many risk factors for this disease are age, hypercholesterolemia, hypertension, smoking, type-2 diabetes, rheumatic fever, and chronic kidney disease. Since many of these overlap with risk factors for atherosclerosis, the molecular and cellular mechanisms of CAVD development have been presumed to be similar to those for atherogenesis. Thus, attempts have been made to evaluate the therapeutic efficacy of statins, representative anti-atherosclerosis drugs with lipid-lowering and anti-inflammatory effects, against CAVD. Unfortunately, statins have shown little or no effect on CAVD development. But some reports suggest that statins may prevent or reduce the development of early stage CAVD in which having calcification is absent or minimal. These results suggest that therapeutic approaches should differ according to the stage of disease, and that a precise understanding of the mechanism of aortic valve calcification is required to identify novel therapeutic targets for advanced CAVD. Given the involvement of inflammatory processes in the development and progression of CAVD, current therapeutic approaches for chronic inflammatory cardiovascular disease like atherosclerosis may help to prevent or minimize the early development of CAVD. In this review, we focus on several inflammatory cellular and molecular components involved in CAVD that might be considered drug targets for preventing CAVD.
Collapse
Affiliation(s)
- Seung Hyun Lee
- Department of Life Science, College of Natural Sciences, Research Institute for Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Jae-Hoon Choi
- Department of Life Science, College of Natural Sciences, Research Institute for Natural Sciences, Hanyang University, Seoul, Republic of Korea
| |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW As the incidence of calcific aortic valve stenosis increases with the aging of the population, improved understanding and novel therapies to reduce its progression and need for aortic valve replacement are urgently needed. RECENT FINDINGS Lipoprotein(a) is the only monogenetic risk factor for calcific aortic stenosis. Elevated levels are a strong, causal, independent risk factor, as demonstrated in epidemiological, genome-wide association studies and Mendelian randomization studies. Lipoprotein(a) is the major lipoprotein carrier of oxidized phospholipids, which are proinflammatory and promote calcification of vascular cells, two key pathophysiological drivers of aortic stenosis. Elevated plasma lipoprotein(a) and oxidized phospholipids predict progression of pre-existing aortic stenosis and need for aortic valve replacement. The failure of statin trials in pre-existing aortic stenosis may be partially due to an increase in lipoprotein(a) and oxidized phospholipid levels caused by statins. Antisense oligonucleotides targeted to apo(a) are in Phase 2 clinical development and shown to lower both lipoprotein(a) and oxidized phospholipids. SUMMARY Lipoprotein(a) and oxidized phospholipids are key therapeutic targets in calcific aortic stenosis. Strategies aimed at potent lipoprotein(a) lowering to normalize levels and/or to suppress the proinflammatory effects of oxidized phospholipids may prevent progression of this disease.
Collapse
|
15
|
San Mauro Martín I, Blumenfeld Olivares JA, Pérez Arruche E, Arce Delgado E, Ciudad Cabañas MJ, Garicano Vilar E, Collado Yurrita L. Genomic Influence in the Prevention of Cardiovascular Diseases with a Sterol-Based Treatment. Diseases 2018; 6:E24. [PMID: 29614023 PMCID: PMC6023396 DOI: 10.3390/diseases6020024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/26/2018] [Accepted: 03/28/2018] [Indexed: 11/17/2022] Open
Abstract
Raised serum cholesterol concentration is a well-established risk factor in cardiovascular disease. In addition, genetic load may have an indirect influence on cardiovascular risk. Plant-based sterol-supplemented foods are recommended to help reduce the serum low-density lipoprotein cholesterol level. The objective was to analyse the influence of different polymorphisms in hypercholesterolemia patients following a dietary treatment with plant sterols. A randomised double-blind cross-over controlled clinical trial was carried out in 45 people (25 women). Commercial milk, containing 2.24 g of sterols, was ingested daily during a 3-week period, and then the same amount of skim milk, without sterols, was consumed daily during the 3-week placebo phase. Both phases were separated by a washout period of 2 weeks. At the beginning and end of each phase, blood draws were performed. Genes LIPC C-514T and APOA5 C56G are Ser19Trp carriers and greatly benefit from sterol intake in the diet. LIPC C-514T TT homozygous carriers had lower low-density lipoprotein cholesterol (LDL-c) levels than CC homozygote and CT heterozygote carriers after the ingestion of plant sterols (p = 0.001). These two genes also showed statistically significant changes in total cholesterol levels (p = 0.025; p = 0.005), and no significant changes in high-density lipoprotein (HDL) cholesterol levels (p = 0.032; p = 0.003), respectively. No statistically significant differences were observed for other genes. Further studies are needed to establish which genotype combinations would be the most protective against hypercholesterolemia.
Collapse
Affiliation(s)
| | | | - Eva Pérez Arruche
- Hospital El Escorial, San Lorenzo de El Escorial, 28200 Madrid, Spain.
| | | | | | - Elena Garicano Vilar
- Research Centers in Nutrition and Health, Paseo de la Habana, 28036 Madrid, Spain.
| | | |
Collapse
|
16
|
Postmus I, Warren HR, Trompet S, Arsenault BJ, Avery CL, Bis JC, Chasman DI, de Keyser CE, Deshmukh HA, Evans DS, Feng Q, Li X, Smit RAJ, Smith AV, Sun F, Taylor KD, Arnold AM, Barnes MR, Barratt BJ, Betteridge J, Boekholdt SM, Boerwinkle E, Buckley BM, Chen YDI, de Craen AJM, Cummings SR, Denny JC, Dubé MP, Durrington PN, Eiriksdottir G, Ford I, Guo X, Harris TB, Heckbert SR, Hofman A, Hovingh GK, Kastelein JJP, Launer LJ, Liu CT, Liu Y, Lumley T, McKeigue PM, Munroe PB, Neil A, Nickerson DA, Nyberg F, O’Brien E, O’Donnell CJ, Post W, Poulter N, Vasan RS, Rice K, Rich SS, Rivadeneira F, Sattar N, Sever P, Shaw-Hawkins S, Shields DC, Slagboom PE, Smith NL, Smith JD, Sotoodehnia N, Stanton A, Stott DJ, Stricker BH, Stürmer T, Uitterlinden AG, Wei WQ, Westendorp RGJ, Whitsel EA, Wiggins KL, Wilke RA, Ballantyne CM, Colhoun HM, Cupples LA, Franco OH, Gudnason V, Hitman G, Palmer CNA, Psaty BM, Ridker PM, Stafford JM, Stein CM, Tardif JC, Caulfield MJ, Jukema JW, Rotter JI, Krauss RM. Meta-analysis of genome-wide association studies of HDL cholesterol response to statins. J Med Genet 2016; 53:835-845. [PMID: 27587472 PMCID: PMC5309131 DOI: 10.1136/jmedgenet-2016-103966] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 07/03/2016] [Accepted: 07/26/2016] [Indexed: 11/04/2022]
Abstract
BACKGROUND In addition to lowering low density lipoprotein cholesterol (LDL-C), statin therapy also raises high density lipoprotein cholesterol (HDL-C) levels. Inter-individual variation in HDL-C response to statins may be partially explained by genetic variation. METHODS AND RESULTS We performed a meta-analysis of genome-wide association studies (GWAS) to identify variants with an effect on statin-induced high density lipoprotein cholesterol (HDL-C) changes. The 123 most promising signals with p<1×10-4 from the 16 769 statin-treated participants in the first analysis stage were followed up in an independent group of 10 951 statin-treated individuals, providing a total sample size of 27 720 individuals. The only associations of genome-wide significance (p<5×10-8) were between minor alleles at the CETP locus and greater HDL-C response to statin treatment. CONCLUSIONS Based on results from this study that included a relatively large sample size, we suggest that CETP may be the only detectable locus with common genetic variants that influence HDL-C response to statins substantially in individuals of European descent. Although CETP is known to be associated with HDL-C, we provide evidence that this pharmacogenetic effect is independent of its association with baseline HDL-C levels.
Collapse
Affiliation(s)
- Iris Postmus
- Department of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands
| | - Helen R Warren
- William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, United Kingdom EC1M6BQ
- Barts NIHR Biomedical Research Unit
| | - Stella Trompet
- Department of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands
- Department of Cardiology, Leiden University Medical Center, The Netherlands
| | | | - Christy L Avery
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA
| | - Daniel I Chasman
- Division of Preventive Medicine, Brigham and Women’s Hospital, Boston MA
- Harvard Medical School, Boston, MA
| | | | - Harshal A Deshmukh
- Medical Research Institute, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Daniel S Evans
- California Pacific Medical Center Research Institute, San Francisco, CA, USA, 94107
| | - QiPing Feng
- Department of Clinical Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Xiaohui Li
- Institute for Translational Genomics and Population Sciences, Los Angeles BioMedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Roelof AJ Smit
- Department of Cardiology, Leiden University Medical Center, The Netherlands
| | - Albert V Smith
- Icelandic Heart Association, Kopavogur, Iceland
- University of Iceland, Reykjavik, Iceland
| | - Fangui Sun
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Kent D Taylor
- Institute for Translational Genomics and Population Sciences, Los Angeles BioMedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Alice M Arnold
- Department of Biostatistics, University of Washington, Seattle, WA USA
| | - Michael R Barnes
- William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, United Kingdom EC1M6BQ
- Barts NIHR Biomedical Research Unit
| | - Bryan J Barratt
- Personalised Healthcare and Biomarkers, AstraZeneca, Alderley Park, UK
| | | | | | - Eric Boerwinkle
- Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Brendan M Buckley
- Department of Pharmacology and Therapeutics, University College Cork, Ireland
| | - Y-D Ida Chen
- Institute for Translational Genomics and Population Sciences, Los Angeles BioMedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Anton JM de Craen
- Department of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands
| | - Steven R Cummings
- California Pacific Medical Center Research Institute, San Francisco, CA, USA, 94107
| | - Joshua C Denny
- Department of Biomedical Informatics, Vanderbilt University, Nashville, TN, USA
- Department of Medicine, Vanderbilt University, USA
| | | | - Paul N Durrington
- Cardiovascular Research Group, School of Biosciences, University of Manchester M13 9NT, UK
| | | | - Ian Ford
- Robertson Center for Biostatistics, University of Glasgow, United Kingdom
| | - Xiuqing Guo
- Institute for Translational Genomics and Population Sciences, Los Angeles BioMedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Tamara B Harris
- Laboratory of Epidemiology, Demography, Biometry, National Institute on Aging, National Institutes of Health, 7201 Wisconsin Ave, Bethesda, MD 20892, USA
| | - Susan R Heckbert
- Department of Epidemiology, University of Washington, Seattle WA USA
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA
- Group Health Research Institute, Group Health Cooperative, Seattle WA USA
| | - Albert Hofman
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- The Netherlands Consortium for Healthy Ageing, Leiden, the Netherlands
| | - G Kees Hovingh
- Department of Vascular Medicine, Academic Medical Center, Amsterdam, NL
| | - John JP Kastelein
- Department of Vascular Medicine, Academic Medical Center, Amsterdam, NL
| | - Leonore J Launer
- Laboratory of Epidemiology, Demography, Biometry, National Institute on Aging, National Institutes of Health, 7201 Wisconsin Ave, Bethesda, MD 20892, USA
| | - Ching-Ti Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Yongmei Liu
- Department of Epidemiology and Prevention, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA, 27157
| | - Thomas Lumley
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA
- Department of Statistic, University of Auckland, Auckland, New Zealand
| | | | - Patricia B Munroe
- William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, United Kingdom EC1M6BQ
- Barts NIHR Biomedical Research Unit
| | - Andrew Neil
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Old Road, Headington, Oxford, OX3 7LJ UK
| | - Deborah A Nickerson
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Fredrik Nyberg
- Medical Evidence and Observational Research, AstraZeneca Gothenburg, Mölndal, Sweden
- Unit of Occupational and Environmental Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Eoin O’Brien
- The Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Christopher J O’Donnell
- NHLBI Framingham Heart Study, Framingham, MA, USA
- Cardiology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- National Heart, Lung and Blood Institute, Bethesda, MD
| | - Wendy Post
- Department of Cardiology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Neil Poulter
- International Centre for Circulatory Health, Imperial College, London UK
| | - Ramachandran S Vasan
- Section of Preventive Medicine and Epidemiology, Department of Medicine, Boston University School of Medicine, and the Framingham Heart Study, Framingham, MA, USA
| | - Kenneth Rice
- Department of Biostatistics, University of Washington, Seattle, WA USA
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Fernando Rivadeneira
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Naveed Sattar
- BHF Glasgow Cardiovascular Research Centre, Faculty of Medicine, Glasgow, United Kingdom
| | - Peter Sever
- International Centre for Circulatory Health, Imperial College, London UK
| | - Sue Shaw-Hawkins
- William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, United Kingdom EC1M6BQ
- Barts NIHR Biomedical Research Unit
| | - Denis C Shields
- The Conway Institute, University College Dublin, Dublin 4, Ireland
- School of Medicine and Medical Sciences, University College Dublin
| | - P Eline Slagboom
- Department of Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Nicholas L Smith
- Department of Epidemiology, University of Washington, Seattle WA USA
- Group Health Research Institute, Group Health Cooperative, Seattle WA USA
- Seattle Epidemiologic Research and Information Center, Department of Veterans Affairs Office of Research and Development, Seattle WA USA
| | - Joshua D Smith
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Nona Sotoodehnia
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA
- Division of Cardiology, Harborview Medical Center, University of Washington, Seattle, WA USA
| | - Alice Stanton
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
- Beaumont Hospital, Dublin, Ireland
| | - David J Stott
- Institute of Cardiovascular and Medical Sciences, Faculty of Medicine, University of Glasgow, United Kingdom
| | - Bruno H Stricker
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
- Health Care Inspectorate. The Hague, The Netherlands
| | - Til Stürmer
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - André G Uitterlinden
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- The Netherlands Consortium for Healthy Ageing, Leiden, the Netherlands
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Wei-Qi Wei
- Department of Biomedical Informatics, Vanderbilt University, Nashville, TN, USA
| | - Rudi GJ Westendorp
- Department of Public Health, and Center for Healthy Ageing, University of Copenhagen, 1123 Copenhagen, Denmark
| | - Eric A Whitsel
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
- Department of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Kerri L Wiggins
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA
| | - Russell A Wilke
- Department of Internal Medicine, Sanford Healthcare, Sioux Falls, SD, USA
- Department of Medicine, University of South Dakota, Sioux Falls, SD, USA
| | | | - Helen M Colhoun
- Medical Research Institute, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
- Department of Public Health, University of Dundee
| | - L Adrienne Cupples
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- NHLBI Framingham Heart Study, Framingham, MA, USA
| | - Oscar H Franco
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Vilmundur Gudnason
- Icelandic Heart Association, Kopavogur, Iceland
- University of Iceland, Reykjavik, Iceland
| | - Graham Hitman
- Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London UK
| | - Colin NA Palmer
- Medical Research Institute, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA
- Department of Epidemiology, University of Washington, Seattle WA USA
- Group Health Research Institute, Group Health Cooperative, Seattle WA USA
- Department of Health Services University of Washington, Seattle, WA
| | - Paul M Ridker
- Division of Preventive Medicine, Brigham and Women’s Hospital, Boston MA
| | - Jeanette M Stafford
- Department of Biostatistical Sciences, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA, 27157
| | - Charles M Stein
- Department of Medicine, Vanderbilt University, USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | | | - Mark J Caulfield
- William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, United Kingdom EC1M6BQ
- Barts NIHR Biomedical Research Unit
| | - J Wouter Jukema
- Department of Cardiology, Leiden University Medical Center, The Netherlands
- Durrer Center for Cardiogenetic Research, Amsterdam, The Netherlands
- Interuniversity Cardiology Institute of the Netherlands, Utrecht, The Netherlands
| | - Jerome I Rotter
- Institute for Translational Genomics and Population Sciences, Los Angeles BioMedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Ronald M Krauss
- Children’s Hospital Oakland Research Institute, Oakland, California, United States of America
| |
Collapse
|
17
|
Nelson MR, Johnson T, Warren L, Hughes AR, Chissoe SL, Xu CF, Waterworth DM. The genetics of drug efficacy: opportunities and challenges. Nat Rev Genet 2016; 17:197-206. [PMID: 26972588 DOI: 10.1038/nrg.2016.12] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Lack of sufficient efficacy is the most common cause of attrition in late-phase drug development. It has long been envisioned that genetics could drive stratified drug development by identifying those patient subgroups that are most likely to respond. However, this vision has not been realized as only a small proportion of drugs have been found to have germline genetic predictors of efficacy with clinically meaningful effects, and so far all but one were found after drug approval. With the exception of oncology, systematic application of efficacy pharmacogenetics has not been integrated into drug discovery and development across the industry. Here, we argue for routine, early and cumulative screening for genetic predictors of efficacy, as an integrated component of clinical trial analysis. Such a strategy would identify clinically relevant predictors that may exist at the earliest possible opportunity, allow these predictors to be integrated into subsequent clinical development and provide mechanistic insights into drug disposition and patient-specific factors that influence response, therefore paving the way towards more personalized medicine.
Collapse
Affiliation(s)
- Matthew R Nelson
- Target Sciences, GlaxoSmithKline, King of Prussia, Pennsylvania 19406, USA
| | - Toby Johnson
- Target Sciences, GlaxoSmithKline, Stevenage SG1 2NY, UK
| | - Liling Warren
- GlaxoSmithKline, Durham, North Carolina 27713, USA
- Acclarogen, Cambridge CB4 0WS, UK
| | - Arlene R Hughes
- PAREXEL International, Research Triangle Park, North Carolina 27713, USA
| | | | - Chun-Fang Xu
- Target Sciences, GlaxoSmithKline, Stevenage SG1 2NY, UK
| | - Dawn M Waterworth
- Target Sciences, GlaxoSmithKline, King of Prussia, Pennsylvania 19406, USA
| |
Collapse
|
18
|
Leusink M, Onland-Moret NC, de Bakker PIW, de Boer A, Maitland-van der Zee AH. Seventeen years of statin pharmacogenetics: a systematic review. Pharmacogenomics 2015; 17:163-80. [PMID: 26670324 DOI: 10.2217/pgs.15.158] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
AIM We evaluated the evidence of pharmacogenetic associations with statins in a systematic review. METHODS Two separate outcomes were considered of interest: modification of low-density lipoprotein cholesterol (LDL-C) response and modification of risk for cardiovascular events. RESULTS In candidate gene studies, 141 loci were claimed to be associated with LDL-C response. Only 5% of these associations were positively replicated. In addition, six genome-wide association studies of LDL-C response identified common SNPs in APOE, LPA, SLCO1B1, SORT1 and ABCG2 at genome-wide significance. None of the investigated SNPs consistently affected the risk reduction for cardiovascular events. CONCLUSION Only five genetic loci were consistently associated with LDL-C response. However, as effect sizes are modest, there is no evidence for the value of genetic testing in clinical practice.
Collapse
Affiliation(s)
- Maarten Leusink
- Division of Pharmacoepidemiology & Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands.,Julius Center for Health Sciences & Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - N Charlotte Onland-Moret
- Julius Center for Health Sciences & Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Paul I W de Bakker
- Julius Center for Health Sciences & Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands.,Department of Medical Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Anthonius de Boer
- Division of Pharmacoepidemiology & Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Anke H Maitland-van der Zee
- Division of Pharmacoepidemiology & Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
19
|
MacNamara J, Eapen DJ, Quyyumi A, Sperling L. Novel biomarkers for cardiovascular risk assessment: current status and future directions. Future Cardiol 2015; 11:597-613. [DOI: 10.2217/fca.15.39] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of mortality in the modern world. Traditional risk algorithms may miss up to 20% of CVD events. Therefore, there is a need for new cardiac biomarkers. Many fields of research are dedicated to improving cardiac risk prediction, including genomics, transcriptomics and proteomics. To date, even the most promising biomarkers have only demonstrated modest associations and predictive ability. Few have undergone randomized control trials. A number of biomarkers are targets to new therapies aimed to reduce cardiovascular risk. Currently, some of the most promising risk prediction has been demonstrated with panels of multiple biomarkers. This article reviews the current state and future of proteomic biomarkers and aggregate biomarker panels.
Collapse
Affiliation(s)
- James MacNamara
- Emory University School of Medicine, 1365 Clifton Road, NE, Building A, Suite 2200, Atlanta, GA 30322, USA
| | - Danny J Eapen
- Emory University School of Medicine, 1365 Clifton Road, NE, Building A, Suite 2200, Atlanta, GA 30322, USA
| | - Arshed Quyyumi
- Emory University School of Medicine, 1365 Clifton Road, NE, Building A, Suite 2200, Atlanta, GA 30322, USA
| | - Laurence Sperling
- Emory University School of Medicine, 1365 Clifton Road, NE, Building A, Suite 2200, Atlanta, GA 30322, USA
| |
Collapse
|
20
|
Reiner Z. Resistance and intolerance to statins. Nutr Metab Cardiovasc Dis 2014; 24:1057-1066. [PMID: 24996502 DOI: 10.1016/j.numecd.2014.05.009] [Citation(s) in RCA: 170] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 04/30/2014] [Accepted: 05/06/2014] [Indexed: 01/07/2023]
Abstract
BACKGROUND AND AIMS Many patients treated with statins are considered statin-resistant because they fail to achieve adequate reduction of low density lipoprotein cholesterol (LDL-C) levels. Some patients are statin-intolerant because they are unable to tolerate statin therapy at all or to tolerate a full therapeutic statin dose because of adverse effects, particularly myopathy and increased activity of liver enzymes. RESULTS The resistance to statins has been associated with polymorphisms in the 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoA-R), P-glycoprotein (Pg-P/ABCB1), breast cancer resistance protein (BCRP/ABCG2), multidrug resistance-associated proteins (MRP1/ABCC1 and MRP2/ABCC2), organic anion transporting polypeptides (OATP), RHOA, Nieman-Pick C1-like1 protein (NPC1L1), farnesoid X receptor (FXR), cholesterol 7alpha-hydroxylase (CYP7A1), Apolipoprotein E (ApoE), proprotein convertase subtilisin/kexin type 9 (PCSK9), low density lipoprotein receptor (LDLR), lipoprotein (a) (LPA), cholesteryl ester transfer protein (CETP), and tumor necrosis factor α (TNF-α) genes. However, currently, there is still not enough evidence to advocate pharmacogenetic testing before initiating statin therapy. Patients with inflammatory states and HIV infection also have diminished LDL-C lowering as a response to statin treatment. Pseudo-resistance due to nonadherence or non-persistence in real-life circumstances is probably the main cause of insufficient LDL-C response to statin treatment. CONCLUSIONS If a patient is really statin-resistant or statin-intolerant, several other treatment possibilities are nowadays available: ezetimibe alone or in combination with bile acid sequestrants, and possibly in the near future mipomersen, lomitapide, or monoclonal antibodies against PCSK9.
Collapse
Affiliation(s)
- Z Reiner
- Department of Internal Medicine, University Hospital Centre Zagreb, School of Medicine, University of Zagreb, Kispaticeva 12, 10000 Zagreb, Croatia.
| |
Collapse
|
21
|
Alfirevic A, Neely D, Armitage J, Chinoy H, Cooper RG, Laaksonen R, Carr DF, Bloch KM, Fahy J, Hanson A, Yue QY, Wadelius M, Maitland-van Der Zee AH, Voora D, Psaty BM, Palmer CNA, Pirmohamed M. Phenotype standardization for statin-induced myotoxicity. Clin Pharmacol Ther 2014; 96:470-6. [PMID: 24897241 PMCID: PMC4172546 DOI: 10.1038/clpt.2014.121] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 05/27/2014] [Indexed: 11/12/2022]
Abstract
Statins are widely used lipid-lowering drugs that are effective in reducing cardiovascular disease risk. Although they are generally well tolerated, they can cause muscle toxicity, which can lead to severe rhabdomyolysis. Research in this area has been hampered to some extent by the lack of standardized nomenclature and phenotypic definitions. We have used numerical and descriptive classifications and developed an algorithm to define statin-related myotoxicity phenotypes, including myalgia, myopathy, rhabdomyolysis, and necrotizing autoimmune myopathy.
Collapse
Affiliation(s)
- A Alfirevic
- Department of Molecular and Clinical Pharmacology, TheWolfson Centre for Personalised Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - D Neely
- Department of Clinical Biochemistry, Newcastle upon Tyne Hospitals NHS Foundation Trust, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | | | - H Chinoy
- Centre for Musculoskeletal Research/NIHR Manchester Musculoskeletal Biomedical Research Unit, University of Manchester, Manchester, UK
| | - R G Cooper
- MRC/ARUK Institute of Ageing and Chronic Disease, Faculty of Health & Life Sciences, University of Liverpool, Liverpool, UK
| | - R Laaksonen
- Zora Biosciences Ltd, Tieotie 2, Espoo, Finland
| | - D F Carr
- Department of Molecular and Clinical Pharmacology, TheWolfson Centre for Personalised Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - K M Bloch
- Department of Molecular and Clinical Pharmacology, TheWolfson Centre for Personalised Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - J Fahy
- Department of Molecular and Clinical Pharmacology, TheWolfson Centre for Personalised Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - A Hanson
- Department of Molecular and Clinical Pharmacology, TheWolfson Centre for Personalised Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Q-Y Yue
- The Medical Products Agency, Uppsala, Sweden
| | - M Wadelius
- Department of Medical Sciences, Clinical Pharmacology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - A H Maitland-van Der Zee
- Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht University, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht, The Netherlands
| | - D Voora
- Duke Institute for Genome Sciences and Policy, Durham, North Carolina, USA
| | - B M Psaty
- Cardiovascular Health Research Unit, Departments of Medicine, Epidemiology and Health Services, University of Washington, Seattle, Washington, USA
- Group Health Research Institute, Group Health Cooperative, Seattle, Washington, USA
| | - C N A Palmer
- Medical Research Institute, Ninewells Hospital and Medical School, Dundee, UK
| | - M Pirmohamed
- Department of Molecular and Clinical Pharmacology, TheWolfson Centre for Personalised Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| |
Collapse
|
22
|
Gelissen IC, McLachlan AJ. The pharmacogenomics of statins. Pharmacol Res 2013; 88:99-106. [PMID: 24365577 DOI: 10.1016/j.phrs.2013.12.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 12/06/2013] [Accepted: 12/12/2013] [Indexed: 12/24/2022]
Abstract
The statin class of cholesterol-lowering drugs have been used for decades to successfully lower plasma cholesterol concentrations and cardiovascular risk. Adverse effects of statins are generally considered mild, but increase with age of patients and polypharmacy. One aspect of statin therapy that is still difficult for prescribers to predict is the individual's response to statin therapy. Recent advances in the field of pharmacogenomics have indicated variants of candidate genes that affect statin efficacy and safety. In this review, a number of candidates that affect statin pharmacokinetics and pharmacodynamics are discussed. Some of these candidates, in particular those involved in import and efflux of statins, have now been linked to increased risk of side effects. Furthermore, pharmacogenomic studies continue to reveal new players that are involved in the fine-tuning of the complex regulation of cholesterol homeostasis and response to statins.
Collapse
Affiliation(s)
| | - Andrew J McLachlan
- Faculty of Pharmacy, University of Sydney, NSW, Australia; Centre for Education and Research on Ageing, Concord Hospital, Sydney, NSW, Australia
| |
Collapse
|