1
|
Ovchinnikov A, Potekhina A, Arefieva T, Filatova A, Ageev F, Belyavskiy E. Use of Statins in Heart Failure with Preserved Ejection Fraction: Current Evidence and Perspectives. Int J Mol Sci 2024; 25:4958. [PMID: 38732177 PMCID: PMC11084261 DOI: 10.3390/ijms25094958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Systemic inflammation and coronary microvascular endothelial dysfunction are essential pathophysiological factors in heart failure (HF) with preserved ejection fraction (HFpEF) that support the use of statins. The pleiotropic properties of statins, such as anti-inflammatory, antihypertrophic, antifibrotic, and antioxidant effects, are generally accepted and may be beneficial in HF, especially in HFpEF. Numerous observational clinical trials have consistently shown a beneficial prognostic effect of statins in patients with HFpEF, while the results of two larger trials in patients with HFrEF have been controversial. Such differences may be related to a more pronounced impact of the pleiotropic properties of statins on the pathophysiology of HFpEF and pro-inflammatory comorbidities (arterial hypertension, diabetes mellitus, obesity, chronic kidney disease) that are more common in HFpEF. This review discusses the potential mechanisms of statin action that may be beneficial for patients with HFpEF, as well as clinical trials that have evaluated the statin effects on left ventricular diastolic function and clinical outcomes in patients with HFpEF.
Collapse
Affiliation(s)
- Artem Ovchinnikov
- Laboratory of Myocardial Fibrosis and Heart Failure with Preserved Ejection Fraction, National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Academician Chazov St., 15a, 121552 Moscow, Russia; (A.P.); (A.F.)
- Department of Clinical Functional Diagnostics, A.I. Yevdokimov Moscow State University of Medicine and Dentistry, Delegatskaya St., 20, p. 1, 127473 Moscow, Russia
| | - Alexandra Potekhina
- Laboratory of Myocardial Fibrosis and Heart Failure with Preserved Ejection Fraction, National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Academician Chazov St., 15a, 121552 Moscow, Russia; (A.P.); (A.F.)
| | - Tatiana Arefieva
- Laboratory of Cell Immunology, National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Academician Chazov St., 15a, 121552 Moscow, Russia;
- Faculty of Basic Medicine, Lomonosov Moscow State University, Leninskie Gory, 1, 119991 Moscow, Russia
| | - Anastasiia Filatova
- Laboratory of Myocardial Fibrosis and Heart Failure with Preserved Ejection Fraction, National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Academician Chazov St., 15a, 121552 Moscow, Russia; (A.P.); (A.F.)
- Laboratory of Cell Immunology, National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Academician Chazov St., 15a, 121552 Moscow, Russia;
| | - Fail Ageev
- Out-Patient Department, National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Academician Chazov St., 15a, 121552 Moscow, Russia;
| | - Evgeny Belyavskiy
- Medizinisches Versorgungszentrum des Deutsches Herzzentrum der Charite, Augustenburger Platz 1, 13353 Berlin, Germany;
| |
Collapse
|
2
|
Nchodu M, Efuntayo A, du Preez R, Ali H, Olateju OI. Simvastatin Significantly Reduced Alcohol-Induced Cardiac Damage in Adolescent Mice. Cardiovasc Toxicol 2024; 24:15-26. [PMID: 38261135 PMCID: PMC10838240 DOI: 10.1007/s12012-023-09821-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 12/16/2023] [Indexed: 01/24/2024]
Abstract
Alcohol abuse by adolescents is becoming a serious health concern as they often progress to becoming alcoholics later in life which may lead to heart problems. Chronic alcohol use alters the cardiac function and structure, such as haemodynamic changes, weakening and loss of cardiomyocytes, myocardial fibrosis, and inflammation. Simvastatin is a commonly used drug for the treatment and management of various cardiovascular problems but information on its protective effects against alcohol-induced cardiomyocyte hypertrophy, fibrosis, and inflammation is lacking in the literature. Four-week-old male (n = 5) and female (n = 5) C57BL/6 J mice were assigned to each experimental group: (I) NT-no administration of alcohol or Simvastatin; (II) ALC-2.5 g/Kg/day of 20% alcohol via intraperitoneal injection (i.p.); (III) SIM-5 mg/Kg/day of Simvastatin via oral gavage; (iv) ALC + SIM5-5 mg/Kg/day of Simvastatin via oral gavage followed by 2.5 g/Kg/day of 20% alcohol via i.p.; and (v) ALC + SIM15-15 mg/Kg/day Simvastatin via oral gavage followed by 2.5 g/Kg/day of 20% alcohol via i.p. After the 28-day treatment period, the heart was removed and processed for H&E, Masson's trichrome, or TNF-α immunolabelling. The area and diameter of cardiomyocytes were measured on the H&E-stained sections. The distribution of collagen or TNF-α expression was quantified using the deconvolution tool of ImageJ software. The results confirmed alcohol-induced toxicity on the cardiomyocytes and Simvastatin reduced alcohol-induced cardiomyocyte hypertrophy, fibrosis, and inflammation in both sexes. This study demonstrated that Simvastatin, an FDA approved and easily accessible drug, may be beneficial in lowering the prevalence of alcohol-induced cardiovascular diseases (especially in adolescents) which will have a huge financial implication on health systems worldwide.
Collapse
Affiliation(s)
- Makgotso Nchodu
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, Republic of South Africa
| | - Alice Efuntayo
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, Republic of South Africa
| | - Robin du Preez
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, Republic of South Africa
| | - Hasiena Ali
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, Republic of South Africa
| | - Oladiran I Olateju
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, Republic of South Africa.
| |
Collapse
|
3
|
Jasińska-Stroschein M. Searching for Effective Treatments in HFpEF: Implications for Modeling the Disease in Rodents. Pharmaceuticals (Basel) 2023; 16:1449. [PMID: 37895920 PMCID: PMC10610318 DOI: 10.3390/ph16101449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/04/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND While the prevalence of heart failure with preserved ejection fraction (HFpEF) has increased over the last two decades, there still remains a lack of effective treatment. A key therapeutic challenge is posed by the absence of animal models that accurately replicate the complexities of HFpEF. The present review summarizes the effects of a wide spectrum of therapeutic agents on HF. METHODS Two online databases were searched for studies; in total, 194 experimental protocols were analyzed following the PRISMA protocol. RESULTS A diverse range of models has been proposed for studying therapeutic interventions for HFpEF, with most being based on pressure overload and systemic hypertension. They have been used to evaluate more than 150 different substances including ARNIs, ARBs, HMGR inhibitors, SGLT-2 inhibitors and incretins. Existing preclinical studies have primarily focused on LV diastolic performance, and this has been significantly improved by a wide spectrum of candidate therapeutic agents. Few experiments have investigated the normalization of pulmonary congestion, exercise capacity, animal mortality, or certain molecular hallmarks of heart disease. CONCLUSIONS The development of comprehensive preclinical HFpEF models, with multi-organ system phenotyping and physiologic stress-based functional testing, is needed for more successful translation of preclinical research to clinical trials.
Collapse
|
4
|
Song W, Zhang C, Tang J, Li Y, Jiao T, Lin X, Wang Y, Fang J, Sha J, Ding T, Cheng J, Li J. Hypersensitive C-reactive protein as a potential indicator for predicting left ventricular hypertrophy in elderly community-dwelling patients with hypertension. BMC Cardiovasc Disord 2023; 23:480. [PMID: 37759159 PMCID: PMC10537845 DOI: 10.1186/s12872-023-03509-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND The aim of this study was to investigate the relationship between Hypersensitive C-reactive protein (hs-CRP) and left ventricular hypertrophy (LVH) in elderly community-dwelling patients with hypertension. METHODS A cross-sectional study was conducted, involving the recruitment of 365 elderly hypertensive residents ≥ 65 years of age from five communities. The participants were divided into two groups: an LVH group (n = 134) and a non-LVH group (n = 231), based on the left ventricular mass index (LVMI) determined by echocardiography. Spearman correlation analysis was used to assess the relationship between hs-CRP and LVH. Univariate and Multivariate analysis was performed to detect variables associated with LVH. The diagnostic value of hs-CRP for LVH was expressed as the area under the receiver operating characteristic (ROC) curve. RESULTS The incidence of LVH in elderly hypertension patients in the community was 36.7%. The hs-CRP levels were significantly higher in subjects with LVH compared to those without LVH (1.9 [0.8, 2.9] vs. 0.7 [0.4, 1.4], P = 0.002). Spearman correlation analysis demonstrated a positive correlation between hs-CRP and LVMI (r = 0.246, P < 0.001), as well as with IVST (r = 0.225, P < 0.001) and LVPWT (r = 0.172, P = 0.001). Among elderly hypertensive residents in the community, the cut-off value of hs-CRP for diagnosing LVH was 1.25 mg/L (sensitivity: 57.5%; specificity: 78.4%), and the area under the ROC curve for hs-CRP to predict LVH was 0.710 (95%CI: 0.654-0.766; P < 0.001). In the final model, hs-CRP ≥ 1.25 mg/L (OR = 3.569; 95%CI, 2.153-5.916; P<0.001) emerged as an independent risk factor for LVH. This association remained significant even after adjusting for various confounding factors (adjusted OR = 3.964; 95%CI, 2.323-6.765; P < 0.001). CONCLUSIONS This community-based cohort of elderly hypertensive individuals demonstrates a strong association between hs-CRP levels and the presence of LVH. The hs-CRP ≥ 1.25 mg/L may serve as an independent predictor for LVH in hypertensive subjects and exhibit good diagnostic efficacy for LVH.
Collapse
Affiliation(s)
- Wei Song
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
- Department of General Practice, Jinyang Community Health Service Center, Shanghai, 200136, China
| | - Chunsheng Zhang
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Jiamei Tang
- Department of Ultrasound, Shanghai Changhai Hospital, Navy Medical University, Shanghai, China
| | - Yan Li
- Department of General Practice, Jinyang Community Health Service Center, Shanghai, 200136, China
| | - Tiantian Jiao
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Xueqi Lin
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Yuanqi Wang
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Jialiang Fang
- Department of General Practice, Jinyang Community Health Service Center, Shanghai, 200136, China
| | - Jingjing Sha
- Department of General Practice, Jinyang Community Health Service Center, Shanghai, 200136, China
| | - Tongjiu Ding
- Department of General Practice, Jinyang Community Health Service Center, Shanghai, 200136, China
| | - Jiayue Cheng
- Department of General Practice, Jinyang Community Health Service Center, Shanghai, 200136, China
| | - Jiming Li
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Pudong New Area, Shanghai, 200120, China.
| |
Collapse
|
5
|
Dolivo DM, Reed CR, Gargiulo KA, Rodrigues AE, Galiano RD, Mustoe TA, Hong SJ. Anti-fibrotic effects of statin drugs: a review of evidence and mechanisms. Biochem Pharmacol 2023:115644. [PMID: 37321414 DOI: 10.1016/j.bcp.2023.115644] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/17/2023]
Abstract
Fibrosis is a pathological repair process common among organs, that responds to damage by replacement of tissue with non-functional connective tissue. Despite the widespread prevalence of tissue fibrosis, manifesting in numerous disease states across myriad organs, therapeutic modalities to prevent or alleviate fibrosis are severely lacking in quantity and efficacy. Alongside development of new drugs, repurposing of existing drugs may be a complementary strategy to elect anti-fibrotic compounds for pharmacologic treatment of tissue fibrosis. Drug repurposing can provide key advantages to de novo drug discovery, harnessing the benefits of previously elucidated mechanisms of action and already existing pharmacokinetic profiles. One class of drugs a wealth of clinical data and extensively studied safety profiles is the statins, a class of antilipidemic drugs widely prescribed for hypercholesterolemia. In addition to these widely utilized lipid-lowering effects, increasing data from cellular, pre-clinical mammalian, and clinical human studies have also demonstrated that statins are able to alleviate tissue fibrosis originating from a variety of pathological insults via lesser-studied, pleiotropic effects of these drugs. Here we review literature demonstrating evidence for direct effects of statins antagonistic to fibrosis, as well as much of the available mechanistic data underlying these effects. A more complete understanding of the anti-fibrotic effects of statins may enable a clearer picture of their anti-fibrotic potential for various clinical indications. Additionally, more lucid comprehension of the mechanisms by which statins exert anti-fibrotic effects may aid in development of novel therapeutic agents that target similar pathways but with greater specificity or efficacy.
Collapse
Affiliation(s)
- David M Dolivo
- Department of Surgery-Northwestern University Feinberg School of Medicine, United States.
| | - Charlotte R Reed
- Department of Surgery-Northwestern University Feinberg School of Medicine, United States
| | - Kristine A Gargiulo
- Department of Surgery-Northwestern University Feinberg School of Medicine, United States
| | - Adrian E Rodrigues
- Department of Surgery-Northwestern University Feinberg School of Medicine, United States
| | - Robert D Galiano
- Department of Surgery-Northwestern University Feinberg School of Medicine, United States
| | - Thomas A Mustoe
- Department of Surgery-Northwestern University Feinberg School of Medicine, United States
| | - Seok Jong Hong
- Department of Surgery-Northwestern University Feinberg School of Medicine, United States.
| |
Collapse
|
6
|
Costa GS, Julião-Silva LS, Belo VS, de Oliveira HCF, Chaves VE. A systematic review and meta-analyses on the effects of atorvastatin on blood pressure and heart rate. EUROPEAN HEART JOURNAL. CARDIOVASCULAR PHARMACOTHERAPY 2022; 9:100-115. [PMID: 36138492 DOI: 10.1093/ehjcvp/pvac053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/26/2022] [Accepted: 09/20/2022] [Indexed: 11/14/2022]
Abstract
AIMS Considering the inconsistencies in the literature on the atorvastatin effect on blood pressure (BP), we performed these meta-analyses. METHODS AND RESULTS Through a search of the Excerpta Medica Database (EMBASE), PubMed, and Web of Science databases, 1412 articles were identified, from which 33 randomized clinical trials (RCT) and 44 pre-clinical were selected. Populations from RCT were stratified according to baseline BP and lipid levels. We performed meta-analyses of the effect of atorvastatin on systolic (SBP), diastolic and mean BP; heart rate (HR); HR variability, and baroreflex. Atorvastatin reduced SBP in the overall population (P = 0.05 vs. placebo; P = 0.03 vs. baseline), in normotensive and hyperlipidaemic (P = 0.04 vs. placebo; P = 0.0001 vs. baseline) and in hypertensive and hyperlipidaemic (P = 0.02 vs. placebo; P = 0.008 vs. baseline) individuals in parallel RCT, but it did not affect SBP in normotensive and normolipidaemic individuals (P = 0.51 vs. placebo; P = 0.4 vs. baseline). Although an effect of atorvastatin was detected in hyperlipidaemic individuals, the meta-regression coefficient for the association of low density lipoprotein (LDL)-cholesterol reduction with SBP reduction in the overall population demonstrated that SBP reduction is not dependent on the changes in LDL-cholesterol. A meta-analysis of preclinical reports demonstrated that SBP was reduced in atorvastatin-treated hypertensive and normolipidaemic rats (spontaneously hypertensive rats: P < 0.00001), but not in normotensive and normolipidaemic rats (control rats: P = 0.97). Atorvastatin also reduced the HR in spontaneously hypertensive rat. CONCLUSION Atorvastatin lowers BP independent of LDL-cholesterol levels. Additional studies are needed to estimate the involvement of the autonomic nervous system in the BP-lowering effect of atorvastatin.
Collapse
Affiliation(s)
- Gabriel S Costa
- Laboratory of Physiology, Federal University of São João del-Rei, Avenue Sebastião Gonçalves Coelho, 400, 35.501-296, Divinópolis, Minas Gerais, Brazil
| | - Letícia S Julião-Silva
- Laboratory of Physiology, Federal University of São João del-Rei, Avenue Sebastião Gonçalves Coelho, 400, 35.501-296, Divinópolis, Minas Gerais, Brazil
| | - Vinícius S Belo
- Laboratory of Parasitology, Federal University of São João del-Rei, Avenue Sebastião Gonçalves Coelho, 400, 35.501-296, Divinópolis, Minas Gerais, Brazil
| | - Helena C F de Oliveira
- Department of Structural and Functional Biology, Biology Institute, State University of Campinas, Monteiro Lobato Street, 255, 13.083-862, Campinas, São Paulo, Brazil
| | - Valéria E Chaves
- Laboratory of Physiology, Federal University of São João del-Rei, Avenue Sebastião Gonçalves Coelho, 400, 35.501-296, Divinópolis, Minas Gerais, Brazil
| |
Collapse
|
7
|
Ageev FT, Ovchinnikov AG. [Treatment of patients with heart failure and preserved ejection fraction: reliance on clinical phenotypes]. KARDIOLOGIIA 2022; 62:44-53. [PMID: 35989629 DOI: 10.18087/cardio.2022.7.n2058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/18/2022] [Indexed: 06/15/2023]
Abstract
The article discusses the problem of improving the effectiveness of treatment of heart failure with preserved left ventricular ejection fraction (HFpEF). The relative "failure" of early studies with renin-angiotensin-aldosterone system inhibitors was largely due to the lack of understanding that patients with HFpEF represent a heterogeneous group with various etiological factors and pathogenetic mechanisms of the disease. Therefore, the so-called personalized approach should be used in the treatment of these patients. This approach is based on the identification of clearly defined disease phenotypes, each characterized by a set of demographic, pathogenetic, and clinical characteristics. Based on the literature and own experience, the authors consider four main phenotypes of HFpEF: 1) phenotype with brain natriuretic peptide "deficiency" syndrome associated with moderate/severe left ventricular hypertrophy; 2) cardiometabolic phenotype; 3) phenotype with mixed pulmonary hypertension and right ventricular failure; and 4) cardiac amyloidosis phenotype. In the treatment of patients with phenotype 1, it seems preferable to use the valsartan + sacubitril (possibly in combination with spironolactone) combination treatment; with phenotype 2, the empagliflozin treatment is the best; with phenotype 3, the phosphodiesterase type 5 inhibitor sildenafil; and with phenotype 4, transthyretin stabilizers. Certain features of different phenotypes overlap and may change as the disease progresses. Nevertheless, the isolation of these phenotypes is advisable to prioritize the choice of drug therapy. Thus, the diuretic treatment (preferably torasemide) should be considered in the presence of congestion, regardless of the HFpEF phenotype; the valsartan + sacubitril and spironolactone treatment is appropriate not only in the shortage of brain natriuretic peptide but also in the presence of concentric left ventricular hypertrophy (except for the amyloidosis phenotype); and the treatment with empagliflozin and statins may be considered in all situations where pro-inflammatory mechanisms are involved.
Collapse
Affiliation(s)
- F T Ageev
- Chazov National Medical Research Centre of Cardiology
| | - A G Ovchinnikov
- Chazov National Medical Research Centre of Cardiology; Evdokimov Moscow State University of Medicine and Dentistry
| |
Collapse
|
8
|
Conte M, Petraglia L, Cabaro S, Valerio V, Poggio P, Pilato E, Attena E, Russo V, Ferro A, Formisano P, Leosco D, Parisi V. Epicardial Adipose Tissue and Cardiac Arrhythmias: Focus on Atrial Fibrillation. Front Cardiovasc Med 2022; 9:932262. [PMID: 35845044 PMCID: PMC9280076 DOI: 10.3389/fcvm.2022.932262] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/13/2022] [Indexed: 01/02/2023] Open
Abstract
Atrial Fibrillation (AF) is the most frequent cardiac arrhythmia and its prevalence increases with age. AF is strongly associated with an increased risk of stroke, heart failure and cardiovascular mortality. Among the risk factors associated with AF onset and severity, obesity and inflammation play a prominent role. Numerous recent evidence suggested a role of epicardial adipose tissue (EAT), the visceral fat depot of the heart, in the development of AF. Several potential arrhythmogenic mechanisms have been attributed to EAT, including myocardial inflammation, fibrosis, oxidative stress, and fat infiltration. EAT is a local source of inflammatory mediators which potentially contribute to atrial collagen deposition and fibrosis, the anatomical substrate for AF. Moreover, the close proximity between EAT and myocardium allows the EAT to penetrate and generate atrial myocardium fat infiltrates that can alter atrial electrophysiological properties. These observations support the hypothesis of a strong implication of EAT in structural and electrical atrial remodeling, which underlies AF onset and burden. The measure of EAT, through different imaging methods, such as echocardiography, computed tomography and cardiac magnetic resonance, has been proposed as a useful prognostic tool to predict the presence, severity and recurrence of AF. Furthermore, EAT is increasingly emerging as a promising potential therapeutic target. This review aims to summarize the recent evidence exploring the potential role of EAT in the pathogenesis of AF, the main mechanisms by which EAT can promote structural and electrical atrial remodeling and the potential therapeutic strategies targeting the cardiac visceral fat.
Collapse
Affiliation(s)
- Maddalena Conte
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Casa di Cura San Michele, Maddaloni, Italy
| | - Laura Petraglia
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Serena Cabaro
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | | | | | - Emanuele Pilato
- Department of Advanced Biomedical Science, University of Naples Federico II, Naples, Italy
| | - Emilio Attena
- Department of Cardiology, Monaldi Hospital, Naples, Italy
| | - Vincenzo Russo
- Chair of Cardiology, Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli" - Monaldi and Cotugno Hospital, Naples, Italy
| | - Adele Ferro
- Institute of Biostructure and Bioimaging, Consiglio Nazionale delle Ricerche, Naples, Italy
| | - Pietro Formisano
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Dario Leosco
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Valentina Parisi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| |
Collapse
|
9
|
Asymptomatic Left Ventricular Hypertrophy Is a Potent Risk Factor for the Development of HFpEF but Not HFrEF: Results of a Retrospective Cohort Study. J Clin Med 2022; 11:jcm11133885. [PMID: 35807166 PMCID: PMC9267477 DOI: 10.3390/jcm11133885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/15/2022] [Accepted: 07/02/2022] [Indexed: 12/28/2022] Open
Abstract
(1) Background: The structural and functional features of the natural history of asymptomatic hypertensive left ventricular hypertrophy (LVH) are not clearly defined. (2) Objective: To determine structural and functional changes in asymptomatic hypertensive LVH, as well as the incidence and predictors of the transition to different phenotypes of heart failure (HF) after a long-term follow-up. (3) Methods: Based on the assessment of chart reviews, we retrospectively selected 350 asymptomatic patients with hypertensive concentric LVH and LV ejection fraction (EF) ≥ 50%. After a median follow-up of 8.1 years, 223 patients had a re-assessment. The final diagnosis (HF with reduced EF [HFrEF], or HF with preserved EF [HFpEF]) was established according to current recommendations. (4) Results: After a follow-up, only 13% of patients remained asymptomatic, 72% developed HFpEF, and 15% developed HFrEF. The transition to HFpEF was associated with an increase in LV diastolic dysfunction grade in 62% of patients. Multivariable analysis identified age, duration of hypertension, interval changes in LV mass, and a lack of statin treatment as independent predictors of HFpEF. Among 34 patients who developed HFrEF, 16 patients (7% of the whole group) had no interval myocardial infarction, corresponding to an internal mechanism of systolic dysfunction. All these 16 patients had mild systolic dysfunction (LVEF > 40%). Baseline LVEF and LV end-diastolic dimension, and interval atrial fibrillation were identified as predictors of internal HFrEF. (5) Conclusions: The majority of patients with asymptomatic LVH developed HFpEF after long-term follow-up, which was associated with the deterioration of LV diastolic dysfunction and a lack of statin treatment. In contrast, the transition to HFrEF was infrequent and characterized by mild LV systolic dysfunction.
Collapse
|
10
|
Konwerski M, Gąsecka A, Opolski G, Grabowski M, Mazurek T. Role of Epicardial Adipose Tissue in Cardiovascular Diseases: A Review. BIOLOGY 2022; 11:355. [PMID: 35336728 PMCID: PMC8945130 DOI: 10.3390/biology11030355] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/19/2022] [Accepted: 02/21/2022] [Indexed: 02/01/2023]
Abstract
Cardiovascular diseases (CVDs) are the leading causes of death worldwide. Epicardial adipose tissue (EAT) is defined as a fat depot localized between the myocardial surface and the visceral layer of the pericardium and is a type of visceral fat. EAT is one of the most important risk factors for atherosclerosis and cardiovascular events and a promising new therapeutic target in CVDs. In health conditions, EAT has a protective function, including protection against hypothermia or mechanical stress, providing myocardial energy supply from free fatty acid and release of adiponectin. In patients with obesity, metabolic syndrome, or diabetes mellitus, EAT becomes a deleterious tissue promoting the development of CVDs. Previously, we showed an adverse modulation of gene expression in pericoronary adipose tissue in patients with coronary artery disease (CAD). Here, we summarize the currently available evidence regarding the role of EAT in the development of CVDs, including CAD, heart failure, and atrial fibrillation. Due to the rapid development of the COVID-19 pandemic, we also discuss data regarding the association between EAT and the course of COVID-19. Finally, we present the potential therapeutic possibilities aiming at modifying EAT's function. The development of novel therapies specifically targeting EAT could revolutionize the prognosis in CVDs.
Collapse
Affiliation(s)
| | | | | | | | - Tomasz Mazurek
- 1st Chair and Department of Cardiology, Medical University of Warsaw, 02-097 Warszawa, Poland; (M.K.); (A.G.); (G.O.); (M.G.)
| |
Collapse
|
11
|
Lin YS, Lip GYH, Ho WC, Shi CS, Lin MH, Kuo TY, Chung CM, Chang ST, Chen YL, Chen HC, Lee WC, Chen MC. Statins to Prevent Pacing-Induced Cardiomyopathy: Evidence from the Bench applied to Clinical Studies. Heart Rhythm 2022; 19:960-968. [PMID: 35108621 DOI: 10.1016/j.hrthm.2022.01.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/07/2022] [Accepted: 01/23/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND Pacing-induced cardiomyopathy is an undesired outcome in atrioventricular block (AVB) patients and our animal model showed lipotoxic cardiomyopathy following pacing. OBJECTIVES This study aimed to explore the mechanisms and clinical outcomes of statins in AVB patients receiving pacing. METHODS Rat ventricular cardiomyocytes were treated with atorvastatin, liver X receptor (LXR) agonist, and LXR antagonist during pacing. Pigs were divided into 3 groups: right ventricular pacing, pacing with concomitant atorvastatin treatment, and sham control. Clinically, we enrolled 1,717 AVB patients received permanent pacemaker from Chang Gung Memorial Hospital Medical database. The primary outcome (cardiovascular death or heart failure (HF) hospitalization) and individual outcome were compared between statin and non-statin groups after inverse probability of treatment weighting. RESULTS Lipid accumulation in rat cardiomyocytes by pacing was significantly reduced by treatment with LXR agonist and atorvastatin while LXR antagonist counteracted the atorvastatin effect on lipid expression. Left ventricular ejection fraction (LVEF) was significantly lower in the AVB pig pacing group compared to those concomitantly treated with atorvastatin. Moreover, lipid accumulation and fibronectin expression were significantly ameliorated by concomitant treatment of atorvastatin. In the clinical study, statin group had significantly lower risk of the primary outcome event (HR: 0.69, 95% CI: 0.56-0.84), less HF hospitalization (HR: 0.45, 95% CI: 0.30-0.67) and higher LVEF than non-statin group. CONCLUSION In experimental models, atorvastatin ameliorated lipid accumulation in cardiomyocytes and fibrosis in LV myocardium induced by pacing. Clinically, treatment with statins was associated with less HF hospitalization and cardiovascular death in AVB patients receiving pacemaker therapy.
Collapse
Affiliation(s)
- Yu-Sheng Lin
- Division of Cardiology, Chang Gung Memorial Hospital, Chiayi, Taiwan; Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Gregory Y H Lip
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart and Chest Hospital, Liverpool, UK; Department of Clinical Medicine, Faculty of Health, Aalborg University, Aalborg, Denmark
| | - Wan-Chun Ho
- Division of Cardiology, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Chung-Sheng Shi
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Meng-Hung Lin
- Health Information and Epidemiology Laboratory, Chang Gung Memorial Hospital, Chiayi Branch
| | - Ting-Yu Kuo
- Health Information and Epidemiology Laboratory, Chang Gung Memorial Hospital, Chiayi Branch
| | - Chang-Min Chung
- Division of Cardiology, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Shih-Tai Chang
- Division of Cardiology, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Yung-Lung Chen
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Huang-Chung Chen
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Wei-Chieh Lee
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Mien-Cheng Chen
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan.
| |
Collapse
|
12
|
Changes of gut microbiome composition and metabolites associated with hypertensive heart failure rats. BMC Microbiol 2021; 21:141. [PMID: 33952214 PMCID: PMC8097775 DOI: 10.1186/s12866-021-02202-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 04/19/2021] [Indexed: 12/14/2022] Open
Abstract
Background The potential role of the gut microbiome (GM) in heart failure (HF) had recently been revealed. However, the underlying mechanisms of the GM and fecal metabolome in HF have not been characterized. The Dahl salt-sensitive rat model of hypertensive heart failure (H-HF) was used to study the clinical symptoms and characteristics. To elucidate the pathogenesis of HF, we combined 16S rRNA gene sequencing and metabolomics to analyze gut microbial compositions and fecal metabolomic profiles of rats with H-HF. Results PCoA of beta diversity shown that the gut microbiome composition profiles among the three groups were separated. Gut microbial composition was significantly altered in H-HF rats, the ratio of Firmicutes to Bacteroidetes(F/B) increased and the abundance of Muribaculaceae, Lachnospiraceae, and Lactobacillaceae decreased. Significantly altered levels of 17 genera and 35 metabolites were identified as the potential biomarker of H-HF. Correlation analysis revealed that specific altered genera were strongly correlated with changed fecal metabolites. The reduction in short-chain fatty acids (SCFA)-producing bacteria and trimethylamine N-oxide (TMAO) might be a notable characteristic for H-HF. Conclusions This is the first study to characterize the fecal microbiome of hypertensive heart failure by integrating 16S rRNA gene sequencing and LC–MS-based metabolomics approaches. Collectively, the results suggesting changes of gut microbiome composition and metabolites are associated with hypertensive heart failure rats. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02202-5.
Collapse
|
13
|
Key Enzymes for the Mevalonate Pathway in the Cardiovascular System. J Cardiovasc Pharmacol 2021; 77:142-152. [PMID: 33538531 DOI: 10.1097/fjc.0000000000000952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/15/2020] [Indexed: 11/25/2022]
Abstract
ABSTRACT Isoprenylation is an important post-transcriptional modification of small GTPases required for their activation and function. Isoprenoids, including farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate, are indispensable for isoprenylation by serving as donors of a prenyl moiety to small G proteins. In the human body, isoprenoids are mainly generated by the mevalonate pathway (also known as the cholesterol-synthesis pathway). The hydroxymethylglutaryl coenzyme A reductase catalyzes the first rate-limiting steps of the mevalonate pathway, and its inhibitor (statins) are widely used as lipid-lowering agents. In addition, the FPP synthase is also of critical importance for the regulation of the isoprenoids production, for which the inhibitor is mainly used in the treatment of osteoporosis. Synthetic FPP can be further used to generate geranylgeranyl pyrophosphate and cholesterol. Recent studies suggest a role for isoprenoids in the genesis and development of cardiovascular disorders, such as pathological cardiac hypertrophy, fibrosis, endothelial dysfunction, and fibrotic responses of smooth-muscle cells. Furthermore, statins and FPP synthase inhibitors have also been applied for the management of heart failure and other cardiovascular diseases rather than their clinical use for hyperlipidemia or bone diseases. In this review, we focus on the function of several critical enzymes, including hydroxymethylglutaryl coenzyme A reductase, FPP synthase, farnesyltransferase, and geranylgeranyltransferase in the mevalonate pathway which are involved in regulating the generation of isoprenoids and isoprenylation of small GTPases, and their pathophysiological role in the cardiovascular system. Moreover, we summarize recent research into applications of statins and the FPP synthase inhibitors to treat cardiovascular diseases, rather than for their traditional indications respectively.
Collapse
|
14
|
Xu H, Shen Y, Liang C, Wang H, Huang J, Xue P, Luo M. Inhibition of the mevalonate pathway improves myocardial fibrosis. Exp Ther Med 2021; 21:224. [PMID: 33603833 PMCID: PMC7851600 DOI: 10.3892/etm.2021.9655] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 12/10/2020] [Indexed: 12/15/2022] Open
Abstract
The mevalonate (MVA) pathway serves an important role in ventricular remodeling. Targeting the MVA pathway has protective effects against myocardial fibrosis. The present study aimed to investigate the mechanism behind these effects. Primary cultured cardiac fibroblasts from C57BL/6 mice were treated in vitro in 5 groups: i) negative control; ii) angiotensin II (Ang II) model (1x10-5 mol/l); iii) Ang II + rosuvastatin (ROS); iv) Ang II + alendronate (ALE); and v) Ang II + fasudil (FAS). Collagen and crystal violet staining were used to assess morphological changes in cardiac fibroblasts. Reverse transcription quantitative PCR and western blotting were used to analyze the expression of key signaling molecules involved in the MVA pathway. Collagen staining in the ALE, FAS, and ROS groups was weak compared with the Ang II group, while the rate of cell proliferation in the ROS, ALE, and FAS groups was slower compared with that in the Ang II group. In addition, the expression of key signaling molecules in the MVA pathway, including transforming growth factor-β1 (TGF-β1), heat shock protein 47 (HSP47), collagen type I α1 (COL1A1), vascular endothelial growth factor 2 (VEGF2) and fibroblast growth factor 2 (FGF2), was decreased in the FAS and ROS groups compared with the Ang II model. Compared with the Ang II group, 3-Hydroxy-3-Methylglutaryl-CoA reductase (HMGCR) gene expression was significantly lowered in the drug intervention groups, whereas farnesyl pyrophosphate synthase (FDPS) expression was downregulated in the ALE group, but elevated in the FAS and ROS groups. Compared with that in the Ang II group, ras homolog family member A (RhoA) expression was downregulated in the FAS and ROS groups, whilst mevalonate kinase expression was reduced in the ROS group. Protein expression of TGF-β1, COL1A1 and HSP47 were decreased following intervention with each of the three drugs compared with the Ang II group. Overall, rosuvastatin, aledronate and fasudil decreased the proliferation of myocardial fibroblasts and inhibited collagen synthesis. Rosuvastatin had the strongest protective effects against myocardial fibrosis compared with the other drugs tested, suggesting this to be a potential agent for the clinical treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Huifeng Xu
- Department of Cardiology, Tongji Hospital Affiliated to Tongji University, Shanghai 200065, P.R. China
| | - Yi Shen
- Department of Geriatrics, Tongji Hospital Affiliated to Tongji University, Shanghai 200065, P.R. China
| | - Chenyu Liang
- Department of Cardiology, Tongji Hospital Affiliated to Tongji University, Shanghai 200065, P.R. China
| | - Haifeng Wang
- Department of Geriatrics, Tongji Hospital Affiliated to Tongji University, Shanghai 200065, P.R. China
| | - Junling Huang
- Department of Geriatrics, Tongji Hospital Affiliated to Tongji University, Shanghai 200065, P.R. China
| | - Pengcheng Xue
- Department of Cardiology, Tongji Hospital Affiliated to Tongji University, Shanghai 200065, P.R. China
| | - Ming Luo
- Department of Cardiology, Tongji Hospital Affiliated to Tongji University, Shanghai 200065, P.R. China
| |
Collapse
|
15
|
Techorueangwiwat C, Kanitsoraphan C, Hansrivijit P. Therapeutic implications of statins in heart failure with reduced ejection fraction and heart failure with preserved ejection fraction: a review of current literature. F1000Res 2021; 10:16. [PMID: 36873456 PMCID: PMC9982192 DOI: 10.12688/f1000research.28254.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/04/2021] [Indexed: 11/20/2022] Open
Abstract
Statins are one of the standard treatments to prevent cardiovascular events such as coronary artery disease and heart failure (HF). However, data on the use of statins to improve clinical outcomes in patients with established HF remains controversial. We summarized available clinical studies which investigated the effects of statins on clinical outcomes in patients with HF with reduced ejection fraction (HFrEF) and HF with preserved ejection fraction (HFpEF). Statins possess many pleiotropic effects in addition to lipid-lowering properties that positively affect the pathophysiology of HF. In HFrEF, data from two large randomized placebo-controlled trials did not show benefits of statins on mortality of patients with HFrEF. However, more recent prospective cohort studies and meta-analyses have shown decreased risk of mortality as well as cardiovascular hospitalization with statins treatment. In HFpEF, most prospective and retrospective cohort studies as well as meta analyses have consistently reported positive effects of statins, including reducing mortality and improving other clinical outcomes. Current evidence also suggests better outcomes with lipophilic statins in patients with HF. In summary, statins might be effective in improving survival and other clinical outcomes in patients with HF, especially for patients with HFpEF. Lipophilic statins might also be more beneficial for HF patients. Based on current evidence, statins did not cause harm and should be continued in HF patients who are already taking the medication. Further randomized controlled trials are needed to clarify the benefits of statins in HF patients.
Collapse
|
16
|
Zhang X, Zhang X, Huang W, Ge X. The role of heat shock proteins in the regulation of fibrotic diseases. Biomed Pharmacother 2020; 135:111067. [PMID: 33383375 DOI: 10.1016/j.biopha.2020.111067] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/08/2020] [Accepted: 11/20/2020] [Indexed: 12/29/2022] Open
Abstract
Heat shock proteins (HSPs) are key players to restore cell homeostasis and act as chaperones by assisting the folding and assembly of newly synthesized proteins and preventing protein aggregation. Recently, evidence has been accumulating that HSPs have been proven to have other functions except for the classical molecular chaperoning in that they play an important role in a wider range of fibrotic diseases via modulating cytokine induction and inflammation response, including lung fibrosis, liver fibrosis, and idiopathic pulmonary fibrosis. The recruitment of inflammatory cells, a large number of secretion of pro-fibrotic cytokines such as transforming growth factor-β1 (TGF-β1) and increased apoptosis, oxidative stress, and proteasomal system degradation are all events occurring during fibrogenesis, which might be associated with HSPs. However, their role on fibrotic process is not yet fully understood. In this review, we discuss new discoveries regarding the involvement of HSPs in the regulation of organ and tissue fibrosis, and note recent findings suggesting that HSPs may be a promising therapeutic target for improving the current frustrating outcome of fibrotic disorders.
Collapse
Affiliation(s)
- Xiaoling Zhang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China; School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, 226019, PR China.
| | - Xiaoyan Zhang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China
| | - Wenmin Huang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China
| | - Xiaoqun Ge
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, PR China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, PR China.
| |
Collapse
|
17
|
Manabe E, Ito S, Ohno Y, Tanaka T, Naito Y, Sasaki N, Asakura M, Masuyama T, Ishihara M, Tsujino T. Reduced lifespan of erythrocytes in Dahl/Salt sensitive rats is the cause of the renal proximal tubule damage. Sci Rep 2020; 10:22023. [PMID: 33328561 PMCID: PMC7744793 DOI: 10.1038/s41598-020-79146-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 12/01/2020] [Indexed: 12/20/2022] Open
Abstract
We studied the mechanisms of anemia and the influence of anemia on renal pathology in Dahl/Salt Sensitive (Dahl/SS) rat, a model of cardio-renal-anemia syndrome. Erythrocyte lifespan was shortened and associated with decreased hemoglobin level in the Dahl/SS rats given high-salt diet. Serum haptoglobin decreased, reticulocytes increased, and erythropoiesis in the bone marrow and extramedullary hematopoiesis in the spleen was markedly stimulated by increased serum erythropoietin in them. As a mechanism of hemolysis, we investigated the incidence of eryptosis, suicidal death of erythrocytes. Eryptosis was increased, and red blood cell-derived microparticles, small particle which are generated in hemolytic disease, were also increased in Dahl/SS rats fed with high-salt diet. Deposition of hemosiderin and mitochondrial morphologic abnormality, a sign of ferroptosis, in proximal renal tubules was associated with intravascular hemolysis. Treatment with deferasirox, an oral iron chelator, reduced the renal proximal tubular injury and the glomerular sclerosis in Dahl/SS rats fed with high-salt diet. In conclusion, reduced half-life of erythrocytes induced by hemolysis is the major cause of anemia in Dahl/SS rat. Iron accumulation induced by hemolysis causes renal proximal tubule injury and accelerates renal damage in this model.
Collapse
Affiliation(s)
- Eri Manabe
- Department of Cardiovascular and Renal Medicine, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan.
| | - Satoyasu Ito
- Division of Pharmaceutical Therapeutics, Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Kobe, Hyogo, Japan
| | - Yoshiya Ohno
- Division of Immunobiology, Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Kobe, Hyogo, Japan
| | - Toshiyuki Tanaka
- Division of Immunobiology, Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Kobe, Hyogo, Japan
| | - Yoshiro Naito
- Department of Cardiovascular and Renal Medicine, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan
| | - Naoko Sasaki
- Division of Pharmaceutical Therapeutics, Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Kobe, Hyogo, Japan
| | - Masanori Asakura
- Department of Cardiovascular and Renal Medicine, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan
| | - Tohru Masuyama
- Department of Cardiovascular and Renal Medicine, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan
- Hoshigaoka Medical Center, Japan Community Health Care Organization, Hirakata, Osaka, Japan
| | - Masaharu Ishihara
- Department of Cardiovascular and Renal Medicine, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan
| | - Takeshi Tsujino
- Department of Cardiovascular and Renal Medicine, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan
- Division of Pharmaceutical Therapeutics, Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Kobe, Hyogo, Japan
| |
Collapse
|
18
|
Targeting perivascular and epicardial adipose tissue inflammation: therapeutic opportunities for cardiovascular disease. Clin Sci (Lond) 2020; 134:827-851. [PMID: 32271386 DOI: 10.1042/cs20190227] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 03/20/2020] [Accepted: 03/30/2020] [Indexed: 02/07/2023]
Abstract
Major shifts in human lifestyle and dietary habits toward sedentary behavior and refined food intake triggered steep increase in the incidence of metabolic disorders including obesity and Type 2 diabetes. Patients with metabolic disease are at a high risk of cardiovascular complications ranging from microvascular dysfunction to cardiometabolic syndromes including heart failure. Despite significant advances in the standards of care for obese and diabetic patients, current therapeutic approaches are not always successful in averting the accompanying cardiovascular deterioration. There is a strong relationship between adipose inflammation seen in metabolic disorders and detrimental changes in cardiovascular structure and function. The particular importance of epicardial and perivascular adipose pools emerged as main modulators of the physiology or pathology of heart and blood vessels. Here, we review the peculiarities of these two fat depots in terms of their origin, function, and pathological changes during metabolic deterioration. We highlight the rationale for pharmacological targeting of the perivascular and epicardial adipose tissue or associated signaling pathways as potential disease modifying approaches in cardiometabolic syndromes.
Collapse
|
19
|
Long-term atorvastatin or the combination of atorvastatin and nicotinamide ameliorate insulin resistance and left ventricular diastolic dysfunction in a murine model of obesity. Toxicol Appl Pharmacol 2020; 402:115132. [PMID: 32659285 DOI: 10.1016/j.taap.2020.115132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 06/27/2020] [Accepted: 07/04/2020] [Indexed: 02/06/2023]
Abstract
Current studies aimed at investigating the association between atorvastatin therapy and insulin resistance (IR) appear to be controversial. IR is considered to be an important contributor to inducing cardiac dysfunction through multiple signals. The paradoxical cardiotoxicity of atorvastatin reported under different conditions suggests that the association between atorvastatin treatment, insulin resistance and cardiac function should be clarified further. In this study, C57BL/6 J male mice were fed a high-fat diet (HD) or standard chow diet (SD) for 12 weeks and subsequently randomly divided into four groups: the SD-Control (SD-C) and HD-Control (HD-C) groups treated with saline for 10 months and the HD-A and HD-A + N groups treated with atorvastatin (20 mg/kg/day) alone or atorvastatin combined with nicotinamide (NAM, 1 g/kg/day) for 10 months. Although no significant changes in systolic function and structure were observed between the four groups of mice at an age of 46 or 58 weeks, respectively, long-term treatment with atorvastatin alone or atorvastatin and NAM combination significantly retarded the HD-induced IR and diastolic dysfunction and attenuated both cardiac and hepatic fibrosis in obese mice possibly by regulating the cleavage of osteopontin and then controlling profibrotic activity. Changes in cardiac function and structure were similar between the HD-A and HD-A + N groups; however, mice in the HD-A + N group exhibited better glucose control and marked reduction in body weight and hepatic lipid accumulation. Thus, these results suggest that long-term treatment with atorvastatin or the combination of atorvastatin and nicotinamide may be alternative therapies due to their beneficial effects on IR and diastolic function.
Collapse
|
20
|
Williams EA, Russo V, Ceraso S, Gupta D, Barrett-Jolley R. Anti-arrhythmic properties of non-antiarrhythmic medications. Pharmacol Res 2020; 156:104762. [PMID: 32217149 PMCID: PMC7248574 DOI: 10.1016/j.phrs.2020.104762] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 03/10/2020] [Accepted: 03/17/2020] [Indexed: 02/06/2023]
Abstract
Traditional anti-arrhythmic drugs are classified by the Vaughan-Williams classification scheme based on their mechanisms of action, which includes effects on receptors and/or ion channels. Some known anti-arrhythmic drugs do not perfectly fit into this classification scheme. Other medications/molecules with established non-anti-arrhythmic indications have shown anti-arrhythmic properties worth exploring. In this narrative review, we discuss the molecular mechanisms and evidence base for the anti-arrhythmic properties of traditional non-antiarrhythmic drugs such as inhibitors of the renin angiotensin system (RAS), statins and polyunsaturated fatty acids (PUFAs). In summary, RAS antagonists, statins and PUFAs are 'upstream target modulators' that appear to have anti-arrhythmic roles. RAS blockers prevent the downstream arrhythmogenic effects of angiotensin II - the main effector peptide of RAS - and the angiotensin type 1 receptor. Statins have pleiotropic effects including anti-inflammatory, immunomodulatory, modulation of autonomic nervous system, anti-proliferative and anti-oxidant actions which appear to underlie their anti-arrhythmic properties. PUFAs have the ability to alter ion channel function and prevent excessive accumulation of calcium ions in cardiac myocytes, which might explain their benefits in certain arrhythmic conditions. Clearly, whilst a number of anti-arrhythmic drugs exist, there is still a need for randomised trials to establish whether additional agents, including those already in clinical use, have significant anti-arrhythmic effects.
Collapse
Affiliation(s)
- Emmanuel Ato Williams
- Department of Cardiology, Liverpool Heart and Chest Hospital, Thomas Drive, Liverpool, L14 3PE, United Kingdom; Institute of Aging and Chronic Disease, University of Liverpool, United Kingdom
| | - Vincenzo Russo
- Chair of Cardiology, Department of Medical Translational Sciences, University of Campania "Luigi Vanvitelli", Monaldi Hospital, Naples, Italy
| | - Sergio Ceraso
- Specialization Fellow in Cardiology, Department of Medical Translational Sciences, University of Campania "Luigi Vanvitelli" - Monaldi Hospital, Naples, Italy
| | - Dhiraj Gupta
- Department of Cardiology, Liverpool Heart and Chest Hospital, Thomas Drive, Liverpool, L14 3PE, United Kingdom
| | - Richard Barrett-Jolley
- Chair Neuropharmacology, Institute of Aging and Chronic Disease, University of Liverpool, United Kingdom.
| |
Collapse
|
21
|
Yu B, Yu M, Zhang H, Xie D, Nie W, Shi K. Suppression of miR-143-3p contributes to the anti-fibrosis effect of atorvastatin on myocardial tissues via the modulation of Smad2 activity. Exp Mol Pathol 2020; 112:104346. [PMID: 31758917 DOI: 10.1016/j.yexmp.2019.104346] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 08/20/2019] [Accepted: 11/19/2019] [Indexed: 01/17/2023]
Abstract
Atorvastatin is a commonly prescribed statin drug for the control of lipid synthesis and recent studies have shown the cardiac protection potential of atorvastatin. Cardiac fibrosis is a critical process that impairs heart function. In the current study, the anti-fibrosis potential of atorvastatin was assessed and the mechanism associated with the treatment was explored. Fibrotic symptoms were induced using transverse aortic constriction (TAC) method in vivo and using TGF-β1 in vitro. The effect of atorvastatin on the development of cardiac fibrosis was firstly measured. Moreover, the influence of miR-143-3p induction on the anti-fibrosis function of atorvastatin was determined. TAC administration induced cardiac fibrosis and heart weight increase, which was associated with the induced expressions of TGF-β1, miR-143-3p, p-Smad2, and collagens. Atorvastatin restored the levels of TGF-β1, miR-143-3p, p-Smad2, and collagens. The administration of TGF-β1 induced the expressions of miR-143-3p, p-Smad2, and collagens in cardiac fibroblasts (CFs) and the effect was inhibited by atorvastatin. However, the function of atorvastatin was blocked by miR-143-3p mimics. The current study demonstrated that the suppression of miR-143-3p contributed to the anti-fibrosis effect of atorvastatin on myocardial tissues, which subsequently inhibited Smad2-mediated production of collagens.
Collapse
Affiliation(s)
- Bo Yu
- Department of Cardiology, Jilin Provincial Key Laboratory for Genetic Diagnosis of Cardiovascular Disease, China-Japan Union Hospital of Jilin University, Changchun 130033, People's Republic of China
| | - Ming Yu
- Department of Cardiology, Jilin Provincial Key Laboratory for Genetic Diagnosis of Cardiovascular Disease, China-Japan Union Hospital of Jilin University, Changchun 130033, People's Republic of China
| | - Hongli Zhang
- Department of Cardiology, Jilin Provincial Key Laboratory for Genetic Diagnosis of Cardiovascular Disease, China-Japan Union Hospital of Jilin University, Changchun 130033, People's Republic of China
| | - Di Xie
- Department of Cardiology, Jilin Provincial Key Laboratory for Genetic Diagnosis of Cardiovascular Disease, China-Japan Union Hospital of Jilin University, Changchun 130033, People's Republic of China
| | - Wei Nie
- Department of Cardiology, Jilin Provincial Key Laboratory for Genetic Diagnosis of Cardiovascular Disease, China-Japan Union Hospital of Jilin University, Changchun 130033, People's Republic of China
| | - Kaiyao Shi
- Department of Cardiology, Jilin Provincial Key Laboratory for Genetic Diagnosis of Cardiovascular Disease, China-Japan Union Hospital of Jilin University, Changchun 130033, People's Republic of China.
| |
Collapse
|
22
|
Jendzjowsky NG, Kelly MM. The Role of Airway Myofibroblasts in Asthma. Chest 2019; 156:1254-1267. [PMID: 31472157 DOI: 10.1016/j.chest.2019.08.1917] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/14/2019] [Accepted: 08/11/2019] [Indexed: 12/17/2022] Open
Abstract
Airway remodeling is a characteristic feature of asthma and is thought to play an important role in the pathogenesis of airway hyperresponsiveness. Myofibroblasts are key structural cells involved in injury and repair, and there is evidence that dysregulation of their normal function contributes to airway remodeling. Despite the importance of myofibroblasts, a lack of specific cellular markers and inconsistent nomenclature have limited recognition of their key role in airway remodeling. Myofibroblasts are increased several-fold in the airways in asthma, in proportion to the severity of the disease. Myofibroblasts are postulated to be derived from both tissue-resident and bone marrow-derived cells, depending on the stage of injury and the tissue. A small number of studies have demonstrated attenuation of myofibroblast numbers and also reversal of established myofibroblast populations in asthma and other inflammatory processes. In this article, we review what is currently known about the biology of myofibroblasts in the airways in asthma and identify potential targets to reduce or reverse the remodeling process. However, further translational research is required to better understand the mechanistic role of the myofibroblast in asthma.
Collapse
Affiliation(s)
- Nicholas G Jendzjowsky
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Margaret M Kelly
- Airway Inflammation Research Group, Snyder Institute for Chronic Disease, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada; Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
23
|
Verboven M, Cuypers A, Deluyker D, Lambrichts I, Eijnde BO, Hansen D, Bito V. High intensity training improves cardiac function in healthy rats. Sci Rep 2019; 9:5612. [PMID: 30948751 PMCID: PMC6449502 DOI: 10.1038/s41598-019-42023-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 03/11/2019] [Indexed: 02/08/2023] Open
Abstract
Exercise training is a low cost and safe approach for reducing the risk of cardiovascular disease development. Currently, moderate-intensity training (MIT) is the most preferred exercise type. However, high-intensity interval training (HIIT) is gaining interest especially among athletes and healthy individuals. In this study, we examined cardiac remodeling resulting from MIT and HIIT in healthy rats. Healthy male Sprague-Dawley rats were randomly assigned to MIT or HIIT for 13 weeks. Animals kept sedentary (SED) were used as control. Cardiac function was evaluated with echocardiography and hemodynamic measurements. Heart tissue was stained for capillary density and fibrosis. After 13 weeks of training, only HIIT induced beneficial cardiac hypertrophy. Overall global cardiac parameters (such as ejection fraction, cardiac output and volumes) were improved similarly between both training modalities. At tissue level, collagen content was significantly and similarly reduced in both exercise groups. Finally, only HIIT increased significantly capillary density. Our data indicate that even if very different in design, HIIT and MIT appear to be equally effective in improving cardiac function in healthy rats. Furthermore, HIIT provides additional benefits through improved capillary density and should therefore be considered as a preferred training modality for athletes and for patients.
Collapse
Affiliation(s)
- Maxim Verboven
- Biomedical Research Institute, Hasselt University, Hasselt, Belgium
| | - Anne Cuypers
- Biomedical Research Institute, Hasselt University, Hasselt, Belgium
| | - Dorien Deluyker
- Biomedical Research Institute, Hasselt University, Hasselt, Belgium
| | - Ivo Lambrichts
- Biomedical Research Institute, Hasselt University, Hasselt, Belgium
| | - Bert O Eijnde
- Biomedical Research Institute, Hasselt University, Hasselt, Belgium
| | - Dominique Hansen
- Biomedical Research Institute, Hasselt University, Hasselt, Belgium.,Heart Centre Hasselt, Jessa hospital, Stadsomvaart 11, 3500, Hasselt, Belgium
| | - Virginie Bito
- Biomedical Research Institute, Hasselt University, Hasselt, Belgium.
| |
Collapse
|
24
|
Lee MS, Duan L, Clare R, Hekimian A, Spencer H, Chen W. Comparison of Effects of Statin Use on Mortality in Patients With Heart Failure and Preserved Versus Reduced Left Ventricular Ejection Fraction. Am J Cardiol 2018; 122:405-412. [PMID: 30201108 DOI: 10.1016/j.amjcard.2018.04.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/08/2018] [Accepted: 04/10/2018] [Indexed: 01/08/2023]
Abstract
Randomized trials showed no survival benefit with statin therapy in heart failure (HF) patients with reduced ejection fraction (HFrEF). Whether these results are generalizable to HF patients with preserved ejection fraction (HFpEF) or with mid-range ejection fraction is unclear. In a cohort of 13,440 patients with HF, 9,903 (73.7%) were treated with statins. The association between statin use and all-cause mortality was assessed with Cox proportional hazard regression models and survival time inverse probability weighting propensity scores analyses. Multivariable Poisson regression models with robust error variance were applied to estimate the rate ratios (RR) for hospitalization. The association between statin treatment and clinical outcomes differed by ejection fraction group. In patients with HFpEF, statin use was associated with reduced mortality (hazard ratio [HR] 0.73, 95% confidence interval [CI] 0.66 to 0.81, p <0.001; average treatment effect [ATE] 0.48, 95% CI 0.13 to 0.84, p = 0.007) and reduced all-cause hospitalization (RR 0.82, 95% CI 0.76 to 0.89, p <0.001). In contrast, in patients with HFrEF, no significant association was observed between statin use and mortality (HR 0.86, 95% CI 0.74 to 1.0, p = 0.054; ATE 0.41, 95% CI -0.09 to 0.93, p = 0.11) or hospitalization (RR 0.92, 95% CI 0.82 to 1.04, p = 0.17). Similarly, in patients with mid-range ejection fraction, there was no significant association with reduced mortality (HR 0.76, 95% CI 0.60 to 0.95, p = 0.02, ATE 0.3, 95% CI -0.84 to 1.43, p = 0.61) or hospitalization (RR 1.07, 95% CI 0.9 to 1.27, p = 0.44). In conclusion, statin use was associated with improved clinical outcomes in patients with HFpEF but not in patients with HFrEF or mid-range ejection fraction.
Collapse
Affiliation(s)
- Ming-Sum Lee
- Division of Cardiology, Kaiser Permanente Los Angeles Medical Center, Los Angeles, California.
| | - Lewei Duan
- Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena, California
| | - Ryan Clare
- Division of Cardiology, Kaiser Permanente Los Angeles Medical Center, Los Angeles, California
| | - Avetis Hekimian
- Division of Cardiology, Kaiser Permanente Los Angeles Medical Center, Los Angeles, California
| | - Hillard Spencer
- Southern California Permanente Medical Group, Los Angeles, California
| | - Wansu Chen
- Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena, California
| |
Collapse
|
25
|
Packer M. Epicardial Adipose Tissue May Mediate Deleterious Effects of Obesity and Inflammation on the Myocardium. J Am Coll Cardiol 2018; 71:2360-2372. [PMID: 29773163 DOI: 10.1016/j.jacc.2018.03.509] [Citation(s) in RCA: 399] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 02/20/2018] [Accepted: 03/18/2018] [Indexed: 02/07/2023]
Abstract
Epicardial adipose tissue has unique properties that distinguish it from other depots of visceral fat. Rather than having distinct boundaries, the epicardium shares an unobstructed microcirculation with the underlying myocardium, and in healthy conditions, produces cytokines that nourish the heart. However, in chronic inflammatory disorders (especially those leading to heart failure with preserved ejection fraction), the epicardium becomes a site of deranged adipogenesis, leading to the secretion of proinflammatory adipokines that can cause atrial and ventricular fibrosis. Accordingly, in patients at risk of heart failure with preserved ejection fraction, drugs that promote the accumulation or inflammation of epicardial adipocytes may lead to heart failure, whereas treatments that ameliorate the proinflammatory characteristics of epicardial fat may reduce the risk of heart failure. These observations suggest that epicardial adipose tissue is a transducer of the adverse effects of systemic inflammation and metabolic disorders on the heart, and thus, represents an important target for therapeutic interventions.
Collapse
Affiliation(s)
- Milton Packer
- Baylor Heart and Vascular Institute, Baylor University Medical Center, Dallas, Texas.
| |
Collapse
|
26
|
Packer M. Are the effects of drugs to prevent and to treat heart failure always concordant? The statin paradox and its implications for understanding the actions of antidiabetic medications. Eur J Heart Fail 2018; 20:1100-1105. [PMID: 29566300 DOI: 10.1002/ejhf.1183] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 01/30/2018] [Accepted: 02/20/2018] [Indexed: 12/11/2022] Open
Abstract
Most treatments for chronic heart failure are effective both in preventing its onset and reducing its progression. However, statins prevent the development of heart failure, but they do not decrease morbidity and mortality in those with established heart failure. This apparent discordance cannot be explained by an effect to prevent interval myocardial infarctions. Instead, it seems that the disease that statins were preventing in trials of patients with a metabolic disorder was different from the disease that they were treating in trials of chronic heart failure. The most common phenotype of heart failure in patients with obesity and diabetes is heart failure with a preserved ejection fraction (HFpEF). In this disorder, the anti-inflammatory effects of statins might ameliorate myocardial fibrosis and cardiac filling abnormalities, but these actions may have little relevance to patients with heart failure and a reduced ejection fraction (HFrEF), whose primary derangement is cardiomyocyte loss and stretch. These distinctions may explain why statins were ineffective in trials that focused on HFrEF, but have been reported to produce favourable effects in observational studies of HFpEF. Similarly, selective cytokine antagonists were ineffective in HFrEF, but have been associated with benefits in HFpEF. These observations may have important implications for our understanding of the effects of antihyperglycaemic medications. Glucagon-like peptide-1 receptor agonists have had neutral effects on heart failure events in people at risk for HFpEF, but have exerted deleterious actions in HFrEF. Similarly, sodium-glucose co-transporter 2 inhibitors, which exert anti-inflammatory effects and reduce heart failure events in patients who are prone to HFpEF, may not be effective in HFrEF. The distinctions between HFrEF and HFpEF may explain why the effects of drugs on heart failure events in diabetes trials may not be relevant to their use in patients with systolic dysfunction.
Collapse
Affiliation(s)
- Milton Packer
- Baylor Heart and Vascular Institute, Baylor University Medical Center, Dallas, TX, USA
| |
Collapse
|
27
|
Barretti DLM, Melo SFS, Oliveira EM, Barauna VG. Resistance training attenuates salt overload-induced cardiac remodeling and diastolic dysfunction in normotensive rats. ACTA ACUST UNITED AC 2017; 50:e6146. [PMID: 28793051 PMCID: PMC5572849 DOI: 10.1590/1414-431x20176146] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 06/12/2017] [Indexed: 11/22/2022]
Abstract
Elevated salt intake induces changes in the extracellular matrix collagen, leading to myocardial stiffness and impaired relaxation. Resistance training (RT) has been used as a remarkably successful strategy in the treatment of heart disease. Therefore, the aim of this study was to investigate the effects of RT on preventing pathological adaptation of the left ventricle (LV) induced by salt overload. Male Wistar rats (10 weeks old) were distributed into four groups (n=8/group): control (CO), control+1% salt (CO+SALT), RT and RT+1% salt (RT+SALT). The RT protocol consisted of 4×12 bouts of squat training, 5/week for 8 weeks, with 80% of one repetition maximum (1RM). Echocardiographs were analyzed and interstitial collagen volume fraction (CVF) was determined in the LV. The 1RM tests in the RT and RT+SALT groups increased 145 and 137%, respectively, compared with the test performed before the training program. LV weight-to-body weight ratio and LV weight-to-tibia length ratio were greater in the RT and RT+SALT groups, respectively, compared with the CO group. Although there was no difference in the systolic function between groups, diastolic function decreased 25% in the CO+SALT group compared with the CO group measured by E/A wave ratio. RT partially prevented this decrease in diastolic function compared with the CO+SALT group. A 1% salt overload increased CVF more than 2.4-fold in the CO+SALT group compared with the CO group and RT prevented this increase. In conclusion, RT prevented interstitial collagen deposition in LV rats subjected to 1% NaCl and attenuated diastolic dysfunction induced by salt overload independent of alterations in blood pressure.
Collapse
Affiliation(s)
- D L M Barretti
- Laboratório de Bioquímica e Biologia Molecular do Exercício, Escola de Educação Física e Esportes, Universidade de São Paulo, São Paulo, SP, Brasil
| | - S F S Melo
- Laboratório de Bioquímica e Biologia Molecular do Exercício, Escola de Educação Física e Esportes, Universidade de São Paulo, São Paulo, SP, Brasil.,Laboratório de Fisiologia Molecular, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Vitória, ES, Brasil
| | - E M Oliveira
- Laboratório de Bioquímica e Biologia Molecular do Exercício, Escola de Educação Física e Esportes, Universidade de São Paulo, São Paulo, SP, Brasil
| | - V G Barauna
- Laboratório de Fisiologia Molecular, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Vitória, ES, Brasil
| |
Collapse
|
28
|
Chang YY, Wu YW, Lee JK, Lin YM, Lin YT, Kao HL, Hung CS, Lin HJ, Lin YH. Effects of 12 weeks of atorvastatin therapy on myocardial fibrosis and circulating fibrosis biomarkers in statin-naïve patients with hypertension with atherosclerosis. J Investig Med 2016; 64:1194-9. [DOI: 10.1136/jim-2016-000092] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2016] [Indexed: 12/16/2022]
Abstract
The purpose of this study was to assess the effects of 12 weeks of atorvastatin treatment on myocardial fibrosis in patients with hypertension with atherosclerosis. 15 statin-naïve participants (11 males; mean age 67±10 years) with atherosclerosis were given atorvastatin (40 mg/day) for 12 weeks and underwent echocardiography including ultrasonic tissue characterization by cyclic variation of integrated backscatter (CVIBS). Serum galectin-3 and fibrosis markers including aminoterminal propeptide of type III procollagen (PIIINP), matrix metalloproteinase-2, metalloproteinase-9, and tissue inhibitor of metalloproteinase-1 (TIMP-1) were also analyzed. After 12 weeks of atorvastatin (40 mg/day) treatment, serum total cholesterol and low-density lipoprotein cholesterol decreased significantly (204±31 to 140±24 mg/dL and 133±26 to 69±17 ng/mL, respectively, both p<0.001). In myocardial fibrosis analysis, CVIBS increased significantly (6.6±1.9 to 8.5±2.7 dB, p=0.024). In addition, the circulating fibrosis markers serum PIIINP and TIMP-1 decreased significantly (9.5±2.7 to 6.4±1.4 ng/mL, p=0.012 and 299±65 to 250±45 ng/mL, p=0.024, respectively). 12 weeks of medium dose atorvastatin treatment resulted in a significant reduction in myocardial fibrosis as evaluated by morphofunctional parameters and plasma markers of tissue fibrosis.Trial registration numberNTC00172419; results.
Collapse
|
29
|
Fukuta H, Goto T, Wakami K, Ohte N. The effect of statins on mortality in heart failure with preserved ejection fraction: a meta-analysis of propensity score analyses. Int J Cardiol 2016; 214:301-6. [DOI: 10.1016/j.ijcard.2016.03.186] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 03/21/2016] [Accepted: 03/22/2016] [Indexed: 10/22/2022]
|
30
|
Chen M, Li H, Wang G, Shen X, Zhao S, Su W. Atorvastatin prevents advanced glycation end products (AGEs)-induced cardiac fibrosis via activating peroxisome proliferator-activated receptor gamma (PPAR-γ). Metabolism 2016; 65:441-53. [PMID: 26975536 DOI: 10.1016/j.metabol.2015.11.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 10/31/2015] [Accepted: 11/23/2015] [Indexed: 12/17/2022]
Abstract
BACKGROUND Previous studies have shown that the activation of advanced glycation end products (AGEs) contributed to the cardiac fibrosis in diabetic patients. Although it had been reported that statins have beneficial effects on cardiac fibrosis in hypertension and myocardial ischemia models, their effects on AGEs models have not been studied. We aimed to investigate the effects of atorvastatin (Ator) on the AGEs-induced cardiac fibrosis both in vitro and vivo. METHODS Male Sprague-Dawley rats were randomly divided into four groups: Control, AGEs, Ator or AGEs+Ator. The cardiac function was evaluated with the echocardiography at the second and the third month. Fibrosis area, α-SMA and RAGE expression in cardiac tissue were measured. For in vitro study, rat cardiac fibroblasts were treated with PD98059 (ERK inhibitor), Ator or Ator+GW9662 (PPAR-γ antagonist), and then were stimulated with AGEs. Fibroblasts proliferation, ERK1/2, phosphorylated ERK1/2, α-SMA, and RAGE expression were studied. RESULTS Compared with the control group, in vivo treatment with Ator significantly retarded the AGEs-induced diastolic function and attenuated cardiac fibrosis, α-SMA, and RAGE over expression induced by AGEs. Consistently, Ator prominently downregulated RAGE and α-SMA, while inhibited phosphorylation of ERK1/2 and fibroblast proliferation induced by AGEs in vitro. The GW9662 neutralized these effects of Ator on cardiac fibroblasts stimulated by AGEs. CONCLUSION In this study, we demonstrated that AGEs-induced fibroblast proliferation and differentiation were dependent on AGEs-RAGE-ERK1/2 pathway and that atorvastatin could block this pathway via activating PPAR-γ.
Collapse
Affiliation(s)
- Miao Chen
- Department of Cardiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hongwei Li
- Department of Cardiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| | - Guoxing Wang
- Department of Emergency, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| | - Xuhua Shen
- Department of Cardiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Shumei Zhao
- Department of Cardiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Wen Su
- Department of Cardiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
31
|
Kim G, Kim JH, Moon KW, Yoo KD, Kim CM, Moon D, Lee SN. The Relationships Between the Arterial Stiffness Index Measured at the Radial Artery and Left Ventricular Diastolic Dysfunction in Asymptomatic High Risk Patients Without Atherosclerotic Cardiovascular Disease. Int Heart J 2016; 57:73-9. [PMID: 26742882 DOI: 10.1536/ihj.15-225] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Arterial stiffness is associated with atherosclerosis and left ventricular (LV) diastolic function in general or hypertensive patients. However, the relationships between the arterial stiffness index measured at the radial artery and LV diastolic dysfunction in asymptomatic high-risk patients without atherosclerotic cardiovascular disease (ASCVD) have not been fully established.A total 532 statin-naïve patients (male:female ratio, 230:302, mean age, 56.0 ± 9.2 years) without ASCVD were enrolled from among subjects who simultaneously underwent transthoracic echocardiography and noninvasive semiautomated radial artery applanation tonometry from July 2011 to May 2014. Of these patients, 213 were categorized as the statin benefit group (Benefit) according to guidelines for blood cholesterol treatment, and the rest were placed in the nonbenefit control group (NoBenefit). Each group was subdivided into two groups (Y or N) according to antihypertensive medication administration. Thus, there were 4 groups: BenefitN (n = 80), BenefitY (n = 133), NoBenefitN (n = 251), and NoBenefitY (n = 68). There were significant differences in echocardiographic parameters of LV function and indices of arterial stiffness between the Benefit and NoBenefit groups. After adjusting for several risk factors, independent significant associations between echocardiographic parameters of LV diastolic function and arterial indices were identified with multivariate linear regression analysis in the Benefit patients.Parameters of arterial stiffness measured at the radial artery are associated with echocardiographic indices of LV diastolic function in asymptomatic high-risk patients without ASCVD. Therapies that prevent progression of arterial stiffness and reduce late-systolic pressure overload may help to reduce the prevalence of LV diastolic dysfunction in this population.
Collapse
Affiliation(s)
- GeeHee Kim
- Division of Cardiology, Department of Internal Medicine, St.Vincent's Hospital, The Catholic University of Korea
| | | | | | | | | | | | | |
Collapse
|
32
|
Zhang K, He X, Zhou Y, Gao L, Qi Z, Chen J, Gao X. Atorvastatin Ameliorates Radiation-Induced Cardiac Fibrosis in Rats. Radiat Res 2015; 184:611-20. [DOI: 10.1667/rr14075.1] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
33
|
Waddingham MT, Edgley AJ, Tsuchimochi H, Kelly DJ, Shirai M, Pearson JT. Contractile apparatus dysfunction early in the pathophysiology of diabetic cardiomyopathy. World J Diabetes 2015; 6:943-960. [PMID: 26185602 PMCID: PMC4499528 DOI: 10.4239/wjd.v6.i7.943] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 12/30/2014] [Accepted: 03/09/2015] [Indexed: 02/05/2023] Open
Abstract
Diabetes mellitus significantly increases the risk of cardiovascular disease and heart failure in patients. Independent of hypertension and coronary artery disease, diabetes is associated with a specific cardiomyopathy, known as diabetic cardiomyopathy (DCM). Four decades of research in experimental animal models and advances in clinical imaging techniques suggest that DCM is a progressive disease, beginning early after the onset of type 1 and type 2 diabetes, ahead of left ventricular remodeling and overt diastolic dysfunction. Although the molecular pathogenesis of early DCM still remains largely unclear, activation of protein kinase C appears to be central in driving the oxidative stress dependent and independent pathways in the development of contractile dysfunction. Multiple subcellular alterations to the cardiomyocyte are now being highlighted as critical events in the early changes to the rate of force development, relaxation and stability under pathophysiological stresses. These changes include perturbed calcium handling, suppressed activity of aerobic energy producing enzymes, altered transcriptional and posttranslational modification of membrane and sarcomeric cytoskeletal proteins, reduced actin-myosin cross-bridge cycling and dynamics, and changed myofilament calcium sensitivity. In this review, we will present and discuss novel aspects of the molecular pathogenesis of early DCM, with a special focus on the sarcomeric contractile apparatus.
Collapse
|