1
|
Kim AY, Yehia L, Eng C. Genomic diversity in functionally relevant genes modifies neurodevelopmental versus neoplastic risks in individuals with germline PTEN variants. NPJ Genom Med 2025; 10:43. [PMID: 40394016 PMCID: PMC12092801 DOI: 10.1038/s41525-025-00495-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 04/24/2025] [Indexed: 05/22/2025] Open
Abstract
Individuals with germline PTEN variants (PHTS) have increased risks of the seemingly disparate phenotypes of cancer and neurodevelopmental disorders (NDD), including autism spectrum disorder (ASD). Etiology of the phenotypic variability remains elusive. Here, we hypothesized that decreased genomic diversity, manifested by increased homozygosity, may be one etiology. Comprehensive analyses of 376 PHTS patients of European ancestry revealed significant enrichment of homozygous common variants in genes involved in inflammatory processes in the PHTS-NDD group and in genes involved in differentiation and chromatin structure regulation in the PHTS-ASD group. Pathway analysis revealed pathways germane to NDD/ASD, including neuroinflammation and synaptogenesis. Collapsing analysis of the homozygous variants identified suggestive modifier NDD/ASD genes. In contrast, we found enrichment of homozygous ultra-rare variants in genes modulating cell death in the PHTS-cancer group. Finally, homozygosity burden as a predictor of ASD versus cancer outcomes in our validated prediction model for NDD/ASD performed favorably.
Collapse
Affiliation(s)
- Adriel Y Kim
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA.
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.
| | - Lamis Yehia
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Charis Eng
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
- Center for Personalized Genetic Healthcare, Medical Specialties Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
- Germline High Risk Cancer Focus Group, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA
| |
Collapse
|
2
|
Kagan T, Gabay M, Meenakshisundaram A, Levi Y, Eid S, Malchenko N, Maman M, Nitzan A, Ravotto L, Zaidel-Bar R, Eickholt BJ, Gal M, Laviv T. Genetically encoded biosensor for fluorescence lifetime imaging of PTEN dynamics in the intact brain. Nat Methods 2025; 22:764-777. [PMID: 39979596 PMCID: PMC11978514 DOI: 10.1038/s41592-025-02610-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 01/21/2025] [Indexed: 02/22/2025]
Abstract
The phosphatase and tensin homolog (PTEN) is a vital protein that maintains an inhibitory brake for cellular proliferation and growth. Accordingly, PTEN loss-of-function mutations are associated with a broad spectrum of human pathologies. Despite its importance, there is currently no method to directly monitor PTEN activity with cellular specificity within intact biological systems. Here we describe the development of a FRET-based biosensor using PTEN conformation as a proxy for the PTEN activity state, for two-photon fluorescence lifetime imaging microscopy. We identify a point mutation that allows the monitoring of PTEN activity with minimal interference to endogenous PTEN signaling. We demonstrate imaging of PTEN activity in cell lines, intact Caenorhabditis elegans and in the mouse brain. Finally, we develop a red-shifted sensor variant that allows us to identify cell-type-specific PTEN activity in excitatory and inhibitory cortical cells. In summary, our approach enables dynamic imaging of PTEN activity in vivo with unprecedented spatial and temporal resolution.
Collapse
Affiliation(s)
- Tomer Kagan
- Department of Physiology and Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Matan Gabay
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Aasha Meenakshisundaram
- Institute of Biochemistry and Molecular Biology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Yossi Levi
- Department of Physiology and Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Sharbel Eid
- Department of Physiology and Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Nikol Malchenko
- Department of Physiology and Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Maya Maman
- Department of Physiology and Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Anat Nitzan
- Department of Cell and Developmental Biology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Luca Ravotto
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Ronen Zaidel-Bar
- Department of Cell and Developmental Biology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Britta Johanna Eickholt
- Institute of Biochemistry and Molecular Biology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Maayan Gal
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Tal Laviv
- Department of Physiology and Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel.
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
3
|
DeSpenza T, Kiziltug E, Allington G, Barson DG, McGee S, O'Connor D, Robert SM, Mekbib KY, Nanda P, Greenberg ABW, Singh A, Duy PQ, Mandino F, Zhao S, Lynn A, Reeves BC, Marlier A, Getz SA, Nelson-Williams C, Shimelis H, Walsh LK, Zhang J, Wang W, Prina ML, OuYang A, Abdulkareem AF, Smith H, Shohfi J, Mehta NH, Dennis E, Reduron LR, Hong J, Butler W, Carter BS, Deniz E, Lake EMR, Constable RT, Sahin M, Srivastava S, Winden K, Hoffman EJ, Carlson M, Gunel M, Lifton RP, Alper SL, Jin SC, Crair MC, Moreno-De-Luca A, Luikart BW, Kahle KT. PTEN mutations impair CSF dynamics and cortical networks by dysregulating periventricular neural progenitors. Nat Neurosci 2025; 28:536-557. [PMID: 39994410 PMCID: PMC12038823 DOI: 10.1038/s41593-024-01865-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 12/05/2024] [Indexed: 02/26/2025]
Abstract
Enlargement of the cerebrospinal fluid (CSF)-filled brain ventricles (ventriculomegaly) is a defining feature of congenital hydrocephalus (CH) and an under-recognized concomitant of autism. Here, we show that de novo mutations in the autism risk gene PTEN are among the most frequent monogenic causes of CH and primary ventriculomegaly. Mouse Pten-mutant ventriculomegaly results from aqueductal stenosis due to hyperproliferation of periventricular Nkx2.1+ neural progenitor cells (NPCs) and increased CSF production from hyperplastic choroid plexus. Pten-mutant ventriculomegalic cortices exhibit network dysfunction from increased activity of Nkx2.1+ NPC-derived inhibitory interneurons. Raptor deletion or postnatal everolimus treatment corrects ventriculomegaly, rescues cortical deficits and increases survival by antagonizing mTORC1-dependent Nkx2.1+ NPC pathology. Thus, PTEN mutations concurrently alter CSF dynamics and cortical networks by dysregulating Nkx2.1+ NPCs. These results implicate a nonsurgical treatment for CH, demonstrate a genetic association of ventriculomegaly and ASD, and help explain neurodevelopmental phenotypes refractory to CSF shunting in select individuals with CH.
Collapse
Affiliation(s)
- Tyrone DeSpenza
- Interdepartmental Neuroscience Program, Yale School of Medicine, Yale University, New Haven, CT, USA
- Medical Scientist Training Program, Yale School of Medicine, Yale University, New Haven, CT, USA
- Department of Neurosurgery, Yale School of Medicine, Yale University, New Haven, CT, USA
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
| | - Emre Kiziltug
- Department of Neurosurgery, Yale School of Medicine, Yale University, New Haven, CT, USA
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | - Garrett Allington
- Department of Pathology, Yale School of Medicine, Yale University, New Haven, CT, USA
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Neurology, Columbia University Vagelos College of Physicians and Surgeons and New York Presbyterian Hospital, New York, NY, USA
| | - Daniel G Barson
- Interdepartmental Neuroscience Program, Yale School of Medicine, Yale University, New Haven, CT, USA
- Medical Scientist Training Program, Yale School of Medicine, Yale University, New Haven, CT, USA
| | | | - David O'Connor
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Stephanie M Robert
- Department of Neurosurgery, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Kedous Y Mekbib
- Department of Neurosurgery, Yale School of Medicine, Yale University, New Haven, CT, USA
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Pranav Nanda
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ana B W Greenberg
- Department of Neurosurgery, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Amrita Singh
- Department of Neurosurgery, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Phan Q Duy
- Interdepartmental Neuroscience Program, Yale School of Medicine, Yale University, New Haven, CT, USA
- Medical Scientist Training Program, Yale School of Medicine, Yale University, New Haven, CT, USA
- Department of Neurosurgery, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Francesca Mandino
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Shujuan Zhao
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Anna Lynn
- Medical Scientist Training Program, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Benjamin C Reeves
- Department of Neurosurgery, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Arnaud Marlier
- Department of Neurosurgery, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Stephanie A Getz
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Carol Nelson-Williams
- Department of Neurosurgery, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Hermela Shimelis
- Autism & Developmental Medicine Institute, Geisinger, Lewisburg, PA, USA
| | - Lauren K Walsh
- Autism & Developmental Medicine Institute, Geisinger, Lewisburg, PA, USA
| | - Junhui Zhang
- Department of Neurosurgery, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Wei Wang
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Mackenzi L Prina
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- Department of Neurobiology, UAB Heersink School of Medicine, Birmingham, AL, USA
| | - Annaliese OuYang
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Asan F Abdulkareem
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- Department of Neurobiology, UAB Heersink School of Medicine, Birmingham, AL, USA
| | - Hannah Smith
- Department of Neurosurgery, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - John Shohfi
- Department of Neurosurgery, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Neel H Mehta
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Evan Dennis
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Laetitia R Reduron
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Jennifer Hong
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - William Butler
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Bob S Carter
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Engin Deniz
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Evelyn M R Lake
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - R Todd Constable
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Mustafa Sahin
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Siddharth Srivastava
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kellen Winden
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ellen J Hoffman
- Child Study Center, Yale School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Marina Carlson
- Interdepartmental Neuroscience Program, Yale School of Medicine, Yale University, New Haven, CT, USA
- Child Study Center, Yale School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Murat Gunel
- Department of Neurosurgery, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Richard P Lifton
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY, USA
| | - Seth L Alper
- Division of Nephrology and Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, and Department of Medicine, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Diagnostic Medicine Institute, Geisinger, Danville, PA, USA
| | - Sheng Chih Jin
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Michael C Crair
- Interdepartmental Neuroscience Program, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Andres Moreno-De-Luca
- Autism & Developmental Medicine Institute, Geisinger, Lewisburg, PA, USA
- Department of Radiology, Diagnostic Medicine Institute, Geisinger, Danville, PA, USA
| | - Bryan W Luikart
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA.
- Department of Neurobiology, UAB Heersink School of Medicine, Birmingham, AL, USA.
| | - Kristopher T Kahle
- Department of Neurosurgery, Yale School of Medicine, Yale University, New Haven, CT, USA.
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
4
|
D'Amore A, Sundberg M, Lin R, Lubbers ET, Winden KD, Yu L, Gawlinska K, Gawlinski D, Lopez SG, Choe Y, Wightman EV, Liang Y, Modi M, Yuskaitis CJ, Lee HHC, Rotenberg A, Sahin M. Phenotypic rescue via mTOR inhibition in neuron-specific Pten knockout mice reveals AKT and mTORC1-site specific changes. Mol Psychiatry 2025:10.1038/s41380-025-02916-2. [PMID: 39953287 DOI: 10.1038/s41380-025-02916-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/22/2024] [Accepted: 01/30/2025] [Indexed: 02/17/2025]
Abstract
Phosphatase and Tensin Homolog (PTEN) is a dual-specific protein and lipid phosphatase that regulates AKT and downstream signaling of the mechanistic target of rapamycin (mTOR). PTEN functions as a tumor suppressor gene whose mutations result in PTEN Hamartoma Tumor Syndrome (PHTS) characterized by increased cancer risk and neurodevelopmental comorbidity. Here, we generated a novel neuron-specific Pten knock-out mouse model (Syn-Cre/Pten HOM) to test the ability of pharmacologic mTOR inhibition to rescue Pten mutation-associated disease phenotypes in vivo and in vitro. We found that treatment with the mTOR inhibitor, everolimus, increased the survival of Syn-Cre/Pten HOM mice while some neurologic phenotypes persisted. Transcriptomic analyses revealed that in contrast to mice harboring a neuron-specific deletion of the Tuberous Sclerosis Complex 2 gene (Syn-Cre/Tsc2 KO), genes that are under AKT regulation were significantly increased in the Syn-Cre/Pten HOM mice. In addition, genes associated with synapse, extracellular matrix, and myelination were broadly increased in Syn-Cre/Pten HOM mouse neocortex. These findings were confirmed by immunostaining of cortical sections in vivo, which revealed excessive immunoreactivity of myelin basic protein and perineuronal nets (PNN), the specialized extracellular matrix surrounding fast-spiking parvalbumin (PV) interneurons. We also detected increased expression of Synapsin I/PSD95 positive synapses and network hyperactivity phenotypes in Syn-Cre/Pten HOM mice neurons compared to wild-type (WT) neurons in vitro. Strikingly, everolimus treatment rescued the number of synapses and network hyperactivity in the Syn-Cre/Pten HOM mice cortical neuron cultures. Taken together, our results revealed in vivo and in vitro molecular and neuronal network mechanisms underlying neurological phenotypes of PHTS. Notably, pharmacologic mTOR inhibition by everolimus led to successful downstream signaling rescue, including mTOR complex 1 (mTORC1) site-specific suppression of S6 phosphorylation, correlating with phenotypic rescue found in our novel neuron-specific Syn-Cre/Pten HOM mice.
Collapse
Affiliation(s)
- Angelica D'Amore
- Department of Neurology, FM Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, USA
| | - Maria Sundberg
- Department of Neurology, FM Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, USA
| | - Rui Lin
- Department of Neurology, FM Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, USA
| | - Ella T Lubbers
- Department of Neurology, FM Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, USA
| | - Kellen D Winden
- Department of Neurology, FM Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, USA
| | - Lucy Yu
- Department of Neurology, FM Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, USA
| | - Kinga Gawlinska
- Department of Neurology, FM Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, USA
- Department of Clinical Pharmacy, Jagiellonian University, Medical College, Medyczna 9, PL 30-688, Krakow, Poland
| | - Dawid Gawlinski
- Department of Neurology, FM Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, USA
| | - Sam G Lopez
- Department of Neurology, FM Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, USA
| | - Yongho Choe
- Department of Neurology, FM Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, USA
| | - Emma V Wightman
- Department of Neurology, FM Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, USA
| | - Yini Liang
- Department of Neurology, FM Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, USA
| | - Meera Modi
- Department of Neurology, FM Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, USA
| | - Christopher J Yuskaitis
- Department of Neurology, FM Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, USA
- Division of Epilepsy and Clinical Neurophysiology, Boston Children's Hospital, Boston, USA
| | - Henry Hing Cheong Lee
- Department of Neurology, FM Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, USA
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, USA
| | - Alexander Rotenberg
- Department of Neurology, FM Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, USA
- Division of Epilepsy and Clinical Neurophysiology, Boston Children's Hospital, Boston, USA
| | - Mustafa Sahin
- Department of Neurology, FM Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, USA.
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, USA.
| |
Collapse
|
5
|
Li Q, Xu Z, Qin J, Yang Z. Epilepsy and Developmental Delay in Pediatric Patients With PTEN Variants and a Literature Review. Pediatr Neurol 2025; 163:35-44. [PMID: 39644587 DOI: 10.1016/j.pediatrneurol.2024.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND Epilepsy is not common in pediatric patients with phosphatase and tensin homolog (PTEN) variants. The characteristics of epilepsy, reactions to antiseizure medications, and prognosis in these patients are not fully understood. The aim of this study was to elucidate the characteristics of epilepsy and developmental outcomes in pediatric patients with PTEN variants. METHODS We collected data from pediatric patients followed in Peking University People's Hospital from July 2018 to April 2024. RESULTS Thirteen children harboring PTEN variants were identified (mean age, 4.1 years). All the children (100%) with PTEN variants exhibited macrocephaly, 92.3% (12 of 13) had developmental delays, and 38.5% (five of 13) were diagnosed with autism spectrum disorder. Among the 13 children, 15.4% (two of 13) had epilepsy, and both responded well to antiseizure medications. Furthermore, we reviewed published articles on PTEN variants and epilepsy. We found seven studies of 665 pediatric patients with PTEN variants, including 26 patients with epilepsy. Among the 26 epileptic patients, information about the number and response to antiseizure medications was available for only 14 patients, and 15 patients had information about seizure types. Focal seizures were the most common seizure type (10 of 15, 66.7%). Only 28.6% (four of 14) of patients were diagnosed with drug-resistant epilepsy, and all patients (four of four) had abnormal brain magnetic resonance imaging findings. CONCLUSIONS In summary, a high proportion of pediatric patients with PTEN variants have developmental delay. Among epileptic patients, the most common seizure type is focal seizures, and these patients are more likely to respond to antiseizure medications if their brain imaging results are normal. Further large-scale studies are necessary to characterize the clinical characteristics of pediatric patients with epilepsy harboring PTEN variants and establish standard treatments.
Collapse
Affiliation(s)
- Qinrui Li
- Department of Pediatrics, Peking University People's Hospital, Beijing, China; Epilepsy Center, Peking University People's Hospital, Beijing, China
| | - Zhao Xu
- Department of Pediatrics, Peking University People's Hospital, Beijing, China; Epilepsy Center, Peking University People's Hospital, Beijing, China
| | - Jiong Qin
- Department of Pediatrics, Peking University People's Hospital, Beijing, China; Epilepsy Center, Peking University People's Hospital, Beijing, China.
| | - Zhixian Yang
- Department of Pediatrics, Peking University People's Hospital, Beijing, China; Epilepsy Center, Peking University People's Hospital, Beijing, China.
| |
Collapse
|
6
|
Dhawan A, Baitamouni S, Liu D, Eng C. Clinical Neurologic Features and Evaluation of PTEN Hamartoma Tumor Syndrome: A Systematic Review. Neurology 2024; 103:e209844. [PMID: 39250745 DOI: 10.1212/wnl.0000000000209844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND AND OBJECTIVES PTEN hamartoma tumor syndrome (PHTS) is a well-recognized hereditary tumor syndrome and is now also recognized as a common cause of monogenic autism spectrum disorder. There is a vast spectrum of phenotypic variability across individuals with PHTS, and in addition to neurodevelopmental challenges, patients with PHTS may experience a wide variety of neurologic challenges, many of which have only recently been described. Thus, this systematic review aimed to summarize the breadth of the current knowledge of neurologic conditions in individuals with PHTS. METHODS We conducted a systematic review using the MEDLINE and EMBASE databases until January 2023. We included studies that reported neurologic signs, symptoms, and diagnoses in patients with a diagnosis of PHTS. Two independent reviewers extracted data (neurologic diagnoses and patient details) from each study. Case reports, case series, prospective studies, and therapeutic trials were included. We assessed the quality of evidence using the appropriate tool from the JBI, depending on study design. RESULTS One thousand nine hundred ninety-six articles were screened, and 90 articles met the inclusion criteria. The majority of the included studies were case reports (49/90, 54%) or small case series (31/90, 34%). Epilepsy secondary to cerebral malformations, neurologic deficits from spinal or cranial arteriovenous malformations, and rare tumors such as dysplastic cerebellar gangliocytoma are among the more severe neurologic features reported across patients with PHTS. One interventional randomized control trial examining neurocognitive endpoints was identified and did not meet its efficacy endpoint. DISCUSSION Our systematic review defines a broad scope of neurologic comorbidities occurring in individuals with PHTS. Neurologic findings can be categorized by age at onset in individuals with PTHS. Our study highlights the need for additional clinical trial endpoints, informed by the neurologic challenges faced by individuals with PHTS.
Collapse
Affiliation(s)
- Andrew Dhawan
- From the Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, OH
| | - Sarah Baitamouni
- From the Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, OH
| | - Darren Liu
- From the Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, OH
| | - Charis Eng
- From the Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, OH
| |
Collapse
|
7
|
Wei R, Hitomi M, Sadler T, Yehia L, Calvetti D, Scott J, Eng C. Quantitative evaluation of DNA damage repair dynamics to elucidate predictors of autism vs. cancer in individuals with germline PTEN variants. PLoS Comput Biol 2024; 20:e1012449. [PMID: 39356721 PMCID: PMC11472915 DOI: 10.1371/journal.pcbi.1012449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 10/14/2024] [Accepted: 08/31/2024] [Indexed: 10/04/2024] Open
Abstract
Persons with germline variants in the tumor suppressor gene phosphatase and tensin homolog, PTEN, are molecularly diagnosed with PTEN hamartoma tumor syndrome (PHTS). PHTS confers high risks of specific malignancies, and up to 23% of the patients are diagnosed with autism spectrum disorder (ASD) and/or developmental delay (DD). The accurate prediction of these two seemingly disparate phenotypes (cancer vs. ASD/DD) for PHTS at the individual level remains elusive despite the available statistical prevalence of specific phenotypes of the syndrome at the population level. The pleiotropy of the syndrome may, in part, be due to the alterations of the key multi-functions of PTEN. Maintenance of genome integrity is one of the key biological functions of PTEN, but no integrative studies have been conducted to quantify the DNA damage response (DDR) in individuals with PHTS and to relate to phenotypes and genotypes. In this study, we used 43 PHTS patient-derived lymphoblastoid cell lines (LCLs) to investigate the associations between DDR and PTEN genotypes and/or clinical phenotypes ASD/DD vs. cancer. The dynamics of DDR of γ-irradiated LCLs were analyzed using the exponential decay mathematical model to fit temporal changes in γH2AX levels which report the degree of DNA damage. We found that PTEN nonsense variants are associated with less efficient DNA damage repair ability resulting in higher DNA damage levels at 24 hours after irradiation compared to PTEN missense variants. Regarding PHTS phenotypes, LCLs from PHTS individuals with ASD/DD showed faster DNA damage repairing rate than those from patients without ASD/DD or cancer. We also applied the reaction-diffusion partial differential equation (PDE) mathematical model, a cell growth model with a DNA damage term, to accurately describe the DDR process in the LCLs. For each LCL, we can derive parameters of the PDE. Then we averaged the numerical results by PHTS phenotypes. By performing simple subtraction of two subgroup average results, we found that PHTS-ASD/DD is associated with higher live cell density at lower DNA damage level but lower cell density level at higher DNA damage level compared to LCLs from individuals with PHTS-cancer and PHTS-neither.
Collapse
Affiliation(s)
- Ruipeng Wei
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Department of Nutrition and Systems Biology and Bioinformatics Program, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Masahiro Hitomi
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Translational Hematology & Oncology Research, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Tammy Sadler
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Lamis Yehia
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Daniela Calvetti
- Department of Mathematics, Applied Mathematics, and Statistics, Case Western Reserve University College of Arts and Sciences, Cleveland, Ohio, United States of America
| | - Jacob Scott
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Translational Hematology & Oncology Research, Cleveland Clinic, Cleveland, Ohio, United States of America
- Department of Radiation Oncology, Cleveland Clinic, Cleveland, Ohio, United States of America
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Charis Eng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Center for Personalized Genetic Healthcare, Medical Specialties Institute, Cleveland Clinic, United States of America
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
- Germline High Risk Cancer Focus Group, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, United States of America
| |
Collapse
|
8
|
Croom K, Rumschlag JA, Molinaro G, Erickson MA, Binder DK, Huber KM, Razak KA. Developmental trajectory and sex differences in auditory processing in a PTEN-deletion model of autism spectrum disorders. Neurobiol Dis 2024; 200:106628. [PMID: 39111703 PMCID: PMC12101825 DOI: 10.1016/j.nbd.2024.106628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 08/16/2024] Open
Abstract
Autism Spectrum Disorders (ASD) encompass a wide array of debilitating symptoms, including severe sensory deficits and abnormal language development. Sensory deficits early in development may lead to broader symptomatology in adolescents and adults. The mechanistic links between ASD risk genes, sensory processing and language impairment are unclear. There is also a sex bias in ASD diagnosis and symptomatology. The current study aims to identify the developmental trajectory and genotype- and sex-dependent differences in auditory sensitivity and temporal processing in a Pten-deletion (phosphatase and tensin homolog missing on chromosome 10) mouse model of ASD. Auditory temporal processing is crucial for speech recognition and language development and deficits will cause language impairments. However, very little is known about the development of temporal processing in ASD animal models, and if there are sex differences. To address this major gap, we recorded epidural electroencephalography (EEG) signals from the frontal (FC) and auditory (AC) cortex in developing and adult Nse-cre PTEN mice, in which Pten is deleted in specific cortical layers (layers III-V) (PTEN conditional knock-out (cKO). We quantified resting EEG spectral power distribution, auditory event related potentials (ERP) and temporal processing from awake and freely moving male and female mice. Temporal processing is measured using a gap-in-noise-ASSR (auditory steady state response) stimulus paradigm. The experimental manipulation of gap duration and modulation depth allows us to measure cortical entrainment to rapid gaps in sounds. Temporal processing was quantified using inter-trial phase clustering (ITPC) values that account for phase consistency across trials. The results show genotype differences in resting power distribution in PTEN cKO mice throughout development. Male and female cKO mice have significantly increased beta power but decreased high frequency oscillations in the AC and FC. Both male and female PTEN cKO mice show diminished ITPC in their gap-ASSR responses in the AC and FC compared to control mice. Overall, deficits become more prominent in adult (p60) mice, with cKO mice having significantly increased sound evoked power and decreased ITPC compared to controls. While both male and female cKO mice demonstrated severe temporal processing deficits across development, female cKO mice showed increased hypersensitivity compared to males, reflected as increased N1 and P2 amplitudes. These data identify a number of novel sensory processing deficits in a PTEN-ASD mouse model that are present from an early age. Abnormal temporal processing and hypersensitive responses may contribute to abnormal development of language function in ASD.
Collapse
Affiliation(s)
- Katilynne Croom
- Graduate Neuroscience Program, University of California, Riverside, United States of America
| | - Jeffrey A Rumschlag
- Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, Charleston, United States of America
| | - Gemma Molinaro
- Department of Neuroscience, O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, TX, United States of America
| | - Michael A Erickson
- Psychology Department, University of California, Riverside, United States of America
| | - Devin K Binder
- Graduate Neuroscience Program, University of California, Riverside, United States of America; Biomedical Sciences, School of Medicine, University of California, Riverside, United States of America
| | - Kimberly M Huber
- Department of Neuroscience, O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, TX, United States of America
| | - Khaleel A Razak
- Graduate Neuroscience Program, University of California, Riverside, United States of America; Psychology Department, University of California, Riverside, United States of America.
| |
Collapse
|
9
|
Romussi S, Giunti S, Andersen N, De Rosa MJ. C. elegans: a prominent platform for modeling and drug screening in neurological disorders. Expert Opin Drug Discov 2024; 19:565-585. [PMID: 38509691 DOI: 10.1080/17460441.2024.2329103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/06/2024] [Indexed: 03/22/2024]
Abstract
INTRODUCTION Human neurodevelopmental and neurodegenerative diseases (NDevDs and NDegDs, respectively) encompass a broad spectrum of disorders affecting the nervous system with an increasing incidence. In this context, the nematode C. elegans, has emerged as a benchmark model for biological research, especially in the field of neuroscience. AREAS COVERED The authors highlight the numerous advantages of this tiny worm as a model for exploring nervous system pathologies and as a platform for drug discovery. There is a particular focus given to describing the existing models of C. elegans for the study of NDevDs and NDegDs. Specifically, the authors underscore their strong applicability in preclinical drug development. Furthermore, they place particular emphasis on detailing the common techniques employed to explore the nervous system in both healthy and diseased states. EXPERT OPINION Drug discovery constitutes a long and expensive process. The incorporation of invertebrate models, such as C. elegans, stands as an exemplary strategy for mitigating costs and expediting timelines. The utilization of C. elegans as a platform to replicate nervous system pathologies and conduct high-throughput automated assays in the initial phases of drug discovery is pivotal for rendering therapeutic options more attainable and cost-effective.
Collapse
Affiliation(s)
- Stefano Romussi
- Laboratorio de Neurobiología de Invertebrados, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), UNS-CONICET, Bahía Blanca, Argentina
| | - Sebastián Giunti
- Laboratorio de Neurobiología de Invertebrados, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), UNS-CONICET, Bahía Blanca, Argentina
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| | - Natalia Andersen
- Laboratorio de Neurobiología de Invertebrados, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), UNS-CONICET, Bahía Blanca, Argentina
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| | - María José De Rosa
- Laboratorio de Neurobiología de Invertebrados, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), UNS-CONICET, Bahía Blanca, Argentina
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| |
Collapse
|
10
|
Molinaro G, Bowles JE, Croom K, Gonzalez D, Mirjafary S, Birnbaum SG, Razak KA, Gibson JR, Huber KM. Female-specific dysfunction of sensory neocortical circuits in a mouse model of autism mediated by mGluR5 and estrogen receptor α. Cell Rep 2024; 43:114056. [PMID: 38581678 PMCID: PMC11112681 DOI: 10.1016/j.celrep.2024.114056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/26/2024] [Accepted: 03/20/2024] [Indexed: 04/08/2024] Open
Abstract
Little is known of the brain mechanisms that mediate sex-specific autism symptoms. Here, we demonstrate that deletion of the autism spectrum disorder (ASD)-risk gene, Pten, in neocortical pyramidal neurons (NSEPten knockout [KO]) results in robust cortical circuit hyperexcitability selectively in female mice observed as prolonged spontaneous persistent activity states. Circuit hyperexcitability in females is mediated by metabotropic glutamate receptor 5 (mGluR5) and estrogen receptor α (ERα) signaling to mitogen-activated protein kinases (Erk1/2) and de novo protein synthesis. Pten KO layer 5 neurons have a female-specific increase in mGluR5 and mGluR5-dependent protein synthesis. Furthermore, mGluR5-ERα complexes are generally elevated in female cortices, and genetic reduction of ERα rescues enhanced circuit excitability, protein synthesis, and neuron size selectively in NSEPten KO females. Female NSEPten KO mice display deficits in sensory processing and social behaviors as well as mGluR5-dependent seizures. These results reveal mechanisms by which sex and a high-confidence ASD-risk gene interact to affect brain function and behavior.
Collapse
Affiliation(s)
- Gemma Molinaro
- Department of Neuroscience, O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jacob E Bowles
- Department of Neuroscience, O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Katilynne Croom
- Graduate Neuroscience Program, University of California, Riverside, Riverside, CA, USA
| | - Darya Gonzalez
- Department of Neuroscience, O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Saba Mirjafary
- Department of Neuroscience, O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Shari G Birnbaum
- Department of Psychiatry, O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Khaleel A Razak
- Graduate Neuroscience Program, University of California, Riverside, Riverside, CA, USA; Department of Psychology, University of California, Riverside, Riverside, CA, USA
| | - Jay R Gibson
- Department of Neuroscience, O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Kimberly M Huber
- Department of Neuroscience, O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
11
|
Li Y, Ma R, Hao X. Therapeutic role of PTEN in tissue regeneration for management of neurological disorders: stem cell behaviors to an in-depth review. Cell Death Dis 2024; 15:268. [PMID: 38627382 PMCID: PMC11021430 DOI: 10.1038/s41419-024-06657-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 03/29/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024]
Abstract
Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) represents the initial tumor suppressor gene identified to possess phosphatase activity, governing various cellular processes including cell cycle regulation, migration, metabolic pathways, autophagy, oxidative stress response, and cellular senescence. Current evidence suggests that PTEN is critical for stem cell maintenance, self-renewal, migration, lineage commitment, and differentiation. Based on the latest available evidence, we provide a comprehensive overview of the mechanisms by which PTEN regulates activities of different stem cell populations and influences neurological disorders, encompassing autism, stroke, spinal cord injury, traumatic brain injury, Alzheimer's disease and Parkinson's disease. This review aims to elucidate the therapeutic impacts and mechanisms of PTEN in relation to neurogenesis or the stem cell niche across a range of neurological disorders, offering a foundation for innovative therapeutic approaches aimed at tissue repair and regeneration in neurological disorders. This review unravels novel therapeutic strategies for tissue restoration and regeneration in neurological disorders based on the regulatory mechanisms of PTEN on neurogenesis and the stem cell niche.
Collapse
Affiliation(s)
- Yue Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, 999078, Macau, China.
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, 999078, Macau, China.
| | - Ruishuang Ma
- State Key Laboratory of Component-Based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 301617, Tianjin, China
| | - Xia Hao
- State Key Laboratory of Component-Based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 301617, Tianjin, China
| |
Collapse
|
12
|
Gambini D, Ferrero S, Bulfamante G, Pisani L, Corbo M, Kuhn E. Cerebellar phenotypes in germline PTEN mutation carriers. Neuropathol Appl Neurobiol 2024; 50:e12970. [PMID: 38504418 DOI: 10.1111/nan.12970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/21/2024] [Accepted: 02/25/2024] [Indexed: 03/21/2024]
Abstract
PTEN hamartoma tumour syndrome (PHTS) comprises different hereditary conditions caused by germline PTEN mutations, predisposing to the development of multiple hamartomas in many body tissues and also increasing the risk of some types of cancer. Cerebellar involvement in PHTS patients has been long known due to the development of a pathognomonic cerebellar hamartoma (known as dysplastic gangliocytoma of the cerebellum or Lhermitte-Duclos disease). Recently, a crucial role of the cerebellum has been highlighted in the pathogenesis of autism spectrum disorders, now recognised as a phenotype expressed in a variable percentage of PHTS children. In addition, rare PTEN variants are indeed identified in medulloblastoma as well, even if they are less frequent than other germline gene mutations. The importance of PTEN and its downstream signalling enzymatic pathways, PI3K/AKT/mTOR, has been studied at different levels in both human clinical settings and animal models, not only leading to a better understanding of the pathogenesis of different disorders but, most importantly, to identify potential targets for specific therapies. In particular, PTEN integrity makes an important contribution to the normal development of tissue architecture in the nervous system, including the cerebellum. Thus, in patients with PTEN germline mutations, the cerebellum is an affected organ that is increasingly recognised in different disorders, whereas, in animal models, cerebellar Pten loss causes a variety of functional and histological alterations. In this review, we summarise the range of cerebellar involvement observed in PHTS and its relationships with germline PTEN mutations, along with the phenotypes expressed by murine models with PTEN deficiency in cerebellar tissue.
Collapse
Affiliation(s)
- Donatella Gambini
- Department of Neurorehabilitation Sciences, Casa di Cura Igea, Milan, Italy
| | - Stefano Ferrero
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
- Pathology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Gaetano Bulfamante
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
- Human Pathology and Molecular Pathology Unit, TOMA Advanced Biomedical Assays, Busto Arsizio, Italy
| | - Luigi Pisani
- Department of Neurorehabilitation Sciences, Casa di Cura Igea, Milan, Italy
| | - Massimo Corbo
- Department of Neurorehabilitation Sciences, Casa di Cura Igea, Milan, Italy
| | - Elisabetta Kuhn
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
- Pathology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
13
|
Molinaro G, Bowles JE, Croom K, Gonzalez D, Mirjafary S, Birnbaum S, Razak KA, Gibson JR, Huber KM. Female specific dysfunction of sensory neocortical circuits in a mouse model of autism mediated by mGluR5 and Estrogen Receptor α. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.10.552857. [PMID: 37609208 PMCID: PMC10441407 DOI: 10.1101/2023.08.10.552857] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Autism manifests differently in males and females and the brain mechanisms that mediate these sex-dependent differences are unknown. Here, we demonstrate that deletion of the ASD-risk gene, Pten, in neocortical pyramidal neurons (NSE Pten KO) results in robust hyperexcitability of local neocortical circuits in female, but not male, mice, observed as prolonged, spontaneous persistent activity states (UP states). Circuit hyperexcitability in NSE Pten KO mice is mediated by enhanced and/or altered signaling of metabotropic glutamate receptor 5 (mGluR5) and estrogen receptor α (ERα) to ERK and protein synthesis selectively in Pten deleted female neurons. In support of this idea, Pten deleted Layer 5 cortical neurons have female-specific increases in mGluR5 and mGluR5-driven protein synthesis. In addition, mGluR5-ERα complexes are elevated in female cortex and genetic reduction of ERα in Pten KO cortical neurons rescues circuit excitability, protein synthesis and enlarged neurons selectively in females. Abnormal timing and hyperexcitability of neocortical circuits in female NSE Pten KO mice are associated with deficits in temporal processing of sensory stimuli and social behaviors as well as mGluR5-dependent seizures. Female-specific cortical hyperexcitability and mGluR5-dependent seizures are also observed in a human disease relevant mouse model, germline Pten +/- mice. Our results reveal molecular mechanisms by which sex and a high impact ASD-risk gene interact to affect brain function and behavior.
Collapse
|
14
|
Eng C, Kim A, Yehia L. Genomic diversity in functionally relevant genes modifies neurodevelopmental versus neoplastic risks in individuals with germline PTEN variants. RESEARCH SQUARE 2023:rs.3.rs-3734368. [PMID: 38168271 PMCID: PMC10760312 DOI: 10.21203/rs.3.rs-3734368/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Individuals with germline PTEN variants (PHTS) have increased risks of the seemingly disparate phenotypes of cancer and neurodevelopmental disorders (NDD), including autism spectrum disorder (ASD). Etiology of the phenotypic variability remains elusive. Here, we hypothesized that decreased genomic diversity, manifested by increased homozygosity, may be one etiology. Comprehensive analyses of 376 PHTS patients of European ancestry revealed significant enrichment of homozygous common variants in genes involved in inflammatory processes in the PHTS-NDD group and in genes involved in differentiation and chromatin structure regulation in the PHTS-ASD group. Pathway analysis revealed pathways germane to NDD/ASD, including neuroinflammation and synaptogenesis. Collapsing analysis of the homozygous variants identified suggestive modifier NDD/ASD genes. In contrast, we found enrichment of homozygous ultra-rare variants in genes modulating cell death in the PHTS-cancer group. Finally, homozygosity burden as a predictor of ASD versus cancer outcomes in our validated prediction model for NDD/ASD performed favorably.
Collapse
|
15
|
Mosconi MW, Stevens CJ, Unruh KE, Shafer R, Elison JT. Endophenotype trait domains for advancing gene discovery in autism spectrum disorder. J Neurodev Disord 2023; 15:41. [PMID: 37993779 PMCID: PMC10664534 DOI: 10.1186/s11689-023-09511-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 11/09/2023] [Indexed: 11/24/2023] Open
Abstract
Autism spectrum disorder (ASD) is associated with a diverse range of etiological processes, including both genetic and non-genetic causes. For a plurality of individuals with ASD, it is likely that the primary causes involve multiple common inherited variants that individually account for only small levels of variation in phenotypic outcomes. This genetic landscape creates a major challenge for detecting small but important pathogenic effects associated with ASD. To address similar challenges, separate fields of medicine have identified endophenotypes, or discrete, quantitative traits that reflect genetic likelihood for a particular clinical condition and leveraged the study of these traits to map polygenic mechanisms and advance more personalized therapeutic strategies for complex diseases. Endophenotypes represent a distinct class of biomarkers useful for understanding genetic contributions to psychiatric and developmental disorders because they are embedded within the causal chain between genotype and clinical phenotype, and they are more proximal to the action of the gene(s) than behavioral traits. Despite their demonstrated power for guiding new understanding of complex genetic structures of clinical conditions, few endophenotypes associated with ASD have been identified and integrated into family genetic studies. In this review, we argue that advancing knowledge of the complex pathogenic processes that contribute to ASD can be accelerated by refocusing attention toward identifying endophenotypic traits reflective of inherited mechanisms. This pivot requires renewed emphasis on study designs with measurement of familial co-variation including infant sibling studies, family trio and quad designs, and analysis of monozygotic and dizygotic twin concordance for select trait dimensions. We also emphasize that clarification of endophenotypic traits necessarily will involve integration of transdiagnostic approaches as candidate traits likely reflect liability for multiple clinical conditions and often are agnostic to diagnostic boundaries. Multiple candidate endophenotypes associated with ASD likelihood are described, and we propose a new focus on the analysis of "endophenotype trait domains" (ETDs), or traits measured across multiple levels (e.g., molecular, cellular, neural system, neuropsychological) along the causal pathway from genes to behavior. To inform our central argument for research efforts toward ETD discovery, we first provide a brief review of the concept of endophenotypes and their application to psychiatry. Next, we highlight key criteria for determining the value of candidate endophenotypes, including unique considerations for the study of ASD. Descriptions of different study designs for assessing endophenotypes in ASD research then are offered, including analysis of how select patterns of results may help prioritize candidate traits in future research. We also present multiple candidate ETDs that collectively cover a breadth of clinical phenomena associated with ASD, including social, language/communication, cognitive control, and sensorimotor processes. These ETDs are described because they represent promising targets for gene discovery related to clinical autistic traits, and they serve as models for analysis of separate candidate domains that may inform understanding of inherited etiological processes associated with ASD as well as overlapping neurodevelopmental disorders.
Collapse
Affiliation(s)
- Matthew W Mosconi
- Schiefelbusch Institute for Life Span Studies and Kansas Center for Autism Research and Training (K-CART), University of Kansas, Lawrence, KS, USA.
- Clinical Child Psychology Program, University of Kansas, Lawrence, KS, USA.
| | - Cassandra J Stevens
- Schiefelbusch Institute for Life Span Studies and Kansas Center for Autism Research and Training (K-CART), University of Kansas, Lawrence, KS, USA
- Clinical Child Psychology Program, University of Kansas, Lawrence, KS, USA
| | - Kathryn E Unruh
- Schiefelbusch Institute for Life Span Studies and Kansas Center for Autism Research and Training (K-CART), University of Kansas, Lawrence, KS, USA
| | - Robin Shafer
- Schiefelbusch Institute for Life Span Studies and Kansas Center for Autism Research and Training (K-CART), University of Kansas, Lawrence, KS, USA
| | - Jed T Elison
- Institute of Child Development, University of Minnesota, Minneapolis, MN, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
16
|
Wei R, Yehia L, Ni Y, Eng C. The mitochondrial genome as a modifier of autism versus cancer phenotypes in PTEN hamartoma tumor syndrome. HGG ADVANCES 2023; 4:100199. [PMID: 37216009 PMCID: PMC10193119 DOI: 10.1016/j.xhgg.2023.100199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/13/2023] [Indexed: 05/24/2023] Open
Abstract
Cancer and autism spectrum disorder/developmental delay (ASD/DD) are two common clinical phenotypes in individuals with germline PTEN variants (PTEN hamartoma tumor syndrome, PHTS). Burgeoning studies have shown that genomic and metabolomic factors may act as modifiers of ASD/DD versus cancer in PHTS. Recently, we showed copy number variations to be associated with ASD/DD versus cancer in these PHTS individuals. We also found that mitochondrial complex II variants occurring in 10% of PHTS individuals modify breast cancer risk and thyroid cancer histology. These studies suggest that mitochondrial pathways could act as important factors in PHTS phenotype development. However, the mitochondrial genome (mtDNA) has never been systematically studied in PHTS. We therefore investigated the mtDNA landscape extracted from whole-genome sequencing data from 498 PHTS individuals, including 164 with ASD/DD (PHTS-onlyASD/DD), 184 with cancer (PHTS-onlyCancer), 132 with neither ASD/DD nor cancer (PHTS-neither), and 18 with both ASD/DD and cancer (PHTS-ASDCancer). We demonstrate that PHTS-onlyASD/DD has significantly higher mtDNA copy number than PHTS-onlyCancer group (p = 9.2 × 10-3 in all samples; p = 4.2 × 10-3 in the H haplogroup). PHTS-neither group has significantly higher mtDNA variant burden than PHTS-ASDCancer group (p = 4.6 × 10-2); the PHTS-noCancer group (PHTS-onlyASD/DD and PHTS-neither groups) also shows higher variant burden than the PHTS-Cancer group (PHTS-onlyCancer and PHTS-ASD/Cancer groups; p = 3.3 × 10-2). Our study implicates the mtDNA as a modifier of ASD/DD versus cancer phenotype development in PHTS.
Collapse
Affiliation(s)
- Ruipeng Wei
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Nutrition, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Lamis Yehia
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Ying Ni
- Center for Immunotherapy & Precision Immuno-Oncology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Charis Eng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Germline High Risk Cancer Focus Group, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
17
|
Duy PQ, Rakic P, Alper SL, Robert SM, Kundishora AJ, Butler WE, Walsh CA, Sestan N, Geschwind DH, Jin SC, Kahle KT. A neural stem cell paradigm of pediatric hydrocephalus. Cereb Cortex 2023; 33:4262-4279. [PMID: 36097331 PMCID: PMC10110448 DOI: 10.1093/cercor/bhac341] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 07/12/2022] [Accepted: 08/02/2022] [Indexed: 12/25/2022] Open
Abstract
Pediatric hydrocephalus, the leading reason for brain surgery in children, is characterized by enlargement of the cerebral ventricles classically attributed to cerebrospinal fluid (CSF) overaccumulation. Neurosurgical shunting to reduce CSF volume is the default treatment that intends to reinstate normal CSF homeostasis, yet neurodevelopmental disability often persists in hydrocephalic children despite optimal surgical management. Here, we discuss recent human genetic and animal model studies that are shifting the view of pediatric hydrocephalus from an impaired fluid plumbing model to a new paradigm of dysregulated neural stem cell (NSC) fate. NSCs are neuroprogenitor cells that comprise the germinal neuroepithelium lining the prenatal brain ventricles. We propose that heterogenous defects in the development of these cells converge to disrupt cerebrocortical morphogenesis, leading to abnormal brain-CSF biomechanical interactions that facilitate passive pooling of CSF and secondary ventricular distention. A significant subset of pediatric hydrocephalus may thus in fact be due to a developmental brain malformation leading to secondary enlargement of the ventricles rather than a primary defect of CSF circulation. If hydrocephalus is indeed a neuroradiographic presentation of an inborn brain defect, it suggests the need to focus on optimizing neurodevelopment, rather than CSF diversion, as the primary treatment strategy for these children.
Collapse
Affiliation(s)
- Phan Q Duy
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
- Medical Scientist Training Program, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Pasko Rakic
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Seth L Alper
- Division of Nephrology and Vascular Biology Research Center, Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Stephanie M Robert
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Adam J Kundishora
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
| | - William E Butler
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Christopher A Walsh
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Department of Pediatrics, and Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA 02115, USA
- Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Nenad Sestan
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Daniel H Geschwind
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Sheng Chih Jin
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kristopher T Kahle
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Harvard Center for Hydrocephalus and Neurodevelopmental Disorders, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
18
|
Alomar HA, Ansari MA, Nadeem A, Attia SM, Bakheet SA, Al-Mazroua HA, Hussein MH, Alqarni SA, Ahmad SF. A potent and selective CXCR2 antagonist improves neuroimmune dysregulation through the inhibition of NF-κB and notch inflammatory signaling in the BTBR mouse model of autism. J Neuroimmunol 2023; 377:578069. [PMID: 36931207 DOI: 10.1016/j.jneuroim.2023.578069] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 02/25/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023]
Abstract
Autism comprises a broad range of neurodevelopmental disorders characterized by social communication deficits and repetitive and stereotyped behaviors. Chemokine receptor CXCR2 is expressed on neurons and is upregulated in neurological disorders. BTBR T+ Itpr3tf/J (BTBR) mice, a model for autism that shows the core features of ASD. Here, we studied the anti-inflammatory effect of a potent and selective CXCR2 antagonist SB332235 in the BTBR mice. The CXCR2 antagonist represents a promising therapeutic agent for several neuroinflammatory disorders. In this study, we investigated the effects of SB332235 administration on NF-κB-, Notch-1-, Notch-3-, GM-CSF-, MCP-1-, IL-6-, and IL-2- and TGF-β1-expressing CD40+ cells in BTBR and C57BL/6 (C57) mice in the spleen cells by flow cytometry. We further assessed the effect of SB332235 treatment on NF-κB, Notch-1, GM-CSF, MCP-1, IL-6, and IL-2 mRNA expression levels in the brain tissue by RT-PCR. We also explored the effect of SB332235 administration on NF-κB, GM-CSF, IL-6, and TGF-β1 protein expression levels in the brain tissue by western blotting. The SB332235-treated BTBR mice significantly decreases in CD40 + NF-κB+, CD40 + Notch-1+, CD40 + Notch-3+, CD40 + GM-CSF+, CD40 + MCP-1+, CD40 + IL-6+, and CD40 + IL-2+, and increases in CD40 + TGF-β1+ in the spleen cells. Our results further demonstrated that BTBR mice treated with SB332235 effectively decreased NF-κB, Notch-1, GM-CSF, MCP-1, IL-6, and IL-2, increasing TGF-β1 mRNA and protein expression levels in the brain tissue. In conclusion, these results indicate that SB332235 elicits an anti-inflammatory response by downregulating the inflammatory mediators and NF-κB/Notch inflammatory signaling in BTBR mice. This could represent a promising novel therapeutic target for autism treatment.
Collapse
Affiliation(s)
- Hatun A Alomar
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mushtaq A Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saleh A Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Haneen A Al-Mazroua
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Marwa H Hussein
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saleh A Alqarni
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
19
|
Thomas SD, Jha NK, Ojha S, Sadek B. mTOR Signaling Disruption and Its Association with the Development of Autism Spectrum Disorder. Molecules 2023; 28:molecules28041889. [PMID: 36838876 PMCID: PMC9964164 DOI: 10.3390/molecules28041889] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/31/2023] [Accepted: 02/04/2023] [Indexed: 02/19/2023] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder characterized by impairments in social interaction and communication along with repetitive stereotypic behaviors. Currently, there are no specific biomarkers for diagnostic screening or treatments available for autistic patients. Numerous genetic disorders are associated with high prevalence of ASD, including tuberous sclerosis complex, phosphatase and tensin homolog, and fragile X syndrome. Preclinical investigations in animal models of these diseases have revealed irregularities in the PI3K/Akt/mTOR signaling pathway as well as ASD-related behavioral defects. Reversal of the downstream molecular irregularities, associated with mTOR hyperactivation, improved the behavioral deficits observed in the preclinical investigations. Plant bioactive molecules have shown beneficial pre-clinical evidence in ASD treatment by modulating the PI3K/Akt/mTOR pathway. In this review, we summarize the involvement of the PI3K/Akt/mTOR pathway as well as the genetic alterations of the pathway components and its critical impact on the development of the autism spectrum disorder. Mutations in negative regulators of mTORC1, such as TSC1, TSC2, and PTEN, result in ASD-like phenotypes through the disruption of the mTORC1-mediated signaling. We further discuss the various naturally occurring phytoconstituents that have been identified to be bioactive and modulate the pathway to prevent its disruption and contribute to beneficial therapeutic effects in ASD.
Collapse
Affiliation(s)
- Shilu Deepa Thomas
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Zayed Bin Sultan Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida 201310, India
- School of Bioengineering & Biosciences, Lovely Professional University, Phagwara 144411, India
- Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun 248007, India
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Zayed Bin Sultan Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Bassem Sadek
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Zayed Bin Sultan Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Correspondence:
| |
Collapse
|
20
|
Hendricks LA, Hoogerbrugge N, Venselaar H, Aretz S, Spier I, Legius E, Brems H, de Putter R, Claes KB, Evans DG, Woodward ER, Genuardi M, Brugnoletti F, van Ierland Y, Dijke K, Tham E, Tesi B, Schuurs-Hoeijmakers JH, Branchaud M, Salvador H, Jahn A, Schnaiter S, Anastasiadou VC, Brunet J, Oliveira C, Roht L, Blatnik A, Irmejs A, Mensenkamp AR, Vos JR, Duijkers F, Giltay JC, van Hest LP, Kleefstra T, Leter EM, Nielsen M, Nijmeijer SW, Olderode-Berends MJ. Genotype-phenotype associations in a large PTEN Hamartoma Tumor Syndrome (PHTS) patient cohort. Eur J Med Genet 2022; 65:104632. [DOI: 10.1016/j.ejmg.2022.104632] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/05/2022] [Accepted: 09/28/2022] [Indexed: 11/30/2022]
|
21
|
Leibowitz MS, Zelley K, Adams D, Brodeur GM, Fox E, Li MM, Mattei P, Pogoriler J, MacFarland SP. Neuroblastoma and cutaneous angiosarcoma in a child with PTEN hamartoma tumor syndrome. Pediatr Blood Cancer 2022; 69:e29656. [PMID: 35278038 DOI: 10.1002/pbc.29656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 02/26/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Michael S Leibowitz
- Division of Oncology, Department of Pediatrics, Children's Hospital of Phialdelphia, Philadelphia, Pennsylvania, USA
| | - Kristin Zelley
- Division of Oncology, Department of Pediatrics, Children's Hospital of Phialdelphia, Philadelphia, Pennsylvania, USA
| | - Denise Adams
- Division of Oncology, Department of Pediatrics, Children's Hospital of Phialdelphia, Philadelphia, Pennsylvania, USA.,Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Garrett M Brodeur
- Division of Oncology, Department of Pediatrics, Children's Hospital of Phialdelphia, Philadelphia, Pennsylvania, USA.,Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Elizabeth Fox
- Department of Oncology, St. Jude's Children's Research Hospital, Memphis, Tennessee, USA
| | - Marilyn M Li
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA.,Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelpiha, Philadelphia, Pennsylvania, USA
| | - Peter Mattei
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA.,Department of Surgery, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Jennifer Pogoriler
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA.,Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelpiha, Philadelphia, Pennsylvania, USA
| | - Suzanne P MacFarland
- Division of Oncology, Department of Pediatrics, Children's Hospital of Phialdelphia, Philadelphia, Pennsylvania, USA.,Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
22
|
Coakley-Youngs E, Ranatunga M, Richardson S, Getti G, Shorter S, Fivaz M. Autism-associated CHD8 keeps proliferation of human neural progenitors in check by lengthening the G1 phase of the cell cycle. Biol Open 2022; 11:276883. [PMID: 36222238 PMCID: PMC9548376 DOI: 10.1242/bio.058941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 07/28/2022] [Indexed: 01/17/2023] Open
Abstract
ABSTRACT
De novo mutations (DNMs) in chromodomain helicase DNA binding protein 8 (CHD8) are associated with a specific subtype of autism characterized by enlarged heads and distinct cranial features. The vast majority of these DNMs are heterozygous loss-of-function mutations with high penetrance for autism. CHD8 is a chromatin remodeler that preferentially regulates expression of genes implicated in early development of the cerebral cortex. How CHD8 haploinsufficiency alters the normal developmental trajectory of the brain is poorly understood and debated. Using long-term single-cell imaging, we show that disruption of a single copy of CHD8 in human neural precursor cells (NPCs) markedly shortens the G1 phase of the cell cycle. Consistent with faster progression of CHD8+/− NPCs through G1 and the G1/S checkpoint, we observed increased expression of E cyclins and elevated phosphorylation of Erk in these mutant cells – two central signaling pathways involved in S phase entry. Thus, CHD8 keeps proliferation of NPCs in check by lengthening G1, and mono-allelic disruption of this gene alters cell-cycle timing in a way that favors self-renewing over neurogenic cell divisions. Our findings further predict enlargement of the neural progenitor pool in CHD8+/− developing brains, providing a mechanistic basis for macrocephaly in this autism subtype.
Collapse
Affiliation(s)
- Emma Coakley-Youngs
- Stem Cell & Gene Editing Laboratory, University of Greenwich at Medway 1 , Faculty of Science and Engineering, Kent ME4 4TB , UK
| | - Medhavi Ranatunga
- University of Greenwich at Medway 2 , Faculty of Science and Engineering, Kent ME4 4TB , UK
| | - Simon Richardson
- Exogenics Laboratory, University of Greenwich at Medway 3 , Faculty of Science and Engineering, Kent ME4 4TB , UK
| | - Giulia Getti
- University of Greenwich at Medway 2 , Faculty of Science and Engineering, Kent ME4 4TB , UK
| | - Susan Shorter
- Stem Cell & Gene Editing Laboratory, University of Greenwich at Medway 1 , Faculty of Science and Engineering, Kent ME4 4TB , UK
| | - Marc Fivaz
- Stem Cell & Gene Editing Laboratory, University of Greenwich at Medway 1 , Faculty of Science and Engineering, Kent ME4 4TB , UK
| |
Collapse
|
23
|
Wong A, Zhou A, Cao X, Mahaganapathy V, Azaro M, Gwin C, Wilson S, Buyske S, Bartlett CW, Flax JF, Brzustowicz LM, Xing J. MicroRNA and MicroRNA-Target Variants Associated with Autism Spectrum Disorder and Related Disorders. Genes (Basel) 2022; 13:1329. [PMID: 35893067 PMCID: PMC9329941 DOI: 10.3390/genes13081329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/19/2022] [Accepted: 07/22/2022] [Indexed: 12/13/2022] Open
Abstract
Autism spectrum disorder (ASD) is a childhood neurodevelopmental disorder with a complex and heterogeneous genetic etiology. MicroRNA (miRNA), a class of small non-coding RNAs, could regulate ASD risk genes post-transcriptionally and affect broad molecular pathways related to ASD and associated disorders. Using whole-genome sequencing, we analyzed 272 samples in 73 families in the New Jersey Language and Autism Genetics Study (NJLAGS) cohort. Families with at least one ASD patient were recruited and were further assessed for language impairment, reading impairment, and other associated phenotypes. A total of 5104 miRNA variants and 1,181,148 3' untranslated region (3' UTR) variants were identified in the dataset. After applying several filtering criteria, including population allele frequency, brain expression, miRNA functional regions, and inheritance patterns, we identified high-confidence variants in five brain-expressed miRNAs (targeting 326 genes) and 3' UTR miRNA target regions of 152 genes. Some genes, such as SCP2 and UCGC, were identified in multiple families. Using Gene Ontology overrepresentation analysis and protein-protein interaction network analysis, we identified clusters of genes and pathways that are important for neurodevelopment. The miRNAs and miRNA target genes identified in this study are potentially involved in neurodevelopmental disorders and should be considered for further functional studies.
Collapse
Affiliation(s)
- Anthony Wong
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (A.W.); (A.Z.); (X.C.); (V.M.); (M.A.); (C.G.); (S.W.); (J.F.F.); (L.M.B.)
| | - Anbo Zhou
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (A.W.); (A.Z.); (X.C.); (V.M.); (M.A.); (C.G.); (S.W.); (J.F.F.); (L.M.B.)
| | - Xiaolong Cao
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (A.W.); (A.Z.); (X.C.); (V.M.); (M.A.); (C.G.); (S.W.); (J.F.F.); (L.M.B.)
| | - Vaidhyanathan Mahaganapathy
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (A.W.); (A.Z.); (X.C.); (V.M.); (M.A.); (C.G.); (S.W.); (J.F.F.); (L.M.B.)
| | - Marco Azaro
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (A.W.); (A.Z.); (X.C.); (V.M.); (M.A.); (C.G.); (S.W.); (J.F.F.); (L.M.B.)
| | - Christine Gwin
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (A.W.); (A.Z.); (X.C.); (V.M.); (M.A.); (C.G.); (S.W.); (J.F.F.); (L.M.B.)
| | - Sherri Wilson
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (A.W.); (A.Z.); (X.C.); (V.M.); (M.A.); (C.G.); (S.W.); (J.F.F.); (L.M.B.)
| | - Steven Buyske
- Department of Statistics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA;
| | - Christopher W. Bartlett
- The Steve & Cindy Rasmussen Institute for Genomic Medicine, Battelle Center for Computational Biology, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215, USA;
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Judy F. Flax
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (A.W.); (A.Z.); (X.C.); (V.M.); (M.A.); (C.G.); (S.W.); (J.F.F.); (L.M.B.)
| | - Linda M. Brzustowicz
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (A.W.); (A.Z.); (X.C.); (V.M.); (M.A.); (C.G.); (S.W.); (J.F.F.); (L.M.B.)
- Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Jinchuan Xing
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (A.W.); (A.Z.); (X.C.); (V.M.); (M.A.); (C.G.); (S.W.); (J.F.F.); (L.M.B.)
- Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
24
|
Napolitano A, Schiavi S, La Rosa P, Rossi-Espagnet MC, Petrillo S, Bottino F, Tagliente E, Longo D, Lupi E, Casula L, Valeri G, Piemonte F, Trezza V, Vicari S. Sex Differences in Autism Spectrum Disorder: Diagnostic, Neurobiological, and Behavioral Features. Front Psychiatry 2022; 13:889636. [PMID: 35633791 PMCID: PMC9136002 DOI: 10.3389/fpsyt.2022.889636] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/25/2022] [Indexed: 12/25/2022] Open
Abstract
Autism Spectrum Disorder (ASD) is a complex neurodevelopmental disorder with a worldwide prevalence of about 1%, characterized by impairments in social interaction, communication, repetitive patterns of behaviors, and can be associated with hyper- or hypo-reactivity of sensory stimulation and cognitive disability. ASD comorbid features include internalizing and externalizing symptoms such as anxiety, depression, hyperactivity, and attention problems. The precise etiology of ASD is still unknown and it is undoubted that the disorder is linked to some extent to both genetic and environmental factors. It is also well-documented and known that one of the most striking and consistent finding in ASD is the higher prevalence in males compared to females, with around 70% of ASD cases described being males. The present review looked into the most significant studies that attempted to investigate differences in ASD males and females thus trying to shade some light on the peculiar characteristics of this prevalence in terms of diagnosis, imaging, major autistic-like behavior and sex-dependent uniqueness. The study also discussed sex differences found in animal models of ASD, to provide a possible explanation of the neurological mechanisms underpinning the different presentation of autistic symptoms in males and females.
Collapse
Affiliation(s)
- Antonio Napolitano
- Medical Physics Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Sara Schiavi
- Section of Biomedical Sciences and Technologies, Science Department, Roma Tre University, Rome, Italy
| | - Piergiorgio La Rosa
- Division of Neuroscience, Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Maria Camilla Rossi-Espagnet
- Neuroradiology Unit, Imaging Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- NESMOS, Neuroradiology Department, S. Andrea Hospital Sapienza University, Rome, Italy
| | - Sara Petrillo
- Head Child and Adolescent Psychiatry Unit, Neuroscience Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Francesca Bottino
- Medical Physics Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Emanuela Tagliente
- Medical Physics Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Daniela Longo
- Neuroradiology Unit, Imaging Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Elisabetta Lupi
- Head Child and Adolescent Psychiatry Unit, Neuroscience Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Laura Casula
- Head Child and Adolescent Psychiatry Unit, Neuroscience Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Giovanni Valeri
- Head Child and Adolescent Psychiatry Unit, Neuroscience Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Fiorella Piemonte
- Neuromuscular and Neurodegenerative Diseases Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Viviana Trezza
- Section of Biomedical Sciences and Technologies, Science Department, Roma Tre University, Rome, Italy
| | - Stefano Vicari
- Child Neuropsychiatry Unit, Neuroscience Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- Life Sciences and Public Health Department, Catholic University, Rome, Italy
| |
Collapse
|
25
|
Mapelli L, Soda T, D’Angelo E, Prestori F. The Cerebellar Involvement in Autism Spectrum Disorders: From the Social Brain to Mouse Models. Int J Mol Sci 2022; 23:ijms23073894. [PMID: 35409253 PMCID: PMC8998980 DOI: 10.3390/ijms23073894] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 02/04/2023] Open
Abstract
Autism spectrum disorders (ASD) are pervasive neurodevelopmental disorders that include a variety of forms and clinical phenotypes. This heterogeneity complicates the clinical and experimental approaches to ASD etiology and pathophysiology. To date, a unifying theory of these diseases is still missing. Nevertheless, the intense work of researchers and clinicians in the last decades has identified some ASD hallmarks and the primary brain areas involved. Not surprisingly, the areas that are part of the so-called “social brain”, and those strictly connected to them, were found to be crucial, such as the prefrontal cortex, amygdala, hippocampus, limbic system, and dopaminergic pathways. With the recent acknowledgment of the cerebellar contribution to cognitive functions and the social brain, its involvement in ASD has become unmistakable, though its extent is still to be elucidated. In most cases, significant advances were made possible by recent technological developments in structural/functional assessment of the human brain and by using mouse models of ASD. Mouse models are an invaluable tool to get insights into the molecular and cellular counterparts of the disease, acting on the specific genetic background generating ASD-like phenotype. Given the multifaceted nature of ASD and related studies, it is often difficult to navigate the literature and limit the huge content to specific questions. This review fulfills the need for an organized, clear, and state-of-the-art perspective on cerebellar involvement in ASD, from its connections to the social brain areas (which are the primary sites of ASD impairments) to the use of monogenic mouse models.
Collapse
Affiliation(s)
- Lisa Mapelli
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (T.S.); (E.D.)
- Correspondence: (L.M.); (F.P.)
| | - Teresa Soda
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (T.S.); (E.D.)
| | - Egidio D’Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (T.S.); (E.D.)
- Brain Connectivity Center, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Francesca Prestori
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (T.S.); (E.D.)
- Correspondence: (L.M.); (F.P.)
| |
Collapse
|
26
|
Kothari C, Srivastava S, Kousa Y, Izem R, Gierdalski M, Kim D, Good A, Dies KA, Geisel G, Morizono H, Gallo V, Pomeroy SL, Garden GA, Guay-Woodford L, Sahin M, Avillach P. Validation of a computational phenotype for finding patients eligible for genetic testing for pathogenic PTEN variants across three centers. J Neurodev Disord 2022; 14:24. [PMID: 35321655 PMCID: PMC8943944 DOI: 10.1186/s11689-022-09434-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 03/04/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Computational phenotypes are most often combinations of patient billing codes that are highly predictive of disease using electronic health records (EHR). In the case of rare diseases that can only be diagnosed by genetic testing, computational phenotypes identify patient cohorts for genetic testing and possible diagnosis. This article details the validation of a computational phenotype for PTEN hamartoma tumor syndrome (PHTS) against the EHR of patients at three collaborating clinical research centers: Boston Children's Hospital, Children's National Hospital, and the University of Washington. METHODS A combination of billing codes from the International Classification of Diseases versions 9 and 10 (ICD-9 and ICD-10) for diagnostic criteria postulated by a research team at Cleveland Clinic was used to identify patient cohorts for genetic testing from the clinical data warehouses at the three research centers. Subsequently, the EHR-including billing codes, clinical notes, and genetic reports-of these patients were reviewed by clinical experts to identify patients with PHTS. RESULTS The PTEN genetic testing yield of the computational phenotype, the number of patients who needed to be genetically tested for incidence of pathogenic PTEN gene variants, ranged from 82 to 94% at the three centers. CONCLUSIONS Computational phenotypes have the potential to enable the timely and accurate diagnosis of rare genetic diseases such as PHTS by identifying patient cohorts for genetic sequencing and testing.
Collapse
Affiliation(s)
- Cartik Kothari
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115, USA
| | - Siddharth Srivastava
- Department of Neurology, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Youssef Kousa
- Division of Neurology, Children's National Hospital, Washington, DC, 20010, USA.,Department of Genomics and Precision Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, 20052, USA
| | - Rima Izem
- Division of Biostatistics and Study Methodology, Children's National Research Institute, Silver Spring, MD, 20910, USA
| | - Marcin Gierdalski
- Division of Biostatistics and Study Methodology, Children's National Hospital, Washington, DC, 20010, USA
| | - Dongkyu Kim
- Division of Biostatistics and Study Methodology, Children's National Hospital, Washington, DC, 20010, USA
| | - Amy Good
- Institute for Translational Health Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Kira A Dies
- Department of Neurology, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Gregory Geisel
- Department of Neurology, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Hiroki Morizono
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC, 20010, USA.,Department of Genomics and Precision Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, 20052, USA
| | - Vittorio Gallo
- Center for Neuroscience Research, Children's National Research Institute, Children's National Hospital, Washington, DC, 20010, USA
| | - Scott L Pomeroy
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Gwenn A Garden
- Department of Neurology and Center on Human Development and Disability, University of Washington, Seattle, WA, 98195, USA.,Department of Neurology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Lisa Guay-Woodford
- Center for Translational Research, Children's National Hospital, Washington, DC, 20010, USA
| | - Mustafa Sahin
- Department of Neurology, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Paul Avillach
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
27
|
Pena-Couso L, Ercibengoa M, Mercadillo F, Gómez-Sánchez D, Inglada-Pérez L, Santos M, Lanillos J, Gutiérrez-Abad D, Hernández A, Carbonell P, Letón R, Robledo M, Rodríguez-Antona C, Perea J, Urioste M. Considerations on diagnosis and surveillance measures of PTEN hamartoma tumor syndrome: clinical and genetic study in a series of Spanish patients. Orphanet J Rare Dis 2022; 17:85. [PMID: 35227301 PMCID: PMC8886852 DOI: 10.1186/s13023-021-02079-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/10/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The limited knowledge about the PTEN hamartoma tumor syndrome (PHTS) makes its diagnosis a challenging task. We aimed to define the clinical and genetic characteristics of this syndrome in the Spanish population and to identify new genes potentially associated with the disease. RESULTS We reviewed the clinical data collected through a specific questionnaire in a series of 145 Spanish patients with a phenotypic features compatible with PHTS and performed molecular characterization through several approaches including next generation sequencing and whole exome sequencing (WES). Macrocephaly, mucocutaneous lesions, gastrointestinal polyposis and obesity are prevalent phenotypic features in PHTS and help predict the presence of a PTEN germline variant in our population. We also find that PHTS patients are at risk to develop cancer in childhood or adolescence. Furthermore, we observe a high frequency of variants in exon 1 of PTEN, which are associated with renal cancer and overexpression of KLLN and PTEN. Moreover, WES revealed variants in genes like NEDD4 that merit further research. CONCLUSIONS This study expands previously reported findings in other PHTS population studies and makes new contributions regarding clinical and molecular aspects of PHTS, which are useful for translation to the clinic and for new research lines.
Collapse
Affiliation(s)
- Laura Pena-Couso
- Familial Cancer Clinical Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - María Ercibengoa
- Respiratory Infection and Antimicrobial Resistance Group, Infectious Diseases Area, BioDonostia; Microbiology Department, Osakidetza Basque Health Service, Donostialdea Integrated Health Organization, San Sebastian, Spain
| | - Fátima Mercadillo
- Familial Cancer Clinical Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - David Gómez-Sánchez
- Hereditary Cancer Laboratory, 12 de Octubre University Hospital, i+12 Research Institute, Madrid, Spain
- Clinical and Translational Lung Cancer Research Unit, i+12 Research Institute and Biomedical Research Networking Center in Oncology (CIBERONC), Madrid, Spain
| | - Lucía Inglada-Pérez
- Biostatistics Unit, Statistics and Operational Research Department, Faculty of Medicine, Complutense University of Madrid, Madrid, Spain
| | - María Santos
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Javier Lanillos
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - David Gutiérrez-Abad
- Medical Oncology Service, University Hospital of Fuenlabrada, Fuenlabrada, Spain
| | - Almudena Hernández
- Dermatology Service, University Hospital of Fuenlabrada, Fuenlabrada, Spain
| | - Pablo Carbonell
- Biochemistry and Clinical Genetics Centre, Virgen Arrixaca University Hospital, Murcia, Spain
| | - Rocío Letón
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Mercedes Robledo
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Rare Diseases Networking Biomedical Research Centre (CIBERER), Madrid, Spain
| | - Cristina Rodríguez-Antona
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Rare Diseases Networking Biomedical Research Centre (CIBERER), Madrid, Spain
| | - José Perea
- Surgery Department, Fundación Jiménez Díaz University Hospital, Madrid, Spain
- Health Research Institute-Fundación Jiménez Díaz University Hospital, Madrid, Spain
| | - Miguel Urioste
- Familial Cancer Clinical Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.
| |
Collapse
|
28
|
Plamper M, Gohlke B, Woelfle J. PTEN hamartoma tumor syndrome in childhood and adolescence-a comprehensive review and presentation of the German pediatric guideline. Mol Cell Pediatr 2022; 9:3. [PMID: 35187600 PMCID: PMC8859017 DOI: 10.1186/s40348-022-00135-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 01/24/2022] [Indexed: 11/24/2022] Open
Abstract
Background The PTEN hamartoma tumor syndrome (PHTS) encompasses several different syndromes, which are linked to an autosomal-dominant mutation of the tumor suppressor PTEN gene on chromosome 10. Loss of PTEN activity leads to an increased phosphorylation of different cell proteins, which may have an influence on growth, migration, and apoptosis. Excessive activity of the PI3K/AKT/mTOR pathway due to PTEN deficiency may lead to the development of benign and malignant tumors and overgrowth. Diagnosis of PHTS in childhood can be even more challenging than in adulthood because of a lack of well-defined diagnostic criteria. So far, there are no official recommendations for cancer surveillance in affected children and adolescents. Main body All individuals with PHTS are at high risk for tumor development and thus might benefit from cancer surveillance strategies. In childhood, macrocephaly may be the only evident symptom, but developmental delay, behavioral problems, dermatological features (e.g., penile freckling), vascular anomalies, lipoma, or enlarged perivascular spaces in cerebral magnetic resonance imaging (cMRI) may help to establish the diagnosis. Regular psychomotor assessment and assistance in subjects with neurological impairment play an important role in the management of affected children. Already in early childhood, affected patients bear a high risk to develop thyroid pathologies. For that reason, monitoring of thyroid morphology and function should be established right after diagnosis. We present a detailed description of affected organ systems, tools for initiation of molecular diagnostic and screening recommendations for patients < 18 years of age. Conclusion Affected families frequently experience a long way until the correct diagnosis for their child’s peculiarity is made. Even after diagnosis, it is not easy to find a physician who is familiar with this rare group of diseases. Because of a still-limited database, it is not easy to establish evidence-based (cancer) surveillance recommendations. The presented screening recommendation should thus be revised regularly according to the current state of knowledge.
Collapse
Affiliation(s)
- Michaela Plamper
- Pediatric Endocrinology and Diabetology Division, Children's Hospital, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
| | - Bettina Gohlke
- Pediatric Endocrinology and Diabetology Division, Children's Hospital, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Joachim Woelfle
- Children's and Adolescents Hospital, University of Erlangen, Erlangen, Germany
| |
Collapse
|
29
|
Clipperton-Allen AE, Swick H, Botero V, Aceti M, Ellegood J, Lerch JP, Page DT. Pten haploinsufficiency causes desynchronized growth of brain areas involved in sensory processing. iScience 2022; 25:103796. [PMID: 35198865 PMCID: PMC8844819 DOI: 10.1016/j.isci.2022.103796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 08/25/2021] [Accepted: 01/18/2022] [Indexed: 01/16/2023] Open
Abstract
How changes in brain scaling relate to altered behavior is an important question in neurodevelopmental disorder research. Mice with germline Pten haploinsufficiency (Pten +/-) closely mirror the abnormal brain scaling and behavioral deficits seen in humans with macrocephaly/autism syndrome, which is caused by PTEN mutations. We explored whether deviation from normal patterns of growth can predict behavioral abnormalities. Brain regions associated with sensory processing (e.g., pons and inferior colliculus) had the biggest deviations from expected volume. While Pten +/- mice showed little or no abnormal behavior on most assays, both sexes showed sensory deficits, including impaired sensorimotor gating and hyporeactivity to high-intensity stimuli. Developmental analysis of this phenotype showed sexual dimorphism for hyporeactivity. Mapping behavioral phenotypes of Pten +/- mice onto relevant brain regions suggested abnormal behavior is likely when associated with relatively enlarged brain regions, while unchanged or relatively decreased brain regions have little predictive value.
Collapse
Affiliation(s)
| | - Hannah Swick
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Valentina Botero
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA,Doctoral Program in Chemical and Biological Sciences, The Skaggs Graduate School of Chemical and Biological Sciences at Scripps Research, Jupiter, FL 33458, USA
| | - Massimiliano Aceti
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Jacob Ellegood
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, ON M5T 3H7, Canada
| | - Jason P. Lerch
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, ON M5T 3H7, Canada,Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, Oxfordshire OX3 9DU, UK
| | - Damon T. Page
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA,Doctoral Program in Chemical and Biological Sciences, The Skaggs Graduate School of Chemical and Biological Sciences at Scripps Research, Jupiter, FL 33458, USA,Corresponding author
| |
Collapse
|
30
|
Cummings K, Watkins A, Jones C, Dias R, Welham A. Behavioural and psychological features of PTEN mutations: a systematic review of the literature and meta-analysis of the prevalence of autism spectrum disorder characteristics. J Neurodev Disord 2022; 14:1. [PMID: 34983360 PMCID: PMC8903687 DOI: 10.1186/s11689-021-09406-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 11/08/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Phosphatase and tensin homologue (PTEN) is a cancer suppressor gene. Constitutional mutations affecting this gene are associated with several conditions, collectively termed PTEN hamartoma tumour syndromes (PHTS). In addition to hamartomas, PTEN aberrations have been associated with a range of non-tumoural phenotypes such as macrocephaly, and research indicates possibly increased rates of developmental delay and autism spectrum disorder (ASD) for people with germline mutations affecting PTEN. METHOD A systematic review of literature reporting behavioural and psychological variables for people with constitutional PTEN mutations/PHTS was conducted using four databases. Following in-depth screening, 25 articles met the inclusion criteria and were used in the review. Fourteen papers reported the proportion of people with PTEN mutations/PTHS meeting criteria for or having characteristics of ASD and were thus used in a pooled prevalence meta-analysis. RESULTS Meta-analysis using a random effects model estimated pooled prevalence of ASD characteristics at 25% (95% CI 16-33%), although this should be interpreted cautiously due to possible biases in existing literature. Intellectual disability and developmental delay (global, motor and speech and language) were also reported frequently. Emotional difficulties and impaired cognitive functioning in specific domains were noted but assessed/reported less frequently. Methods of assessment of psychological/behavioural factors varied widely (with retrospective examination of medical records common). CONCLUSIONS Existing research suggests approximately 25% of people with constitutional PTEN mutations may meet criteria for or have characteristics of ASD. Studies have also begun to establish a range of possible cognitive impairments in affected individuals, especially when ASD is also reported. However, further large-scale studies are needed to elucidate psychological/behavioural corollaries of this mutation, and how they may relate to physiological/physical characteristics.
Collapse
Affiliation(s)
- Katherine Cummings
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Lancaster Road, Leicester, LE1 7HA UK
| | - Alice Watkins
- Neuropsychology Service, Great Ormond Street Hospital, London, WC1N 3JH UK
- Department of Psychology, University of Birmingham, Birmingham, B15 2TT UK
| | - Chris Jones
- Department of Psychology, University of Birmingham, Birmingham, B15 2TT UK
| | - Renuka Dias
- Department of Endocrinology and Diabetes, Birmingham Children’s Hospital, Birmingham Women’s, and Children’s NHS Foundation Trust, Steelhouse Lane, Birmingham, UK B4 6NH
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston Birmingham, UK B15 2TT
| | - Alice Welham
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Lancaster Road, Leicester, LE1 7HA UK
- Department of Psychology, University of Birmingham, Birmingham, B15 2TT UK
| |
Collapse
|
31
|
Dhangar S, Panchal P, Ghatanatti J, Suralkar J, Shah A, Vundinti BR. Novel deletion of exon 3 in TYR gene causing Oculocutaneous albinism 1B in an Indian family along with intellectual disability associated with chromosomal copy number variations. BMC Med Genomics 2022; 15:2. [PMID: 34980106 PMCID: PMC8722050 DOI: 10.1186/s12920-021-01152-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 12/20/2021] [Indexed: 12/13/2022] Open
Abstract
Background Oculocutaneous albinism (OCA) is an autosomal recessive disorder characterized by hypo-pigmentation of skin, hair, and eyes. The OCA clinical presentation is due to a deficiency of melanin biosynthesis. Intellectual disability (ID) in OCA cases is a rare clinical presentation and appropriate diagnosis of ID is challenging through clinical examination. We report an Indian family with a rare co-inheritance of OCA1B and ID due to a novel TYR gene variant and chromosomal copy number variations. Methods We have done a study on three siblings (2 males and 1 female) of a family where all of them presented with hypopigmented skin, hair and eyes. The male children and their father was affected with ID. Targeted exome sequencing and multiplex ligation-dependent probe amplification analysis were carried out to identify the OCA1B and ID associated genomic changes. Further Array-CGH was performed using SurePrint G3 Human CGH + SNP, 8*60 K array. Results A rare homozygous deletion of exon 3 in TYR gene causing OCA1B was identified in all three children. The parents were found to be heterozygous carriers. The Array-CGH analysis revealed paternally inherited heterozygous deletion (1.9 MB) of 15q11.1-> 15q11.2 region in all three children. Additionally, paternally inherited heterozygous deletion (2.6 MB) of 10q23.2-> 10q23.31 region was identified in the first male child; this may be associated with ID as the father and the child both presented with ID. While the 2nd male child had a denovo duplication of 13q31.1-> 13q31.3 chromosomal region. Conclusion A rare homozygous TYR gene exon 3 deletion in the present study is the cause of OCA1B in all three children, and the additional copy number variations are associated with the ID. The study highlights the importance of combinational genetic approaches for diagnosing two different co-inherited disorders (OCA and ID). Hence, OCA cases with additional clinical presentation need to be studied in-depth for the appropriate management of the disease. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-021-01152-1.
Collapse
Affiliation(s)
- Somprakash Dhangar
- Department of Cytogenetics, National Institute of Immunohaematology (ICMR), 13th floor, new multistoried building, K.E.M Hospital campus, Parel, Mumbai, 400012, India
| | - Purvi Panchal
- Department of Cytogenetics, National Institute of Immunohaematology (ICMR), 13th floor, new multistoried building, K.E.M Hospital campus, Parel, Mumbai, 400012, India
| | - Jagdeeshwar Ghatanatti
- Department of Cytogenetics, National Institute of Immunohaematology (ICMR), 13th floor, new multistoried building, K.E.M Hospital campus, Parel, Mumbai, 400012, India
| | - Jitendra Suralkar
- Department of Cytogenetics, National Institute of Immunohaematology (ICMR), 13th floor, new multistoried building, K.E.M Hospital campus, Parel, Mumbai, 400012, India
| | - Anjali Shah
- Department of Cytogenetics, National Institute of Immunohaematology (ICMR), 13th floor, new multistoried building, K.E.M Hospital campus, Parel, Mumbai, 400012, India
| | - Babu Rao Vundinti
- Department of Cytogenetics, National Institute of Immunohaematology (ICMR), 13th floor, new multistoried building, K.E.M Hospital campus, Parel, Mumbai, 400012, India.
| |
Collapse
|
32
|
Erbescu A, Papuc SM, Budisteanu M, Arghir A, Neagu M. Re-emerging concepts of immune dysregulation in autism spectrum disorders. Front Psychiatry 2022; 13:1006612. [PMID: 36339838 PMCID: PMC9626859 DOI: 10.3389/fpsyt.2022.1006612] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by communication and social interaction deficits, and by restricted interests and stereotyped, repetitive behavior patterns. ASD has a strong genetic component and a complex architecture characterized by the interplay of rare and common genetic variants. Recently, increasing evidence suggest a significant contribution of immune system dysregulation in ASD. The present paper reviews the latest updates regarding the altered immune landscape of this complex disorder highlighting areas with potential for biomarkers discovery as well as personalization of therapeutic approaches. Cross-talk between the central nervous system and immune system has long been envisaged and recent evidence brings insights into the pathways connecting the brain to the immune system. Disturbance of cytokine levels plays an important role in the establishment of a neuroinflammatory milieu in ASD. Several other immune molecules involved in antigen presentation and inflammatory cellular phenotypes are also at play in ASD. Maternal immune activation, the presence of brain-reactive antibodies and autoimmunity are other potential prenatal and postnatal contributors to ASD pathophysiology. The molecular players involved in oxidative-stress response and mitochondrial system function, are discussed as contributors to the pro-inflammatory pattern. The gastrointestinal inflammation pathways proposed to play a role in ASD are also discussed. Moreover, the body of evidence regarding some of the genetic factors linked to the immune system dysregulation is reviewed and discussed. Last, but not least, the epigenetic traits and their interactions with the immune system are reviewed as an expanding field in ASD research. Understanding the immune-mediated pathways that influence brain development and function, metabolism, and intestinal homeostasis, may lead to the identification of robust diagnostic or predictive biomarkers for ASD individuals. Thus, novel therapeutic approaches could be developed, ultimately aiming to improve their quality of life.
Collapse
Affiliation(s)
- Alina Erbescu
- Victor Babes National Institute of Pathology, Bucharest, Romania.,Faculty of Biology, Doctoral School, University of Bucharest, Bucharest, Romania
| | | | - Magdalena Budisteanu
- Victor Babes National Institute of Pathology, Bucharest, Romania.,Prof. Dr. Alex. Obregia Clinical Hospital of Psychiatry, Bucharest, Romania.,Faculty of Medicine, Titu Maiorescu University, Bucharest, Romania
| | - Aurora Arghir
- Victor Babes National Institute of Pathology, Bucharest, Romania
| | - Monica Neagu
- Victor Babes National Institute of Pathology, Bucharest, Romania.,Faculty of Biology, Doctoral School, University of Bucharest, Bucharest, Romania.,Colentina Clinical Hospital, Bucharest, Romania
| |
Collapse
|
33
|
Du X, Glass JE, Balow S, Dyer LM, Rathbun PA, Guan Q, Liu J, Wu Y, Dawson DB, Walters-Sen L, Smolarek TA, Zhang W. Genetic Testing in Patients with Neurodevelopmental Disorders: Experience of 511 Patients at Cincinnati Children's Hospital Medical Center. J Autism Dev Disord 2021; 52:4828-4842. [PMID: 34773222 PMCID: PMC9556427 DOI: 10.1007/s10803-021-05337-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2021] [Indexed: 11/28/2022]
Abstract
Our institution developed and continuously improved a Neurodevelopmental Reflex (NDR) algorithm to help physicians with genetic test ordering for neurodevelopmental disorders (NDDs). To assess its performance, we performed a retrospective study of 511 patients tested through NDR from 2018 to 2019. SNP Microarray identified pathogenic/likely pathogenic copy number variations in 27/511 cases (5.28%). Among the 484 patients tested for Fragile X FMR1 CGG repeats, a diagnosis (0.20%) was established for one male mosaic for a full mutation, a premutation, and a one-CGG allele. Within the 101 normocephalic female patients tested for MECP2, two patients were found to carry pathogenic variants (1.98%). This retrospective study suggested the NDR algorithm effectively established diagnoses for patients with NDDs with a yield of 5.87%.
Collapse
Affiliation(s)
- Xiaoli Du
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - Jennifer Elaine Glass
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - Stephanie Balow
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Lisa M Dyer
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Pamela A Rathbun
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA.,Pathology and Laboratory Medicine, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Qiaoning Guan
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jie Liu
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Yaning Wu
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - D Brian Dawson
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Lauren Walters-Sen
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Teresa A Smolarek
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Wenying Zhang
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA. .,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
34
|
Frewer V, Gilchrist CP, Collins SE, Williams K, Seal ML, Leventer RJ, Amor DJ. A systematic review of brain MRI findings in monogenic disorders strongly associated with autism spectrum disorder. J Child Psychol Psychiatry 2021; 62:1339-1352. [PMID: 34426966 DOI: 10.1111/jcpp.13510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/06/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Research on monogenic forms of autism spectrum disorder (autism) can inform our understanding of genetic contributions to the autism phenotype; yet, there is much to be learned about the pathways from gene to brain structure to behavior. This systematic review summarizes and evaluates research on brain magnetic resonance imaging (MRI) findings in monogenic conditions that have strong association with autism. This will improve understanding of the impact of genetic variability on brain structure and related behavioral traits in autism. METHODS The search strategy for this systematic review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Risk of bias (ROB) assessment was completed on included studies using the Newcastle-Ottawa Scales. RESULTS Of 4,287 studies screened, 69 were included pertaining to 13 of the top 20 genes with the strongest association with autism. The greatest number of studies related to individuals with PTEN variants and autism. Brain MRI abnormalities were reported for 12 of the 13 genes studied, and in 51.7% of participants across all 13 genes, including 100% of participants with ARID1B variants. Specific MRI findings were highly variable, with no clear patterns emerging within or between the 13 genes, although white matter abnormalities were the most common. Few studies reported specific details about methods for acquisition and processing of brain MRI, and descriptors for brain abnormalities were variable. ROB assessment indicated high ROB for all studies, largely due to small sample sizes and lack of comparison groups. CONCLUSIONS Brain abnormalities are common in this population of individuals, in particular, children; however, a range of different brain abnormalities were reported within and between genes. Directions for future neuroimaging research in monogenic autism are suggested.
Collapse
Affiliation(s)
- Veronica Frewer
- Murdoch Children's Research Institute, Parkville, Vic., Australia.,Department of Paediatrics, The University of Melbourne, Parkville, Vic., Australia
| | - Courtney P Gilchrist
- Murdoch Children's Research Institute, Parkville, Vic., Australia.,Neurodevelopment in Health and Disease, RMIT University, Bundoora, Vic., Australia
| | - Simonne E Collins
- Murdoch Children's Research Institute, Parkville, Vic., Australia.,School of Psychological Sciences, Turner Institute for Brain & Mental Health, Monash University, Melbourne, Vic., Australia
| | - Katrina Williams
- Monash University, Melbourne, Vic., Australia.,Monash Children's Hospital, Melbourne, Vic., Australia
| | - Marc L Seal
- Murdoch Children's Research Institute, Parkville, Vic., Australia.,Department of Paediatrics, The University of Melbourne, Parkville, Vic., Australia
| | - Richard J Leventer
- Murdoch Children's Research Institute, Parkville, Vic., Australia.,Department of Paediatrics, The University of Melbourne, Parkville, Vic., Australia.,Royal Children's Hospital, Parkville, Vic., Australia
| | - David J Amor
- Murdoch Children's Research Institute, Parkville, Vic., Australia.,Department of Paediatrics, The University of Melbourne, Parkville, Vic., Australia.,Royal Children's Hospital, Parkville, Vic., Australia
| |
Collapse
|
35
|
PTEN mutations in autism spectrum disorder and congenital hydrocephalus: developmental pleiotropy and therapeutic targets. Trends Neurosci 2021; 44:961-976. [PMID: 34625286 DOI: 10.1016/j.tins.2021.08.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 12/27/2022]
Abstract
The lack of effective treatments for autism spectrum disorder (ASD) and congenital hydrocephalus (CH) reflects the limited understanding of the biology underlying these common neurodevelopmental disorders. Although ASD and CH have been extensively studied as independent entities, recent human genomic and preclinical animal studies have uncovered shared molecular pathophysiology. Here, we review and discuss phenotypic, genomic, and molecular similarities between ASD and CH, and identify the PTEN-PI3K-mTOR (phosphatase and tensin homolog-phosphoinositide 3-kinase-mammalian target of rapamycin) pathway as a common underlying mechanism that holds diagnostic, prognostic, and therapeutic promise for individuals with ASD and CH.
Collapse
|
36
|
Sato A, Ikeda K. Genetic and Environmental Contributions to Autism Spectrum Disorder Through Mechanistic Target of Rapamycin. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2021; 2:95-105. [PMID: 36325164 PMCID: PMC9616270 DOI: 10.1016/j.bpsgos.2021.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 02/06/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder that affects an individual’s reciprocal social interaction and communication ability. Numerous genetic and environmental conditions are associated with ASD, including tuberous sclerosis complex, phosphatase and tensin homolog hamartoma tumor syndrome, fragile X syndrome, and neurofibromatosis 1. The pathogenic molecular mechanisms of these diseases are integrated into the hyperactivation of mTORC1 (mechanistic target of rapamycin complex 1). Rodent models of these diseases have shown high mTORC1 activity in the brain and ASD-related behavioral deficits, which were reversed by the mTORC1 inhibitor rapamycin. Environmental stress can also affect this signaling pathway. In utero exposure to valproate caused ASD in offspring and enhanced mTORC1 activity in the brain, which was sensitive to mTORC1 inhibition. mTORC1 is a signaling hub for diverse cellular functions, including protein synthesis, through the phosphorylation of its targets, such as ribosomal protein S6 kinases. Metabotropic glutamate receptor 5–mediated synaptic function is also affected by the dysregulation of mTORC1 activity, such as in fragile X syndrome and tuberous sclerosis complex. Reversing these downstream changes that are associated with mTORC1 activation normalizes behavioral defects in rodents. Despite abundant preclinical evidence, few clinical studies have investigated the treatment of ASD and cognitive deficits. Therapeutics other than mTORC1 inhibitors failed to show efficacy in fragile X syndrome and neurofibromatosis 1. mTORC1 inhibitors have been tested mainly in tuberous sclerosis complex, and their effects on ASD and neuropsychological deficits are promising. mTORC1 is a promising target for the pharmacological treatment of ASD associated with mTORC1 activation.
Collapse
|
37
|
Huang ZA, Zhang J, Zhu Z, Wu EQ, Tan KC. Identification of Autistic Risk Candidate Genes and Toxic Chemicals via Multilabel Learning. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2021; 32:3971-3984. [PMID: 32841125 DOI: 10.1109/tnnls.2020.3016357] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
As a group of complex neurodevelopmental disorders, autism spectrum disorder (ASD) has been reported to have a high overall prevalence, showing an unprecedented spurt since 2000. Due to the unclear pathomechanism of ASD, it is challenging to diagnose individuals with ASD merely based on clinical observations. Without additional support of biochemical markers, the difficulty of diagnosis could impact therapeutic decisions and, therefore, lead to delayed treatments. Recently, accumulating evidence have shown that both genetic abnormalities and chemical toxicants play important roles in the onset of ASD. In this work, a new multilabel classification (MLC) model is proposed to identify the autistic risk genes and toxic chemicals on a large-scale data set. We first construct the feature matrices and partially labeled networks for autistic risk genes and toxic chemicals from multiple heterogeneous biological databases. Based on both global and local measure metrics, the simulation experiments demonstrate that the proposed model achieves superior classification performance in comparison with the other state-of-the-art MLC methods. Through manual validation with existing studies, 60% and 50% out of the top-20 predicted risk genes are confirmed to have associations with ASD and autistic disorder, respectively. To the best of our knowledge, this is the first computational tool to identify ASD-related risk genes and toxic chemicals, which could lead to better therapeutic decisions of ASD.
Collapse
|
38
|
Yehia L, Eng C. PTEN hamartoma tumour syndrome: what happens when there is no PTEN germline mutation? Hum Mol Genet 2021; 29:R150-R157. [PMID: 32568377 DOI: 10.1093/hmg/ddaa127] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/14/2020] [Accepted: 06/15/2020] [Indexed: 12/13/2022] Open
Abstract
Hereditary cancer syndromes represent ~10% of all incident cancers. It is important to identify individuals having these disorders because, unlike patients with sporadic cancer, these patients require specialised life-long care, with implications for their families. Importantly, the identification of alterations in cancer-predisposing genes facilitates gene-informed molecular diagnosis, cancer risk assessment and gene-specific clinical management. Moreover, knowledge about gene function in the inherited cancers offers insights towards biological processes pertinent to the more common sporadic cancers. Conversely, without a known gene, clinical management is less precise, and it is impossible to offer predictive testing of family members. PTEN hamartoma tumour syndrome (PHTS) is an umbrella term encompassing four overgrowth and cancer predisposition disorders associated with germline PTEN mutations. With time, it became evident that only a finite subset of individuals with PHTS-associated phenotypes harbour germline PTEN mutations. Therefore, non-PTEN aetiologies exist in PTEN wildtype patients. Indeed, gene discovery efforts over the last decade elucidated multiple candidate cancer predisposition genes. While a subset of genes (e.g. AKT1, PIK3CA) are biologically plausible as being key effectors within the PTEN signalling cascade, other genes required meticulous functional interrogation to explain their contribution to PHTS-related phenotypes. Collectively, the extensive phenotypic heterogeneity of the clinical syndromes typically united by PTEN is reflected by the genetic heterogeneity revealed through gene discovery. Validating these gene discoveries is critical because, while PTEN wildtype patients can be diagnosed clinically, they do not have the benefit of specific gene-informed risk assessment and subsequent management.
Collapse
Affiliation(s)
- Lamis Yehia
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Charis Eng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.,Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA.,Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA.,Germline High Risk Cancer Focus Group, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
39
|
Clipperton-Allen AE, Zhang A, Cohen OS, Page DT. Environmental Enrichment Rescues Social Behavioral Deficits and Synaptic Abnormalities in Pten Haploinsufficient Mice. Genes (Basel) 2021; 12:1366. [PMID: 34573348 PMCID: PMC8468545 DOI: 10.3390/genes12091366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/20/2021] [Accepted: 08/26/2021] [Indexed: 01/16/2023] Open
Abstract
Pten germline haploinsufficient (Pten+/-) mice, which model macrocephaly/autism syndrome, show social and repetitive behavior deficits, early brain overgrowth, and cortical-subcortical hyperconnectivity. Previous work indicated that altered neuronal connectivity may be a substrate for behavioral deficits. We hypothesized that exposing Pten+/- mice to environmental enrichment after brain overgrowth has occurred may facilitate adaptation to abnormal "hard-wired" connectivity through enhancing synaptic plasticity. Thus, we reared Pten+/- mice and their wild-type littermates from weaning under either standard (4-5 mice per standard-sized cage, containing only bedding and nestlet) or enriched (9-10 mice per large-sized cage, containing objects for exploration and a running wheel, plus bedding and nestlet) conditions. Adult mice were tested on social and non-social assays in which Pten+/- mice display deficits. Environmental enrichment rescued sex-specific deficits in social behavior in Pten+/- mice and partially rescued increased repetitive behavior in Pten+/- males. We found that Pten+/- mice show increased excitatory and decreased inhibitory pre-synaptic proteins; this phenotype was also rescued by environmental enrichment. Together, our results indicate that environmental enrichment can rescue social behavioral deficits in Pten+/- mice, possibly through normalizing the excitatory synaptic protein abundance.
Collapse
Affiliation(s)
| | | | | | - Damon Theron Page
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA; (A.E.C.-A.); (A.Z.); (O.S.C.)
| |
Collapse
|
40
|
Stoecklein N, Ahmed AA, Lawson CE, Attard T. PTEN Hamartoma Syndrome in a Child Presenting With Malrotation, Panintestinal Polyps, Severe Anemia, and Protein-Losing Enteropathy. JPGN REPORTS 2021; 2:e092. [PMID: 37205954 PMCID: PMC10191558 DOI: 10.1097/pg9.0000000000000092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 03/21/2021] [Indexed: 05/21/2023]
Abstract
PTEN hamartoma syndrome (PTEN-HS) is a rare syndrome including neurologic, neurodevelopmental, integumentary, endocrine, and gastrointestinal manifestations. Eosinophilic disorders of the gastrointestinal system are diverse group of disorders reported to be more common in PTEN-HS. Our patient had malrotation and obstruction in infancy and subsequently developed macrocephaly and a lipoma. She presented at 4 years of age with both iron deficiency anemia and hypoalbuminemia from protein-losing enteropathy. She went on to endoscopy, colonoscopy, and video capsule endoscopy showing gastric, small intestinal, and colonic polyps but with histology including both a mixed histologic characterization of the polyps as expected with PTEN-HS, along with eosinophilic esophagitis, gastric, duodenal, colonic and polyp eosinophilia. She improved with enteral nutritional support and budesonide. Intestinal malrotation is a previously unrecognized feature of PTEN-HS, in our patient protein-losing enteropathy may have resulted from polyposis or eosinophilic gastrointestinal disorder. Albeit rare, PTEN-HS represents an elusive differential diagnosis with a broad spectrum including gastrointestinal symptomatology. Our case report illustrates the overlap of clinical, endoscopic, and histologic findings that can complicate PTEN-HS.
Collapse
Affiliation(s)
- Nicole Stoecklein
- From the Pediatric Gastroenterology, Children’s Mercy Hospital Kansas City, Kansas City, MO
| | - Atif A. Ahmed
- Anatomic Pathology, Children’s Mercy Hospital Kansas City, University of Missouri-Kansas City School of Medicine, Kansas City, MO
| | | | - Thomas Attard
- Pediatric Gastroenterology, Children’s Mercy Hospital Kansas City, University of Missouri-Kansas City School of Medicine, Kansas City, MO
| |
Collapse
|
41
|
Kosillo P, Bateup HS. Dopaminergic Dysregulation in Syndromic Autism Spectrum Disorders: Insights From Genetic Mouse Models. Front Neural Circuits 2021; 15:700968. [PMID: 34366796 PMCID: PMC8343025 DOI: 10.3389/fncir.2021.700968] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/21/2021] [Indexed: 12/12/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder defined by altered social interaction and communication, and repetitive, restricted, inflexible behaviors. Approximately 1.5-2% of the general population meet the diagnostic criteria for ASD and several brain regions including the cortex, amygdala, cerebellum and basal ganglia have been implicated in ASD pathophysiology. The midbrain dopamine system is an important modulator of cellular and synaptic function in multiple ASD-implicated brain regions via anatomically and functionally distinct dopaminergic projections. The dopamine hypothesis of ASD postulates that dysregulation of dopaminergic projection pathways could contribute to the behavioral manifestations of ASD, including altered reward value of social stimuli, changes in sensorimotor processing, and motor stereotypies. In this review, we examine the support for the idea that cell-autonomous changes in dopaminergic function are a core component of ASD pathophysiology. We discuss the human literature supporting the involvement of altered dopamine signaling in ASD including genetic, brain imaging and pharmacologic studies. We then focus on genetic mouse models of syndromic neurodevelopmental disorders in which single gene mutations lead to increased risk for ASD. We highlight studies that have directly examined dopamine neuron number, morphology, physiology, or output in these models. Overall, we find considerable support for the idea that the dopamine system may be dysregulated in syndromic ASDs; however, there does not appear to be a consistent signature and some models show increased dopaminergic function, while others have deficient dopamine signaling. We conclude that dopamine dysregulation is common in syndromic forms of ASD but that the specific changes may be unique to each genetic disorder and may not account for the full spectrum of ASD-related manifestations.
Collapse
Affiliation(s)
- Polina Kosillo
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Helen S. Bateup
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, United States
- Chan Zuckerberg Biohub, San Francisco, CA, United States
| |
Collapse
|
42
|
Kaymakcalan H, Kaya İ, Cevher Binici N, Nikerel E, Özbaran B, Görkem Aksoy M, Erbilgin S, Özyurt G, Jahan N, Çelik D, Yararbaş K, Yalçınkaya L, Köse S, Durak S, Ercan-Sencicek AG. Prevalence and clinical/molecular characteristics of PTEN mutations in Turkish children with autism spectrum disorders and macrocephaly. Mol Genet Genomic Med 2021; 9:e1739. [PMID: 34268892 PMCID: PMC8404225 DOI: 10.1002/mgg3.1739] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/15/2021] [Indexed: 12/25/2022] Open
Abstract
Background Phosphatase and tensin homolog (PTEN) germline mutations are associated with cancer syndromes (PTEN hamartoma tumor syndrome; PHTS) and in pediatric patients with autism spectrum disorder (ASD) and macrocephaly. The exact prevalence of PTEN mutations in patients with ASD and macrocephaly is uncertain; with prevalence rates ranging from 1% to 17%. Most studies are retrospective and contain more adult than pediatric patients, there is a need for more prospective pediatric studies. Methods We recruited 131 patients (108 males, 23 females) with ASD and macrocephaly between the ages of 3 and 18 from five child and adolescent psychiatry clinics in Turkey from July 2018 to December 2019. We defined macrocephaly as occipito‐frontal HC size at or greater than 2 standard deviations (SD) above the mean for age and sex on standard growth charts. PTEN gene sequence analysis was performed using a MiSeq next generation sequencing (NGS) platform, (Illumina). Conclusion PTEN gene sequence analyses identified three pathogenic/likely pathogenic mutations [NM_000314.6; p.(Pro204Leu), (p.Arg233*) and novel (p.Tyr176Cys*8)] and two variants of uncertain significance (VUS) [NM_000314.6; p.(Ala79Thr) and c.*10del]. We also report that patient with (p.Tyr176Cys*8) mutation has Grade 1 hepatosteatosis, a phenotype not previously described. This is the first PTEN prevalence study of patients with ASD and macrocephaly in Turkey and South Eastern Europe region with a largest homogenous cohort. The prevalence of PTEN mutations was found 3.8% (VUS included) or 2.29% (VUS omitted). We recommend testing for PTEN mutations in all patients with ASD and macrocephaly.
Collapse
Affiliation(s)
- Hande Kaymakcalan
- Pediatric Genetics Unit, Department of Pediatrics, Demiroglu Bilim University, Istanbul, Turkey
| | - İlyas Kaya
- Department of Child and Adolescent Psychiatry, Istanbul University Istanbul Faculty of Medicine, Istanbul, Turkey
| | - Nagihan Cevher Binici
- Department of Child and Adolescent Psychiatry, Dr Behcet Uz Child Disease and Surgery Training and Research Hospital, Istanbul, Turkey
| | - Emrah Nikerel
- Department of Bioinformatics, Yeditepe University, Istanbul, Turkey
| | - Burcu Özbaran
- Department of Child and Adolescent Psychiatry, Ege University Faculty of Medicine, Izmir, Turkey
| | - Mehmet Görkem Aksoy
- Department of Child and Adolescent Psychiatry, Ege University Faculty of Medicine, Izmir, Turkey
| | - Seda Erbilgin
- Department of Child and Adolescent Psychiatry, Prof. Dr. Cemil Tascioglu City Hospital, Istanbul, Turkey
| | - Gonca Özyurt
- Department of Child and Adolescent Psychiatry, Izmir Katip Celebi University Faculty of Medicine, Izmir, Turkey
| | - Noor Jahan
- Department of Child and Adolescent Psychiatry, Ege University Faculty of Medicine, Izmir, Turkey
| | - Didem Çelik
- Department of Child and Adolescent Psychiatry, Ege University Faculty of Medicine, Izmir, Turkey
| | - Kanay Yararbaş
- Department of Medical Genetics, Demiroglu Bilim University, Istanbul, Turkey
| | - Leyla Yalçınkaya
- Department of Molecular Biology and Genetics, Bilkent University Faculty of Science, Ankara, Turkey
| | - Sezen Köse
- Department of Child and Adolescent Psychiatry, Ege University Faculty of Medicine, Izmir, Turkey
| | - Sibel Durak
- Department of Child and Adolescent Psychiatry, Dr Behcet Uz Child Disease and Surgery Training and Research Hospital, Istanbul, Turkey
| | - Adife Gulhan Ercan-Sencicek
- Masonic Medical Research Institute, Utica, New York, USA.,Yale University School of Medicine, New Haven, Connecticut, USA.,Department of Neurosurgery, Program on Neurogenetics, New Haven, Connecticut, USA
| |
Collapse
|
43
|
Grencewicz DJ, Romigh T, Thacker S, Abbas A, Jaini R, Luse D, Eng C. Redefining the PTEN promoter: Identification of novel upstream transcription start regions. Hum Mol Genet 2021; 30:2135-2148. [PMID: 34218272 DOI: 10.1093/hmg/ddab175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/19/2021] [Accepted: 06/23/2021] [Indexed: 11/14/2022] Open
Abstract
Germline mutation of PTEN is causally observed in Cowden syndrome (CS) and is one of the most common, penetrant risk genes for autism spectrum disorder (ASD). However, the majority of individuals who present with CS-like clinical features are PTEN-mutation negative. Reassessment of PTEN promoter regulation may help explain abnormal PTEN dosage, as only the minimal promoter and coding regions are currently included in diagnostic PTEN mutation analysis. Therefore, we reanalyzed the architecture of the PTEN promoter using next-generation sequencing datasets. Specifically, run-on sequencing assays identified two additional transcription start regions (TSRs) at -2053 and - 1906 basepairs from the canonical start of PTEN, thus extending the PTEN 5'UTR and redefining the PTEN promoter. We show that these novel upstream TSRs are active in cancer cell lines, human cancer, and normal tissue. Further, these TSRs can produce novel PTEN transcripts due to the introduction of new splice donors at -2041, -1826, and - 1355, which may allow for splicing out of the PTEN 5'UTR or the first and second exon in upstream-initiated transcripts. Combining ENCODE ChIP-seq and pertinent literature, we also compile and analyze all transcription factors (TFs) binding at the redefined PTEN locus. Enrichment analyses suggest that TFs bind specifically to the upstream TSRs may be implicated in inflammatory processes. Together, these data redefine the architecture of the PTEN promoter, an important step toward a comprehensive model of PTEN transcription regulation, a basis for future investigations into the new promoters' role in disease pathogenesis.
Collapse
Affiliation(s)
- Dennis J Grencewicz
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Todd Romigh
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.,Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Stetson Thacker
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Ata Abbas
- Division of Hematology and Oncology, Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.,Developmental Therapeutics Program, CASE Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Ritika Jaini
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.,Developmental Therapeutics Program, CASE Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.,Germline High Risk Focus Group, CASE Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Donal Luse
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Charis Eng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.,Germline High Risk Focus Group, CASE Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.,Center for Personalized Genetic Healthcare, Cleveland Clinic Community Care and Population Health, Cleveland, OH 44195, USA.,Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
44
|
Moreno-Corona N, Chentout L, Poggi L, Thouenon R, Masson C, Parisot M, Mouel LL, Picard C, André I, Cavazzana M, Perrin L, Durandy A, Azarnoush S, Kracker S. Two Monogenetic Disorders, Activated PI3-Kinase-δ Syndrome 2 and Smith-Magenis Syndrome, in One Patient: Case Report and a Literature Review of Neurodevelopmental Impact in Primary Immunodeficiencies Associated With Disturbed PI3K Signaling. Front Pediatr 2021; 9:688022. [PMID: 34249818 PMCID: PMC8266209 DOI: 10.3389/fped.2021.688022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/12/2021] [Indexed: 01/12/2023] Open
Abstract
Activated PI3-kinase-δ syndrome 2 (APDS2) is caused by autosomal dominant mutations in the PIK3R1 gene encoding the p85α, p55α, and p50α regulatory subunits. Most diagnosed APDS2 patients carry mutations affecting either the splice donor or splice acceptor sites of exon 11 of the PIK3R1 gene responsible for an alternative splice product and a shortened protein. The clinical presentation of APDS2 patients is highly variable, ranging from mild to profound combined immunodeficiency features as massive lymphoproliferation, increased susceptibility to bacterial and viral infections, bronchiectasis, autoimmune manifestations, and occurrence of cancer. Non-immunological features such as growth retardation and neurodevelopmental delay have been reported for APDS2 patients. Here, we describe a patient suffering from an APDS2 associated with a Smith-Magenis syndrome (SMS), a complex genetic disorder affecting, among others, neurological manifestations and review the literature describing neurodevelopmental impacts in APDS2 and other PIDs/monogenetic disorders associated with dysregulated PI3K signaling.
Collapse
Affiliation(s)
- Nidia Moreno-Corona
- Université de Paris, Imagine Institute, Paris, France
- Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, Paris, France
| | - Loïc Chentout
- Université de Paris, Imagine Institute, Paris, France
- Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, Paris, France
| | - Lucie Poggi
- Université de Paris, Imagine Institute, Paris, France
- Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, Paris, France
| | - Romane Thouenon
- Université de Paris, Imagine Institute, Paris, France
- Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, Paris, France
| | - Cecile Masson
- Paris-Descartes Bioinformatics Platform, Imagine Institute, Paris, France
| | - Melanie Parisot
- Genomics Core Facility, Institut Imagine-Structure Fédérative de Recherche Necker, INSERM U1163 et INSERM US24/CNRS UMS3633, Université de Paris, Paris, France
| | - Lou Le Mouel
- Hospital Robert Debré, Pediatric Immune-Hematology Service, Paris, France
| | - Capucine Picard
- Université de Paris, Imagine Institute, Paris, France
- Necker Hospital, Pediatric Hematology-Immunology and Rheumatology Unit, Assistance publique des hôpitaux de Paris (APHP), Paris, France
- Paris Hospital, Study Center for Primary Immunodeficiencies—APHP, Paris, France
| | - Isabelle André
- Université de Paris, Imagine Institute, Paris, France
- Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, Paris, France
| | - Marina Cavazzana
- Université de Paris, Imagine Institute, Paris, France
- Necker Hospital, Biotherapy and Clinical Investigation Centre—APHP, Paris, France
| | - Laurence Perrin
- Hospital Robert Debré, Pediatric Immune-Hematology Service, Paris, France
| | - Anne Durandy
- Université de Paris, Imagine Institute, Paris, France
- Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, Paris, France
| | - Saba Azarnoush
- Hospital Robert Debré, Pediatric Immune-Hematology Service, Paris, France
| | - Sven Kracker
- Université de Paris, Imagine Institute, Paris, France
- Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, Paris, France
| |
Collapse
|
45
|
Sarn N, Thacker S, Lee H, Eng C. Germline nuclear-predominant Pten murine model exhibits impaired social and perseverative behavior, microglial activation, and increased oxytocinergic activity. Mol Autism 2021; 12:41. [PMID: 34088332 PMCID: PMC8176582 DOI: 10.1186/s13229-021-00448-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 05/17/2021] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) has a strong genetic etiology. Germline mutation in the tumor suppressor gene PTEN is one of the best described monogenic risk cases for ASD. Animal modeling of cell-specific Pten loss or mutation has provided insight into how disruptions to the function of PTEN affect neurodevelopment, neurobiology, and social behavior. As such, there is a growing need to understand more about how various aspects of PTEN activity and cell-compartment-specific functions, contribute to certain neurological or behavior phenotypes. METHODS To understand more about the relationship between Pten localization and downstream effects on neurophenotypes, we generated the nuclear-predominant PtenY68H/+ mouse, which is identical to the genotype of some PTEN-ASD individuals. We subjected the PtenY68H/+ mouse to morphological and behavioral phenotyping, including the three-chamber sociability, open field, rotarod, and marble burying tests. We subsequently performed in vivo and in vitro cellular phenotyping and concluded the work with a transcriptomic survey of the PtenY68H/+ cortex, which profiled gene expression. RESULTS We observe a significant increase in P-Akt downstream of canonical Pten signaling, macrocephaly, decreased sociability, decreased preference for novel social stimuli, increased repetitive behavior, and increased thigmotaxis in PtenY68H/+ six-week-old (P40) mice. In addition, we found significant microglial activation with increased expression of complement and neuroinflammatory proteins in vivo and in vitro accompanied by enhanced phagocytosis. These observations were subsequently validated with RNA-seq and qRT-PCR, which revealed overexpression of many genes involved in neuroinflammation and neuronal function, including oxytocin. Oxytocin transcript was fivefold overexpressed (P = 0.0018), and oxytocin protein was strongly overexpressed in the PtenY68H/+ hypothalamus. CONCLUSIONS The nuclear-predominant PtenY68H/+ model has clarified that Pten dysfunction links to microglial pathology and this associates with increased Akt signaling. We also demonstrate that Pten dysfunction associates with changes in the oxytocin system, an important connection between a prominent ASD risk gene and a potent neuroendocrine regulator of social behavior. These cellular and molecular pathologies may related to the observed changes in social behavior. Ultimately, the findings from this work may reveal important biomarkers and/or novel therapeutic modalities that could be explored in individuals with germline mutations in PTEN with ASD.
Collapse
Affiliation(s)
- Nick Sarn
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195 USA
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106 USA
| | - Stetson Thacker
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195 USA
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195 USA
| | - Hyunpil Lee
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195 USA
| | - Charis Eng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195 USA
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106 USA
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195 USA
- Germline High Risk Focus Group, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106 USA
| |
Collapse
|
46
|
Longo F, Klann E. Reciprocal control of translation and transcription in autism spectrum disorder. EMBO Rep 2021; 22:e52110. [PMID: 33977633 PMCID: PMC8183409 DOI: 10.15252/embr.202052110] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/20/2021] [Accepted: 04/19/2021] [Indexed: 12/11/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by deficits in social communication and the presence of restricted patterns of interest and repetitive behaviors. ASD is genetically heterogeneous and is believed to be caused by both inheritable and de novo gene variations. Studies have revealed an extremely complex genetic landscape of ASD, favoring the idea that mutations in different clusters of genes interfere with interconnected downstream signaling pathways and circuitry, resulting in aberrant behavior. In this review, we describe a select group of candidate genes that represent both syndromic and non-syndromic forms of ASD and encode proteins that are important in transcriptional and translational regulation. We focus on the interplay between dysregulated translation and transcription in ASD with the hypothesis that dysregulation of each synthetic process triggers a feedback loop to act on the other, which ultimately exacerbates ASD pathophysiology. Finally, we summarize findings from interdisciplinary studies that pave the way for the investigation of the cooperative impact of different genes and pathways underlying the development of ASD.
Collapse
Affiliation(s)
| | - Eric Klann
- Center for Neural ScienceNew York UniversityNew YorkNYUSA
| |
Collapse
|
47
|
Pirozzi F, Lee B, Horsley N, Burkardt DD, Dobyns WB, Graham JM, Dentici ML, Cesario C, Schallner J, Porrmann J, Di Donato N, Sanchez-Lara PA, Mirzaa GM. Proximal variants in CCND2 associated with microcephaly, short stature, and developmental delay: A case series and review of inverse brain growth phenotypes. Am J Med Genet A 2021; 185:2719-2738. [PMID: 34087052 DOI: 10.1002/ajmg.a.62362] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 01/28/2023]
Abstract
Cyclin D2 (CCND2) is a critical cell cycle regulator and key member of the cyclin D2-CDK4 (DC) complex. De novo variants of CCND2 clustering in the distal part of the protein have been identified as pathogenic causes of brain overgrowth (megalencephaly, MEG) and severe cortical malformations in children including the megalencephaly-polymicrogyria-polydactyly-hydrocephalus (MPPH) syndrome. Megalencephaly-associated CCND2 variants are localized to the terminal exon and result in accumulation of degradation-resistant protein. We identified five individuals from three unrelated families with novel variants in the proximal region of CCND2 associated with microcephaly, mildly simplified cortical gyral pattern, symmetric short stature, and mild developmental delay. Identified variants include de novo frameshift variants and a dominantly inherited stop-gain variant segregating with the phenotype. This is the first reported association between proximal CCND2 variants and microcephaly, to our knowledge. This series expands the phenotypic spectrum of CCND2-related disorders and suggests that distinct classes of CCND2 variants are associated with reciprocal effects on human brain growth (microcephaly and megalencephaly due to possible loss or gain of protein function, respectively), adding to the growing paradigm of inverse phenotypes due to dysregulation of key brain growth genes.
Collapse
Affiliation(s)
- Filomena Pirozzi
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Benson Lee
- Division of Medical Genetics, Department of Medicine, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Nicole Horsley
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Deepika D Burkardt
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - William B Dobyns
- Division of Genetics and Metabolism, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - John M Graham
- Medical Genetics Institute, Cedars-Sinai Medical Center, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Maria L Dentici
- Medical Genetics Unit, Academic Department of Pediatrics, Bambino Gesù Children's Hospital, IRCSS, Rome, Italy.,Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCSS, Rome, Italy
| | - Claudia Cesario
- Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Jens Schallner
- Department of Neuropediatrics, School of Medicine, Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Joseph Porrmann
- Institute for Clinical Genetics, University Hospital, TU Dresden, Dresden, Germany
| | - Nataliya Di Donato
- Institute for Clinical Genetics, University Hospital, TU Dresden, Dresden, Germany
| | - Pedro A Sanchez-Lara
- Medical Genetics Institute, Cedars-Sinai Medical Center, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Ghayda M Mirzaa
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA.,Division of Medical Genetics, Department of Pediatrics, University of Washington, Seattle, Washington, USA.,Brotman-Baty Institute for Precision Medicine, Seattle, Washington, USA.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
48
|
Portelli S, Barr L, de Sá AG, Pires DE, Ascher DB. Distinguishing between PTEN clinical phenotypes through mutation analysis. Comput Struct Biotechnol J 2021; 19:3097-3109. [PMID: 34141133 PMCID: PMC8180946 DOI: 10.1016/j.csbj.2021.05.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/29/2021] [Accepted: 05/19/2021] [Indexed: 12/28/2022] Open
Abstract
Phosphate and tensin homolog on chromosome ten (PTEN) germline mutations are associated with an overarching condition known as PTEN hamartoma tumor syndrome. Clinical phenotypes associated with this syndrome range from macrocephaly and autism spectrum disorder to Cowden syndrome, which manifests as multiple noncancerous tumor-like growths (hamartomas), and an increased predisposition to certain cancers. It is unclear, however, the basis by which mutations might lead to these very diverse phenotypic outcomes. Here we show that, by considering the molecular consequences of mutations in PTEN on protein structure and function, we can accurately distinguish PTEN mutations exhibiting different phenotypes. Changes in phosphatase activity, protein stability, and intramolecular interactions appeared to be major drivers of clinical phenotype, with cancer-associated variants leading to the most drastic changes, while ASD and non-pathogenic variants associated with more mild and neutral changes, respectively. Importantly, we show via saturation mutagenesis that more than half of variants of unknown significance could be associated with disease phenotypes, while over half of Cowden syndrome mutations likely lead to cancer. These insights can assist in exploring potentially important clinical outcomes delineated by PTEN variation.
Collapse
Affiliation(s)
- Stephanie Portelli
- Structural Biology and Bioinformatics, Department of Biochemistry, University of Melbourne, Melbourne, Victoria, Australia
- Systems and Computational Biology, Bio21 Institute, University of Melbourne, Melbourne, Victoria, Australia
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Lucy Barr
- Structural Biology and Bioinformatics, Department of Biochemistry, University of Melbourne, Melbourne, Victoria, Australia
- Systems and Computational Biology, Bio21 Institute, University of Melbourne, Melbourne, Victoria, Australia
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Alex G.C. de Sá
- Structural Biology and Bioinformatics, Department of Biochemistry, University of Melbourne, Melbourne, Victoria, Australia
- Systems and Computational Biology, Bio21 Institute, University of Melbourne, Melbourne, Victoria, Australia
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health, Melbourne Medical School, University of Melbourne, Melbourne, Victoria, Australia
| | - Douglas E.V. Pires
- Structural Biology and Bioinformatics, Department of Biochemistry, University of Melbourne, Melbourne, Victoria, Australia
- Systems and Computational Biology, Bio21 Institute, University of Melbourne, Melbourne, Victoria, Australia
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- School of Computing and Information Systems, University of Melbourne, Melbourne, Victoria, Australia
| | - David B. Ascher
- Structural Biology and Bioinformatics, Department of Biochemistry, University of Melbourne, Melbourne, Victoria, Australia
- Systems and Computational Biology, Bio21 Institute, University of Melbourne, Melbourne, Victoria, Australia
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health, Melbourne Medical School, University of Melbourne, Melbourne, Victoria, Australia
- Department of Biochemistry, University of Cambridge, 80 Tennis Ct Rd, Cambridge CB2 1GA, United States
| |
Collapse
|
49
|
Sharma A, Mehan S. Targeting PI3K-AKT/mTOR signaling in the prevention of autism. Neurochem Int 2021; 147:105067. [PMID: 33992742 DOI: 10.1016/j.neuint.2021.105067] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/29/2021] [Accepted: 05/02/2021] [Indexed: 12/16/2022]
Abstract
PI3K-AKT/mTOR signaling pathway represents an essential signaling mechanism for mammalian enzyme-related receptors in transducing signals or biological processes such as cell development, differentiation, cell survival, protein synthesis, and metabolism. Upregulation of the PI3K-AKT/mTOR signaling pathway involves many human brain abnormalities, including autism and other neurological dysfunctions. Autism is a neurodevelopmental disorder associated with behavior and psychiatric illness. This research-based review discusses the functional relationship between the neuropathogenic factors associated with PI3K-AKT/mTOR signaling pathway. Ultimately causes autism-like conditions associated with genetic alterations, neuronal apoptosis, mitochondrial dysfunction, and neuroinflammation. Therefore, inhibition of the PI3K-AKT/mTOR signaling pathway may have an effective therapeutic value for autism treatment. The current review also summarizes the involvement of PI3K-AKT/mTOR signaling pathway inhibitors in the treatment of autism and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Aarti Sharma
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Sidharth Mehan
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India.
| |
Collapse
|
50
|
Karalis V, Bateup HS. Current Approaches and Future Directions for the Treatment of mTORopathies. Dev Neurosci 2021; 43:143-158. [PMID: 33910214 PMCID: PMC8440338 DOI: 10.1159/000515672] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/13/2021] [Indexed: 11/19/2022] Open
Abstract
The mechanistic target of rapamycin (mTOR) is a kinase at the center of an evolutionarily conserved signaling pathway that orchestrates cell growth and metabolism. mTOR responds to an array of intra- and extracellular stimuli and in turn controls multiple cellular anabolic and catabolic processes. Aberrant mTOR activity is associated with numerous diseases, with particularly profound impact on the nervous system. mTOR is found in two protein complexes, mTOR complex 1 (mTORC1) and 2 (mTORC2), which are governed by different upstream regulators and have distinct cellular actions. Mutations in genes encoding for mTOR regulators result in a collection of neurodevelopmental disorders known as mTORopathies. While these disorders can affect multiple organs, neuropsychiatric conditions such as epilepsy, intellectual disability, and autism spectrum disorder have a major impact on quality of life. The neuropsychiatric aspects of mTORopathies have been particularly challenging to treat in a clinical setting. Current therapeutic approaches center on rapamycin and its analogs, drugs that are administered systemically to inhibit mTOR activity. While these drugs show some clinical efficacy, adverse side effects, incomplete suppression of mTOR targets, and lack of specificity for mTORC1 or mTORC2 may limit their utility. An increased understanding of the neurobiology of mTOR and the underlying molecular, cellular, and circuit mechanisms of mTOR-related disorders will facilitate the development of improved therapeutics. Animal models of mTORopathies have helped unravel the consequences of mTOR pathway mutations in specific brain cell types and developmental stages, revealing an array of disease-related phenotypes. In this review, we discuss current progress and potential future directions for the therapeutic treatment of mTORopathies with a focus on findings from genetic mouse models.
Collapse
Affiliation(s)
- Vasiliki Karalis
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA
| | - Helen S Bateup
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
| |
Collapse
|