1
|
Pelcová M, Ďurčová V, Šmak P, Strýček O, Štolcová M, Peš O, Glatz Z, Šištík P, Juřica J. Non-invasive therapeutic drug monitoring: LC-MS validation for lamotrigine quantification in dried blood spot and oral fluid/saliva. J Pharm Biomed Anal 2025; 262:116877. [PMID: 40239559 DOI: 10.1016/j.jpba.2025.116877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 04/04/2025] [Accepted: 04/05/2025] [Indexed: 04/18/2025]
Abstract
Epilepsy, affecting over 50 million people globally, presents a significant neurological challenge. Effective prevention of epileptic seizures relies on proper administration and monitoring of Anti-Seizure Medication (ASMs). Therapeutic Drug Monitoring (TDM) ensures optimal dosage adjustment, minimizing adverse effects and potential drug interactions. While traditional venous blood collection for TDM may be stressful, emerging alternative sampling methods, particularly Dried Blood Spot (DBS) or oral fluid offer less invasive way of sampling. This study aimed to develop and validate an analytical method for the determination of lamotrigine in such alternative samples. The sample, either DBS or oral fluid, was subjected to extraction, evaporation, and reconstitution in 15 % acetonitrile containing 0.1 % formic acid. A Kinetex C18 Polar column was used for liquid chromatographic separation and MS in ESI+ mode was used for detection and quantitation of lamotrigine using an isotopically labelled internal standard according to EMA guidelines. The calibration range of the developed method enables the determination of lamotrigine in the concentration range of 1-30 μg/mL in DBS and 0.5-20 μg/mL in oral fluid. Oral fluid and DBS samples from patients treated with lamotrigine analysed by the developed method were compared to plasma concentrations measured by the hospital's accredited laboratory. Preliminary results indicate a promising potential for these alternative matrices in clinical TDM applications. By offering a less invasive sampling approach, this method improves the accessibility and safety of pharmacotherapy for epilepsy patients. The results of this study lay the foundation for further clinical applications by implementing alternative matrix TDM, which may significantly advance personalized care in epilepsy management.
Collapse
Affiliation(s)
- Marta Pelcová
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno 62500, Czech Republic
| | - Viktória Ďurčová
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno 62500, Czech Republic
| | - Pavel Šmak
- Department of Biochemistry, Faculty of Medicine, Masaryk University, Kamenice 5, Brno 62500, Czech Republic
| | - Ondřej Strýček
- Brno Epilepsy Center, First Department of Neurology, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Member of ERN-EpiCARE, Pekařská 53, Brno 602 00, Czech Republic
| | - Miriam Štolcová
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno 62500, Czech Republic
| | - Ondřej Peš
- Department of Biochemistry, Faculty of Medicine, Masaryk University, Kamenice 5, Brno 62500, Czech Republic
| | - Zdeněk Glatz
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno 62500, Czech Republic
| | - Pavel Šištík
- Department of Clinical Pharmacology, Institute of Laboratory Medicine, University, Hospital Ostrava, 17. listopadu 1790, Ostrava 708 52, Czech Republic
| | - Jan Juřica
- Department of Pharmacology, Faculty of Medicine and Department of Pharmacology and Toxicology, Faculty of Pharmacy, Masaryk University, Kamenice 5, Brno 62500, Czech Republic; Pharmacy at Masaryk Memorial Cancer Institute, Žlutý kopec 7, Brno 60200, Czech Republic.
| |
Collapse
|
2
|
Martens-Lobenhoffer J, Angermair S, Bode-Böger SM. Quantification of isavuconazole from dried blood spots: Applicability in therapeutic drug monitoring. J Chromatogr B Analyt Technol Biomed Life Sci 2025; 1258:124590. [PMID: 40220461 DOI: 10.1016/j.jchromb.2025.124590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 04/04/2025] [Accepted: 04/05/2025] [Indexed: 04/14/2025]
Abstract
Dried blood spots (DBS) is a convenient method of blood sampling for biomedical quantification of various drugs. Compared to conventional venipuncture and subsequent plasma measurement, DBS provides advantages in less invasive sampling and easy and safe shipping of samples. The main drawback is the difficult calculation of precise plasma concentrations from the DBS measurements. In this study, a method for the quantification of the antimycotic drug isavuconazole from DBS was developed and its applicability in therapeutic drug monitoring (TDM) was evaluated by comparing the DBS quantification results with the corresponding plasma values. DBS were produced by spotting 15 μL of EDTA-blood onto DBS cards. The whole DBS spots were extracted in methanol:water 10:1, and the extracts were analyzed by an established HPLC method using fluorescence detection. Isavuconazole proved to be stable in DBS over 3 weeks at room temperature or refrigerated at 6 °C. Intra-day precision and accuracies of the quantification from DBS were better than 5 %, while the inter-day results were better than 12 %. Fourteen plasma samples from intensive care patients showing isavuconazole concentrations of <0.1 μg/mL to 3.52 μg/mL (median 1.42 μg/mL) were compared to the results obtained from corresponding DBS samples. All concentration values were covered by the calibration range (0.1-20 μg/mL) of the analytical method. Differences between plasma and DBS results were less than 0.2 μg/mL, with an underestimation of less than 6 % in the DBS values. As these differences were of no therapeutic relevance, DBS could be considered a viable matrix for TDM of isavuconazole in intensive care patients.
Collapse
Affiliation(s)
| | - Stefan Angermair
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Anesthesiology and Intensive Care Medicine, Campus Benjamin Franklin, Berlin,Germany
| | - Stefanie M Bode-Böger
- Institute of Clinical Pharmacology, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
3
|
Tierney AJ, Prajapati SK, Leonetti A, Fola AA, Kwapong SS, Baillargeon KR, Roberds A, Stewart VA, Amoah LE, Bailey JA, Williamson KC, Mace CR. Leukocyte Depletion in Dried Blood Spot Cards Enables Enrichment of Parasite DNA for Improved Sequencing. Anal Chem 2025; 97:9691-9700. [PMID: 40315381 DOI: 10.1021/acs.analchem.4c06190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2025]
Abstract
Expanding access to simple blood collection tools is essential to monitor, control, and eliminate malaria in low-resource settings where the disease is endemic. The most common method to preserve blood is depositing fingerstick samples onto filter paper─the dried blood spot (DBS) card. While DBS cards offer more optimal storage solutions than venous blood in vacutainers, they do not provide sample cleanup or enrichment of Plasmodium DNA. These samples retain high host-to-parasite DNA ratios, which negatively affect the quality of downstream sequencing. We developed a Leukocyte Depletion Card (LDC) that substantially depletes host white blood cells from whole blood to enrich Plasmodium-infected red blood cells in a hematocrit-independent volume (9.0 ± 0.5 μL). Using quantitative PCR, we evaluate the performance of the LDC using blood collected from 16 Plasmodium falciparum (P. falciparum)-infected patients at a clinic in Cape Coast, Ghana. The LDC achieved an average 32.5-fold parasite enrichment over venous blood. Promisingly, the LDC also provides a 36.6-fold parasite enrichment over a DBS card. Initial testing of targeted sequencing demonstrates significant (p < 0.01) improvement in P. falciparum read counts and coverage for the LDC. The LDC represents a unique microsampling device with potential applications in epidemiological studies of malaria. Drug resistance hinders malaria control efforts and makes population surveillance crucial. Dried blood spot (DBS) cards support these efforts, but host DNA makes collected samples inadequate for molecular analysis. A Leukocyte Depletion Card (LDC), which separates parasitized red blood cells from white blood cells, provides superior sequencing results over the traditional DBS card.
Collapse
Affiliation(s)
- Allison J Tierney
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Surendra K Prajapati
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Rockville, Maryland 20817, United States
| | - Alec Leonetti
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island 02903, United States
| | - Abebe A Fola
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island 02903, United States
| | - Sebastian Shine Kwapong
- Immunology Department, Noguchi Memorial Institute of Medical Research, University of Ghana, Accra GA-337-3045, Ghana
| | - Keith R Baillargeon
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Ashleigh Roberds
- Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, United States
- Bacterial Diseases Branch, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, United States
| | - V Ann Stewart
- Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, United States
| | - Linda E Amoah
- Immunology Department, Noguchi Memorial Institute of Medical Research, University of Ghana, Accra GA-337-3045, Ghana
| | - Jeffrey A Bailey
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island 02903, United States
| | - Kim C Williamson
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, United States
| | - Charles R Mace
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
4
|
Drevland OM, Skadberg E, Tran LA, Åsberg A, Midtvedt K, Robertsen I. Development and Clinical Validation of a Volumetric Absorptive Capillary Microsampling Method for Quantification of Mycophenolic Acid and Mycophenolic Acid Glucuronide in Kidney Transplant Recipients. Ther Drug Monit 2025:00007691-990000000-00337. [PMID: 40209116 DOI: 10.1097/ftd.0000000000001330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 02/27/2025] [Indexed: 04/12/2025]
Abstract
BACKGROUND Mycophenolic acid (MPA) is a cornerstone of immunosuppressive treatment in kidney transplant recipients (KTRs). Traditional therapeutic drug monitoring for MPA is based on venous blood sampling. Finger-prick capillary microsampling is patient-friendly and enables limited sampling to predict the area under the curve. A liquid chromatography-tandem mass spectrometry assay was used to detect MPA and its metabolite mycophenolic acid glucuronide (MPAG) using volumetric absorptive capillary microsampling (VAMS) was developed and clinically validated. METHODS An assay based on VAMS and liquid chromatography-tandem mass spectrometry was validated bioanalytically and clinically. Agreement between dried microsamples and plasma samples was investigated in KTR on mycophenolate mofetil therapy. Paired microsamples and plasma samples were obtained before and at 0.5 and 2 hours postdosing. The samples were divided into development (75%) and validation (25%) datasets. Conversion from VAMS to plasma concentrations was established using a regression model, with at least 67% of paired samples required to fall within a mean relative difference of ±20%. RESULTS Twelve KTRs (median age: 49 years) provided 69 paired microsamples and plasma samples. For the VAMS method, the between-series mean accuracy was 90%-106% with a coefficient of variation <7% at concentrations of 0.25-32 mg/L (MPA) and 2.5-320 mg/L (MPAG). A conversion equation based on the regression model was applied and validated using an independent dataset. The mean relative differences between corrected microsamples and plasma samples were 1.9% for MPA and 2.7% for MPAG, with <5% outside ±20% for both analytes. Dried microsamples were stable for 3 months at ambient temperature. CONCLUSIONS The VAMS method demonstrated acceptable performance. MPA and MPAG can be reliably quantified using VAMS and are suitable for patient self-sampling in clinical pharmacokinetics studies of KTR.
Collapse
Affiliation(s)
| | - Eline Skadberg
- Department of Pharmacy, University of Oslo, Oslo, Norway; and
| | - Lan Anh Tran
- Department of Pharmacy, University of Oslo, Oslo, Norway; and
| | - Anders Åsberg
- Department of Pharmacy, University of Oslo, Oslo, Norway; and
- Department of Transplantation Medicine, Oslo University Hospital, Oslo, Norway
| | - Karsten Midtvedt
- Department of Transplantation Medicine, Oslo University Hospital, Oslo, Norway
| | - Ida Robertsen
- Department of Pharmacy, University of Oslo, Oslo, Norway; and
| |
Collapse
|
5
|
Sullivan BP, Craig CA, Bender AT, Blake E, Siriprakaisil O, Sukrakanchana PO, Cressey TR, Drain PK, Olanrewaju AO, Posner JD. Validation of the REverSe TRanscrIptase Chain Termination assay for measuring tenofovir diphosphate in dried blood spots from a clinical pharmacokinetic trial. J Antimicrob Chemother 2025; 80:1141-1147. [PMID: 39995274 PMCID: PMC11962380 DOI: 10.1093/jac/dkaf049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 01/29/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND Tenofovir diphosphate concentration in red blood cells is an objective measure of long-term oral pre-exposure prophylaxis (PrEP) or antiretroviral therapy (ART) adherence. However, current methods for measuring tenofovir diphosphate are equipment and capital intensive, limiting widespread adoption. OBJECTIVES Low cost, rapid diagnostics for measuring tenofovir diphosphate may drive clinical adoption of routine drug level measurement as a tool for adherence monitoring of tenofovir disoproxil fumarate-based PrEP or ART. We validate a simple and accessible enzymatic assay [REverSe TRanscrIptase Chain Termination (RESTRICT)] for measuring tenofovir diphosphate in dried blood spots (DBS) obtained from a directly observed therapy study of individuals on PrEP. METHODS We performed RESTRICT measurements on 74 DBS samples from individuals on tenofovir disoproxil fumarate/emtricitabine regimens. We compared RESTRICT measurements with those from a gold-standard method of liquid chromatography tandem mass spectrometry (LC-MS/MS). The ability of RESTRICT to correctly classify DBS tenofovir diphosphate concentrations to established steady-state adherence benchmark concentrations was determined using area under receiver operating characteristic curves (AUCs). RESULTS The RESTRICT measurements of DBS samples were highly correlated with LC-MS/MS measurements of tenofovir diphosphate from DBS (r = -0.90; P < 0.0001). The RESTRICT assay correctly classified DBS samples as above or below established steady-state adherence benchmark concentrations corresponding to low (AUC = 0.974), moderate (AUC = 0.936) and high (AUC = 0.955) levels of adherence. CONCLUSIONS The enzymatic RESTRICT assay can accurately measure tenofovir diphosphate concentrations in DBS specimens using simple procedures and readily available laboratory equipment, offering accessible objective adherence monitoring for persons receiving tenofovir disoproxil fumarate-based PrEP or ART.
Collapse
Affiliation(s)
- Benjamin P Sullivan
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
| | - Cosette A Craig
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
| | - Andrew T Bender
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
| | - Emily Blake
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | | | - Pra-ornsuda Sukrakanchana
- AMS-PHPT Research Collaboration, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Tim R Cressey
- AMS-PHPT Research Collaboration, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Paul K Drain
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Department of Global Health, University of Washington, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Ayokunle O Olanrewaju
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Jonathan D Posner
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
- Department of Chemical Engineering, University of Washington, Seattle, WA, USA
- Department of Family Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
6
|
Van Biesen N, Cools P, Meyers E. Comparison and Optimization of DNA Extraction Methods for Human DNA from Dried Blood Spot Samples. Pediatr Rep 2025; 17:30. [PMID: 40126229 PMCID: PMC11932244 DOI: 10.3390/pediatric17020030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/14/2025] [Accepted: 03/02/2025] [Indexed: 03/25/2025] Open
Abstract
BACKGROUND/OBJECTIVES DNA extraction from dried blood spot (DBS) samples is often applied in neonatal screening programs. Although various methods to extract DNA from DBSs have been described, the optimal approach remains unclear. Therefore, this study aimed to compare and optimize extraction methods to establish a reliable and efficient protocol for human DNA extraction from DBSs. METHODS We conducted a back-to-back comparison of five different DNA extraction methods on 20 DBS samples: three column-based kits (QIAamp DNA mini kit, High Pure PCR Template Preparation kit, DNeasy Blood & Tissue kit) and two in-house boiling methods (one using TE buffer, one using Chelex-100 resin). DNA recovery was measured with DeNovix DS-11 and ACTB qPCR. Further optimization of elution volumes and starting material was performed on the best-performing methods (sample size = 5). Additionally, T-cell receptor excision circle (TREC) DNA was assessed by qPCR as an application. RESULTS The Chelex boiling method yielded significantly (p < 0.0001) higher ACTB DNA concentrations compared to the other methods. Column-based methods showed low DNA recovery, except for Roche, which showed significantly (p < 0.0001) higher DNA concentrations than the other column-based methods, as measured by DeNovix DS-11. Decreasing elution volumes (150 vs. 100 vs. 50 µL) increased ACTB DNA concentrations significantly, while increasing starting material (two vs. one 6 mm spot) did not. CONCLUSIONS We identified an easy and cost-effective optimized DNA extraction method using Chelex from DBSs, with an elution volume of 50 µL and 1 × 6 mm DBS punch, which is particularly advantageous for research in low-resource settings and large populations, such as neonatal screening programs.
Collapse
Affiliation(s)
| | - Piet Cools
- Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium; (N.V.B.); (E.M.)
| | | |
Collapse
|
7
|
Drevland OM, Grasdal M, Carlsen RK, Midtvedt K, Robertsen I, Jenssen TG, Alipour S, Vethe NT, Åsberg A, Mjøen G. Patiromer Does Not Alter Tacrolimus Pharmacokinetics in Kidney Transplant Recipients When Administered Three Hours Post-Tacrolimus. Transplant Direct 2024; 10:e1733. [PMID: 39553740 PMCID: PMC11567709 DOI: 10.1097/txd.0000000000001733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 11/19/2024] Open
Abstract
Background Hyperkalemia is common in kidney transplant (KTx) recipients. Patiromer, a potassium-binding polymer used to treat acute and chronic hyperkalemia, has the potential to bind charged particles in the gastrointestinal tract and thereby potentially affect the absorption of coadministered drugs. The immunosuppressive drug tacrolimus (Tac) has a narrow therapeutic window, is susceptible to drug-drug interactions (DDIs), and a potential gastrointestinal interaction with patiromer could elevate the risk of allograft rejection. We aimed to investigate the potential DDI between patiromer and Tac pharmacokinetics in KTx with hyperkalemia by sampling capillary blood using volumetric absorptive microsampling (VAMS). Methods Thirteen KTx recipients on Tac twice daily (BID) with plasma potassium levels of >4.6 mmol/L were included. Two 12 h Tac pharmacokinetic investigations were performed with and without 8.4 mg patiromer/d for 1 wk. Oral Tac dose remained unchanged and patiromer was administered 3 h after Tac dose. Tac sampling was self-conducted using VAMS after mastering the technique. Results Ten patients provided 2 evaluable pharmacokinetic profiles. The Tac area under the curve (AUC)0-12 ratio (AUCTac+patiromer/AUCTac) was 0.99 (90% confidence interval [CI], 0.86-1.14), and the Cmax ratio was 1.01 (90% CI, 0.86-1.19). Tac C0 and C12 fulfilled the bioequivalence criteria with a ratio of 0.98 (90% CI, 0.90-1.07) and 0.93 (90% CI, 0.83-1.04), respectively. Conclusions When administered 3 h after the Tac morning dose, patiromer has no clinically relevant impact on Tac pharmacokinetics. We demonstrate that VAMS is a well-suited sampling method to simplify the execution of DDI studies.
Collapse
Affiliation(s)
| | - Marte Grasdal
- Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Rasmus K. Carlsen
- Department of Transplantation Medicine, Oslo University Hospital, Oslo, Norway
| | - Karsten Midtvedt
- Department of Transplantation Medicine, Oslo University Hospital, Oslo, Norway
| | - Ida Robertsen
- Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Trond G. Jenssen
- Department of Transplantation Medicine, Oslo University Hospital, Oslo, Norway
- Department of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Shadi Alipour
- Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Nils T. Vethe
- Department of Pharmacology, Oslo University Hospital, Oslo, Norway
| | - Anders Åsberg
- Department of Pharmacy, University of Oslo, Oslo, Norway
- Department of Transplantation Medicine, Oslo University Hospital, Oslo, Norway
| | - Geir Mjøen
- Department of Transplantation Medicine, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
8
|
Brunkhorst L, Terhardt M, Bulitta B, Gutting M, Janzen N, Haffner D, Kanzelmeyer N. Dried Blood Spot Sampling for Monitoring Children With Immune-Mediated Glomerulopathies and After Kidney Transplantation. Kidney Int Rep 2024; 9:3236-3249. [PMID: 39534197 PMCID: PMC11551135 DOI: 10.1016/j.ekir.2024.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 11/16/2024] Open
Abstract
Introduction Monitoring kidney function and immunosuppressant levels in children post-kidney transplantation or those with glomerulopathies is challenging due to frequent venipunctures and clinic visits. Capillary dried blood spot sampling (DBS) offers a potential alternative. Methods In this prospective single-center study, 89 children (38% female and 62% male) requiring therapeutic drug monitoring (TDM) and kidney function assessment were enrolled. Of the patients, 79% were kidney transplant recipients, and 21% had immune-mediated glomerulopathies. The mean age was 13.4 (range, 5.7-18.0) years. DBS and standard venous serum samples were collected simultaneously for tacrolimus (TAC), cyclosporine A (CsA), everolimus (EVR), and creatinine levels. Furthermore, patient feedback on pain perception and feasibility was collected via questionnaire. Results No significant differences in parameter values between DBS and standard methods were observed (creatinine, -1.7 ± 14.5 μmol/l; EVR, 0.1 ± 1.2 μg/l; TAC, 0.3 ± 1.1 μg/l; CsA, 2.8 ± 9.8 μg/l). DBS demonstrated sufficient accuracy compared with standard methods. Patients favored DBS and telehealth consultations, especially due to less travel and school absences. Patients preferred finger pricking over ear pricking. Conclusion Capillary DBS proves reliable for TDM and kidney function assessment in pediatric kidney disease. It reduces patient and family burden compared with venous blood collection and enables telehealth consultations.
Collapse
Affiliation(s)
- Lena Brunkhorst
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| | | | | | - Miriam Gutting
- Department of Pediatric Gastroenterology and Hepatology, University of Cologne, Cologne, Germany
| | - Nils Janzen
- Screening-Labor Hannover, Hannover, Germany
- Department of Clinical Chemistry, Medical School Hannover, Hannover, Germany
- Division of Laboratory Medicine, Center for Children and Adolescents, Kinder und Jugendkrankenhaus “Auf der Bult,” Hannover, Germany
| | - Dieter Haffner
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| | - Nele Kanzelmeyer
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| |
Collapse
|
9
|
Besten-Bertholee DD, Wegner I, Touw DJ, Ter Horst PGJ. Analytical and clinical validation of an LC-MS/MS method for carbamazepine, lamotrigine and levetiracetam in dried blood spots. Eur J Hosp Pharm 2024; 31:450-454. [PMID: 36894298 DOI: 10.1136/ejhpharm-2022-003589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/28/2023] [Indexed: 03/11/2023] Open
Abstract
OBJECTIVES Therapeutic drug monitoring is performed routinely in patients on anti-epileptic drugs (AEDs) for optimisation and individualisation of therapy. The dried blood spot (DBS) sampling technique is a suitable, more patient-friendly alternative for conventional venous sampling methods. However, before DBS can be used in routine care, data are needed to establish the correlation between standard plasma concentrations obtained from venous puncture and concentrations measured through DBS obtained by finger prick. This study aims to investigate the correlation between carbamazepine, lamotrigine and levetiracetam drug concentrations in venous blood and DBS samples in the same patients at the same time. METHODS Clinical validation was conducted by direct comparison of paired DBS and venous plasma samples. Method agreement was evaluated using Passing-Bablok regression analysis and Bland-Altman plots to provide insight into the relationship between the two analytically validated methods. For Bland-Altman analysis the acceptance limit required by both FDA and EMA guidelines is at least two-thirds (67%) of the paired samples within 80-120% of the mean of both methods. RESULTS Paired samples from 79 patients were studied. For all three AEDs, plasma and DBS concentrations correlated highly (r=0.90 for carbamazepine, r=0.93 for lamotrigine and r=0.93 for levetiracetam), indicating a linear relationship. For carbamazepine and lamotrigine, no proportional or constant bias was revealed. For levetiracetam, concentrations were higher in plasma samples than in DBS (slope 1.21), implying a conversion factor is needed. The acceptance limit was met for carbamazepine and levetiracetam with a value of 72% and 81%, respectively. For lamotrigine, this acceptance limit was not met with a value of 60%. CONCLUSIONS The method was successfully validated and will be used for therapeutic drug monitoring in patients using carbamazepine, lamotrigine and/or levetiracetam.
Collapse
Affiliation(s)
| | | | - Daan J Touw
- Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
- Groningen Research Institute of Pharmacy, Section Pharmaceutical Analysis, University of Groningen, Groningen, The Netherlands
| | | |
Collapse
|
10
|
Dubiela P, Szymanska-Rozek P, Hasinski P, Lipinski P, Kleinotiene G, Giersz D, Tylki-Szymanska A. Long- and Short-Term Glucosphingosine (lyso-Gb1) Dynamics in Gaucher Patients Undergoing Enzyme Replacement Therapy. Biomolecules 2024; 14:842. [PMID: 39062556 PMCID: PMC11275231 DOI: 10.3390/biom14070842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Background: Gaucher disease (GD) is a lysosomal storage disorder caused by mutations in the GBA1 gene, leading to β-glucocerebrosidase deficiency and glucosylceramide accumulation. Methods: We analyzed short- and long-term dynamics of lyso-glucosylceramide (lyso-Gb1) in a large cohort of GD patients undergoing enzyme replacement therapy (ERT). Results: Eight-years analysis of lyso-Gb1 revealed statistically insignificant variability in the biomarker across the years and relatively high individual variability in patients' results. GD type 1 (GD1) patients exhibited higher variability compared to GD type 3 (GD3) patients (coefficients of variation: 34% and 23%, respectively; p-value = 0.0003). We also investigated the short-term response of the biomarker to enzyme replacement therapy (ERT), measuring lyso-Gb1 right before and 30 min after treatment administration. We tested 20 GD patients (16 GD1, 4 GD3) and observed a rapid and significant reduction in lyso-Gb1 levels (average decrease of 17%; p-value < 0.0001). This immediate response reaffirms the efficacy of ERT in reducing substrate accumulation in GD patients but, on the other hand, suggests the biomarker's instability between the infusions. Conclusions: These findings underscore lyso-Gb1's potential as a reliable biomarker for monitoring efficacy of treatment. However, individual variability and dry blood spot (DBS) testing limitations urge a further refinement in clinical application. Our study contributes valuable insights into GD patient management, emphasizing the evolving role of biomarkers in personalized medicine.
Collapse
Affiliation(s)
- Pawel Dubiela
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, 15-089 Bialystok, Poland; (P.D.); (D.G.)
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Paulina Szymanska-Rozek
- Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, 00-927 Warsaw, Poland;
| | - Piotr Hasinski
- Department of Internal Medicine and Gastroenterology, Municipal Hospital, 43-100 Tychy, Poland;
| | - Patryk Lipinski
- Institute of Clinical Sciences, Maria Skłodowska-Curie Medical Academy, 00-136 Warsaw, Poland;
| | | | - Dorota Giersz
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, 15-089 Bialystok, Poland; (P.D.); (D.G.)
| | - Anna Tylki-Szymanska
- Department of Pediatrics, Nutrition and Metabolic Diseases, The Children’s Memorial Health Institute, 04-736 Warsaw, Poland
| |
Collapse
|
11
|
Hsu WH, Cheng KW, Feng TH, Chen JY, Chen GY, Chen LY, Weng T, Hsu CC. Rapid Screening of New Psychoactive Substances Using pDART-QqQ-MS. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1370-1376. [PMID: 38652738 PMCID: PMC11157655 DOI: 10.1021/jasms.4c00124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
Drug abuse is a severe social problem worldwide. Particularly, the issue of new psychoactive substances (NPSs) have increasingly emerged. NPSs are structural or functional analogs of traditional illicit drugs, such as cocaine, cannabis, and amphetamine; these molecules provide the same or more severe neurological effects. Usually, immunoassays are utilized in the preliminary screening method. However, NPSs have poor detectability in commercially available immunoassay kits. Meanwhile, various chromatography combined with the mass spectrometry platform have been developed to quantify NPSs. Still, a significant amount of time and resources are required during these procedures. Therefore, we established a rapid analytical platform for NPSs employing paper-loaded direct analysis in real time triple quadrupole mass spectrometry (pDART-QqQ-MS). We implemented this platform for the semiquantitative analysis of forensic drug tests in urine. This platform significantly shrinks the analytical time of a single sample within 30 s and requires a low volume of the specimen. The platform can detect 21 NPSs in urine mixtures at a lower limit of qualification of concentration ranging from 20 to 75 nanograms per milliliter (ng mL-1) and is lower than the cutoff value of currently available immune-based devices for detecting multiple drugs (1000 ng mL-1). Urine samples from drug addicts have been collected to verify the platform's effectiveness. By combining efficiency and accuracy, our platform offers a promising solution for addressing the challenges posed by NPSs in drug abuse detection.
Collapse
Affiliation(s)
- Wei-Hsin Hsu
- Department
of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Kai-Wen Cheng
- Department
of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Tzu-Hsuan Feng
- Department
of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Ju-Yu Chen
- Forensic
and Clinical Toxicology Center National Taiwan University College
of Medicine and National Taiwan University Hospital, Taipei 10051, Taiwan
| | - Guan-Yuan Chen
- Forensic
and Clinical Toxicology Center National Taiwan University College
of Medicine and National Taiwan University Hospital, Taipei 10051, Taiwan
- Department
and Graduate Institute of Forensic Medicine, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Lian-Yu Chen
- Institute
of Epidemiology and Preventive Medicine, National Taiwan University, Taipei 10051, Taiwan
- Kunming
Prevention and Control Center, Taipei City
Hospital, Taipei 108203, Taiwan
| | - Te−I Weng
- Forensic
and Clinical Toxicology Center National Taiwan University College
of Medicine and National Taiwan University Hospital, Taipei 10051, Taiwan
- Department
and Graduate Institute of Forensic Medicine, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Cheng-Chih Hsu
- Department
of Chemistry, National Taiwan University, Taipei 10617, Taiwan
- Leeuwenhoek
Laboratories Co. Ltd., No. 71, Fanglan Rd, Taipei, 106038, Taiwan
| |
Collapse
|
12
|
Shyam R, Sekhar Panda H, Mishra J, Jyoti Panda J, Kour A. Emerging biosensors in Phenylketonuria. Clin Chim Acta 2024; 559:119725. [PMID: 38734223 DOI: 10.1016/j.cca.2024.119725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
Phenylketonuria (PKU) is an autosomal recessive metabolic disorder resulting from deficient phenylalanine hydroxylase (PAH) enzyme activity, leading to impaired phenylalanine (Phe) metabolism. This condition can lead to intellectual disability, epilepsy, and behavioural issues. Treatment typically involves strict dietary restrictions on natural protein intake, supplemented with chemically manufactured protein substitutes containing amino acids other than Phe. Various approaches, including casein glycomacropeptide (GMP), tetrahydrobiopterin (BH4), phenylalanine ammonia-lyase (PAL) therapy, large neutral amino acid (LNAA) supplementation, enzyme therapy, gene therapy, and medical therapies, aim to prevent Phe transport in the brain to potentially treat PKU. Although newborn screening programs and early dietary interventions have enhanced outcomes of the potential treatment strategies, limitations still persist in this direction. These involve potent accuracy concerns in diagnosis due to the existence of antibiotics in blood of PKU patients, affecting growth of the bacteria in the bacterial inhibition assay. Monitoring involves complex methods for instance, mass spectrometry and high-pressure liquid chromatography, which involve shortcomings such as lengthy protocols and the need for specialized equipment. To address these limitations, adaptable testing formats like bio/nano sensors are emerging with their cost-effectiveness, biodegradability, and rapid, accurate, and sensitive detection capabilities, offering promising alternatives for PKU diagnosis. This review provides insights into current treatment and diagnostic approaches, emphasizing on the potential applications of the diverse sensors intended for PKU diagnosis.
Collapse
Affiliation(s)
- Ritika Shyam
- University Institute of Pharma Sciences, Chandigarh University, Gharuan, Mohali, Punjab 140413, India
| | | | - Jibanananda Mishra
- School of Biosciences, RIMT University, Mandi Gobindgarh, Punjab 147301, India
| | - Jiban Jyoti Panda
- Institute of Nanoscience and Technology, Mohali, Punjab 140306, India.
| | - Avneet Kour
- University Institute of Pharma Sciences, Chandigarh University, Gharuan, Mohali, Punjab 140413, India.
| |
Collapse
|
13
|
Geers LM, Loonen AJM, Touw DJ. Microsampling Techniques Suitable for Therapeutic Drug Monitoring of Antipsychotics. J Clin Psychopharmacol 2024; 44:302-310. [PMID: 38639427 DOI: 10.1097/jcp.0000000000001855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
BACKGROUND Therapeutic drug monitoring (TDM) of antipsychotics for dose titration or detection of noncompliance is not uncommon in daily practice. Normally, TDM implies measuring a drug concentration in venous blood samples. This technique is invasive and requires trained assistants and patients normally need to go to an outpatient clinic. Over the past decades, sensitivity of analytical equipment has improved leading to a growing interest in microsampling techniques. These techniques are minimally invasive, require a small volume (<100 μL), usually result in stable samples, and can be collected by the patient or a caregiver at home. Before a microsampling technique can be used in daily routine, proper method development and a clinical validation study should be performed. METHOD For this review, the databases of PubMed and Embase were systematically searched. Currently available microsampling techniques for antipsychotics in blood, serum, or plasma are summarized. Subsequently, it has also been assessed whether these techniques are sufficiently validated for TDM monitoring in daily practice. RESULTS Several microsampling techniques are available today, for example, dried blood spot sampling, dried plasma extraction cards, and volumetric absorptive microsampling. Eighteen studies were identified in which a microsampling technique for 1 or a few antipsychotics was chemically analytically and clinically validated. However, the majority of these studies have relevant shortcomings that mean its usefulness for different antipsychotics is not yet well established. CONCLUSIONS Microsampling for TDM can be recommended for patients using clozapine. For TDM of other antipsychotics, it is a very promising development.
Collapse
Affiliation(s)
| | - Anton J M Loonen
- University of Groningen, Groningen Research Institute of Pharmacy, Pharmacotherapy, -Epidemiology & -Economics
| | | |
Collapse
|
14
|
Meikopoulos T, Gika H, Theodoridis G, Begou O. Detection of 26 Drugs of Abuse and Metabolites in Quantitative Dried Blood Spots by Liquid Chromatography-Mass Spectrometry. Molecules 2024; 29:975. [PMID: 38474487 DOI: 10.3390/molecules29050975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/11/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
A method was developed for the determination of 26 drugs of abuse from different classes, including illicit drugs in quantitative dried blood spots (qDBSs), with the aim to provide a convenient method for drug testing by using only 10 μL of capillary blood. A satisfactory limit of quantification (LOQ) of 2.5 ng/mL for 9 of the compounds and 5 ng/mL for 17 of the compounds and a limit of detection (LOD) of 0.75 ng/mL for 9 of the compounds and 1.5 ng/mL for 17 of the compounds were achieved for all analytes. Reversed-phase liquid chromatography was applied on a C18 column coupled to MS, providing selective detections with both +ESI and -ESI modes. Extraction from the qDBS was performed using AcN-MeOH, 1:1 (v/v), with recovery ranging from 84.6% to 106%, while no significant effect of the hematocrit was observed. The studied drugs of abuse were found to be stable over five days under three different storage conditions (at ambient temperature 21 °C, at -20 °C, and at 35 °C), thus offering a highly attractive approach for drug screening by minimally invasive sampling for individuals that could find application in forensic toxicology analysis.
Collapse
Affiliation(s)
- Thomas Meikopoulos
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- BIOMIC_Auth, Center for Interdisciplinary Research, and Innovation (CIRI-AUTH), 57001 Thessaloniki, Greece
| | - Helen Gika
- BIOMIC_Auth, Center for Interdisciplinary Research, and Innovation (CIRI-AUTH), 57001 Thessaloniki, Greece
- Laboratory of Forensic Medicine & Toxicology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Georgios Theodoridis
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- BIOMIC_Auth, Center for Interdisciplinary Research, and Innovation (CIRI-AUTH), 57001 Thessaloniki, Greece
- ThetaBiomarkers, Center for Interdisciplinary Research, and Innovation (CIRI-AUTH), Balkan Center, 10th Km Thessaloniki-Thermi Rd., P.O. Box 8318, 57001 Thessaloniki, Greece
| | - Olga Begou
- BIOMIC_Auth, Center for Interdisciplinary Research, and Innovation (CIRI-AUTH), 57001 Thessaloniki, Greece
- ThetaBiomarkers, Center for Interdisciplinary Research, and Innovation (CIRI-AUTH), Balkan Center, 10th Km Thessaloniki-Thermi Rd., P.O. Box 8318, 57001 Thessaloniki, Greece
| |
Collapse
|
15
|
Carou-Senra P, Rodríguez-Pombo L, Monteagudo-Vilavedra E, Awad A, Alvarez-Lorenzo C, Basit AW, Goyanes A, Couce ML. 3D Printing of Dietary Products for the Management of Inborn Errors of Intermediary Metabolism in Pediatric Populations. Nutrients 2023; 16:61. [PMID: 38201891 PMCID: PMC10780524 DOI: 10.3390/nu16010061] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
The incidence of Inborn Error of Intermediary Metabolism (IEiM) diseases may be low, yet collectively, they impact approximately 6-10% of the global population, primarily affecting children. Precise treatment doses and strict adherence to prescribed diet and pharmacological treatment regimens are imperative to avert metabolic disturbances in patients. However, the existing dietary and pharmacological products suffer from poor palatability, posing challenges to patient adherence. Furthermore, frequent dose adjustments contingent on age and drug blood levels further complicate treatment. Semi-solid extrusion (SSE) 3D printing technology is currently under assessment as a pioneering method for crafting customized chewable dosage forms, surmounting the primary limitations prevalent in present therapies. This method offers a spectrum of advantages, including the flexibility to tailor patient-specific doses, excipients, and organoleptic properties. These elements are pivotal in ensuring the treatment's efficacy, safety, and adherence. This comprehensive review presents the current landscape of available dietary products, diagnostic methods, therapeutic monitoring, and the latest advancements in SSE technology. It highlights the rationale underpinning their adoption while addressing regulatory aspects imperative for their seamless integration into clinical practice.
Collapse
Affiliation(s)
- Paola Carou-Senra
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Materials Institute (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (P.C.-S.); (L.R.-P.); (C.A.-L.)
| | - Lucía Rodríguez-Pombo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Materials Institute (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (P.C.-S.); (L.R.-P.); (C.A.-L.)
| | - Einés Monteagudo-Vilavedra
- Servicio de Neonatología, Unidad de Diagnóstico y Tratamiento de Enfermedades Metabólicas Congénitas, Health Research Institute of Santiago de Compostela (IDIS), Hospital Clínico Universitario de Santiago de Compostela, Universidad de Santiago de Compostela, RICORS, CIBERER, MetabERN, 15706 Santiago de Compostela, Spain;
| | - Atheer Awad
- Department of Clinical, Pharmaceutical and Biological Sciences, University of Hertfordshire, College Lane, Hatfield AL10 9AB, UK;
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Materials Institute (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (P.C.-S.); (L.R.-P.); (C.A.-L.)
| | - Abdul W. Basit
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK;
- FABRX Ltd., Henwood House, Henwood, Ashford, Kent TN24 8DH, UK
- FABRX Artificial Intelligence, 27543 O Saviñao, Spain
| | - Alvaro Goyanes
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Materials Institute (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (P.C.-S.); (L.R.-P.); (C.A.-L.)
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK;
- FABRX Ltd., Henwood House, Henwood, Ashford, Kent TN24 8DH, UK
- FABRX Artificial Intelligence, 27543 O Saviñao, Spain
| | - María L. Couce
- Servicio de Neonatología, Unidad de Diagnóstico y Tratamiento de Enfermedades Metabólicas Congénitas, Health Research Institute of Santiago de Compostela (IDIS), Hospital Clínico Universitario de Santiago de Compostela, Universidad de Santiago de Compostela, RICORS, CIBERER, MetabERN, 15706 Santiago de Compostela, Spain;
| |
Collapse
|
16
|
Requena-Tutusaus L, Anselmo I, Alechaga É, Bergés R, Ventura R. Achieving routine application of dried blood spots for erythropoietin receptor agonist analysis in doping control: low-volume single-spot detection at minimum required performance level. Bioanalysis 2023; 15:1235-1246. [PMID: 37676639 DOI: 10.4155/bio-2023-0118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023] Open
Abstract
Background: Erythropoietin receptor agonists (ERAs) are substances prohibited in sports and currently monitored in urine and blood. There is a great interest in new matrices like dried blood spots (DBSs). Method: A direct method for the detection of ERAs in DBSs using one single spot of 25 μl has been optimized and validated. Results: Limits of detection close or equal to those required by the World Anti-Doping Agency for serum/plasma samples were achieved, using a volume 20-times lower. All analytes were stable for at least 90 days at room temperature. Conclusion: Method performance was comparable to the requirements established for blood samples and, thus, monitoring of ERAs is reliable in DBSs in the context of doping control.
Collapse
Affiliation(s)
- Lídia Requena-Tutusaus
- Catalonian Antidoping Laboratory, Doping Control Research Group, Fundació IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Department of Experimental & Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Indira Anselmo
- Catalonian Antidoping Laboratory, Doping Control Research Group, Fundació IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Élida Alechaga
- Catalonian Antidoping Laboratory, Doping Control Research Group, Fundació IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Department of Experimental & Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Rosa Bergés
- Catalonian Antidoping Laboratory, Doping Control Research Group, Fundació IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Rosa Ventura
- Catalonian Antidoping Laboratory, Doping Control Research Group, Fundació IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| |
Collapse
|
17
|
Zailani NNB, Ho PCL. Dried Blood Spots-A Platform for Therapeutic Drug Monitoring (TDM) and Drug/Disease Response Monitoring (DRM). Eur J Drug Metab Pharmacokinet 2023; 48:467-494. [PMID: 37495930 PMCID: PMC10480258 DOI: 10.1007/s13318-023-00846-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2023] [Indexed: 07/28/2023]
Abstract
This review provides an overview on the current applications of dried blood spots (DBS) as matrices for therapeutic drug (TDM) and drug or disease response monitoring (DRM). Compared with conventional methods using plasma/serum, DBS offers several advantages, including minimally invasiveness, a small blood volume requirement, reduced biohazardous risk, and improved sample stability. Numerous assays utilising DBS for TDM have been reported in the literature over the past decade, covering a wide range of therapeutic drugs. Several factors can affect the accuracy and reliability of the DBS sampling method, including haematocrit (HCT), blood volume, sampling paper and chromatographic effects. It is crucial to evaluate the correlation between DBS concentrations and conventional plasma/serum concentrations, as the latter has traditionally been used for clinical decision. The feasibility of using DBS sampling method as an option for home-based TDM is also discussed. Furthermore, DBS has also been used as a matrix for monitoring the drug or disease responses (DRM) through various approaches such as genotyping, viral load measurement, assessment of inflammatory factors, and more recently, metabolic profiling. Although this research is still in the development stage, advancements in technology are expected to lead to the identification of surrogate biomarkers for drug treatment in DBS and a better understanding of the correlation between DBS drug levels and drug responses. This will make DBS a valuable matrix for TDM and DRM, facilitating the achievement of pharmacokinetic and pharmacodynamic correlations and enabling personalised therapy.
Collapse
Affiliation(s)
- Nur Nabihah Binte Zailani
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore, 117543, Singapore
| | - Paul Chi-Lui Ho
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore, 117543, Singapore.
- School of Pharmacy, Monash University Malaysia, Level 5, Building 2, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
18
|
Daousani C, Karalis V, Loukas YL, Schulpis KH, Alexiou K, Dotsikas Y. Dried Blood Spots in Neonatal Studies: A Computational Analysis for the Role of the Hematocrit Effect. Pharmaceuticals (Basel) 2023; 16:1126. [PMID: 37631041 PMCID: PMC10459320 DOI: 10.3390/ph16081126] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/29/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Dried blood spot (DBS) microsampling is extensively employed in newborn screening (NBS) and neonatal studies. However, the impact of variable neonatal hematocrit (Ht) values on the results can be a source of analytical error, and the use of fixed Ht for calibration (Htcal) is not representative of all neonatal subpopulations. A computational approach based on neonatal demographics was developed and implemented in R® language to propose a strategy using correction factors to address the Ht effect in neonatal DBS partial-spot assays. A rational "tolerance level" was proposed for the Ht effect contribution to the total analytical error and a safe Ht range for neonatal samples, where the correction of concentrations can be omitted. Furthermore, an "alert zone" for a false positive or negative result in NBS was proposed, where the Ht effect has to be considered. Results point toward the use of Htcal values closely representative of populations under analysis and an acceptable level of percentage relative error can be attributed to the Ht effect, diminishing the probability of correction. Overall, the impact of the Ht effect on neonatal studies is important and future work may further investigate this parameter, correlated to other clinical variables potentially affecting results.
Collapse
Affiliation(s)
- Chrysa Daousani
- Laboratory of Pharmaceutical Analysis, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, 157 84 Athens, Greece
| | - Vangelis Karalis
- Laboratory of Biopharmaceutics-Pharmacokinetics, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, 157 84 Athens, Greece
| | - Yannis L. Loukas
- Laboratory of Pharmaceutical Analysis, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, 157 84 Athens, Greece
| | | | | | - Yannis Dotsikas
- Laboratory of Pharmaceutical Analysis, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, 157 84 Athens, Greece
| |
Collapse
|
19
|
Guo C, Yan H, Liu W, Xiang P, Di B, Shen M. Liquid chromatography with tandem mass spectrometric method for determination of 425 drugs and poisons in dried blood spots and application to forensic cases. Forensic Toxicol 2023; 41:241-248. [PMID: 36719526 DOI: 10.1007/s11419-023-00659-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 01/05/2023] [Indexed: 02/01/2023]
Abstract
PURPOSE An analytical method using liquid chromatography with tandem mass spectrometry (LC-MS/MS) was established and validated for screening 425 drugs and poisons in dried blood spots (DBSs). METHODS Blood (20 μL) was spotted on Whatman FTA™ classic card to prepare DBS sample, then extracted with 150 μL methanol and analyzed by LC-MS/MS using a multiple reaction monitoring method. RESULTS The limit of detection of the compounds were 0.1-10 ng/mL. The values for recovery and matrix effect were 40.3-114.9% and 40.2-118.4%, respectively. This method was successfully applied to DBS samples from 105 humans suspected of drug poisoning, which was stored for 3-5 years at room temperature. Thirty-three kinds of drugs, including benzodiazepines, antipsychotics, antidepressants, antipyretic analgesics, non-steroidal anti-inflammatory drugs, antibiotics, antiepileptic drugs, new psychoactive drugs were confirmed in 102 cases, while no compound was detected in the other 3 cases. Estazolam, a benzodiazepine widely used in clinical practice as a sedative, hypnotic, and anti-anxiety drug, was the most frequently detected substance, occurring in 34.2% of the cases. CONCLUSIONS Most drugs in DBS could still be detected after storage for 3-5 years, but ambroxol, zopiclone, carbofuran, chlorpyrifos, and valproic acid were not detectable after 3-5 years of storage at room temperature. The components measured in DBS were consistent with those measured in whole blood at the collection time, thereby confirming that DBS samples have the advantage of stable storage at room temperature.
Collapse
Affiliation(s)
- Caixia Guo
- Department of Forensic Toxicology, Academy of Forensic Science, Ministry of Justice, Shanghai Key Laboratory of Forensic Medicine, 1347 Guangfu Xi Road, Shanghai, 200063, China
- Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, China
| | - Hui Yan
- Department of Forensic Toxicology, Academy of Forensic Science, Ministry of Justice, Shanghai Key Laboratory of Forensic Medicine, 1347 Guangfu Xi Road, Shanghai, 200063, China
| | - Wei Liu
- Department of Forensic Toxicology, Academy of Forensic Science, Ministry of Justice, Shanghai Key Laboratory of Forensic Medicine, 1347 Guangfu Xi Road, Shanghai, 200063, China
| | - Ping Xiang
- Department of Forensic Toxicology, Academy of Forensic Science, Ministry of Justice, Shanghai Key Laboratory of Forensic Medicine, 1347 Guangfu Xi Road, Shanghai, 200063, China
| | - Bin Di
- Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, China
| | - Min Shen
- Department of Forensic Toxicology, Academy of Forensic Science, Ministry of Justice, Shanghai Key Laboratory of Forensic Medicine, 1347 Guangfu Xi Road, Shanghai, 200063, China.
| |
Collapse
|
20
|
Thompson B, Dilly-Penchala S, Amara A, Reynolds H, Khoo S, Else L. Application of novel plasma separation filter cards for quantification of nucleoside/nucleotide reverse transcriptase inhibitor di/triphosphates in dried blood spots using LC-MS. Bioanalysis 2023; 15:739-756. [PMID: 37293769 PMCID: PMC10463213 DOI: 10.4155/bio-2023-0057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/24/2023] [Indexed: 06/10/2023] Open
Abstract
Background: A rapid and sensitive LC-MS method has been developed and validated for the quantification of nucleoside di/triphosphates using a novel plasma separation card (HemaSep). Materials & methods: Cards were spotted with whole blood and stored at -80°C. Metabolites were extracted using 70:30 MeOH:20% formic acid, followed by weak anion exchange SPE and eluted using a Biobasic-AX column. Quantification was performed using a triple quadrupole mass spectrometer with a calibration range of 1.25-250 pmol/sample. Results: The recovery of metabolites was high (>93%). Precision and accuracy were acceptable and metabolites remained stable on the card after 29 days (stored at ambient temperature). Conclusion: HemaSep dried blood spots are a useful microsampling tool and offer an alternative to liquid plasma as they maintain stability over time.
Collapse
Affiliation(s)
- Beth Thompson
- Department of Pharmacology & Therapeutics, Institute of Integrative, Systems & Molecular Biology, University of Liverpool, L7 8TX, UK
- Bioanalytical Facility, University of Liverpool, William Henry Duncan Building, Liverpool, L7 8TX, UK
| | - Sujan Dilly-Penchala
- Department of Pharmacology & Therapeutics, Institute of Integrative, Systems & Molecular Biology, University of Liverpool, L7 8TX, UK
- Bioanalytical Facility, University of Liverpool, William Henry Duncan Building, Liverpool, L7 8TX, UK
| | - Alieu Amara
- Department of Pharmacology & Therapeutics, Institute of Integrative, Systems & Molecular Biology, University of Liverpool, L7 8TX, UK
- Bioanalytical Facility, University of Liverpool, William Henry Duncan Building, Liverpool, L7 8TX, UK
| | - Helen Reynolds
- Department of Pharmacology & Therapeutics, Institute of Integrative, Systems & Molecular Biology, University of Liverpool, L7 8TX, UK
- Royal Liverpool University Hospital, Liverpool, L7 8XP, UK
| | - Saye Khoo
- Department of Pharmacology & Therapeutics, Institute of Integrative, Systems & Molecular Biology, University of Liverpool, L7 8TX, UK
- Bioanalytical Facility, University of Liverpool, William Henry Duncan Building, Liverpool, L7 8TX, UK
- Royal Liverpool University Hospital, Liverpool, L7 8XP, UK
| | - Laura Else
- Department of Pharmacology & Therapeutics, Institute of Integrative, Systems & Molecular Biology, University of Liverpool, L7 8TX, UK
- Bioanalytical Facility, University of Liverpool, William Henry Duncan Building, Liverpool, L7 8TX, UK
| |
Collapse
|
21
|
Nishio T, Toukairin Y, Hoshi T, Arai T, Nogami M. Quantification of nine psychotropic drugs in postmortem dried blood spot samples by liquid chromatography-tandem mass spectrometry for simple toxicological analysis. J Pharm Biomed Anal 2023; 233:115438. [PMID: 37167768 DOI: 10.1016/j.jpba.2023.115438] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/25/2023] [Accepted: 05/01/2023] [Indexed: 05/13/2023]
Abstract
Dried blood spot (DBS) sampling has evolved to become the method of choice for collecting samples for newborn screening and therapeutic drug monitoring worldwide. The major advantage of this approach is that it requires only a small amount of blood. In addition, the collection of DBSs on filter paper is simple, sample storage costs are small, and the process deactivates microorganisms and viruses. However, despite these advantages, DBS sampling is seldom used in forensic toxicological analyses. Here, we developed and validated an approach that uses liquid chromatography coupled with electrospray ionization-tandem mass spectrometry for quantifying nine psychotropic drugs (citalopram, duloxetine, mirtazapine, olanzapine, paroxetine, quetiapine, sertraline, zolpidem and zopiclone) in cadaveric DBS samples. Most of them are frequently used by self-harm but are not already targeted by an existing drug screening kit. Our method use only one 3-mm disk excised from each DBS and does not require the troublesome purification process. The linearities of the calibration curves were good in the concentration range of 0.05-1.0 μg/mL. Our method allows for repeatable and accurate quantification with intra- and inter-assay coefficients of variation of below 11.9% and below 12.5%, respectively, for each of the target drugs. In addition, the target drug concentrations in the DBSs remained stable for at least one month when stored at - 80 °C. Compared with our institute's routine method for cadaveric blood sampling, the QuEChERS method, quantifiable concentrations showed a good positive correlation for each of the target drugs. In addition, the concentrations of almost all the target drugs obtained with DBS sampling method were comparable with those obtained with the QuEChERS sampling method. Thus, the present findings extend the possible uses of DBS sampling to the quantification of multiple psychotropic drugs in the field of forensic toxicological testing.
Collapse
Affiliation(s)
- Tadashi Nishio
- Department of Legal Medicine, Teikyo University School of Medicine, 2-11-1, Kaga, Itabashi-ku, Tokyo 173-8605, Japan.
| | - Yoko Toukairin
- Department of Legal Medicine, Teikyo University School of Medicine, 2-11-1, Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Tomoaki Hoshi
- Department of Legal Medicine, Teikyo University School of Medicine, 2-11-1, Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Tomomi Arai
- Department of Legal Medicine, Teikyo University School of Medicine, 2-11-1, Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Makoto Nogami
- Department of Legal Medicine, Teikyo University School of Medicine, 2-11-1, Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| |
Collapse
|
22
|
Meikopoulos T, Begou O, Theodoridis G, Gika H. Ceramides biomarkers determination in quantitative dried blood spots by UHPLC-MS/MS. Anal Chim Acta 2023; 1255:341131. [PMID: 37032061 DOI: 10.1016/j.aca.2023.341131] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/10/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023]
Abstract
A method was developed for the analysis of four ceramide species; namely C16:0, C18:0, C24:0 and C24:1 in quantitative Dried Blood Samples (qDBS) by LC-MS/MS and validated with the aim to give prominence to an interesting application of at-home blood microsampling for health monitoring. Ceramides, being key-role metabolites implicated in regulation of diverse cellular processes have been considered as emerging biomarkers for different disease states, such as cardiovascular diseases, type 2 diabetes and others. Here, Capitainer device was utilized to provide accurate and consistent volumes of samples, ideal for accurate determinations. The method requires a 10 μL sample offering duplicate analysis by device, is quick and enables the sample collection by distance as it was proved that ceramides under study were stable at various conditions, including RT. Intra and inter-day accuracy of the determination were estimated between 87.6% - 113% and 90.6% -113%, respectively, while intra- and inter-day precision were calculated from 0.2% to 9.9% %RSD and 0.1% - 8.0% %RSD, respectively. The data acquired by ten healthy individuals indicated that circulating ceramides are at higher levels in whole blood taken from the fingertip in comparison to the reported values in plasma or serum.
Collapse
|
23
|
Sharma JR, Dludla PV, Dwivedi G, Johnson R. Measurement Tools and Utility of Hair Analysis for Screening Adherence to Antihypertensive Medication. Glob Heart 2023; 18:17. [PMID: 36968302 PMCID: PMC10038111 DOI: 10.5334/gh.1191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 02/16/2023] [Indexed: 03/29/2023] Open
Abstract
Poor adherence to the prescribed antihypertensive therapy is an understated public health problem and is one of the main causes of the high prevalence of uncontrolled hypertension in sub-Saharan Africa. Medication adherence is vital for the effectiveness of antihypertensive treatment and is key to ameliorating the clinical outcomes in hypertensive patients. However, it has often been ignored because the current methods used to assess medication adherence are not reliable, limiting their utilization in clinical practice. Therefore, the identification of the most accurate and clinically feasible method for measuring medication adherence is critical for tailoring effective strategies to improve medication adherence and consequently achieve blood pressure goals. This review not only explores various available methods for estimating medication adherence but also proposes therapeutic drug monitoring in hair for the measurement of medication adherence to the antihypertensive medication period.
Collapse
Affiliation(s)
- Jyoti R. Sharma
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa
| | - Phiwayinkosi V. Dludla
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa
| | - Girish Dwivedi
- Medical School, University of Western Australia, Harry Perkins Institute of Medical Sciences, Fiona Stanley Hospital, Verdun Street, Nedlands WA, 6009, Australia
| | - Rabia Johnson
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa
- Centre for Cardio-Metabolic Research in Africa, Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa
| |
Collapse
|
24
|
Stachanow V, Neumann U, Blankenstein O, Alder-Baerens N, Bindellini D, Hindmarsh P, Ross RJ, Whitaker MJ, Melin J, Huisinga W, Michelet R, Kloft C. Model-Informed Target Morning 17α-Hydroxyprogesterone Concentrations in Dried Blood Spots for Pediatric Congenital Adrenal Hyperplasia Patients. Pharmaceuticals (Basel) 2023; 16:ph16030464. [PMID: 36986563 PMCID: PMC10051286 DOI: 10.3390/ph16030464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Monitoring cortisol replacement therapy in congenital adrenal hyperplasia (CAH) patients is vital to avoid serious adverse events such as adrenal crises due to cortisol underexposure or metabolic consequences due to cortisol overexposure. The less invasive dried blood spot (DBS) sampling is an advantageous alternative to traditional plasma sampling, especially in pediatric patients. However, target concentrations for important disease biomarkers such as 17α-hydroxyprogesterone (17-OHP) are unknown using DBS. Therefore, a modeling and simulation framework, including a pharmacokinetic/pharmacodynamic model linking plasma cortisol concentrations to DBS 17-OHP concentrations, was used to derive a target morning DBS 17-OHP concentration range of 2-8 nmol/L in pediatric CAH patients. Since either capillary or venous DBS sampling is becoming more common in the clinics, the clinical applicability of this work was shown by demonstrating the comparability of capillary and venous cortisol and 17-OHP concentrations collected by DBS sampling, using a Bland-Altman and Passing-Bablok analysis. The derived target morning DBS 17-OHP concentration range is a first step towards providing improved therapy monitoring using DBS sampling and adjusting hydrocortisone (synthetic cortisol) dosing in children with CAH. In the future, this framework can be used to assess further research questions, e.g., target replacement ranges for the entire day.
Collapse
Affiliation(s)
- Viktoria Stachanow
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Kelchstr 31, 12169 Berlin, Germany
- Graduate Research Training Program, PharMetrX, 12169 Berlin, Germany
| | - Uta Neumann
- Charité-Universitätsmedizin, Freie Universität Berlin, 13353 Berlin, Germany
| | - Oliver Blankenstein
- Charité-Universitätsmedizin, Freie Universität Berlin, 13353 Berlin, Germany
- Labor Berlin, Charité Vivantes GmbH, 13353 Berlin, Germany
| | | | - Davide Bindellini
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Kelchstr 31, 12169 Berlin, Germany
- Graduate Research Training Program, PharMetrX, 12169 Berlin, Germany
| | - Peter Hindmarsh
- Developmental Endocrinology Research Group, UCL Institute of Child Health, London WC1E 6BT, UK
| | - Richard J Ross
- Department of Oncology and Metabolism, University of Sheffield, Sheffield S10 2TN, UK
| | - Martin J Whitaker
- Department of Oncology and Metabolism, University of Sheffield, Sheffield S10 2TN, UK
| | - Johanna Melin
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Kelchstr 31, 12169 Berlin, Germany
- Graduate Research Training Program, PharMetrX, 12169 Berlin, Germany
| | - Wilhelm Huisinga
- Institute of Mathematics, Universität Potsdam, 14476 Potsdam, Germany
| | - Robin Michelet
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Kelchstr 31, 12169 Berlin, Germany
| | - Charlotte Kloft
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Kelchstr 31, 12169 Berlin, Germany
| |
Collapse
|
25
|
Dvořák M, Maršala R, Kubáň P. In-vial dried urine spot collection and processing for quantitative analyses. Anal Chim Acta 2023; 1254:341071. [PMID: 37005033 DOI: 10.1016/j.aca.2023.341071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023]
Abstract
Analysis of dried urine spots (DUSs) is becoming an emerging technique in clinical, toxicological, and forensic chemistry due to the fully non-invasive collection, facile transportation, and simple storage of DUS samples. Correct DUS collection and elution is of the utmost importance because inadequate DUS sampling/processing may have direct consequences on quantitative DUS analyses and these aspects were, for the first time, comprehensively investigated in this contribution. Various groups of endogenous and exogenous species were selected as model analytes and their concentrations were monitored in DUSs collected on standard cellulose-based sampling cards. Strong chromatographic effects were observed for most analytes having a crucial impact on their distribution within the DUSs during sampling. Concentrations of target analytes were up to 3.75-fold higher in the central DUS sub-punch in comparison to the liquid urine. Consequently, substantially reduced concentrations of these analytes were determined in peripheral DUS sub-punches demonstrating that sub-punching, often applied to dried material spots, is not acceptable for quantitative DUS analyses. Hence, a simple, rapid, and user-friendly procedure was suggested, which employed an in-vial collection of a known urine volume on a pre-punched sampling disc (using a low-cost micropipette designed for patient-centric clinical sampling) and in-vial processing of the whole DUS. Excellent accuracy (0.20%) and precision (0.89%) of liquid transfers were achieved by the micropipette, which was also applied to remote DUS collection by laic and expert users. The resulting DUS eluates were analysed by capillary electrophoresis (CE) for the determination of endogenous urine species. The CE results demonstrated no significant differences between the two user groups, elution efficiencies of 88-100% (in comparison to the liquid urine), and precision better than 5.5%.
Collapse
Affiliation(s)
- Miloš Dvořák
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Veveří 97, CZ-60200, Brno, Czech Republic
| | - Richard Maršala
- Faculty of Science, Department of Chemistry, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic
| | - Pavel Kubáň
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Veveří 97, CZ-60200, Brno, Czech Republic.
| |
Collapse
|
26
|
Cheng CN, Peng YF, Chen JY, Chen GY, Weng TI, Kuo CH. Development of the dried blood spot preparation protocol for comprehensive evaluation of the hematocrit effect. Anal Chim Acta 2023; 1239:340650. [PMID: 36628747 DOI: 10.1016/j.aca.2022.340650] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/17/2022] [Accepted: 11/20/2022] [Indexed: 11/23/2022]
Abstract
The application of dried blood spots (DBS) has gradually increased in different fields because of its several advantages. The hematocrit (Hct) effect is one major analytical challenge that may affect the quantification accuracy of DBS samples and should be investigated when developing a novel DBS method. However, previous studies usually overlooked the Hct-related distribution bias when evaluating the Hct effect. This study aimed to propose an effective DBS preparation protocol for the comprehensive evaluation of the Hct effect. We selected voriconazole and posaconazole as the demonstration drugs. Fifteen microliters of the blood samples were spotted on DBS cards followed by whole spot extraction. An LC-MS/MS method was first developed to quantify voriconazole and posaconazole in DBS samples. The quantitation accuracy for both azole drugs was within 93.5%-111.7%, except for the accuracies of posaconazole at the LLOQ, which were less than 119%. The intra- and interday precision were below 11%. The validated LC-MS/MS method was used to develop the DBS preparation protocol for evaluating the Hct effect. Three critical parameters that may affect the observed Hct effect were investigated. The results showed that using the solid-state of the target analytes, spiking the target analytes before preparing different Hct levels, and allowing enough equilibrium time after spiking target analytes can provide a more holistic Hct effect evaluation. The validity of the proposed new protocol was verified by conversion factors obtained from 71 paired DBS and plasma samples. Conversion factors calculated by clinical samples were consistent with the Hct effect evaluated by manually prepared DBS samples. This new DBS preparation protocol eliminated the common pitfalls in studying the Hct effect and offered a comprehensive strategy to assess the Hct effect for further DBS studies.
Collapse
Affiliation(s)
- Chih-Ning Cheng
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Fong Peng
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ju-Yu Chen
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan; Forensic and Clinical Toxicology Center, National Taiwan University Hospital, Taipei, Taiwan; Department and Graduate Institute of Forensic Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Guan-Yuan Chen
- Forensic and Clinical Toxicology Center, National Taiwan University Hospital, Taipei, Taiwan; Department and Graduate Institute of Forensic Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Te-I Weng
- Forensic and Clinical Toxicology Center, National Taiwan University Hospital, Taipei, Taiwan; Department and Graduate Institute of Forensic Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Emergency Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Ching-Hua Kuo
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan; The Metabolomics Core Laboratory, Centers of Genomic and Precision Medicine, National Taiwan University, Taiwan; Department of Pharmacy, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
27
|
Deprez S, Stove CP. Dried blood microsampling-assisted therapeutic drug monitoring of immunosuppressants: An overview. J Chromatogr A 2023; 1689:463724. [PMID: 36592482 DOI: 10.1016/j.chroma.2022.463724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
In the field of solid organ transplantation, chemotherapy and autoimmune disorders, treatment with immunosuppressant drugs requires intensive follow-up of the blood concentrations via therapeutic drug monitoring (TDM) because of their narrow therapeutic window and high intra- and inter-subject variability. This requires frequent hospital visits and venepunctures to allow the determination of these analytes, putting a high burden on the patients. In the context of patient-centric thinking, it is becoming increasingly established that at least part of these conventional blood draws could be replaced by microsampling, allowing home-sampling and increasing the quality of life for these patients. In this review we discuss the published methods - mostly using liquid chromatography coupled to tandem mass spectrometry - that have utilized (volumetric) dried blood samples as an alternative for conventional liquid whole blood for the TDM of immunosuppressant drugs. Furthermore, some pre-analytical considerations using DBS or volumetric alternatives are considered, as well as the applicability on clinical samples. The implementation status in clinical practice is also discussed, including (1) the cost-effectiveness of this approach compared to venepuncture, (2) the availability of multiplexed methods, (3) the status of harmonization and (4) patient perception. A brief perspective on potential future developments for the dried blood-based TDM of immunosuppressant drugs is provided, by considering how obstacles for the implementation of these strategies into clinical practice might be overcome.
Collapse
Affiliation(s)
- Sigrid Deprez
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Christophe P Stove
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| |
Collapse
|
28
|
Tegner M, Ott IR, Guterres FDS, de Barros VM, Linden R, Antunes MV. Determination of Ethyl Glucuronide and Ethyl Sulfate in Dried Blood Spots by UHPLC-MS-MS: Method Validation and Assessment of Ethanol Exposure in Postmortem Samples from Road Traffic Victims. J Anal Toxicol 2023; 46:e223-e231. [PMID: 36087096 DOI: 10.1093/jat/bkac074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 08/12/2022] [Accepted: 09/07/2022] [Indexed: 01/26/2023] Open
Abstract
The determination of ethyl glucuronide (EtG) and ethyl sulfate (EtS) in blood has been proposed in clinical and forensic applications to identify recent alcohol consumption. Also, there is a growing interest on the use of dried blood spots (DBS) in toxicological analysis, allowing increased stability of the analytes and simplifying sample transportation and storage. This study presents the development and validation of a method for quantifying EtG and EtS in DBS using ultra-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS-MS). The DBS samples were extracted with a mixture of methanol and acetonitrile (80:20 v/v) and analyzed using UHPLC-MS-MS with electrospray source in negative mode, after separation with a fluoro-phenyl stationary phase. Validation was performed according to the Scientific Working Group for Forensic Toxicology (SWGTOX) guidelines, with calibrations ranging from 0.10 to 18 µg/mL for EtG and 0.02 to 6 µg/mL for EtS. The analytes were stable in DBS stored from -20 to 45°C for 21 days. The method was successfully applied to capillary and venous DBS samples from 20 volunteers after ethanol ingestion and to DBS samples from 99 fatal victims of road traffic injuries. Capillary DBS was comparable to venous DBS and fresh whole blood in Passing-Bablok and Bland-Altman analysis, with correlation coefficients >0.91 (P < 0.001) for all comparisons. In postmortem application, the DBS EtG and EtS analysis indicated positive exposure to ethanol in 72.7% of the cases (EtG: 0.10-24.0 µg/mL and EtS: 0.03-4.11 µg/mL). The identification of ethanol consumption from blood alcohol concentrations (BACs) and EtG/EtS in DBS was in agreement in 98.6% of positive and 96.3% of negative cases (kappa 0.877, P < 0.001), indicating a high level of concordance with BAC in assessing alcohol use in postmortem samples.
Collapse
Affiliation(s)
- Mariane Tegner
- Postgraduate Program on Toxicology and Analytical Toxicology, Feevale University, ERS-239, 2755, Novo Hamburgo, RS 93525-075, Brazil.,Laboratory of Analytical Toxicology, Institute of Health Sciences, Feevale University, ERS-239, 2755, Novo Hamburgo, RS 93525-075, Brazil
| | - Isabela Ritter Ott
- Postgraduate Program on Toxicology and Analytical Toxicology, Feevale University, ERS-239, 2755, Novo Hamburgo, RS 93525-075, Brazil.,Laboratory of Analytical Toxicology, Institute of Health Sciences, Feevale University, ERS-239, 2755, Novo Hamburgo, RS 93525-075, Brazil
| | - Fernanda de Souza Guterres
- Laboratory of Analytical Toxicology, Institute of Health Sciences, Feevale University, ERS-239, 2755, Novo Hamburgo, RS 93525-075, Brazil
| | - Vinicius Monteagudo de Barros
- Laboratory of Analytical Toxicology, Institute of Health Sciences, Feevale University, ERS-239, 2755, Novo Hamburgo, RS 93525-075, Brazil
| | - Rafael Linden
- Postgraduate Program on Toxicology and Analytical Toxicology, Feevale University, ERS-239, 2755, Novo Hamburgo, RS 93525-075, Brazil.,Laboratory of Analytical Toxicology, Institute of Health Sciences, Feevale University, ERS-239, 2755, Novo Hamburgo, RS 93525-075, Brazil
| | - Marina Venzon Antunes
- Postgraduate Program on Toxicology and Analytical Toxicology, Feevale University, ERS-239, 2755, Novo Hamburgo, RS 93525-075, Brazil.,Laboratory of Analytical Toxicology, Institute of Health Sciences, Feevale University, ERS-239, 2755, Novo Hamburgo, RS 93525-075, Brazil
| |
Collapse
|
29
|
Quantification of cyanide metabolite 2-aminothiazoline-4-carboxylic acid in postmortem dried blood spot samples by liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1215:123580. [PMID: 36580818 DOI: 10.1016/j.jchromb.2022.123580] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/11/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
2-Aminothiazoline-4-carboxylic acid (ATCA), which is produced by the reaction of cyanide with endogenous cystine, is a promising biomarker of cyanide exposure because of its physicochemical stability. Analysis of more stable metabolite than the toxic gas itself is sometimes useful for postmortem diagnosis of gas poisoning. Here, we developed and validated an approach that uses liquid chromatography coupled with electrospray ionization-tandem mass spectrometry for quantifying ATCA in dried blood spot (DBS) samples. The linearity of the calibration curve was good in the concentration range of 20-1500 ng/mL. Our method allows for repeatable and the accurate quantification of ATCA, with intra- and inter assay coefficients of variation of below 7.8 % and below 9.3 %, respectively. In addition, the concentration of ATCA in DBSs remained stable for at least one month when stored at -20°C. Our results indicated that our analytical approach can be used to determine past exposure to higher doses of cyanide. In a comparison of ATCA concentrations in DBSs obtained from cadavers with various causes of death, significantly higher ATCA concentrations were observed in fire victims than in non-fire victims, confirming that fire victims inhale large amounts of cyanide gas. Thus, here we extended the possible uses of DBS for quantification of ATCA to forensic toxicological testing for cyanide poisoning.
Collapse
|
30
|
Jain A, Morris M, Lin EZ, Khan SA, Ma X, Deziel NC, Godri Pollitt KJ, Johnson CH. Hemoglobin normalization outperforms other methods for standardizing dried blood spot metabolomics: A comparative study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158716. [PMID: 36113793 DOI: 10.1016/j.scitotenv.2022.158716] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
Dried blood spot (DBS) metabolomics has numerous applications in newborn health screening, exposomics, and biomonitoring of environmental chemicals in pregnant women and the elderly. However, accurate metabolite quantification is hindered by several challenges: notably the "hematocrit effect" and unknown blood-spotting volumes. Different techniques have been employed to overcome these issues but there is no consensus on the optimal normalization method for DBS metabolomics, and in some cases no normalization is used. We compared five normalization methods (hemoglobin (Hb), specific gravity (SG), protein, spot weight, potassium (K+)) to unnormalized data, and assessed sex-related differences in the DBS metabolome in 21 adults (group 1, n = 10 males, n = 11 females). The performance of each normalization method was evaluated using multiple criteria: (a) reduction of intragroup variation (pooled median absolute deviation, pooled estimate of variance, pooled coefficient of variation, NMDS and principal component analysis), (b) effect on differential metabolic analysis (dendrogram, heatmap, p-value distribution), and (c) influence on classification accuracy (partial least squares discriminant analysis, sparse partial least squares discriminant analysis error rates, receiver operating curve, random forest out of bag error rate). Our results revealed that Hb normalization outperformed all the other methods based on the three criteria and 13 different parameters; the performance of Hb was further demonstrated in an independent group of DBS from 18 neonates (group 2, n = 9 males, n = 9 females). Furthermore, we showed that SG and Hb are correlated in adults (rs = 0.86, p < 0.001), and validated this relationship in an independent group of 18 neonates and infants (group 3) (rs = 0.84, p < 0.001). Using the equation, SG = -0.4814Hb2 + 2.44Hb + 0.005, SG can be used as a surrogate for normalization by Hb. This is the first comparative study to concurrently evaluate multiple normalization methods for DBS metabolomics which will serve as a robust methodological platform for future environmental epidemiological studies.
Collapse
Affiliation(s)
- Abhishek Jain
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, United States
| | - Montana Morris
- Yale University School of Medicine, New Haven, CT, United States
| | - Elizabeth Z Lin
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, United States
| | - Sajid A Khan
- Division of Surgical Oncology, Department of Surgery, Yale University School of Medicine, New Haven, CT, United States
| | - Xiaomei Ma
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT, United States
| | - Nicole C Deziel
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, United States; Yale Center for Perinatal, Pediatric, and Environmental Epidemiology, Yale School of Public Health, New Haven, CT, United States
| | - Krystal J Godri Pollitt
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, United States
| | - Caroline H Johnson
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, United States.
| |
Collapse
|
31
|
Petrov VI, Anikeev IS, Zayachnikova TE, Strygin AV, Dotsenko AM. ADAPTATION OF “DRIED BLOOD DROP” METHOD FOR THERAPEUTIC DRUG MONITORING. PHARMACY & PHARMACOLOGY 2022. [DOI: 10.19163/2307-9266-2022-10-4-331-342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
To control the concentration of drugs with a narrow therapeutic range, and to conduct effective and safe treatments, Therapeutic Drug Monitoring (TDM) is carried out. However, to date, the implementation of TDM is associated with various difficulties, for the solution of which more convenient and less invasive methods for collecting biological material are being developed.The aim of the study was to develop protocols for the collection and storage of “dried blood spot” (DBS) samples, as well as protocols for the validation methods for the quantitative determination of drugs in whole blood, using this technology for subsequent therapeutic drug monitoring.Materials and methods. To analyze a “dried blood spot” method in detail and to identify the characteristic features of taking and storing biosamples, a collection and analysis of scientific literature over the past 10 years has been conducted. The search for literature materials has been carried out from open and accessible sources located in the scientific libraries of institutions, in electronic databases and search engines: Elibrary, PubMed, Scopus, Cyberleninka, Medline, ScienceDirect, Web of Science, Google Scholar. Primary protocols for taking, storing and analyzing samples of the “dried blood drop” have been prepared. To obtain the adequate quality samples, the developed protocols have been tested and optimized at the stages of selection and storage. By high-performance liquid chromatography with mass spectrometric detection (HPLC-MS/MS), using a “dried blood drop” as a sample preparation, drug validation protocols have been optimized to ensure that acceptable validation characteristics were achieved, and subsequent Therapeutic Drug Monitoring was performed.Results. The features of the collection, storage and analysis of the “dried blood spot” samples have been revealed. Such characteristics as a spot volume effect, a hematocrit effect, a droplet uniformity, which can affect the results of a quantitative HPLC-MS/MS analysis, have been determined. For a successful use of the new methods, appropriate protocols for taking samples of “dried blood spot” from the finger of adult patients and from the heel of newborns, as well as protocols for validating methods for the quantitative determination of drugs from these samples, have been developed.Conclusion. The application of the “dried blood spot” method using newly developed protocols for taking, storing and analyzing biological samples, relieves the existing constraints in conducting TDM, and can later become a promising method for conducting preclinical and clinical studies.
Collapse
Affiliation(s)
- V. I. Petrov
- Volgograd State Medical University
Institute for Continuing Medical and Pharmaceutical Education, Volgograd State Medical University
| | - I. S. Anikeev
- Volgograd State Medical University
Institute for Continuing Medical and Pharmaceutical Education, Volgograd State Medical University
| | - T. E. Zayachnikova
- Institute for Continuing Medical and Pharmaceutical Education, Volgograd State Medical University
| | - A. V. Strygin
- Volgograd State Medical University
Scientific Center of Innovative Medicines with Pilot Production, Volgograd State Medical University
Volgograd Medical Research Center
| | - A. M. Dotsenko
- Volgograd State Medical University
Volgograd Medical Research Center
| |
Collapse
|
32
|
Boroujerdi R, Paul R, Abdelkader A. Rapid Detection of Amitriptyline in Dried Blood and Dried Saliva Samples with Surface-Enhanced Raman Spectroscopy. SENSORS (BASEL, SWITZERLAND) 2022; 22:8257. [PMID: 36365956 PMCID: PMC9657543 DOI: 10.3390/s22218257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
There is growing demand for rapid, nondestructive detection of trace-level bioactive molecules including medicines, toxins, biomolecules, and single cells, in a variety of disciplines. In recent years, surface-enhanced Raman scattering has been increasingly applied for such purposes, and this area of research is rapidly growing. Of particular interest is the detection of such compounds in dried saliva spots (DSS) and dried blood spots (DBS), often in medical scenarios, such as therapeutic drug monitoring (TDM) and disease diagnosis. Such samples are usually analyzed using hyphenated chromatography techniques, which are costly and time consuming. Here we present for the first time a surface-enhanced Raman spectroscopy protocol for the detection of the common antidepressant amitriptyline (AMT) on DBS and DSS using a test substrate modified with silver nanoparticles. The validated protocol is rapid and non-destructive, with a detection limit of 95 ppb, and linear range between 100 ppb and 1.75 ppm on the SERS substrate, which covers the therapeutic window of AMT in biological fluids.
Collapse
Affiliation(s)
- Ramin Boroujerdi
- Faculty of Science and Technology, Bournemouth University, Talbot Campus, Fern Barrow, Poole BH12 5BB, UK
| | | | | |
Collapse
|
33
|
Francke MI, van Domburg B, Bouarfa S, van de Velde D, Hellemons ME, Manintveld OC, Last-Koopmans S, Mulder MB, Hesselink DA, de Winter BCM. The clinical validation of a dried blood spot method for simultaneous measurement of cyclosporine A, tacrolimus, creatinine, and hematocrit. Clin Chim Acta 2022; 535:131-139. [PMID: 36007582 DOI: 10.1016/j.cca.2022.08.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/23/2022]
Affiliation(s)
- Marith I Francke
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, the Netherlands; Erasmus MC Transplant Institute, University Medical Center, Rotterdam, the Netherlands; Department of Hospital Pharmacy, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands.
| | - Bart van Domburg
- Department of Hospital Pharmacy, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Samah Bouarfa
- Department of Hospital Pharmacy, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; School of Pharmacy, Utrecht University, Utrecht, the Netherlands
| | - Daan van de Velde
- Department of Hospital Pharmacy, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Merel E Hellemons
- Erasmus MC Transplant Institute, University Medical Center, Rotterdam, the Netherlands; Department of Pulmonary Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Olivier C Manintveld
- Erasmus MC Transplant Institute, University Medical Center, Rotterdam, the Netherlands; Department of Cardiology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Suzanne Last-Koopmans
- Department of Hematology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Midas B Mulder
- Erasmus MC Transplant Institute, University Medical Center, Rotterdam, the Netherlands; Department of Hospital Pharmacy, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Dennis A Hesselink
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, the Netherlands; Erasmus MC Transplant Institute, University Medical Center, Rotterdam, the Netherlands
| | - Brenda C M de Winter
- Erasmus MC Transplant Institute, University Medical Center, Rotterdam, the Netherlands; Department of Hospital Pharmacy, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| |
Collapse
|
34
|
Groh R, Weiss LM, Börsch-Supan M, Börsch-Supan A. Effects of spot size on biomarker levels of field-collected dried blood spots: A new algorithm for exact dried blood spot size measurement. Am J Hum Biol 2022; 34:e23777. [PMID: 36001479 PMCID: PMC9606603 DOI: 10.1002/ajhb.23777] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 05/24/2022] [Accepted: 06/03/2022] [Indexed: 01/25/2023] Open
Abstract
OBJECTIVES The quality of blood values analyzed from survey-collected dried blood spot (DBS) samples is affected by fieldwork conditions, particularly spot size. We offer an image-based algorithm that accurately measures the area of field-collected DBS and we investigate the impact of spot size on the analyzed blood marker values. METHODS SHARE, a pan-European study, collected 24 000 DBS samples in 12 countries in its sixth wave. Our new algorithm uses photographs of the DBS samples to calculate the number of pixels of the blood-covered area to measure the spot sizes accurately. We ran regression models to examine the association of spot size and seven DBS analytes. We then compared the application of our new spot-size measures to common spot-size estimation. RESULTS Using automated spot-size measurement, we found that spot size has a significant effect on all markers. Smaller spots are associated with lower measured levels, except for HbA1c, for which we observe a negative effect. Our precisely measured spot sizes explain substantially more variance of DBS analytes compared to commonly used spot-size estimation. CONCLUSION The new algorithm accurately measures the size of field-collected DBS in an automated way. This methodology can be applied to surveys even with very large numbers of observations. The measured spot sizes improve the accuracy of conversion formulae that translate blood marker values derived from DBS into venous blood values. The significance of the spot-size effects on biomarkers in DBS should also incentivize the improvement of fieldwork training and monitoring.
Collapse
Affiliation(s)
- Rebecca Groh
- Technical University of Munich, Munich, Germany
- Munich Center for the Economics of Aging at the Max Planck Institute for Social Law and Social Policy, Munich, Germany
| | - Luzia M. Weiss
- Munich Center for the Economics of Aging at the Max Planck Institute for Social Law and Social Policy, Munich, Germany
| | | | - Axel Börsch-Supan
- Technical University of Munich, Munich, Germany
- Munich Center for the Economics of Aging at the Max Planck Institute for Social Law and Social Policy, Munich, Germany
- Survey of Health, Ageing and Retirement in Europe, Munich, Germany
- National Bureau of Economic Research, Cambridge, Massachusetts
| |
Collapse
|
35
|
Isberner N, Gesierich A, Balakirouchenane D, Schilling B, Aghai-Trommeschlaeger F, Zimmermann S, Kurlbaum M, Puszkiel A, Blanchet B, Klinker H, Scherf-Clavel O. Monitoring of Dabrafenib and Trametinib in Serum and Self-Sampled Capillary Blood in Patients with BRAFV600-Mutant Melanoma. Cancers (Basel) 2022; 14:4566. [PMID: 36230489 PMCID: PMC9558510 DOI: 10.3390/cancers14194566] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022] Open
Abstract
Patients treated with dabrafenib and trametinib for BRAFV600-mutant melanoma often experience dose reductions and treatment discontinuations. Current knowledge about the associations between patient characteristics, adverse events (AE), and exposure is inconclusive. Our study included 27 patients (including 18 patients for micro-sampling). Dabrafenib and trametinib exposure was prospectively analyzed, and the relevant patient characteristics and AE were reported. Their association with the observed concentrations and Bayesian estimates of the pharmacokinetic (PK) parameters of (hydroxy-)dabrafenib and trametinib were investigated. Further, the feasibility of at-home sampling of capillary blood was assessed. A population pharmacokinetic (popPK) model-informed conversion model was developed to derive serum PK parameters from self-sampled capillary blood. Results showed that (hydroxy-)dabrafenib or trametinib exposure was not associated with age, sex, body mass index, or toxicity. Co-medication with P-glycoprotein inducers was associated with significantly lower trough concentrations of trametinib (p = 0.027) but not (hydroxy-)dabrafenib. Self-sampling of capillary blood was feasible for use in routine care. Our conversion model was adequate for estimating serum PK parameters from micro-samples. Findings do not support a general recommendation for monitoring dabrafenib and trametinib but suggest that monitoring can facilitate making decisions about dosage adjustments. To this end, micro-sampling and the newly developed conversion model may be useful for estimating precise PK parameters.
Collapse
Affiliation(s)
- Nora Isberner
- Department of Internal Medicine II, University Hospital Würzburg, Oberdürrbacher Strasse 6, 97080 Würzburg, Germany
| | - Anja Gesierich
- Department of Dermatology, Venerology and Allergology, University Hospital Würzburg, Josef-Schneider-Strasse 2, 97080 Würzburg, Germany
| | - David Balakirouchenane
- Department of Pharmacokinetics and Pharmacochemistry, Cochin Hospital, AP-HP, Cancer Research for Personalized Medicine (CARPEM), 75014 Paris, France
- Faculty of Pharmacy, Paris Cité University, CiTCoM, 8038 CNRS, Inserm U1268, 75006 Paris, France
| | - Bastian Schilling
- Department of Dermatology, Venerology and Allergology, University Hospital Würzburg, Josef-Schneider-Strasse 2, 97080 Würzburg, Germany
| | | | - Sebastian Zimmermann
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Max Kurlbaum
- Department of Internal Medicine I, University Hospital Würzburg, Oberdürrbacher Strasse 6, 97080 Würzburg, Germany
- Core Unit Clinical Mass Spectrometry, University Hospital Würzburg, Oberdürrbacher Strasse 6, 97080 Würzburg, Germany
| | - Alicja Puszkiel
- Department of Pharmacokinetics and Pharmacochemistry, Cochin Hospital, AP-HP, Cancer Research for Personalized Medicine (CARPEM), 75014 Paris, France
- Faculty of Pharmacy, Paris Cité University, CiTCoM, 8038 CNRS, Inserm U1268, 75006 Paris, France
- Faculty of Pharmacy, Paris Cité University, Inserm UMR-S1144, 75006 Paris, France
| | - Benoit Blanchet
- Department of Pharmacokinetics and Pharmacochemistry, Cochin Hospital, AP-HP, Cancer Research for Personalized Medicine (CARPEM), 75014 Paris, France
- Faculty of Pharmacy, Paris Cité University, CiTCoM, 8038 CNRS, Inserm U1268, 75006 Paris, France
| | - Hartwig Klinker
- Department of Internal Medicine II, University Hospital Würzburg, Oberdürrbacher Strasse 6, 97080 Würzburg, Germany
| | - Oliver Scherf-Clavel
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
36
|
Bressán IG, Giménez MI, Llesuy SF. Clinical validation of a liquid chromatography-tandem mass spectrometry method for the quantification of calcineurin and mTOR inhibitors in dried matrix on paper discs. J Mass Spectrom Adv Clin Lab 2022; 25:12-18. [PMID: 35694178 PMCID: PMC9184858 DOI: 10.1016/j.jmsacl.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 06/02/2022] [Accepted: 06/02/2022] [Indexed: 11/30/2022] Open
Abstract
Introduction Advances in liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) have enabled the quantification of immunosuppressants using microsampling techniques. In this context, dried matrix on paper discs (DMPD) could be a useful alternative to conventional venipuncture. Although analytical validation is necessary to establish the suitability of method performance, it is not sufficient to proceed with its implementation into routine clinical practice. Also necessary is that equivalence between sampling methods be demonstrated in a clinical validation study. Objetives To clinically validate a LC-MS/MS method for the quantification of tacrolimus, sirolimus, everolimus and cyclosporin A using DMPD. Methods According to the recommendations of international guidelines, at least 40 whole blood (WB) and DMPD paired samples for each analyte were collected by skilled technicians and analyzed using LC-MS/MS. Results were evaluated in terms of statistical agreement and bias values at medical decision points. Results For all analytes, Passing-Bablok regression analysis revealed that confidence intervals (CIs) for slopes and intercepts included 1 and 0, respectively. It also showed that biases at medical decision points were not clinically relevant. No statistically significant differences between DMPD and WB were found using difference plots and agreement analysis. In this regard, CIs for bias estimators included 0, and more than 95% of the results fell within the limits of agreement. Conclusion The feasibility of the clinical application of simultaneous quantification of tacrolimus, sirolimus, everolimus and cyclosporin A in DMPD was demonstrated. Results showed that this microsampling technique is interchangeable with conventional WB sampling when specimens are collected by trained personnel.
Collapse
Affiliation(s)
- Ignacio Guillermo Bressán
- Laboratory of Mass Spectrometry, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
- Department of Chemistry, Instituto Universitario Escuela de Medicina del Hospital Italiano, Buenos Aires, Argentina
| | - María Isabel Giménez
- Laboratory of Mass Spectrometry, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
- Department of Clinical Biochemistry, Instituto Universitario Escuela de Medicina del Hospital Italiano, Buenos Aires, Argentina
| | - Susana Francisca Llesuy
- Department of Chemistry, Instituto Universitario Escuela de Medicina del Hospital Italiano, Buenos Aires, Argentina
| |
Collapse
|
37
|
Emoto C, Johnson TN. Cytochrome P450 enzymes in the pediatric population: Connecting knowledge on P450 expression with pediatric pharmacokinetics. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 95:365-391. [PMID: 35953161 DOI: 10.1016/bs.apha.2022.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cytochrome P450 enzymes play an important role in the pharmacokinetics, efficacy, and toxicity of drugs. Age-dependent changes in P450 enzyme expression have been studied based on several detection systems, as well as by deconvolution of in vivo pharmacokinetic data observed in pediatric populations. The age-dependent changes in P450 enzyme expression can be important determinants of drug disposition in childhood, in addition to the changes in body size and the other physiological parameters, and effects of pharmacogenetics and disease on organ functions. As a tool incorporating drug-specific and body-specific factors, physiologically-based pharmacokinetic (PBPK) models have become increasingly used to characterize and explore mechanistic insights into drug disposition. Thus, PBPK models can be a bridge between findings from basic science and utilization in predictive science. Pediatric PBPK models incorporate additional system specific information on developmental physiology and ontogeny and have been used to predict pharmacokinetic parameters from preterm neonates onwards. These models have been advocated by regulatory authorities in order to support pediatric clinical trials. The purpose of this chapter is to highlight accumulated knowledge and findings from basic research focusing on P450 enzymes, as well as the current status and future challenges of expanding the utilization of pediatric PBPK modeling.
Collapse
Affiliation(s)
- Chie Emoto
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Tokyo, Japan; Translational Research Division, Chugai Pharmaceutical Co., Ltd., Tokyo, Japan.
| | | |
Collapse
|
38
|
Parallel Reaction Monitoring Mode for Atenolol Quantification in Dried Plasma Spots by Liquid Chromatography Coupled with High-Resolution Mass Spectrometry. Processes (Basel) 2022. [DOI: 10.3390/pr10071240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this study, we reported a rapid, sensitive, robust, and validated method for atenolol quantification in dried plasma spots (DPS) by liquid chromatography with high-resolution mass spectrometry (LC-HRMS) using parallel reaction monitoring mode (PRM). Aliquots of 25 µL human plasma were placed onto Whatman 903 Cards and air-dried. Disks (3.2 mm internal diameter) were punched, and a 100 µL working internal standard solution was added to each sample and then incubated on a shaker for 15 min at 40 °C, followed by rapid centrifugation (10,000× g, 10 s). The supernatant was transferred into 300 µL vials for subsequent LC–HRMS analysis. After chromatographic separation, atenolol and the internal standard were quantified in positive-ion parallel reaction monitoring mode by detection of all target product ions at 10 ppm tolerances. The total time of the analysis was 5 min. The calibration curve was linear in the range of 5–1000 ng/mL with interday and intraday precision levels and biases of <14.4%, and recovery was 62.9–81.0%. The atenolol in DPS was stable for ≥30 days at 25 and 4 °C. This fully validated method is selective and suitable for atenolol quantitation in DPS using LC–HRMS.
Collapse
|
39
|
Verougstraete N, Stove V, Verstraete AG, Stove CP. Therapeutic Drug Monitoring of Tyrosine Kinase Inhibitors Using Dried Blood Microsamples. Front Oncol 2022; 12:821807. [PMID: 35392223 PMCID: PMC8980857 DOI: 10.3389/fonc.2022.821807] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/01/2022] [Indexed: 12/14/2022] Open
Abstract
Therapeutic drug monitoring (TDM) of tyrosine kinase inhibitors (TKIs) is not yet performed routinely in the standard care of oncology patients, although it offers a high potential to improve treatment outcome and minimize toxicity. TKIs are perfect candidates for TDM as they show a relatively small therapeutic window, a wide inter-patient variability in pharmacokinetics and a correlation between drug concentration and effect. Moreover, most of the available TKIs are susceptible to various drug-drug interactions and medication adherence can be checked by performing TDM. Plasma, obtained via traditional venous blood sampling, is the standard matrix for TDM of TKIs. However, the use of plasma poses some challenges related to sampling and stability. The use of dried blood microsamples can overcome these limitations. Collection of samples via finger-prick is minimally invasive and considered convenient and simple, enabling sampling by the patients themselves in their home-setting. The collection of small sample volumes is especially relevant for use in pediatric populations or in pharmacokinetic studies. Additionally, working with dried matrices improves compound stability, resulting in convenient and cost-effective transport and storage of the samples. In this review we focus on the different dried blood microsample-based methods that were used for the quantification of TKIs. Despite the many advantages associated with dried blood microsampling, quantitative analyses are also associated with some specific difficulties. Different methodological aspects of microsampling-based methods are discussed and applied to TDM of TKIs. We focus on sample preparation, analytics, internal standards, dilution of samples, external quality controls, dried blood spot specific validation parameters, stability and blood-to-plasma conversion methods. The various impacts of deviating hematocrit values on quantitative results are discussed in a separate section as this is a key issue and undoubtedly the most widely discussed issue in the analysis of dried blood microsamples. Lastly, the applicability and feasibility of performing TDM using microsamples in a real-life home-sampling context is discussed.
Collapse
Affiliation(s)
- Nick Verougstraete
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium.,Department of Laboratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Veronique Stove
- Department of Laboratory Medicine, Ghent University Hospital, Ghent, Belgium.,Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Alain G Verstraete
- Department of Laboratory Medicine, Ghent University Hospital, Ghent, Belgium.,Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Christophe P Stove
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
40
|
The use of freeze-dried blood samples affects the results of a dried blood spot analysis. Clin Biochem 2022; 104:70-73. [PMID: 35346637 DOI: 10.1016/j.clinbiochem.2022.03.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 03/15/2022] [Accepted: 03/23/2022] [Indexed: 11/23/2022]
Abstract
Dried blood spot (DBS) microsampling has several advantages over venous blood sampling. In a clinical validation study of tacrolimus microsampling it was noted that tacrolimus DBS concentrations ([Tac]DBS) were systematically higher than tacrolimus whole-blood concentrations ([Tac]WB). This observation was explored by investigating the effect of using freeze-dried standards (STFD) for [Tac]DBS measurement. For all experiments, both non-frozen whole-blood samples and whole-blood samples that were frozen and thawed (to simulate freeze-drying) of 10 patients were analyzed. Multiple tacrolimus concentrations were measured: 1) [Tac]WB, 2) [Tac]DBS, where 15 μL was volumetrically applied to a pre-punched DBS disk, and 3) [Tac]DBS, where 50 μL was applied before a 6 mm DBS disk was punched from the card. All tacrolimus concentrations were determined independently using STFD and standards made of non-frozen blood spiked with tacrolimus (STSP). In both non-frozen and frozen and thawed whole-blood samples, [Tac]WB measured with STFD appeared similar to [Tac]WB measured with STSP (Ratios 1.061 and 1.077, respectively). In non-frozen samples, the median ratio between the [Tac]DBS measured with STFD, and [Tac]WB measured with STFD (the reference method), was 1.396. When blood was volumetrically applied to the DBS card (to eliminate the effect of the spreading over the filter paper), this ratio was 1.009. In conclusion, when using DBS microsampling to quantify concentrations of analytes, one should be aware that using the commercially available freeze-dried blood samples for the preparation of standards may affect the spreading of blood on the filter-paper, leading to a systematic error in the results.
Collapse
|
41
|
Stachanow V, Neumann U, Blankenstein O, Bindellini D, Melin J, Ross R, Whitaker MJ, Huisinga W, Michelet R, Kloft C. Exploring Dried Blood Spot Cortisol Concentrations as an Alternative for Monitoring Pediatric Adrenal Insufficiency Patients: A Model-Based Analysis. Front Pharmacol 2022; 13:819590. [PMID: 35370666 PMCID: PMC8968419 DOI: 10.3389/fphar.2022.819590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 01/26/2022] [Indexed: 11/13/2022] Open
Abstract
Congenital adrenal hyperplasia (CAH) is the most common form of adrenal insufficiency in childhood; it requires cortisol replacement therapy with hydrocortisone (HC, synthetic cortisol) from birth and therapy monitoring for successful treatment. In children, the less invasive dried blood spot (DBS) sampling with whole blood including red blood cells (RBCs) provides an advantageous alternative to plasma sampling. Potential differences in binding/association processes between plasma and DBS however need to be considered to correctly interpret DBS measurements for therapy monitoring. While capillary DBS samples would be used in clinical practice, venous cortisol DBS samples from children with adrenal insufficiency were analyzed due to data availability and to directly compare and thus understand potential differences between venous DBS and plasma. A previously published HC plasma pharmacokinetic (PK) model was extended by leveraging these DBS concentrations. In addition to previously characterized binding of cortisol to albumin (linear process) and corticosteroid-binding globulin (CBG; saturable process), DBS data enabled the characterization of a linear cortisol association with RBCs, and thereby providing a quantitative link between DBS and plasma cortisol concentrations. The ratio between the observed cortisol plasma and DBS concentrations varies highly from 2 to 8. Deterministic simulations of the different cortisol binding/association fractions demonstrated that with higher blood cortisol concentrations, saturation of cortisol binding to CBG was observed, leading to an increase in all other cortisol binding fractions. In conclusion, a mathematical PK model was developed which links DBS measurements to plasma exposure and thus allows for quantitative interpretation of measurements of DBS samples.
Collapse
Affiliation(s)
- Viktoria Stachanow
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Berlin, Germany
- Graduate Research Training Program PharMetrX, Berlin, Germany
| | - Uta Neumann
- Pediatric Endocrinology, Charité-Universitätsmedizin, Berlin, Germany
| | - Oliver Blankenstein
- Pediatric Endocrinology, Charité-Universitätsmedizin, Berlin, Germany
- Labor Berlin, Charité Vivantes GmbH, Berlin, Germany
| | - Davide Bindellini
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Berlin, Germany
- Graduate Research Training Program PharMetrX, Berlin, Germany
| | - Johanna Melin
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Berlin, Germany
- Graduate Research Training Program PharMetrX, Berlin, Germany
| | | | | | | | - Robin Michelet
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Berlin, Germany
| | - Charlotte Kloft
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Berlin, Germany
| |
Collapse
|
42
|
Baillargeon K, Brooks JC, Miljanic PR, Mace CR. Patterned Dried Blood Spot Cards for the Improved Sampling of Whole Blood. ACS MEASUREMENT SCIENCE AU 2022; 2:31-38. [PMID: 35211698 PMCID: PMC8855418 DOI: 10.1021/acsmeasuresciau.1c00031] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Indexed: 06/12/2023]
Abstract
Dried blood spot (DBS) cards perform many functions for sampling blood that is intended for subsequent laboratory analysis, which include: (i) obviating the need for a phlebotomist by using fingersticks, (ii) enhancing the stability of analytes at ambient or elevated environmental conditions, and (iii) simplifying the transportation of samples without a cold chain. However, a significant drawback of standard DBS cards is the potential for sampling bias due to unrestricted filling caused by the hematocrit of blood, which often limits quantitative or reproducible measurements. Alternative microsampling technologies have minimized or eliminated this bias by restricting blood distribution, but these approaches deviate from clinical protocols and present a barrier to broad adoption. Herein, we describe a patterned dried blood spot (pDBS) card that uses wax barriers to control the flow and restrict the distribution of blood to provide enhanced sampling. These patterned cards reproducibly fill four replicate extraction zones independent of the hematocrit effect. We demonstrate a 3-fold improvement in accuracy for the quantitation of hemoglobin using pDBS cards compared to unpatterned cards. Patterned cards also facilitate the near quantitative recovery (ca. 95%) of sodium with no evidence of a statistically significant difference between dried and liquid blood samples. Similarly, the recovery of select amino acids was conserved in comparison to a recent report with improved intercard precision. We anticipate that this approach presents a viable method for preparing and storing samples of blood in limited resource settings while maintaining current clinical protocols for processing and analyzing dried blood spots.
Collapse
|
43
|
Dried matrix spots: an evolving trend in the toxicological field. Forensic Sci Med Pathol 2022; 18:86-102. [PMID: 35171452 DOI: 10.1007/s12024-021-00434-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2021] [Indexed: 10/19/2022]
Abstract
Dried matrix spot (DMS) is a sampling technique, primarily used to analyze blood to diagnose metabolic diseases in newborns. As this technique has several advantages, DMS has started to be employed for other purposes using other biological matrices and increasingly in toxicology over the last decade. The aim of this work was to review the analytical methods using DMS which can be applied to drugs of abuse and which have been published since 2010. Three different databases were searched, using dried, spots, and drugs of abuse as the descriptors and using a snowball search. After applying the exclusion criteria, 39 papers remained. The most common publications were related to the use of blood, which corresponded to 77% of the papers, followed by urine and oral fluid, which corresponded to 13 and 10% of the papers, respectively. The selected studies covered different illicit drugs, sample sizes of 5 to 250 µL and spot sizes ranging from 3 to 18 mm in diameter. This review also examined the extraction techniques and the methods employed to analyze various biological matrices and drugs of abuse, mostly by liquid-extraction and liquid chromatography-tandem mass spectrometry. The benefits of DMS include: a simple sample pretreatment, better stability than liquid matrices, a simple extraction procedure, lower costs, and environmental benefits. DMS appears to be a promising technique in the field of toxicology and provides new perspectives for use in forensic laboratories.
Collapse
|
44
|
Abstract
Detecting warfarin levels in the blood is of critical importance in anticoagulant therapy because it is imperative that the concentration of the drug is maintained within a specific range. In this paper, we present a proof-of-concept of a novel sensing device based on ion-selective electrode (ISE) technology for the direct detection of warfarin in blood samples without any sample pretreatment. We used tetradodecylammonium chloride (TDDA) as an ion-exchanger to fabricate an ion-selective membrane. The ISE we developed showed high sensitivity, with a limit of detection (LOD) of 1.25 × 10−7 M and 1.4 × 10−5 M for detecting warfarin in buffer and blood, respectively. The sensor also exhibited promising selectivity in identifying the presence of various ions including chloride and salicylate, the most abundant ions in blood with a calibration slope of 58.8 mV/dec. We envision combining the ISE with a microfluidic system and a simple potentiometer to produce a sensitive, selective, and portable point-of-care testing device for monitoring the level of warfarin in patients’ blood during treatment.
Collapse
|
45
|
Anibaletto Dos Santos AL, Cezimbra da Silva AC, Feltraco Lizot LDL, Schneider A, Meireles YF, Hahn RZ, Pagnussat LR, Nonnenmacher JL, Hahn SR, Linden R. Development and validation of an assay for the measurement of gentamicin concentrations in dried blood spots using UHPLC-MS/MS. J Pharm Biomed Anal 2022; 208:114448. [PMID: 34740086 DOI: 10.1016/j.jpba.2021.114448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 01/06/2023]
Abstract
Gentamicin sulfate (GEN) is an aminoglycoside antibiotic with a narrow therapeutic range of plasma concentrations. The collection of venous blood represents a significant burden for patients, especially in neonatology. Dried blood spots (DBS) obtained from capillary blood can be an alternative for drug measurements in this particular population. This study aimed to develop and validate an assay for the quantification of GEN in DBS using UHPLC-MS/MS. Total GEN concentrations were obtained by adding the individual concentrations of the GEN forms C1, C1a, and C2. The assay used a DBS disk containing approximately 17 μL of blood for GEN quantitation in the range of 0.1-40 mg L-1. Measurement accuracy for total GEN was in the range of 102.6-108.6%, inter-assay precision was 11.3-13.1% and intra-assay precision was 9.1-12.8.% GEN was stable for 21 days at - 20 and 8 °C, but only for 24 h at room temperature. Blood Hct affected the accuracy within acceptable limits (93.8-95% at Hct% of 30, 104.3-113% at Hct% of 50). Blood spotted volume did not affect GEN measurement accuracy. Concentrations of GEN in DBS obtained after heel pricks were correlated to plasma levels in a small cohort of neonatal patients. However, percentual differences between estimated plasma concentrations and actual plasma levels presented values between - 64-35.3% (average difference of - 1.9%). The use of DBS for the measurement of GEN concentrations can increase access to TDM of this antibiotic due to the ease of sample collection and the facilitated specimen transportation logistics when testing is not available onsite.
Collapse
Affiliation(s)
- Ana Laura Anibaletto Dos Santos
- Analytical Toxicology Laboratory, Universidade Feevale, Novo Hamburgo, RS, Brazil; Graduate Program on Toxicology and Analytical Toxicology, Universidade Feevale, Brazil
| | - Anne Caroline Cezimbra da Silva
- Analytical Toxicology Laboratory, Universidade Feevale, Novo Hamburgo, RS, Brazil; Graduate Program on Toxicology and Analytical Toxicology, Universidade Feevale, Brazil
| | - Lilian de Lima Feltraco Lizot
- Analytical Toxicology Laboratory, Universidade Feevale, Novo Hamburgo, RS, Brazil; Graduate Program on Toxicology and Analytical Toxicology, Universidade Feevale, Brazil
| | - Anelise Schneider
- Graduate Program on Toxicology and Analytical Toxicology, Universidade Feevale, Brazil
| | | | - Roberta Zilles Hahn
- Analytical Toxicology Laboratory, Universidade Feevale, Novo Hamburgo, RS, Brazil
| | | | | | | | - Rafael Linden
- Analytical Toxicology Laboratory, Universidade Feevale, Novo Hamburgo, RS, Brazil; Graduate Program on Toxicology and Analytical Toxicology, Universidade Feevale, Brazil.
| |
Collapse
|
46
|
Chiu HH, Tsai YJ, Lo C, Liao HW, Lin CH, Tang SC, Kuo CH. Development of an LC-MS/MS method to simultaneously quantify therapeutic mAbs and estimate hematocrit values in dried blood spot samples. Anal Chim Acta 2022; 1189:339231. [PMID: 34815034 DOI: 10.1016/j.aca.2021.339231] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/25/2021] [Accepted: 10/28/2021] [Indexed: 01/14/2023]
Abstract
Recently, monoclonal antibody (mAb) therapy has gained increasing attention in the medical field due to its high specificity. Dried blood spots (DBSs) have been used in various clinical fields due to their unique characteristics, such as easy transportation, low invasiveness, and home sampling. However, hematocrit (HCT)-associated issues may lead to inaccurate quantification; moreover, the HCT value is required for converting the drug concentration from DBS to plasma. To simultaneously measure HCT levels and quantify mAb concentrations in DBS samples, this study used volumetrically applied 15 μL DBS, and combined protein G purification and ethanol precipitation approaches as the sample preparation method. Sixty-two clinical samples were used to investigate the HCT estimation ability by using hemoglobin (Hb) peptides. Four mAbs, bevacizumab, trastuzumab, nivolumab and tocilizumab, were selected to demonstrate our method, and pembrolizumab was used as the internal standard. The optimized method could measure four mAbs and Hb peptides simultaneously within 11 min. Moreover, a correlation study revealed that the correlation coefficient for the Hb peptides and the HCT value was larger than 0.9. The HCT estimation results revealed that for over 90% of the real DBS samples the HCT could be obtained within ±20% estimation error acceptance criteria. The method was validated in terms of accuracy and precision for the four mAbs. The developed method was further applied to simultaneously quantify mAb concentrations and estimate HCT values in six patient DBS samples to demonstrate its clinical applicability. It is believed that this newly developed method could facilitate various clinical studies and provide benefits for mAb therapies in clinical fields.
Collapse
Affiliation(s)
- Huai-Hsuan Chiu
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan; The Metabolomics Core Laboratory, Center of Genomic Medicine, National Taiwan University, Taipei, Taiwan
| | - Yun-Jung Tsai
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan; The Metabolomics Core Laboratory, Center of Genomic Medicine, National Taiwan University, Taipei, Taiwan
| | - Chiao Lo
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Hsiao-Wei Liao
- Department of Pharmacy, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ching-Hung Lin
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan; Department of Medical Oncology, National Taiwan University Cancer Center Hospital, Taipei, Taiwan
| | - Sung-Chun Tang
- Stroke Center and Department of Neurology, National Taiwan University Hospital, Taiwan
| | - Ching-Hua Kuo
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan; The Metabolomics Core Laboratory, Center of Genomic Medicine, National Taiwan University, Taipei, Taiwan; Department of Pharmacy, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
47
|
Geers LM, Cohen D, Wehkamp LM, van Wattum HJ, Kosterink JGW, Loonen AJM, Touw DJ. Population pharmacokinetic model and limited sampling strategy for clozapine using plasma and dried blood spot samples. Ther Adv Psychopharmacol 2022; 12:20451253211065857. [PMID: 35518123 PMCID: PMC9066631 DOI: 10.1177/20451253211065857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 11/23/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND To improve efficacy, therapeutic drug monitoring is often used in clozapine therapy. Trough level monitoring is regular, but trough levels provide limited information about the pharmacokinetics of clozapine and exposure in time. The area under the concentration time curve (AUC) is generally valued as better marker of drug exposure in time but calculating AUC needs multiple sampling. An alternative approach is a limited sampling scheme in combination with a population pharmacokinetic model meant for Bayesian forecasting. Furthermore, multiple venepunctions can be a burden for the patient, whereas collecting samples by means of dried blood spot (DBS) sampling can facilitate AUC-monitoring, making it more patient friendly. OBJECTIVE Development of a population pharmacokinetic model and limited sampling strategy for estimating AUC0-12h (a twice-daily dosage regimen) and AUC0-24h (a once-daily dosage regimen) of clozapine, using a combination of results from venepunctions and DBS sampling. METHOD From 15 schizophrenia patients, plasma and DBS samples were obtained before administration and 2, 4, 6, and 8 h after clozapine intake. MwPharm® pharmacokinetic software was used to parameterize a population pharmacokinetic model and calculate limited sampling schemes. RESULTS A three-point sampling strategy with samples at 2, 6, and 8 h after clozapine intake gave the best estimation of the clozapine AUC0-12h and at 4, 10, and 11 h for the AUC0-24h. For clinical practice, however, a two-point sampling strategy with sampling points at 2 and 6 h was sufficient to estimate AUC0-12h and at 4 and 11 h for AUC0-24h. CONCLUSION A pharmacokinetic model with a two-time point limited sampling strategy meant for Bayesian forecasting using DBS sampling gives a better prediction of the clozapine exposure in time, expressed as AUC, compared to trough level monitoring. This limited sampling strategy might therefore provide a more accurate prediction of effectiveness and occurrence of side effects compared to trough level monitoring. The use of DBS samples also makes the collection of clozapine samples easier and wider applicable.
Collapse
Affiliation(s)
- Lisanne M Geers
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Dan Cohen
- FACT-Team Heerhugowaard, Department of Community Psychiatry, Mental Health Organization North-Holland North, Heerhugowaard, The Netherlands
| | - Laura M Wehkamp
- Department of Clinical Pharmacy, Medisch Spectrum Twente, Enschede, The Netherlands
| | | | - Jos G W Kosterink
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Anton J M Loonen
- Pharmacotherapy, -Epidemiology & -Economics, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Daan J Touw
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| |
Collapse
|
48
|
Lappas NT, Lappas CM. Sample Handling. Forensic Toxicol 2022. [DOI: 10.1016/b978-0-12-819286-3.00010-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
49
|
Frey BS, Damon DE, Allen DM, Baker J, Asamoah S, Badu-Tawiah AK. Protective mechanism of dried blood spheroids: stabilization of labile analytes in whole blood, plasma, and serum. Analyst 2021; 146:6780-6787. [PMID: 34636822 PMCID: PMC8887831 DOI: 10.1039/d1an01132d] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three-dimensional (3D) dried blood spheroids form when whole blood is deposited onto hydrophobic paper and allowed to dry in ambient air. The adsorbed 3D dried blood spheroid present at the surface of the hydrophobic paper is observed to offer enhanced stability for labile analytes that would otherwise degrade if stored in the traditional two-dimensional (2D) dried blood spot method. The protective mechanism for the dried blood spheroid microsampling platform was studied using scanning electron microscopy (SEM), which revealed the presence of a passivation thin film at the surface of the spheroid that serves to stabilize the interior of the spheroid against environmental stressors. Through time-course experiments based on sequential SEM analyses, we discovered that the surface protective thin film forms through the self-assembly of red blood cells following the evaporation of water from the blood sample. The bridging mechanism of red blood cell aggregation is evident in our experiments, which leads to the distinct rouleau conformation of stacked red blood cells in less than 60 min after creating the blood spheroid. The stack of self-assembled red blood cells at the exterior of the spheroid subsequently lyse to afford the surface protective layer detected to be approximately 30 μm in thickness after three weeks of storage in ambient air. We applied this mechanistic insight to plasma and serum to enhance stability when stored under ambient conditions. In addition to physical characterization of these thin biofilms, we also used paper spray (PS) mass spectrometry (MS) to examine chemical changes that occur in the stored biofluid. For example, we present stability data for cocaine spiked in whole blood, plasma, and serum when stored under ambient conditions on hydrophilic and hydrophobic paper substrates.
Collapse
Affiliation(s)
- Benjamin S Frey
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.
| | - Deidre E Damon
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.
| | - Danyelle M Allen
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.
| | - Jill Baker
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.
| | - Samuel Asamoah
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.
| | - Abraham K Badu-Tawiah
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
50
|
Peck Palmer OM, Dasgupta A. Review of the Preanalytical Errors That Impact Therapeutic Drug Monitoring. Ther Drug Monit 2021; 43:595-608. [PMID: 33928931 DOI: 10.1097/ftd.0000000000000901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/06/2021] [Indexed: 11/26/2022]
Abstract
PURPOSE Preanalytical errors comprise the majority of testing errors experienced by clinical laboratories and significantly impact the accuracy of therapeutic drug monitoring (TDM). METHODS Specific preanalytical factors in sample timing, collection, transport, processing, and storage that lead to errors in TDM were reviewed. We performed a literature search using several scientific databases including PubMed, ScienceDirect, Scopus, Web of Science, and ResearchGate for human studies published in the English language from January 1980 to February 2021, reporting on TDM and the preanalytical phase. RESULTS Blood collection errors (ie, wrong anticoagulant/clot activator used, via an intravenous line, incorrect time after dosing) delay testing, cause inaccurate results, and adversely impact patient care. Blood collected in lithium heparin tubes instead of heparin sodium tubes produce supertoxic lithium concentrations, which can compromise care. Specimens collected in serum separator gel tubes cause falsely decreased concentrations due to passive absorption into the gel when samples are not processed and analyzed quickly. Dried blood spots are popular for TDM as they are minimally invasive, allowing for self-sampling and direct shipping to a clinical laboratory using regular mail. However, blood collection techniques, such as trauma to the collection site, filter paper fragility, and hematocrit (Hct) bias, can adversely affect the accuracy of the results. Volumetric absorptive microsampling is a potential alternative to dried blood spot that offers fast, volume-fixed sampling, low pain tolerance, and is not susceptible to Hct concentrations. CONCLUSIONS The identification of preanalytical factors that may negatively impact TDM is critical. Developing workflows that can standardize TDM practices, align appropriate timing and blood collection techniques, and specimen processing will eliminate errors.
Collapse
Affiliation(s)
- Octavia M Peck Palmer
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; and
| | - Amitava Dasgupta
- Department of Pathology and Laboratory Medicine, University of Texas McGovern Medical School at Houston, Texas
| |
Collapse
|