1
|
Claus I, Hoffmeister M, Strathmeyer S, Heelemann S, Remus C, Dammermann W, Ritter O, Patschan D, Patschan S. Metabolomics for Distinguishing Cardiovascular Risk in Rheumatoid Arthritis Across Different Disease-Modifying Antirheumatic Drug Therapies. J Clin Med Res 2025; 17:89-96. [PMID: 39981338 PMCID: PMC11835553 DOI: 10.14740/jocmr6145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 01/06/2025] [Indexed: 02/22/2025] Open
Abstract
Background Rheumatoid arthritis (RA) significantly increases the overall risk of cardiovascular disease (CVD). In addition to conventional risk factors, the inflammatory activity of the disease itself and medications that promote atherosclerosis contribute to an even greater risk. In this study, we performed metabolomic analysis in RA patients, both on and off disease-modifying anti-rheumatic drug (DMARD) therapy, with the aim of identifying new candidates for more sophisticated cardiovascular risk (CVR) assessment. Methods This is an observational, cross-sectional investigation that included patients with established RA. DMARD therapy, if prescribed, consisted of methotrexate (MTX) alone or in combination with other conventional disease-modifying anti-rheumatic drugs (cDMARDs) or biologic disease-modifying anti-rheumatic drugs (bDMARDs), or other cDMARDs or bDMARDs without MTX, respectively. Metabolomic profiling was conducted using a Bruker AVANCE NEO 600 MHz nuclear magnetic resonance (NMR) spectrometer. The spectra obtained were Fourier transformed using TopSpin software (version 4.0, Bruker Biospin, Germany). All spectra were automatically phased and subjected to baseline correction. Subsequently, the spectra were analyzed using the proprietary Profiler software (version 1.4_Blood, lifespin GmbH, Germany), and a quantitative metabolite list was generated. Results In total, 200 patients were included in the study, 54 subjects were not receiving any DMARDs (n = 47 untreated at the time of inclusion, n = 7 with established disease but not receiving DMARD therapy), and 146 were receiving DMARD treatment. No metabolic differences were found in relation to drug therapy or RA activity. The following CVR factors were associated with significant metabolic abnormalities: distress, arterial hypertension, diabetes mellitus and an average higher Framingham score. Distressed individuals showed abnormalities in histidine metabolism. Conclusions Our findings have aided in the identification of potential surrogate markers for assessing the burden of CVD in individuals with RA. Histidine may be of particular diagnostic importance in CVR assessment in RA.
Collapse
Affiliation(s)
- Inga Claus
- Department of Internal Medicine I - Cardiology, Nephrology and Internal Intensive Medicine, Brandenburg University Hospital, Brandenburg Medical School (Theodor Fontane), 14770 Brandenburg an der Havel, Germany
| | - Meike Hoffmeister
- Institute of Biochemistry, Brandenburg Medical School (Theodor Fontane), 14770 Brandenburg an der Havel, Germany
| | | | | | - Constantin Remus
- Department of Internal Medicine I - Cardiology, Nephrology and Internal Intensive Medicine, Brandenburg University Hospital, Brandenburg Medical School (Theodor Fontane), 14770 Brandenburg an der Havel, Germany
| | - Werner Dammermann
- Department of Internal Medicine II - Gastroenterology and Endocrinology, Brandenburg University Hospital, Brandenburg Medical School (Theodor Fontane), 14770 Brandenburg an der Havel, Germany
| | - Oliver Ritter
- Department of Internal Medicine I - Cardiology, Nephrology and Internal Intensive Medicine, Brandenburg University Hospital, Brandenburg Medical School (Theodor Fontane), 14770 Brandenburg an der Havel, Germany
| | - Daniel Patschan
- Department of Internal Medicine I - Cardiology, Nephrology and Internal Intensive Medicine, Brandenburg University Hospital, Brandenburg Medical School (Theodor Fontane), 14770 Brandenburg an der Havel, Germany
| | - Susann Patschan
- Department of Internal Medicine I - Cardiology, Nephrology and Internal Intensive Medicine, Brandenburg University Hospital, Brandenburg Medical School (Theodor Fontane), 14770 Brandenburg an der Havel, Germany
| |
Collapse
|
2
|
Ajoolabady A, Pratico D, Dunn WB, Lip GYH, Ren J. Metabolomics: Implication in cardiovascular research and diseases. Obes Rev 2024; 25:e13825. [PMID: 39370721 DOI: 10.1111/obr.13825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 08/13/2024] [Accepted: 08/18/2024] [Indexed: 10/08/2024]
Abstract
Cellular metabolism influences all aspects of cellular function and is crucial for overall organismal health. Metabolic disorders related to cardiovascular health can lead to cardiovascular diseases (CVDs). Moreover, associated comorbidities may also damage cardiovascular metabolism, exacerbating CVD and perpetuating a vicious cycle. Given the prominent role of metabolic alterations in CVD, metabolomics has emerged as an imperative technique enabling a comprehensive assessment of metabolites and metabolic architecture within the body. Metabolite profile and metabolic pathways help to deepen and broaden our understanding of complex genomic landscape and pathophysiology of CVD. Here in this review, we aim to overview the experimental and clinical applications of metabolomics in pathogenesis, diagnosis, prognosis, and management of various CVD plus future perspectives and limitations.
Collapse
Affiliation(s)
- Amir Ajoolabady
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Domenico Pratico
- Alzheimer's Center at Temple, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Warwick B Dunn
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool, UK
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Gregory Y H Lip
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart & Chest Hospital, Liverpool, UK
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Jun Ren
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital Fudan University, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| |
Collapse
|
3
|
Strauss-Kruger M, Pieters M, van Zyl T, Kruger R, Jacobs A, Jansen van Vuren E, Louw R, Mels CCMC. Urinary metabolomics signature of animal and plant protein intake and its association with 24-h blood pressure: the African-PREDICT study. Hypertens Res 2024; 47:2456-2470. [PMID: 38965426 PMCID: PMC11374704 DOI: 10.1038/s41440-024-01767-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/24/2024] [Accepted: 06/06/2024] [Indexed: 07/06/2024]
Abstract
The contrasting relationships of plant and animal protein intake with blood pressure (BP) may be partially attributed to the differential non-protein (e.g., saturated fat and fibre) and amino acid (AA) compositions. This study determined whether animal and plant protein intake were related to differential metabolomic profiles associated with BP. This study included 1008 adults from the African-PREDICT study (aged 20-30 years). Protein intake was determined using 24-h dietary recalls. Twenty-four-hour ambulatory BP was measured. Amino acids and acylcarnitines were analysed in spot urine samples using liquid chromatography-tandem mass spectrometry-based metabolomics. Participants with a low plant, high animal protein intake had higher SBP (by 3 mmHg, p = 0.011) than those with high plant, low animal protein intake (low-risk group). We found that the relationships of plant and animal protein intake with 24-h SBP were partially mediated by BMI and saturated fat intake, which were independently associated with SBP. Protein intake was therefore not related to SBP in multiple regression analysis after adjusting for confounders. In the low-risk group, methionine (Std. β = -0.217; p = 0.034), glutamic acid (Std. β = -0.220; p = 0.031), glycine (Std. β = -0.234; p = 0.025), and proline (Std. β = -0.266; p = 0.010) were inversely related to SBP, and beta-alanine (Std. β = -0.277; p = 0.020) to DBP. Ultimately a diet high in animal and low in plant protein intake may contribute to higher BP by means of increased BMI and saturated fat intake. Conversely, higher levels of urinary AAs observed in adults consuming a plant rich diet may contribute to lower BP.
Collapse
Affiliation(s)
- Michél Strauss-Kruger
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom, 2520, North-West Province, South Africa
- SAMRC Extramural Unit for Hypertension and Cardiovascular Disease, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Marlien Pieters
- SAMRC Extramural Unit for Hypertension and Cardiovascular Disease, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
- Centre of Excellence for Nutrition (CEN), North-West University, Potchefstroom, 2520, South Africa
| | - Tertia van Zyl
- SAMRC Extramural Unit for Hypertension and Cardiovascular Disease, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
- Centre of Excellence for Nutrition (CEN), North-West University, Potchefstroom, 2520, South Africa
| | - Ruan Kruger
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom, 2520, North-West Province, South Africa
- SAMRC Extramural Unit for Hypertension and Cardiovascular Disease, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Adriaan Jacobs
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom, 2520, North-West Province, South Africa
- SAMRC Extramural Unit for Hypertension and Cardiovascular Disease, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Esmé Jansen van Vuren
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom, 2520, North-West Province, South Africa
- SAMRC Extramural Unit for Hypertension and Cardiovascular Disease, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Roan Louw
- Human Metabolomics, North-West University, Potchefstroom, 2520, North-West Province, South Africa
| | - Carina C M C Mels
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom, 2520, North-West Province, South Africa.
- SAMRC Extramural Unit for Hypertension and Cardiovascular Disease, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa.
| |
Collapse
|
4
|
du Toit WL, Kruger R, Gafane-Matemane LF, Schutte AE, Louw R, Mels CMC. Exploring the interplay between kidney function and urinary metabolites in young adults: the African-PREDICT study. Amino Acids 2024; 56:53. [PMID: 39207612 PMCID: PMC11362211 DOI: 10.1007/s00726-024-03412-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
The exposure to modifiable risk factors at young ages have been linked to premature fatal and non-fatal cardiovascular and kidney outcomes. The use of urinary metabolomics has shown strong predictability of kidney function and cardiovascular disease (CVD). We therefore determined the associations between estimated glomerular filtration rate (eGFR) and urinary metabolites in young adults with and without CVD risk factors. Apparently healthy Black and White sexes were included (aged 20-30 years) and categorised by the presence or absence of risk factors, i.e., obesity, physical inactivity, smoking, excessive alcohol intake, masked hypertension, hyperglycemia, dyslipidemia and low socio-economic status, forming the CVD risk group (N = 1036), CVD risk clusters (i.e. presenting with 1 CVD risk factor (N = 344), 2 CVD risk factors (N = 360) and 3 + CVD risk factors (N = 332)) and the control group (N = 166). eGFR was calculated with CKD-EPI equations. A targeted metabolomics approach using liquid chromatography-tandem mass spectrometry was used to measure amino acids and acylcarnitines. Lower cystatin C-based eGFR were indicated in the CVD risk group, 2 and 3 + CVD risk clusters compared to the control group (all P ≤ 0.033). In the CVD risk group, eGFR associated positively with histidine, lysine, asparagine, glycine, serine, glutamine, dimethylglycine, threonine, alanine, creatine, cystine, methionine, tyrosine, pyroglutamic acid, leucine/isoleucine, aspartic acid, tryptophan, glutamic acid, free carnitine, acetylcarnitine, propionylcarnitine, isovalerylcarnitine, octanoylcarnitine and decanoylcarnitine (all P ≤ 0.044), with similar results found in the CVD risk clusters, particularly the 2 CVD risk cluster. eGFR was positively associated with metabolites linked to aromatic amino acid and branched-chain amino acid metabolism, energy metabolism and oxidative stress. These findings may indicate altered reabsorption of these metabolites or altered metabolic regulation to preserve renal health in the setting of CVD risk factors at this young age without established CVD.
Collapse
Affiliation(s)
- Wessel L du Toit
- Hypertension in Africa Research Team (HART), North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
- Cardiovascular Pathophysiology and Genomics Research Unit (CPGRU), University of the Witwatersrand, Johannesburg, South Africa
| | - Ruan Kruger
- Hypertension in Africa Research Team (HART), North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
- MRC Research Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa
| | - Lebo F Gafane-Matemane
- Hypertension in Africa Research Team (HART), North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
- MRC Research Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa
| | - Aletta E Schutte
- Hypertension in Africa Research Team (HART), North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
- MRC Research Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa
- School of Population Health, University of New South Wales, The George Institute for Global Health, Sydney, Australia
| | - Roan Louw
- Human Metabolomics, North-West University, Potchefstroom Campus, Potchefstroom, South Africa
| | - Catharina M C Mels
- Hypertension in Africa Research Team (HART), North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa.
- MRC Research Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa.
| |
Collapse
|
5
|
du Plessis JP, Lammertyn L, Schutte AE, Nienaber-Rousseau C. Homocysteine, blood pressure and gene-diet interactions in relation to vascular function measures of black South Africans. GENES & NUTRITION 2024; 19:14. [PMID: 39090534 PMCID: PMC11295634 DOI: 10.1186/s12263-024-00751-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND AND AIMS We investigated circulating homocysteine (Hcy), a cardiovascular disease (CVD) risk factor, examining its dietary associations to provide personalized nutrition advice. This study addressed the inadequacy of current dietary interventions to ultimately address the disproportionately high incidence of CVD in Black populations. METHODS AND RESULTS Cross-sectional analyses of 1,867 Black individuals of the PURE-SA study allowed the identification of dietary intake and cardiovascular measure interactions on three sub-categories: (1) normal blood pressure (BP), hypertension or Hcy-related hypertension (H-type), (2) low, normal or high Hcy concentrations, and (3) Hcy-related genetic combinations. Favorable body composition, but adverse dietary intake and cardiovascular determinants, were observed in higher Hcy categories. H-types, compared to regular hypertensives, had higher alcohol and lower macronutrient and micronutrient consumption. Inverse associations with carotid-radial pulse wave velocity were evident between monounsaturated fatty acid (FA) consumption and H-type hypertension as well as polyunsaturated FA and CBS883/ins68 TT carriers. Energy intake was positively associated with vascular cell adhesion molecule-1 (VCAM-1) in variant CBST883C/ins68 and CBS9276 GG carriers. VCAM-1 was also positively associated with plant protein intake in CBS9276 GG and MTR2756 AA carriers and negatively with total protein intake and CBS9276 GG carriers. Alcohol intake was positively associated with intercellular adhesion molecule-1 in MTR2756 minor allele carriers. CONCLUSION Because Hcy gene-diet interactions are evident, personalized nutrition, by adjusting diets based on genetic profiles (e.g., CBS and MTR variations) and dietary interactions (e.g., FAs and proteins), can enhance cardiovascular outcomes by managing Hcy and related hypertension in genetically susceptible individuals.
Collapse
Affiliation(s)
- Jacomina P du Plessis
- Centre of Excellence for Nutrition, North-West University, Private bag x6001, Box 594, Nutrition, Potchefstroom, 2520, South Africa
| | - Leandi Lammertyn
- Hypertension in Africa Research Team, North-West University, Potchefstroom, 2520, South Africa
- SAMRC Extramural Unit for Hypertension and Cardiovascular Disease, Faculty of Health Sciences, North- West University, Potchefstroom, 2520, South Africa
| | - Aletta E Schutte
- Hypertension in Africa Research Team, North-West University, Potchefstroom, 2520, South Africa
- SAMRC Extramural Unit for Hypertension and Cardiovascular Disease, Faculty of Health Sciences, North- West University, Potchefstroom, 2520, South Africa
- School of Population Health, University of New South Wales, The George Institute of Global Health, Sydney, NSW, Australia
| | - Cornelie Nienaber-Rousseau
- Centre of Excellence for Nutrition, North-West University, Private bag x6001, Box 594, Nutrition, Potchefstroom, 2520, South Africa.
- SAMRC Extramural Unit for Hypertension and Cardiovascular Disease, Faculty of Health Sciences, North- West University, Potchefstroom, 2520, South Africa.
| |
Collapse
|
6
|
Wang L, Hu J. Unraveling the gut microbiota's role in salt-sensitive hypertension: current evidences and future directions. Front Cardiovasc Med 2024; 11:1410623. [PMID: 39091359 PMCID: PMC11291451 DOI: 10.3389/fcvm.2024.1410623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/03/2024] [Indexed: 08/04/2024] Open
Abstract
The gut microbiota plays a pivotal role in both maintaining human health and in the pathogenesis of diseases. Recent studies have brought to light the significant correlation between gut microbiota and hypertension, particularly focusing on its role in the development and advancement of SSH, a subtype characterized by elevated blood pressure in response to high salt consumption. The complexity of SSH's etiology is notable, with dysbiosis of the gut microbiome identified as a crucial contributing factor. The gut microbiota participates in the occurrence and development of SSH by affecting the host's immune system, metabolic function, and neuromodulation. Investigations have demonstrated that the gut microbes regulate the development of SSH by regulating the TH17 axis and the activity of immune cells. Moreover, microbial metabolites, such as short-chain fatty acids, are implicated in blood pressure regulation and affect the development of SSH. There is evidence to show that the composition of the gut microbiome can be altered through prebiotic interventions so as to prevent and treat SSH. This review aims to concisely sum up the role of gut microbiota in SSH and to discuss pertinent therapeutic strategies and clinical implications, thereby providing a valuable reference for further research and clinical practice in this area.
Collapse
Affiliation(s)
- Li Wang
- Public Health School, Gansu University of Chinese Medicine, Lanzhou, China
| | - Jihong Hu
- Teaching Experiment and Training Center, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Dunhuang Medicine, Ministry of Education, Gansu University of Chinese Medicine, Lanzhou, China
| |
Collapse
|
7
|
Addo J, Davy M, Newlands A, Orford L, Guta P, Scott R, van Hasselt J, Maher-Edwards G. The Africa non-communicable diseases (NCD) Open Lab: Impact of a portfolio of clinical studies to deepen the understanding of NCDs in sub-Saharan Africa. J Glob Health 2024; 14:04065. [PMID: 38695258 PMCID: PMC11063967 DOI: 10.7189/jogh.14.04065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2024] Open
Abstract
Background Clinical research in sub-Saharan Africa (SSA) has often focussed on communicable diseases. However, with the increasing burden of non-communicable diseases (NCDs), there is a need for Africa-specific NCD research. Methods GSK established the Africa NCD Open Lab in 2014. Three calls for proposals were advertised through various media channels. An external independent scientific advisory board, predominantly representing African scientists and NCD experts, reviewed and selected projects to receive funding. An additional programme in the Africa NCD Open Lab was designed to build statistical capability by supporting training initiatives. We assessed the impact of the Africa NCD Open Lab in three ways: scientific quality with impact; research training and professional development; and research environments. We captured metrics through regular reports/interactions with researchers; via a final report; and through exit interviews with principal investigators. Results Twenty projects in 11 African countries were funded; reports from 18 completed projects are available (data capture is ongoing). Overall, 139 articles have been published in peer-reviewed journals and other data have been presented at conferences and other forums. Most completed projects led to positive outcomes, such as further research, informing policy, or positively impacting clinical care, including three projects that saw changes to regional or national practice guidelines: the CREOLE study in Nigeria; the African Severe Asthma Program in Uganda; and the African Prospective Study on the Early Detection and Identification of Cardiovascular Disease and Hypertension in South Africa. Participation in the Africa NCD Open Lab led to the award of 34 grants related to or influenced by increased research capacity or experience. Significant professional development related to the projects also occurred with higher-level degrees being awarded, including 30 MScs, 30 PhDs, and nine postdoctoral fellowships. Through these projects, research capacity was strengthened across the region by equipping core research facilities, training research staff, strengthening research support services, and supporting the expansion of investigator networks. Conclusions The completed Africa NCD Open Lab projects demonstrate high-quality research outcomes addressing important health challenges with potential benefits to African populations. Based on the success of the Africa NCD Open Lab, additional funding has been secured to extend the Open Lab initiative.
Collapse
Affiliation(s)
| | | | | | | | | | | | - James van Hasselt
- General Medicines Regional Medical Affairs, GSK, Gauteng, South Africa
| | | |
Collapse
|
8
|
Zhang Y, Zheng T, Ma D, Shi P, Zhang H, Li J, Sun Z. Probiotics Bifidobacterium lactis M8 and Lactobacillus rhamnosus M9 prevent high blood pressure via modulating the gut microbiota composition and host metabolic products. mSystems 2023; 8:e0033123. [PMID: 37855616 PMCID: PMC10734487 DOI: 10.1128/msystems.00331-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/24/2023] [Indexed: 10/20/2023] Open
Abstract
IMPORTANCE Elevated blood pressure affects 40% of the adult population, which accounts for high cardiovascular disease risk and further high mortality yearly. The global understanding of the gut microbiome for hypertension may provide important insights into the prevention. Bifidobacterium lactis M8 and Lactobacillus rhamnosus M9 originated from human breast milk, were able to decrease blood pressure, and modified metabolites in a high fructose-induced elevated blood pressure mouse model. Moreover, we found there was a close relationship between unexplored gut microbes and elevated blood pressure. Also, subsequently, the cross-link was explored among gut microbes, metabolites, and some metabolic pathways in gut microbial environment through introducing novel prediction methodology and bioinformatic analysis. It allowed us to hypothesize that probiotics can prevent elevated blood pressure via gut microbiota and related metabolism.Thus, utilization of dietary strategies (such as probiotics) to maintain the blood pressure level is of crucial importance.
Collapse
Affiliation(s)
- Yong Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Huhhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Huhhot, China
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing (USTB), Beijing, China
| | - Tingting Zheng
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, China
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Da Ma
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Huhhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Huhhot, China
| | - Peng Shi
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, China
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Heping Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Huhhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Huhhot, China
| | - Jun Li
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, China
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
- School of Data Science, City University of Hong Kong, Hong Kong, China
| | - Zhihong Sun
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Huhhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Huhhot, China
| |
Collapse
|
9
|
de Beer D, Mels CMC, Schutte AE, Delles C, Mary S, Mullen W, Mischak H, Kruger R. Urinary Peptidomics and Pulse Wave Velocity: The African-PREDICT Study. J Proteome Res 2023; 22:3282-3289. [PMID: 37688558 PMCID: PMC10563154 DOI: 10.1021/acs.jproteome.3c00347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Indexed: 09/11/2023]
Abstract
Increased arterial stiffness is related to early vascular aging and is an independent predictor for cardiovascular disease and mortality. Molecular mechanisms underlying increased arterial stiffness are largely unexplored, especially at the proteome level. We aimed to explore the relationship between pulse wave velocity and urinary proteomics. We included 919 apparently healthy (no chronic illnesses) Black and White men and women (equally distributed) between 20 and 30 years from the African-PREDICT study. Capillary electrophoresis time-of-flight mass spectrometry was used to analyze the urinary proteome. We measured the carotid-femoral pulse wave velocity to estimate arterial stiffness. In the total group, pulse wave velocity correlated positively with collagen-derived peptides including collagen types I, II, III, IV, V, and IX and inversely with collagen type XI (adjusted for mean arterial pressure). Regarding noncollagen-derived peptides, pulse wave velocity positively correlated with polymeric immunoglobulin receptor peptides (n = 2) (all q-value ≤0.05). In multivariable adjusted analyses, pulse wave velocity associated positively and independently with seven urinary peptides (collagen type I, n = 5) (all p-value ≤0.05). We found significant positive and independent associations between pulse wave velocity and the collagen type I-derived peptides, suggesting that dysregulation of collagen type I in the extracellular matrix scaffold could lead to early onset of increased arterial stiffness.
Collapse
Affiliation(s)
- Dalene de Beer
- Hypertension
in Africa Research Team (HART),North-West
University (Potchefstroom Campus), Potchefstroom 2531, South Africa
| | - Catharina MC Mels
- Hypertension
in Africa Research Team (HART),North-West
University (Potchefstroom Campus), Potchefstroom 2531, South Africa
- MRC
Research Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom 2520, South Africa
| | - Aletta E Schutte
- Hypertension
in Africa Research Team (HART),North-West
University (Potchefstroom Campus), Potchefstroom 2531, South Africa
- MRC
Research Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom 2520, South Africa
- School
of Population Health, The George Institute for Global Health, University of New South Wales, Sydney, NSW 2042, Australia
| | - Christian Delles
- School
of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow G12 8QQ, U.K.
| | - Sheon Mary
- School
of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow G12 8QQ, U.K.
| | - William Mullen
- School
of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow G12 8QQ, U.K.
| | | | - Ruan Kruger
- Hypertension
in Africa Research Team (HART),North-West
University (Potchefstroom Campus), Potchefstroom 2531, South Africa
- MRC
Research Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom 2520, South Africa
| |
Collapse
|
10
|
Craig A, Kruger R, Gafane-Matemane LF, Louw R, Mels CMC. Early vascular ageing phenotypes and urinary targeted metabolomics in children and young adults: the ExAMIN Youth SA and African-PREDICT studies. Amino Acids 2023; 55:1049-1062. [PMID: 37328631 PMCID: PMC10514129 DOI: 10.1007/s00726-023-03293-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 06/08/2023] [Indexed: 06/18/2023]
Abstract
Some individuals are susceptible to accelerated biological ageing, resulting in premature alterations in arterial structure and function. Identifying early-onset vascular ageing characterised by arterial stiffening is vital for intervention and preventive strategies. We stratified and phenotyped healthy children (5-9 yrs) and young adults (20-30 yrs) into their vascular ageing extremes established by carotid-femoral pulse wave velocity (cfPWV) percentiles (i.e., healthy vascular ageing (HVA) and early vascular ageing (EVA)). We compared anthropometric, cardiovascular, and metabolomic profiles and explored associations between cfPWV and urinary metabolites. Children and adults in the EVA groups displayed higher levels of adiposity, cardiovascular, and lifestyle risk factors (adults only) (all p ≤ 0.018). In adults, several urinary metabolites were lower in the EVA group (all q ≤ 0.039) when compared to the HVA group, with no differences observed in children. In multiple regression analysis (adults only), we found inverse associations between cfPWV with histidine (adj. R2 = 0.038; β = -0.192; p = 0.013) and beta-alanine (adj. R2 = 0.034; β = -0.181; p = 0.019) in the EVA group, but with arginine (adj. R2 = 0.021; β = -0.160; p = 0.024) in the HVA group. The inverse associations of beta-alanine and histidine with cfPWV in the EVA group is suggestive that asymptomatic young adults who present with an altered metabolomic and less desired cardiovascular profile in combination with unfavourable lifestyle behaviours may be predisposed to early-onset vascular ageing. Taken together, screening on both a phenotypic and metabolic level may prove important in the early detection, prevention, and intervention of advanced biological ageing.
Collapse
Affiliation(s)
- Ashleigh Craig
- Hypertension in Africa Research Team (HART), North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Ruan Kruger
- Hypertension in Africa Research Team (HART), North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
- MRC Research Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa
| | - Lebo F Gafane-Matemane
- Hypertension in Africa Research Team (HART), North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
- MRC Research Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa
| | - Roan Louw
- Human Metabolomics, North-West University, Potchefstroom Campus, Potchefstroom, South Africa
| | - Carina M C Mels
- Hypertension in Africa Research Team (HART), North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa.
- MRC Research Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa.
| |
Collapse
|
11
|
du Toit WL, Kruger R, Gafane-Matemane LF, Schutte AE, Louw R, Mels CMC. Using urinary metabolomics to identify metabolic pathways linked to cardiac structural alterations in young adults: The African-PREDICT study. Nutr Metab Cardiovasc Dis 2023; 33:1574-1582. [PMID: 37246075 DOI: 10.1016/j.numecd.2023.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/13/2023] [Accepted: 05/08/2023] [Indexed: 05/30/2023]
Abstract
BACKGROUND AND AIMS Risk factor exposure from young ages was shown to contribute to cardiovascular events - cardiac hypertrophy, which may be accompanied by an altered metabolism. To determine how early metabolic alterations associate with myocardial structural changes, we profiled urinary metabolites in young adults with cardiovascular disease (CVD) risk factor(s) and a control group without CVD risk factors. METHODS AND RESULTS We included healthy adults (N = 1202), aged 20-30 years, stratified based on risk factors, i.e., obesity, physical inactivity, elevated blood pressure (BP), hyperglycemia, dyslipidemia, low socio-economic status, smoking and excessive alcohol use - forming the CVD risk group (N = 1036) and the control group (N = 166). Relative wall thickness (RWT) and left ventricular mass index (LVMi) were measured using echocardiography. Targeted metabolomics data were obtained using a liquid chromatography-tandem mass spectrometry method. Clinic systolic BP, 24 h BP and RWT were higher in the CVD risk group compared to the control group (all P ≤ 0.031). Exclusively in the CVD risk group, RWT associated with creatine and dodecanoylcarnitine; while LVMi associated with glycine, serine, glutamine, threonine, alanine, citrulline, creatine, proline, pyroglutamic acid and glutamic acid (all P ≤ 0.040). Exclusively in the control group, LVMi associated with propionylcarnitine and butyrylcarnitine (all P ≤ 0.009). CONCLUSION In young adults without CVD, but with CVD risk factors, LVMi and RWT associated with metabolites linked energy metabolism (shifting from solely fatty acid oxidation to glycolysis, with impaired creatine kinase activity) and oxidative stress. Our findings support early onset metabolic changes accompanying cardiac structural alterations due to lifestyle and behavioural risk factors.
Collapse
Affiliation(s)
- Wessel L du Toit
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom, South Africa
| | - Ruan Kruger
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom, South Africa; MRC Research Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa
| | - Lebo F Gafane-Matemane
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom, South Africa; MRC Research Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa
| | - Aletta E Schutte
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom, South Africa; MRC Research Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa; School of Population Health, University of New South Wales, The George Institute for Global Health, Sydney, Australia
| | - Roan Louw
- Human Metabolomics, North-West University, Potchefstroom Campus, Potchefstroom, South Africa
| | - Catharina M C Mels
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom, South Africa; MRC Research Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa.
| |
Collapse
|
12
|
du Toit WL, Kruger R, Gafane-Matemane LF, Schutte AE, Louw R, Mels CMC. Markers of arterial stiffness and urinary metabolomics in young adults with early cardiovascular risk: the African-PREDICT study. Metabolomics 2023; 19:28. [PMID: 36988718 PMCID: PMC10060307 DOI: 10.1007/s11306-023-01987-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 03/04/2023] [Indexed: 03/30/2023]
Abstract
INTRODUCTION Increased exposure to risk factors in the young and healthy contributes to arterial changes, which may be accompanied by an altered metabolism. OBJECTIVES To increase our understanding of early metabolic alterations and how they associate with markers of arterial stiffness, we profiled urinary metabolites in young adults with cardiovascular disease (CVD) risk factor(s) and in a control group without CVD risk factors. METHODS We included healthy black and white women and men (N = 1202), aged 20-30 years with a detailed CVD risk factor profile, reflecting obesity, physical inactivity, smoking, excessive alcohol intake, masked hypertension, hyperglycemia, dyslipidemia and low socio-economic status, forming the CVD risk group (N = 1036) and the control group (N = 166). Markers of arterial stiffness, central systolic blood pressure (BP) and pulse wave velocity were measured. A targeted metabolomics approach was followed by measuring amino acids and acylcarnitines using a liquid chromatography-tandem mass spectrometry method. RESULTS In the CVD risk group, central systolic BP (adjusted for age, sex, ethnicity) was negatively associated with histidine, arginine, asparagine, serine, glutamine, dimethylglycine, threonine, GABA, proline, methionine, pyroglutamic acid, aspartic acid, glutamic acid, branched chain amino acids (BCAAs) and butyrylcarnitine (all P ≤ 0.048). In the same group, pulse wave velocity (adjusted for age, sex, ethnicity, mean arterial pressure) was negatively associated with histidine, lysine, threonine, 2-aminoadipic acid, BCAAs and aromatic amino acids (AAAs) (all P ≤ 0.044). In the control group, central systolic BP was negatively associated with pyroglutamic acid, glutamic acid and dodecanoylcarnitine (all P ≤ 0.033). CONCLUSION In a group with increased CVD risk, markers of arterial stiffness were negatively associated with metabolites related to AAA and BCAA as well as energy metabolism and oxidative stress. Our findings may suggest that metabolic adaptations may be at play in response to increased CVD risk to maintain cardiovascular integrity.
Collapse
Affiliation(s)
- Wessel L du Toit
- Hypertension in Africa Research Team (HART), North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Ruan Kruger
- Hypertension in Africa Research Team (HART), North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
- MRC Research Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa
| | - Lebo F Gafane-Matemane
- Hypertension in Africa Research Team (HART), North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
- MRC Research Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa
| | - Aletta E Schutte
- Hypertension in Africa Research Team (HART), North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
- MRC Research Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa
- School of Population Health, University of New South Wales, Sydney, Australia
- The George Institute for Global Health, Sydney, Australia
| | - Roan Louw
- Human Metabolomics, North-West University, Potchefstroom Campus, Potchefstroom, South Africa
| | - Catharina M C Mels
- Hypertension in Africa Research Team (HART), North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa.
- MRC Research Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa.
| |
Collapse
|
13
|
de Beer D, Mels CMC, Schutte AE, Delles C, Mary S, Mullen W, Mischak H, Kruger R. A urinary peptidomics approach for early stages of cardiovascular disease risk: The African-PREDICT study. Hypertens Res 2023; 46:485-494. [PMID: 36396816 DOI: 10.1038/s41440-022-01097-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/15/2022] [Accepted: 09/23/2022] [Indexed: 11/18/2022]
Abstract
Cardiovascular disease (CVD) affects individuals across the lifespan, with multiple cardiovascular (CV) risk factors increasingly present in young populations. The underlying mechanisms in early cardiovascular disease development are complex and still poorly understood. We therefore employed urinary proteomics as a novel approach to gain better insight into early CVD-related molecular pathways based on a CVD risk stratification approach. This study included 964 apparently healthy (no self-reported chronic illnesses, free from clinical symptoms of CVD) black and white men and women (aged 20-30 years old) from the African Prospective study on the Early Detection and Identification of Cardiovascular disease and Hypertension (African-PREDICT) study. Cardiovascular risk factors used for stratification included obesity, physical inactivity, tobacco use, high alcohol intake, hyperglycemia, dyslipidemia and hypertension. Participants were divided into low (0 risk factors), medium (1-2 risk factors) and high (≥3 risk factors) CV risk groups. We analyzed urinary peptidomics by capillary electrophoresis time-of-flight mass spectrometry. After adjusting for ethnicity, sex and age, 65 sequenced urinary peptides were differentially expressed between the CV risk groups (all q-values ≤ 0.01). These peptides included a lower abundance of collagen type I- and III-derived peptides in the high compared to the low CV risk group. With regard to noncollagen peptides, we found a lower abundance of alpha-1-antitrypsin fragments in the high compared to the low CV risk group (all q-values ≤ 0.01). Our findings indicate lower abundances of collagen types I and III in the high compared to the low CV risk group, suggesting potential early alterations in the CV extracellular matrix.
Collapse
Affiliation(s)
- Dalene de Beer
- Hypertension in Africa Research Team (HART), North-West University (Potchefstroom Campus), Potchefstroom, South Africa
| | - Catharina M C Mels
- Hypertension in Africa Research Team (HART), North-West University (Potchefstroom Campus), Potchefstroom, South Africa
- MRC Research Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa
| | - Aletta E Schutte
- Hypertension in Africa Research Team (HART), North-West University (Potchefstroom Campus), Potchefstroom, South Africa
- MRC Research Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa
- School of Population Health, University of New South Wales; The George Institute for Global Health, Sydney, NSW, Australia
| | - Christian Delles
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Sheon Mary
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - William Mullen
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | | | - Ruan Kruger
- Hypertension in Africa Research Team (HART), North-West University (Potchefstroom Campus), Potchefstroom, South Africa.
- MRC Research Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa.
| |
Collapse
|
14
|
Zhang F, Xie Y, Yang X, Peng W, Qi H, Li B, Wen F, Li P, Sun Y, Zhang L. Association of Serum Metabolites and Salt Sensitivity of Blood Pressure in Chinese Population: The EpiSS Study. Nutrients 2023; 15:nu15030690. [PMID: 36771399 PMCID: PMC9921558 DOI: 10.3390/nu15030690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND To identify novel metabolites associated with salt sensitivity of blood pressure (SSBP) in Chinese Han population. METHODS A case-control study was conducted with 25 salt sensitive (SS) and 26 salt resistant (SR) participants, which was selected from the Systems Epidemiology Study on Salt Sensitivity of Blood Pressure (EpiSS) study. The modified Sullivan's acute oral saline load and diuresis shrinkage test (MSAOSL-DST) was conducted to identify SS. Untargeted, ultra-high performance liquid chromatograph-high resolution mass spectrometer (UPLC-HRMS) was conducted and orthogonal partial least squares-discriminate analysis (OPLS-DA) and multivariable logistic regression model were used to screen the metabolites related to SS, mixed linear regressions models were used to examined the association of SSBP with metabolites during saline load period and diuresis shrinkage period. Receiver operating characteristic (ROC) curve analysis was performed. The area under the curve's (AUC) sensitivity and specificity were calculated to identified metabolites biomarkers for SS. RESULTS There were 39 differentially expressed metabolites (DE-metabolites) between SS and SR. Thirty-five and four of DE-metabolites were inversely or positively associated with SS, respectively. Four biochemical pathways demonstrated significant enrichment for identified metabolites. In single-metabolite analyses, L-Glutamine displayed the best diagnostic performance (AUC = 0.88, 95% CI: 0.78-0.97). In multi-metabolites analyses, L-Glutamine + Cholesterol ester 22:5n6 combination showed the best diagnostic performance (AUC = 0.96, 95% CI: 0.91-1.00). Adjusted for traditional risk factors, L-Glutamine and Cholesterol ester 22:5n6 explained an additional 38.3% of SS susceptibility. CONCLUSIONS This study provide potential evidence for clarifying the mechanism of SS and provide novel biological insights into salt sensitive hypertension.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Ling Zhang
- Correspondence: ; Tel./Fax: +86-010-83911777
| |
Collapse
|
15
|
Adiposity and insulin resistance mediate the inverse association between legume intake and blood pressure: a cross-sectional analysis in secondary cardiovascular prevention. Br J Nutr 2022; 128:2353-2362. [PMID: 34937583 DOI: 10.1017/s0007114521005018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This study aimed to evaluate the association between legume intake and blood pressure, as well as the mediating role of cardiometabolic risk factors in patients in secondary cardiovascular prevention. Socio-demographic, anthropometric, clinical and food intake data were collected from the baseline of the multicentre study Brazilian Cardioprotective Nutritional Program Trial - BALANCE (RCT: NCT01620398). The relationships between variables were explored through path analysis. In total, 2247 individuals with a median age of 63·0 (45-91) years, 58·8 % (n 1321) male and 96·5 % (n 2168) with diagnosis of hypertension were included. Negative associations were observed between histidine intake and systolic blood pressure (SBP) (standardised coefficient (SC) = -0·057; P = 0·012) and between legume intake and BMI (SC = -0·061; P = 0·006). BMI was positively associated with triglycerides-glucose (TyG) index (SC = 0·173; P < 0·001), SBP (SC = 0·144; P < 0·001) and diastolic blood pressure (DBP) (SC = 0·177; P < 0·001), and TyG index was positively associated with DBP (SC = 0·079; P = 0·001). A negative indirect effect was observed between the intake of legumes, SBP and DBP, mediated by BMI (SC = -0·009; P = 0·011; SC = -0·011; P = 0·010, respectively). In addition, an indirect negative effect was found between the intake of legumes and the DBP, mediated simultaneously by BMI and TyG index (SC = -0·001; P = 0·037). In conclusion, legume intake presented a negative indirect association with blood pressure, mediated by insulin resistance (TyG) and adiposity (BMI) in individuals of secondary care in cardiology.
Collapse
|
16
|
Yang L, Xu L, Li J, Wang H, Sun J, Yu Z, Zhao X, Zhao M, Xi B. The association of dietary glutamine supplementation with the development of high salt-induced hypertension in rats. Front Nutr 2022; 9:1011739. [DOI: 10.3389/fnut.2022.1011739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/28/2022] [Indexed: 11/16/2022] Open
Abstract
Glutamine supplementation has been reported to affect blood pressure (BP). However, its role in the progression of hypertension induced by high salt diet (HSD) has not been elucidated. Male normotensive Wistar rats were exposed to high salt diet and treated with different doses of glutamine supplementation. Rats aged 6 weeks were assigned to five groups: (1) Normal-salt diet (0.3% NaCl, NSD); (2) High-salt diet (8% NaCl, HSD); (3) High-salt + low-dose diet (8% NaCl, 0.5 g of L-glutamine/kg body weight, HSLGD); (4) High-salt + middle-dose diet (8% NaCl, 1.5 g of L-glutamine/kg body weight, HSMGD); and (5) High-salt + high-dose diet (8% NaCl, 2.5 g of L-glutamine/kg body weight, HSHGD). After supplementing different doses of glutamine to male Wistar 6-week-old rats fed with HSD for 7 weeks, we found no difference in body weight among groups. Importantly, we showed that dietary L-glutamine supplementation could prevent the development of hypertension in a dose-dependent manner [dramatically lowering systolic blood pressure (SBP) and slightly reducing diastolic blood pressure (DBP) of hypertensive rats, while the differences of DBP between groups did not reach statistical significance]. Our data further elucidated that dietary glutamine supplementation mildly alleviated the degree of left ventricular hypertrophy, including interventricular septal thickness (IVST) and left ventricular posterior wall thickness (LVPWT) in hypertensive rats. Together, our results offer evidence that the dietary uptake of glutamine may be associated with attenuating the development of high salt-induced hypertension and slightly alleviating the degree of left ventricular hypertrophy in hypertensive rats. Therefore, glutamine supplementation may act as a prospective dietary intervention for the treatment of hypertension.
Collapse
|
17
|
Identifying a metabolomics profile associated with masked hypertension in two independent cohorts: Data from the African-PREDICT and SABPA studies. Hypertens Res 2022; 45:1781-1793. [PMID: 36056205 DOI: 10.1038/s41440-022-01010-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/27/2022] [Accepted: 07/21/2022] [Indexed: 12/15/2022]
Abstract
Individuals with masked hypertension (MHT) have a greater risk of adverse cardiovascular outcomes than normotensive (NT) individuals. Exploring metabolomic differences between NT and MHT individuals may help provide a better understanding of the etiology of MHT. We analyzed data from 910 young participants (83% NT and 17% MHT) (mean age 24 ± 3 years) from the African-PREDICT and 210 older participants (63% NT and 37% MHT) from the SABPA (mean age 42 ± 9.6 years) studies. Clinic and ambulatory blood pressures (BPs) were used to define BP phenotypes. Urinary amino acids and acylcarnitines were measured using liquid chromatography time-of-flight mass spectrometry in SABPA and liquid chromatography tandem mass spectrometry in the African-PREDICT studies. In the SABPA study, amino acids (leucine/isoleucine, valine, methionine, phenylalanine), free carnitine (C0-carnitine), and acylcarnitines C3 (propionyl)-, C4 (butyryl)-carnitine and total acylcarnitine) were higher in MHT than NT adults. In the African-PREDICT study, C0- and C5-carnitines were higher in MHT individuals. With unadjusted analyses in NT adults from the SABPA study, ambulatory SBP correlated positively with only C3-carnitine. In MHT individuals, positive correlations of ambulatory SBP with leucine/isoleucine, valine, methionine, phenylalanine, C0-carnitine and C3-carnitine were evident (all p < 0.05). In the African-PREDICT study, ambulatory SBP correlated positively with C0-carnitine (r = 0.101; p = 0.006) and C5-carnitine (r = 0.195; p < 0.001) in NT adults and C5-carnitine in MHT individuals (r = 0.169; p = 0.034). We demonstrated differences between the metabolomic profiles of NT and MHT adults, which may reflect different stages in the alteration of branched-chain amino acid metabolism early on and later in life.
Collapse
|
18
|
Ciobanu D, Bala C, Rusu A, Roman G. AMINO ACIDS METABOLOMIC SIGNATURE OF BLOOD PRESSURE VARIABILITY In Type 2 Diabetes. ACTA ENDOCRINOLOGICA (BUCHAREST, ROMANIA : 2005) 2022; 18:494-501. [PMID: 37152871 PMCID: PMC10162828 DOI: 10.4183/aeb.2022.494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Context Accumulating data supports the key role of disrupted amino acids (AAs) metabolism in diabetes. Conflicting data regarding the relevance of serum AAs in diabetes and hypertension suggest that their relationship needs further investigation. Objective To investigate serum AAs as biomarkers of increased BP variability evaluated during 24-hour ambulatory BP monitoring in the presence of type 2 diabetes. Design Cross-sectional. Subjects and Methods We analyzed serum AAs using targeted metabolomics (ultrahigh-performance liquid chromatography/mass spectrometry) in patients with type 2 diabetes (n=80). BP variability was assessed using 24-hour ambulatory BP monitoring. Participants were divided into two groups based on the 24-hour diastolic BP variability median value. Results Aspartic acid, isoleucine, leucine, and phenylalanine were significantly lower, while glutamine was significantly higher in the group with higher diastolic BP variability (p-value <0.05 and variable importance in the projection >1). Corresponding pathways identified as disrupted in patients with diabetes and a higher 24-hour diastolic BP variability were phenylalanine, tyrosine, and tryptophan biosynthesis, phenylalanine metabolism, and alanine, aspartate, and glutamate metabolism (pathway impact value >0). Conclusions We identified specific changes in serum AAs and target AAs pathways in relation to increased 24-hour diastolic BP variability in patients with type 2 diabetes.
Collapse
Affiliation(s)
- D.M. Ciobanu
- “Iuliu Hațieganu” University of Medicine and Pharmacy, Faculty of Medicine − Diabetes and Nutrition Diseases
- Emergency Clinical County Hospital Cluj − Diabetes, Nutrition and Metabolic Diseases, Cluj-Napoca, Romania
| | - C. Bala
- “Iuliu Hațieganu” University of Medicine and Pharmacy, Faculty of Medicine − Diabetes and Nutrition Diseases
- Emergency Clinical County Hospital Cluj − Diabetes, Nutrition and Metabolic Diseases, Cluj-Napoca, Romania
| | - A. Rusu
- “Iuliu Hațieganu” University of Medicine and Pharmacy, Faculty of Medicine − Diabetes and Nutrition Diseases
- Emergency Clinical County Hospital Cluj − Diabetes, Nutrition and Metabolic Diseases, Cluj-Napoca, Romania
| | - G. Roman
- “Iuliu Hațieganu” University of Medicine and Pharmacy, Faculty of Medicine − Diabetes and Nutrition Diseases
- Emergency Clinical County Hospital Cluj − Diabetes, Nutrition and Metabolic Diseases, Cluj-Napoca, Romania
| |
Collapse
|
19
|
Mehanna M, McDonough CW, Smith SM, Gong Y, Gums JG, Chapman AB, Johnson JA, Cooper-DeHoff RM. Influence of Genetic West African Ancestry on Metabolomics among Hypertensive Patients. Metabolites 2022; 12:metabo12090783. [PMID: 36144188 PMCID: PMC9506508 DOI: 10.3390/metabo12090783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/18/2022] [Accepted: 08/20/2022] [Indexed: 12/02/2022] Open
Abstract
Patients with higher genetic West African ancestry (GWAA) have hypertension (HTN) that is more difficult to treat and have higher rates of cardiovascular diseases (CVD) and differential responses to antihypertensive drugs than those with lower GWAA. The mechanisms underlying these disparities are poorly understood. Using data from 84 ancestry-informative markers in US participants from the Pharmacogenomic Evaluation of Antihypertensive Responses (PEAR) and PEAR-2 trials, the GWAA proportion was estimated. Using multivariable linear regression, the baseline levels of 886 metabolites were compared between PEAR participants with GWAA < 45% and those with GWAA ≥ 45% to identify differential metabolites and metabolic clusters. Metabolites with a false discovery rate (FDR) < 0.2 were used to create metabolic clusters, and a cluster analysis was conducted. Differential clusters were then tested for replication in PEAR-2 participants. We identified 353 differential metabolites (FDR < 0.2) between PEAR participants with GWAA < 45% (n = 383) and those with GWAA ≥ 45% (n = 250), which were used to create 24 metabolic clusters. Of those, 13 were significantly different between groups (Bonferroni p < 0.002). Four clusters, plasmalogen and lysoplasmalogen, sphingolipid metabolism and ceramide, cofactors and vitamins, and the urea cycle, were replicated in PEAR-2 (Bonferroni p < 0.0038) and have been previously linked to HTN and CVD. Our findings may give insights into the mechanisms underlying HTN racial disparities.
Collapse
Affiliation(s)
- Mai Mehanna
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics and Precision Medicine, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Caitrin W. McDonough
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics and Precision Medicine, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Steven M. Smith
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics and Precision Medicine, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
- Department of Pharmaceutical Outcomes & Policy, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Yan Gong
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics and Precision Medicine, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - John G. Gums
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics and Precision Medicine, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Arlene B. Chapman
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Julie A. Johnson
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics and Precision Medicine, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Rhonda M. Cooper-DeHoff
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics and Precision Medicine, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
- Correspondence: ; Tel.: +1-(352)-273-6184
| |
Collapse
|
20
|
du Toit WL, Kruger R, Gafane-Matemane LF, Schutte AE, Louw R, Mels CMC. Urinary metabolomics profiling by cardiovascular risk factors in young adults: the African Prospective study on Early Detection and Identification of Cardiovascular disease and Hypertension study. J Hypertens 2022; 40:1545-1555. [PMID: 35788095 DOI: 10.1097/hjh.0000000000003182] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AIM Risk factors contributes to a dysregulated metabolism and may ultimately increase the predisposition for cardiovascular disease (CVD) development. To increase our understanding of mechanistic pathways associated with CVD risk, we profiled the urinary metabolome according to individual and clusters of CVD risk factors in comparison with a control group without any risk factors. METHODS AND RESULTS Healthy black and white women and men ( N = 1202), aged 20-30 years with a detailed CVD risk factor profile were included. CVD risk groups: obese, physical inactive, smoking, excessive alcohol intake, masked hypertensive, hyperglycaemic, dyslipidemic and low socioeconomic status. CVD risk clusters were based on the presence of 1, 2 and 3 or more risk factors. Liquid chromatography-tandem mass spectrometry was used to obtain urinary metabolomics data (amino acids and acylcarnities). Compared with the control group, higher levels of metabolites associated with aromatic and branched chain amino acid metabolism including phenylalanine, tyrosine and leucine/isoleucine were found in the obese, masked hypertensive, hyperglycaemic, low socioeconomic groups (all q ≤ 0.032) and 3+ CVD risk cluster (all P ≤ 0.034). Metabolites associated with the y-glutamyl cycle including glycine, histidine, serine, glutamine, methionine, cystine and pyroglutamic acid were found in the hyperglycaemic, low socioeconomic groups (all q ≤ 0.050), 2 and 3+ CVD risk clusters (all P ≤ 0.041). Metabolites associated with energetics including acetylcarnitine (lower levels), hexanoylcarnitine and decanoylcarnitine were found in the low socioeconomic group, 1 and 3+ CVD risk clusters ( q / P ≤ 0.050) ( β -oxidation). In addition to the above-mentioned amino acids, alanine and threonine were found in the hyperglycaemic, low socioeconomic groups, 2 and 3+ CVD risk clusters (all q / P ≤ 0.047) (glycolysis). Creatine in the obese, hyperglycaemic groups (all q ≤ 0.049) and 3+ CVD risk cluster (all P ≤ 0.041) (creatine pathway). CONCLUSION Exposure to CVD risk factors is associated with a dysregulated metabolism in the above-mentioned pathways that may precede the development of CVD.
Collapse
Affiliation(s)
- Wessel L du Toit
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom, South Africa
| | - Ruan Kruger
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom, South Africa
- MRC Research Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa
| | - Lebo F Gafane-Matemane
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom, South Africa
- MRC Research Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa
| | - Aletta E Schutte
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom, South Africa
- MRC Research Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa
- School of Population Health, University of New South Wales, The George Institute for Global Health, Sydney, Australia
| | - Roan Louw
- Human Metabolomics, North-West University, Potchefstroom Campus, Potchefstroom, South Africa
| | - Catharina M C Mels
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom, South Africa
- MRC Research Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa
| |
Collapse
|
21
|
Bliziotis NG, Kluijtmans LAJ, Tinnevelt GH, Reel P, Reel S, Langton K, Robledo M, Pamporaki C, Pecori A, Van Kralingen J, Tetti M, Engelke UFH, Erlic Z, Engel J, Deutschbein T, Nölting S, Prejbisz A, Richter S, Adamski J, Januszewicz A, Ceccato F, Scaroni C, Dennedy MC, Williams TA, Lenzini L, Gimenez-Roqueplo AP, Davies E, Fassnacht M, Remde H, Eisenhofer G, Beuschlein F, Kroiss M, Jefferson E, Zennaro MC, Wevers RA, Jansen JJ, Deinum J, Timmers HJLM. Preanalytical Pitfalls in Untargeted Plasma Nuclear Magnetic Resonance Metabolomics of Endocrine Hypertension. Metabolites 2022; 12:679. [PMID: 35893246 PMCID: PMC9394285 DOI: 10.3390/metabo12080679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/17/2022] [Accepted: 07/11/2022] [Indexed: 11/24/2022] Open
Abstract
Despite considerable morbidity and mortality, numerous cases of endocrine hypertension (EHT) forms, including primary aldosteronism (PA), pheochromocytoma and functional paraganglioma (PPGL), and Cushing's syndrome (CS), remain undetected. We aimed to establish signatures for the different forms of EHT, investigate potentially confounding effects and establish unbiased disease biomarkers. Plasma samples were obtained from 13 biobanks across seven countries and analyzed using untargeted NMR metabolomics. We compared unstratified samples of 106 PHT patients to 231 EHT patients, including 104 PA, 94 PPGL and 33 CS patients. Spectra were subjected to a multivariate statistical comparison of PHT to EHT forms and the associated signatures were obtained. Three approaches were applied to investigate and correct confounding effects. Though we found signatures that could separate PHT from EHT forms, there were also key similarities with the signatures of sample center of origin and sample age. The study design restricted the applicability of the corrections employed. With the samples that were available, no biomarkers for PHT vs. EHT could be identified. The complexity of the confounding effects, evidenced by their robustness to correction approaches, highlighted the need for a consensus on how to deal with variabilities probably attributed to preanalytical factors in retrospective, multicenter metabolomics studies.
Collapse
Affiliation(s)
- Nikolaos G. Bliziotis
- Department of Laboratory Medicine, Translational Metabolic Laboratory, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands;
| | - Leo A. J. Kluijtmans
- Department of Laboratory Medicine, Translational Metabolic Laboratory, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands;
| | - Gerjen H. Tinnevelt
- Department of Analytical Chemistry, Institute for Molecules and Materials, Radboud University, 6500 HB Nijmegen, The Netherlands; (G.H.T.); (J.J.J.)
| | - Parminder Reel
- Division of Population Health and Genomics, School of Medicine, University of Dundee, Dundee DD2 4BF, UK; (P.R.); (S.R.); (E.J.)
| | - Smarti Reel
- Division of Population Health and Genomics, School of Medicine, University of Dundee, Dundee DD2 4BF, UK; (P.R.); (S.R.); (E.J.)
| | - Katharina Langton
- Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (K.L.); (C.P.); (G.E.)
| | - Mercedes Robledo
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain;
| | - Christina Pamporaki
- Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (K.L.); (C.P.); (G.E.)
| | - Alessio Pecori
- Division of Internal Medicine and Hypertension Unit, Department of Medical Sciences, University of Torino, 10124 Torino, Italy; (A.P.); (M.T.); (T.A.W.)
| | - Josie Van Kralingen
- British Heart Foundation Glasgow Cardiovascular Research Centre (BHF GCRC), Institute of Cardiovascular & Medical Sciences (ICAMS), University of Glasgow, Glasgow G12 8TA, UK; (J.V.K.); (E.D.)
| | - Martina Tetti
- Division of Internal Medicine and Hypertension Unit, Department of Medical Sciences, University of Torino, 10124 Torino, Italy; (A.P.); (M.T.); (T.A.W.)
| | - Udo F. H. Engelke
- Department of Laboratory Medicine, Translational Metabolic Laboratory, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands;
| | - Zoran Erlic
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ), University of Zurich (UZH), 8006 Zurich, Switzerland; (Z.E.); (F.B.)
| | - Jasper Engel
- Biometris, Wageningen University & Research, 6708 PB Wageningen, The Netherlands;
| | - Timo Deutschbein
- Department of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital, University of Würzburg, 97080 Würzburg, Germany; (T.D.); (M.F.); (H.R.); (M.K.)
- Medicover Oldenburg MVZ, 26122 Oldenburg, Germany
| | - Svenja Nölting
- Department of Medicine IV, University Hospital, LMU Munich, 80336 Munich, Germany;
| | - Aleksander Prejbisz
- Department of Hypertension, Institute of Cardiology, 04-628 Warsaw, Poland; (A.P.); (A.J.)
| | - Susan Richter
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus at the Technische Universität Dresden, 01307 Dresden, Germany;
| | - Jerzy Adamski
- Research Unit Molecular Endocrinology and Metabolism, Genome Analysis Center, Helmholtz Center München, German Research Center for Environmental Health, 85764 Neuherberg, Germany;
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Institute of Experimental Genetics, Technical University München, 85350 Freising-Weihenstephan, Germany
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 119077 Singapore, Singapore
| | - Andrzej Januszewicz
- Department of Hypertension, Institute of Cardiology, 04-628 Warsaw, Poland; (A.P.); (A.J.)
| | - Filippo Ceccato
- Endocrinology Unit, Department of Medicine DIMED, University-Hospital of Padova, 35128 Padova, Italy; (F.C.); (C.S.)
| | - Carla Scaroni
- Endocrinology Unit, Department of Medicine DIMED, University-Hospital of Padova, 35128 Padova, Italy; (F.C.); (C.S.)
| | - Michael C. Dennedy
- The Discipline of Pharmacology and Therapeutics, School of Medicine, National University of Ireland, H91 CF50 Galway, Ireland;
| | - Tracy A. Williams
- Division of Internal Medicine and Hypertension Unit, Department of Medical Sciences, University of Torino, 10124 Torino, Italy; (A.P.); (M.T.); (T.A.W.)
| | - Livia Lenzini
- Department of Medicine-DIMED, Emergency and Hypertension Unit, University of Padova, University Hospital, 35126 Padova, Italy;
| | - Anne-Paule Gimenez-Roqueplo
- INSERM, PARCC, Université de Paris, 75015 Paris, France; (A.-P.G.-R.); (M.-C.Z.)
- Service de Genétique, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, 75015 Paris, France
| | - Eleanor Davies
- British Heart Foundation Glasgow Cardiovascular Research Centre (BHF GCRC), Institute of Cardiovascular & Medical Sciences (ICAMS), University of Glasgow, Glasgow G12 8TA, UK; (J.V.K.); (E.D.)
| | - Martin Fassnacht
- Department of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital, University of Würzburg, 97080 Würzburg, Germany; (T.D.); (M.F.); (H.R.); (M.K.)
- Core Unit Clinical Mass Spectrometry, University Hospital Würzburg, 97080 Würzburg, Germany
- Comprehensive Cancer Center Mainfranken, Würzburg University, 97070 Würzburg, Germany
| | - Hanna Remde
- Department of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital, University of Würzburg, 97080 Würzburg, Germany; (T.D.); (M.F.); (H.R.); (M.K.)
| | - Graeme Eisenhofer
- Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (K.L.); (C.P.); (G.E.)
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus at the Technische Universität Dresden, 01307 Dresden, Germany;
| | - Felix Beuschlein
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ), University of Zurich (UZH), 8006 Zurich, Switzerland; (Z.E.); (F.B.)
- Department of Medicine IV, University Hospital, LMU Munich, 80336 Munich, Germany;
| | - Matthias Kroiss
- Department of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital, University of Würzburg, 97080 Würzburg, Germany; (T.D.); (M.F.); (H.R.); (M.K.)
- Department of Medicine IV, University Hospital, LMU Munich, 80336 Munich, Germany;
- Core Unit Clinical Mass Spectrometry, University Hospital Würzburg, 97080 Würzburg, Germany
- Comprehensive Cancer Center Mainfranken, Würzburg University, 97070 Würzburg, Germany
| | - Emily Jefferson
- Division of Population Health and Genomics, School of Medicine, University of Dundee, Dundee DD2 4BF, UK; (P.R.); (S.R.); (E.J.)
- Institute of Health & Wellbeing, Glasgow University, Glasgow G12 8RZ, UK
| | - Maria-Christina Zennaro
- INSERM, PARCC, Université de Paris, 75015 Paris, France; (A.-P.G.-R.); (M.-C.Z.)
- Service de Genétique, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, 75015 Paris, France
| | - Ron A. Wevers
- Department of Laboratory Medicine, Translational Metabolic Laboratory, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands;
| | - Jeroen J. Jansen
- Department of Analytical Chemistry, Institute for Molecules and Materials, Radboud University, 6500 HB Nijmegen, The Netherlands; (G.H.T.); (J.J.J.)
| | - Jaap Deinum
- Department of Internal Medicine, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands;
| | - Henri J. L. M. Timmers
- Department of Internal Medicine, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands;
| |
Collapse
|
22
|
Shi M, He J, Li C, Lu X, He WJ, Cao J, Chen J, Chen JC, Bazzano LA, Li JX, He H, Gu D, Kelly TN. Metabolomics study of blood pressure salt-sensitivity and hypertension. Nutr Metab Cardiovasc Dis 2022; 32:1681-1692. [PMID: 35599090 PMCID: PMC9596959 DOI: 10.1016/j.numecd.2022.04.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND AND AIMS Identify novel metabolite associations with blood pressure (BP) salt-sensitivity and hypertension. METHODS AND RESULTS The Genetic Epidemiology Network of Salt Sensitivity (GenSalt) Replication study includes 698 Chinese participants who underwent a 3-day baseline examination followed by a 7-day low-sodium feeding and 7-day high-sodium feeding. Latent mixture models identified three trajectories of blood pressure (BP) responses to the sodium interventions. We selected 50 most highly salt-sensitive and 50 most salt-resistant participants for untargeted metabolomics profiling. Multivariable adjusted mixed logistic regression models tested the associations of baseline metabolites with BP salt-sensitivity. Multivariable adjusted mixed linear regression models tested the associations of BP salt-sensitivity with metabolite changes during the sodium interventions. Identified metabolites were tested for associations with hypertension among 1249 Bogalusa Heart Study (BHS) participants using multiple logistic regression. Fifteen salt-sensitivity metabolites were associated with hypertension in the BHS. Baseline values of serine, 2-methylbutyrylcarnitine and isoleucine directly associated with high salt-sensitivity. Among them, serine indirectly associated with hypertension while 2-methylbutyrylcarnitine and isoleucine directly associated with hypertension. Baseline salt-sensitivity status predicted changes in 14 metabolites when switching to low-sodium or high-sodium interventions. Among them, glutamate, 1-carboxyethylvaline, 2-methylbutyrylcarnitine, 3-methoxytyramine sulfate, glucose, alpha-ketoglutarate, hexanoylcarnitine, gamma-glutamylisoleucine, gamma-glutamylleucine, and gamma-glutamylphenylalanine directly associated with hypertension. Conversely, serine, histidine, threonate and 5-methyluridine indirectly associated with hypertension. Together, these metabolites explained an additional 7% of hypertension susceptibility when added to a model including traditional risk factors. CONCLUSIONS Our findings contribute to the molecular characterization of BP response to sodium and provide novel biological insights into salt-sensitive hypertension.
Collapse
Affiliation(s)
- Mengyao Shi
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China; Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, United States
| | - Jiang He
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, United States; Department of Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| | - Changwei Li
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, United States
| | - Xiangfeng Lu
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Beijing, China
| | - William J He
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, MD, United States; Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Jie Cao
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Beijing, China
| | - Jing Chen
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, United States; Department of Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| | - Ji-Chun Chen
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Beijing, China
| | - Lydia A Bazzano
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, United States
| | - Jian-Xin Li
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Beijing, China
| | - Hua He
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, United States
| | - Dongfeng Gu
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Beijing, China
| | - Tanika N Kelly
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, United States.
| |
Collapse
|
23
|
Louca P, Nogal A, Moskal A, Goulding NJ, Shipley MJ, Alkis T, Lindbohm JV, Hu J, Kifer D, Wang N, Chawes B, Rexrode KM, Ben-Shlomo Y, Kivimaki M, Murphy RA, Yu B, Gunter MJ, Suhre K, Lawlor DA, Mangino M, Menni C. Cross-Sectional Blood Metabolite Markers of Hypertension: A Multicohort Analysis of 44,306 Individuals from the COnsortium of METabolomics Studies. Metabolites 2022; 12:601. [PMID: 35888725 PMCID: PMC9324896 DOI: 10.3390/metabo12070601] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 05/27/2022] [Accepted: 06/09/2022] [Indexed: 12/30/2022] Open
Abstract
Hypertension is the main modifiable risk factor for cardiovascular morbidity and mortality but discovering molecular mechanisms for targeted treatment has been challenging. Here we investigate associations of blood metabolite markers with hypertension by integrating data from nine intercontinental cohorts from the COnsortium of METabolomics Studies. We included 44,306 individuals with circulating metabolites (up to 813). Metabolites were aligned and inverse normalised to allow intra-platform comparison. Logistic models adjusting for covariates were performed in each cohort and results were combined using random-effect inverse-variance meta-analyses adjusting for multiple testing. We further conducted canonical pathway analysis to investigate the pathways underlying the hypertension-associated metabolites. In 12,479 hypertensive cases and 31,827 controls without renal impairment, we identified 38 metabolites, associated with hypertension after adjusting for age, sex, body mass index, ethnicity, and multiple testing. Of these, 32 metabolite associations, predominantly lipid (steroids and fatty acyls) and organic acids (amino-, hydroxy-, and keto-acids) remained after further adjusting for comorbidities and dietary intake. Among the identified metabolites, 5 were novel, including 2 bile acids, 2 glycerophospholipids, and ketoleucine. Pathway analysis further implicates the role of the amino-acids, serine/glycine, and bile acids in hypertension regulation. In the largest cross-sectional hypertension-metabolomics study to date, we identify 32 circulating metabolites (of which 5 novel and 27 confirmed) that are potentially actionable targets for intervention. Further in-vivo studies are needed to identify their specific role in the aetiology or progression of hypertension.
Collapse
Affiliation(s)
- Panayiotis Louca
- Department of Twin Research, King’s College London, London SE1 7EH, UK; (P.L.); (A.N.); (M.M.)
| | - Ana Nogal
- Department of Twin Research, King’s College London, London SE1 7EH, UK; (P.L.); (A.N.); (M.M.)
| | - Aurélie Moskal
- Nutrition and Metabolism Section, International Agency for Research on Cancer, 69372 Lyon, France; (A.M.); (M.J.G.)
| | - Neil J. Goulding
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2BN, UK; (N.J.G.); (Y.B.-S.); (D.A.L.)
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 2BN, UK
| | - Martin J. Shipley
- Department Epidemiology and Public Health, University College London, London WC1E 7HB, UK; (M.J.S.); (J.V.L.); (M.K.)
| | - Taryn Alkis
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center, Houston, TX 77030, USA; (T.A.); (B.Y.)
| | - Joni V. Lindbohm
- Department Epidemiology and Public Health, University College London, London WC1E 7HB, UK; (M.J.S.); (J.V.L.); (M.K.)
- Clinicum, Department of Public Health, University of Helsinki, P.O. Box 20 Helsinki, Finland
| | - Jie Hu
- Division of Women’s Health, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (J.H.); (K.M.R.)
| | - Domagoj Kifer
- Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia;
| | - Ni Wang
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, 2820 Gentofte, Denmark; (N.W.); (B.C.)
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Bo Chawes
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, 2820 Gentofte, Denmark; (N.W.); (B.C.)
| | - Kathryn M. Rexrode
- Division of Women’s Health, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (J.H.); (K.M.R.)
| | - Yoav Ben-Shlomo
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2BN, UK; (N.J.G.); (Y.B.-S.); (D.A.L.)
- NIHR Applied Research Collaboration West, University Hospitals Bristol and Weston National Health Service Foundation Trust, Bristol BS1 2NT, UK
| | - Mika Kivimaki
- Department Epidemiology and Public Health, University College London, London WC1E 7HB, UK; (M.J.S.); (J.V.L.); (M.K.)
| | - Rachel A. Murphy
- School of Population and Public Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada;
- Cancer Control Research, BC Cancer, Vancouver, BC V5Z 1G1, Canada
| | - Bing Yu
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center, Houston, TX 77030, USA; (T.A.); (B.Y.)
| | - Marc J. Gunter
- Nutrition and Metabolism Section, International Agency for Research on Cancer, 69372 Lyon, France; (A.M.); (M.J.G.)
| | - Karsten Suhre
- Department of Biophysics and Physiology, Weill Cornell Medicine-Qatar, Doha 24144, Qatar;
| | - Deborah A. Lawlor
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2BN, UK; (N.J.G.); (Y.B.-S.); (D.A.L.)
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 2BN, UK
- Bristol NIHR Biomedical Research Centre, University of Bristol, Bristol BS1 2NT, UK
| | - Massimo Mangino
- Department of Twin Research, King’s College London, London SE1 7EH, UK; (P.L.); (A.N.); (M.M.)
- NIHR Biomedical Research Centre at Guy’s and St Thomas’ Foundation Trust, London SE1 9RT, UK
| | - Cristina Menni
- Department of Twin Research, King’s College London, London SE1 7EH, UK; (P.L.); (A.N.); (M.M.)
| |
Collapse
|
24
|
Combination of Oxalobacter Formigenes and Veillonella Parvula in Gastrointestinal Microbiota Related to Bile-Acid Metabolism as a Biomarker for Hypertensive Nephropathy. Int J Hypertens 2022; 2022:5999530. [PMID: 35620320 PMCID: PMC9129936 DOI: 10.1155/2022/5999530] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/09/2022] [Accepted: 04/11/2022] [Indexed: 11/29/2022] Open
Abstract
The human microbiome is a mixed group of microorganisms, which individually consists of 10–100 trillion symbiotic microbial cells. The relationship between gastrointestinal microbiota and blood pressure has been verified and the intestinal microbiota of chronic kidney disease (CKD) patients in the distribution of bacterial species is different from the flora of people with no CKD. The purpose of this research is to study the different intestinal microbiota of hypertensive patients with and without nephropathy and to find possible biomarkers of hypertensive nephropathy (H-CKD). The subjects of this research were divided into three groups, healthy control group, hypertension group, and hypertensive nephropathy group. Sequencing, bioinformatics, and statistical analysis were performed on the 16S rRNA gene of the subjects' stool samples. This research study showed the differences of intestinal flora as biomarkers in hypertension patients with and without nephropathy; it investigated the relationship of the differences in the intestinal microbiota with bile-acid metabolism; it also explored bile-acid metabolism mechanism of intestinal microbiota differences in hypertension with or without nephropathy. In summary, the difference in the combination of O. formigenes and V. parvula in the gastrointestinal microbiota is related to bile-acid metabolism in hypertensive patients and can be one of the factors causing CKD. It is the first time to report such a biomarker or pathogenic factor of H-CKD in the world.
Collapse
|
25
|
Cruickshank J, Anderson S, Strauss-Kruger M, Gafane-Matemane L, Kruger R, Breet Y, Schutte A. Ethnic differences in arterial stiffness and central aortic hemodynamics. TEXTBOOK OF ARTERIAL STIFFNESS AND PULSATILE HEMODYNAMICS IN HEALTH AND DISEASE 2022:429-443. [DOI: 10.1016/b978-0-323-91391-1.00028-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
26
|
Onuh JO, Qiu H. Metabolic Profiling and Metabolites Fingerprints in Human Hypertension: Discovery and Potential. Metabolites 2021; 11:687. [PMID: 34677402 PMCID: PMC8539280 DOI: 10.3390/metabo11100687] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/28/2021] [Accepted: 10/05/2021] [Indexed: 12/12/2022] Open
Abstract
Early detection of pathogenesis through biomarkers holds the key to controlling hypertension and preventing cardiovascular complications. Metabolomics profiling acts as a potent and high throughput tool offering new insights on disease pathogenesis and potential in the early diagnosis of clinical hypertension with a tremendous translational promise. This review summarizes the latest progress of metabolomics and metabolites fingerprints and mainly discusses the current trends in the application in clinical hypertension. We also discussed the associated mechanisms and pathways involved in hypertension's pathogenesis and explored related research challenges and future perspectives. The information will improve our understanding of the development of hypertension and inspire the clinical application of metabolomics in hypertension and its associated cardiovascular complications.
Collapse
Affiliation(s)
| | - Hongyu Qiu
- Center for Molecular and Translational Medicine, Institute of Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA;
| |
Collapse
|
27
|
Sun J, Ding W, Liu X, Zhao M, Xi B. Serum metabolites of hypertension among Chinese adolescents aged 12-17 years. J Hum Hypertens 2021; 36:925-932. [PMID: 34480101 DOI: 10.1038/s41371-021-00602-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 08/17/2021] [Accepted: 08/26/2021] [Indexed: 11/09/2022]
Abstract
The regulatory mechanisms of hypertension in youth are incompletely understood. We aimed to identify potential serum metabolic alterations associated with hypertension in adolescents. A 1:1 age- and sex-matched case-control study including 30 hypertensive adolescents aged 12-17 years and 30 normotensive adolescents for the training set and 14 hypertensive adolescents and 14 normotensive adolescents for the test set was performed, which came from one cross-sectional study in Ningxia, China. Hypertension was defined based on blood pressure (BP) values measured on three different occasions according to the BP reference of Chinese children and adolescents. Untargeted ultra-high-performance liquid tandem chromatography quadrupole time of flight mass spectrometry was used to identify differential metabolites between hypertensive and normotensive adolescents. A total of 77 metabolites in positive mode and 101 in negative mode were identified (VIP > 1.0 and P < 0.05). After adjustment for the false discovery rate, 4 differential metabolites in positive mode and 10 in negative mode were found (Q value < 0.05). The logistic regression model adjusted for body mass index and lipid profile selected four significant metabolites (4-hydroxybutanoic acid, L-serine, acetone, and pterostilbene). The main metabolic pathways of amino acid metabolism, pantothenate and CoA biosynthesis, glyoxylate and dicarboxylate metabolism, fructose and mannose metabolism, and linoleic acid metabolism may contribute to the development of hypertension in Chinese adolescents. Based on the receiver operating characteristic plot, 4-hydroxybutanoic acid, L-serine, acetone, and pterostilbene may preliminarily help distinguish hypertension from normal BP in adolescents, with AUC values of 0.857 in the training set and 0.934 in the test set. The identified metabolites and pathways may foster a better understanding of hypertension pathogenesis in Chinese adolescents.
Collapse
Affiliation(s)
- Jiahong Sun
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Wenqing Ding
- Department of Children and Adolescents Health Care, School of Public Health, Ningxia Medical University, Ningxia, China
| | - Xue Liu
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Min Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Bo Xi
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
28
|
Baskal S, Bollenbach A, Mels C, Kruger R, Tsikas D. Development, validation of a GC-MS method for the simultaneous measurement of amino acids, their PTM metabolites and AGEs in human urine, and application to the bi-ethnic ASOS study with special emphasis to lysine. Amino Acids 2021; 54:615-641. [PMID: 34251524 PMCID: PMC9117344 DOI: 10.1007/s00726-021-03031-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/21/2021] [Indexed: 12/28/2022]
Abstract
A gas chromatography-mass spectrometry (GC-MS) method was developed and validated in relevant concentration ranges for the simultaneous measurement of L-lysine (Lys, L) and its Nε- and Nα-methylated (M), Nε- and Nα-acetylated (Ac), Nε-carboxymethylated (CM) and Nε-carboxyethylated (CE) metabolites in human urine. Analyzed Lys metabolites were the post-translational modification (PTM) products Nε-mono-, di- and trimethyllsine, Nε-MML, Nε-DML, Nε-TML, respectively, Nα-ML, Nε-AcL, Nα-AcL, and its advanced glycation end-products (AGEs) Nε-CML, Nε-CM-[2,4,4-2H3]Lys (d3-CML), Nε-CEL and furosine. AGEs of arginine (Arg) and cysteine (Cys) were also analyzed. De novo synthesized trideutero-methyl esters (R-COOCD3) from unlabelled amino acids and derivatives were used as internal standards. Native urine samples (10 µL aliquots) were evaporated to dryness under a stream of nitrogen. Analytes were esterified using 2 M HCl in methanol (60 min, 80 °C) and subsequently amidated by pentafluoropropionic anhydride in ethyl acetate (30 min, 65 °C). The generated methyl ester-pentafluoropropionyl (Me-PFP) derivatives were reconstituted in borate buffer and extracted immediately with toluene. GC-MS analyses were performed by split-less injection of 1-µL aliquots, oven-programmed separation and negative-ion chemical ionization (NICI). Mass spectra were generated in the scan mode (range, m/z 50-1000). Quantification was performed in the selected-ion monitoring (SIM) mode using a dwell time of 50 or 100 ms for each ion. The GC-MS method was suitable for the measurement of Lys and all of its metabolites, except for the quaternary ammonium cation Nε-TML. The Me-PFP derivatives of Lys, Arg and Cys and its metabolites eluted in the retention time window of 9 to 14 min. The derivatization of Nε-CML, d3-CML and Nε-CEL was accompanied by partial Nε-decarboxylation and formation of the Me-PFP Lys derivative. The lowest derivatization yield was observed for Nε-DML, indicating a major role of the Nε-DML group in Lys derivatization. The GC-MS method enables precise (relative standard deviation, RSD < 20%) and accurate (bias, < ± 20%) simultaneous measurement of 33 analytes in human urine in relevant concentration ranges. We used the method to measure the urinary excretion rates of Lys and its PTM metabolites and AGEs in healthy black (n = 39) and white (n = 41) boys of the Arterial Stiffness in Offspring Study (ASOS). No remarkable differences were found indicating no ethnic-related differences in PTM metabolites and AGEs except for Nε-monomethyllysine and S-(2-carboxymethylcysteine).
Collapse
Affiliation(s)
- Svetlana Baskal
- Core Unit Proteomics, Institute of Toxicology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - Alexander Bollenbach
- Core Unit Proteomics, Institute of Toxicology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - Catharina Mels
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom, South Africa
- MRC Research Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa
| | - Ruan Kruger
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom, South Africa
- MRC Research Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa
| | - Dimitrios Tsikas
- Core Unit Proteomics, Institute of Toxicology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany.
| |
Collapse
|
29
|
A 1H NMR spectroscopic metabolomic study of the protective effects of irbesartan in a rat model of chronic mountain sickness. J Pharm Biomed Anal 2021; 204:114235. [PMID: 34252817 DOI: 10.1016/j.jpba.2021.114235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/14/2021] [Accepted: 06/29/2021] [Indexed: 11/22/2022]
Abstract
Chronic mountain sickness (CMS) is a significant pathology in most high-altitude regions globally, affecting the cardiopulmonary system and its mechanism is largely unknown. A metabonomic approach using 1H nuclear magnetic resonance spectroscopy allows for detecting differential metabolites, which provides a global view and mechanisms during CMS development. In this study, we simulated a high-altitude environment to establish a rat model of CMS. Irbesartan was administered to CMS rats at three doses (6.75, 13.5, and 27 mg/kg) once a day for 15 days. HE staining and transmission electron microscopy were used to evaluate the effect of changes on the lung. Based on 1H NMR spectra obtained from serum samples, partial least squares-discriminant analysis (PLS-DA) and its variant orthogonal PLS-DA (OPLS-DA) models were applied to distinguish the different groups. Histopathological sections showed that the alveolar structure was abnormal, inflammatory infiltration occurred in CMS rats, and CMS induced notable metabolic disorder according to the 1H NMR result. However, irbesartan reversed the imbalanced metabolites via energy metabolism, amino acid metabolism, and taurine metabolism pathways, and its effect was also confirmed by the general signs and morphology of the lung. The results revealed that irbesartan as an effective therapeutic agent to improve CMS is warranted.
Collapse
|
30
|
Hu C, Li H, Wu L, Ke J, Yu X, Xiong Y, Tang X. Metabolic profiling of 19 amino acids in triptolide-induced liver injured rats by gas chromatography-triple quadrupole mass spectrometry. Hum Exp Toxicol 2021; 40:1685-1697. [PMID: 33832337 DOI: 10.1177/09603271211006167] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The liver is an important organ for amino acid metabolism, and its damage can be reflected in the changes of amino acid level in the body. Triptolide (TP) has broad anti-inflammatory and anti-tumor activities, but its clinical application is limited due to hepatotoxicity. In this work, a simple, accurate and sensitive gas chromatography-triple quadrupole mass spectrometry (GC-QqQ-MS/MS) method was developed and validated for evaluating the serum levels of amino acids from control and TP-induced liver injured rats, and chemometric analysis was employed for amino acid metabolic profiles analysis. It was found that 11 amino acids showed significant changes after TP administration, and they were mainly involved in 5 metabolic pathways that are phenylalanine, tyrosine and tryptophan biosynthesis, alanine, aspartate and glutamate metabolism, glutamine and glutamate metabolism, phenylalanine metabolism and arginine biosynthesis. Five amino acids including tyrosine, glutamine, glutamic acid, tryptophan and alanine were identified as biomarkers of TP hepatotoxicity by further analysis. These results indicated that the novel amino acid metabolic profiling study based on the GC-QqQ-MS/MS provided not only exact concentrations of serum amino acids, but also a prospective methodology for evaluation of chemically induced liver injury.
Collapse
Affiliation(s)
- Cong Hu
- Jiangxi Province Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, People's Republic of China
| | - Hongwei Li
- Jiangxi Province Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, People's Republic of China
| | - Linjing Wu
- Jiangxi Province Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, People's Republic of China
| | - Jiaqun Ke
- Jiangxi Province Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, People's Republic of China
| | - Xuechun Yu
- Jiangxi Province Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, People's Republic of China
| | - Yinhua Xiong
- Jiangxi Province Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, People's Republic of China
| | - Xilan Tang
- Jiangxi Province Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, People's Republic of China
| |
Collapse
|
31
|
Comparative Study of Metabolite Changes After Antihypertensive Therapy With Calcium Channel Blockers or Angiotensin Type 1 Receptor Blockers. J Cardiovasc Pharmacol 2021; 77:228-237. [PMID: 33235029 DOI: 10.1097/fjc.0000000000000958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 11/05/2020] [Indexed: 01/13/2023]
Abstract
ABSTRACT The high prevalence of hypertension contributes to an increased global burden of cardiovascular diseases. Calcium channel blockers (CCBs) and angiotensin type 1 receptor blockers (ARBs) are the most widely used antihypertensive drugs, and the effects of these drugs on serum metabolites remain unknown. Untargeted metabolomics has been proved to be a powerful approach for the detection of biomarkers and new compounds. In this study, we aimed to determine the changes in metabolites after single-drug therapy with a CCB or ARB in patients newly diagnosed with mild to moderate primary hypertension. We enrolled 33 patients and used an untargeted metabolomics approach to measure 625 metabolites associated with the response to a 4-week treatment of antihypertensive drugs. After screening based on P < 0.05, fold change > 1.2 or fold change < 0.83, and variable importance in projection > 1, 63 differential metabolites were collected. Four metabolic pathways-cysteine and methionine metabolism, phenylalanine metabolism, taurine and hypotaurine metabolism, and tyrosine metabolism-were identified in participants treated with ARBs. Only taurine and hypotaurine metabolism were identified in participants treated with CCBs. Furthermore, homocitrulline and glucosamine-6-phosphate were relevant to whether the blood pressure reduction achieved the target blood pressure (P < 0.05). Our study provides some evidence that changes in certain metabolites may be a potential marker for the dynamic monitoring of the protective effects and side effects of antihypertensive drugs.
Collapse
|
32
|
Pandey S, Adnan Siddiqui M, Azim A, Trigun SK, Sinha N. Serum metabolic profiles of septic shock patients based upon co-morbidities and other underlying conditions. Mol Omics 2021; 17:260-276. [PMID: 33399607 DOI: 10.1039/d0mo00177e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Diagnosis and management of patients with septic shock is still a significant challenge for clinicians with its high mortality amongst hospitalized patients. Septic shock is a heterogeneous condition and is usually accompanied by various underlying disease conditions. Dissecting the specific metabolic changes induced by these underlying disease conditions through metabolomics has shown the potential to improve our understanding of the disease's relevant pathophysiological mechanisms, leading to improved treatment. This study has shown the metabolic alterations caused due to co-morbid conditions like diabetes, hypertension, CAD, and CKD in septic shock. It has also shown the distinct metabolic profiles of septic shock patients with underlying respiratory illnesses and encephalopathy. Metabolic profiling of sera obtained from 50 septic shock patients and 20 healthy controls was performed using high-resolution 1D 1H CPMG and diffusion-edited NMR spectra. Univariate and multivariate statistical analyses were performed to identify the potential molecular biomarkers. Noted dysregulations in amino acids, carbohydrates, and lipid metabolism were observed in septic shock patients. Further stratification within the septic shock patients based on co-morbid conditions and primary diagnosis has shown their role in causing metabolic alterations. Evaluation of these compounds during treatment will help design a personalized treatment protocol for the patients, improving therapeutics.
Collapse
Affiliation(s)
- Swarnima Pandey
- Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow, 226014, India.
| | | | | | | | | |
Collapse
|
33
|
De Beer D, Mels CM, Schutte AE, Louw R, Delles C, Kruger R. Left ventricular mass and urinary metabolomics in young black and white adults: The African-PREDICT study. Nutr Metab Cardiovasc Dis 2020; 30:2051-2062. [PMID: 32669241 DOI: 10.1016/j.numecd.2020.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 04/28/2020] [Accepted: 06/01/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND AND AIMS Increased left ventricular mass is an independent predictor for cardiovascular events, and shown to be higher in black than white populations. To gain a better understanding of early factors contributing to increased left ventricular mass in young black adults, we investigated metabolomic profiles, identified and compared metabolites that associated with left ventricular mass index in healthy black and white adults. METHODS AND RESULTS We included normotensive black and white participants from the African-PREDICT study, with data on urinary metabolomics and echocardiography. Urinary metabolites were measured using three different analytical platforms. Univariate statistical analyses, including independent t-test (adjusted for multiple comparisons), effect size (d ≥ 0.3) and single regression analyses were used to identify metabolites. When comparing the black and white groups, the black group had higher central systolic blood pressure (p > 0.005), whereas left ventricular mass index was similar between the groups (p = 0.97). Three from a total of 192 metabolites were identified to be more abundant (p < 0.046) and inversely associated with left ventricular mass index in the black group only: hydroxyproline (β = -0.22; p = 0.045), glycine (β = -0.20; p = 0.049) and trimethylamine (β = -0.21; p = 0.037). CONCLUSION Higher urinary levels of hydroxyproline, glycine and trimethylamine were inversely associated with left ventricular mass index in the black adults only. Hydroxyproline and glycine are important in maintaining healthy collagen turnover and stability in the heart. Our results may reflect an increase in collagen biosynthesis and collagen deposition in the left ventricle due to higher central systolic blood pressure in the black population.
Collapse
Affiliation(s)
- Dalene De Beer
- Hypertension in Africa Research Team (HART), North-West University (Potchefstroom Campus) Potchefstroom, South Africa
| | - Catharina Mc Mels
- Hypertension in Africa Research Team (HART), North-West University (Potchefstroom Campus) Potchefstroom, South Africa; MRC Research Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa
| | - Aletta E Schutte
- Hypertension in Africa Research Team (HART), North-West University (Potchefstroom Campus) Potchefstroom, South Africa; MRC Research Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa; School of Public Health and Community Medicine, University of New South Wales The George Institute for Global Health, Sydney, Australia
| | - Roan Louw
- Human Metabolomics, North-West University, Potchefstroom Campus, Potchefstroom, South Africa
| | - Christian Delles
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Ruan Kruger
- Hypertension in Africa Research Team (HART), North-West University (Potchefstroom Campus) Potchefstroom, South Africa; MRC Research Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa.
| |
Collapse
|
34
|
Schutte AE, Kruger R, Gafane-Matemane LF, Breet Y, Strauss-Kruger M, Cruickshank JK. Ethnicity and Arterial Stiffness. Arterioscler Thromb Vasc Biol 2020; 40:1044-1054. [PMID: 32237903 DOI: 10.1161/atvbaha.120.313133] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Early vascular aging reflects increased arterial stiffness of central blood vessels at young chronological ages and powerfully predicts cardiovascular events and mortality, independent of routine brachial blood pressure and other risk factors. Since ethnic disparities exist in routine blood pressure, in hypertension and cardiovascular outcomes, this review evaluates major studies comparing arterial stiffness through the life course between different ethnic groups or races (which have no biological definition)-in children, adolescents, young, and middle-aged adults and the very elderly. Most report that compared with white European-origin samples, populations of black African descent have increased central arterial stiffness throughout different life stages, as well as a more rapid increase in arterial stiffness at young ages. Exceptions may include African Caribbean origin people in Europe. Differences in vascular structure and function are clearest, where obesity, socioeconomic, and psychosocial factors are most marked. Few studies evaluate a wider spectrum of ethnic groups or factors contributing to these ethnic disparities. Genetic effects are not obvious; maternal risk and intergenerational studies are scarce. Nevertheless, across all ethnic groups, for given levels of blood pressure and age, some people have stiffer central arteries than others. These individuals are most at risk of vascular events and mortality and, therefore, may benefit from early, as yet untested, preventive action and treatment.
Collapse
Affiliation(s)
- Aletta E Schutte
- From the Hypertension in Africa Research Team, South African Medical Research Council: Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa (A.E.S., R.K., L.F.G.-M., Y.B., M.S.-K.)
- School of Public Health and Community Medicine, University of New South Wales, The George Institute for Global Health, Sydney, Australia (A.E.S.)
| | - Ruan Kruger
- From the Hypertension in Africa Research Team, South African Medical Research Council: Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa (A.E.S., R.K., L.F.G.-M., Y.B., M.S.-K.)
| | - Lebo F Gafane-Matemane
- From the Hypertension in Africa Research Team, South African Medical Research Council: Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa (A.E.S., R.K., L.F.G.-M., Y.B., M.S.-K.)
| | - Yolandi Breet
- From the Hypertension in Africa Research Team, South African Medical Research Council: Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa (A.E.S., R.K., L.F.G.-M., Y.B., M.S.-K.)
| | - Michél Strauss-Kruger
- From the Hypertension in Africa Research Team, South African Medical Research Council: Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa (A.E.S., R.K., L.F.G.-M., Y.B., M.S.-K.)
| | - J Kennedy Cruickshank
- Life-Course and Nutritional Sciences and St Thomas' & Guy's Hospitals, King's College/King's Health Partners, London, United Kingdom (J.K.C.)
| |
Collapse
|