1
|
Meng L, Chen HM, Zhang JS, Wu YR, Xu YZ. Matricellular proteins: From cardiac homeostasis to immune regulation. Biomed Pharmacother 2024; 180:117463. [PMID: 39305814 DOI: 10.1016/j.biopha.2024.117463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/23/2024] [Accepted: 09/19/2024] [Indexed: 11/14/2024] Open
Abstract
Tissue repair after myocardial injury is a complex process involving changes in all aspects of the myocardial tissue, including the extracellular matrix (ECM). The ECM is composed of large structural proteins such as collagen and elastin and smaller proteins with major regulatory properties called matricellular proteins. Matricellular cell proteins exert their functions and elicit cellular responses by binding to structural proteins not limited to interactions with cell surface receptors, cytokines, or proteases. At the same time, matricellular proteins act as the "bridge" of information exchange between cells and ECM, maintaining the integrity of the cardiac structure and regulating the immune environment, which is a key factor in determining cardiac homeostasis. In this review, we present an overview of the identified matricellular proteins and summarize the current knowledge regarding their roles in maintaining cardiac homeostasis and regulating the immune system.
Collapse
Affiliation(s)
- Li Meng
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou First People's Hospital, Hangzhou 310053, China; Department of Cardiology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Zhejiang 310006, China
| | - Hui-Min Chen
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou First People's Hospital, Hangzhou 310053, China; Department of Cardiology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Zhejiang 310006, China
| | - Jia-Sheng Zhang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou First People's Hospital, Hangzhou 310053, China; Department of Cardiology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Zhejiang 310006, China
| | - Yi-Rong Wu
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Zhejiang 310006, China.
| | - Yi-Zhou Xu
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Zhejiang 310006, China.
| |
Collapse
|
2
|
Pomella S, Melaiu O, Cifaldi L, Bei R, Gargari M, Campanella V, Barillari G. Biomarkers Identification in the Microenvironment of Oral Squamous Cell Carcinoma: A Systematic Review of Proteomic Studies. Int J Mol Sci 2024; 25:8929. [PMID: 39201614 PMCID: PMC11354375 DOI: 10.3390/ijms25168929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/30/2024] [Accepted: 08/05/2024] [Indexed: 09/02/2024] Open
Abstract
An important determinant for oral squamous cell carcinoma (OSCC) onset and outcome is the composition of the tumor microenvironment (TME). Thus, the study of the interactions occurring among cancer cells, immune cells, and cancer-associated fibroblasts within the TME could facilitate the understanding of the mechanisms underlying OSCC development and progression, as well as of its sensitivity or resistance to the therapy. In this context, it must be highlighted that the characterization of TME proteins is enabled by proteomic methodologies, particularly mass spectrometry (MS). Aiming to identify TME protein markers employable for diagnosing and prognosticating OSCC, we have retrieved a total of 119 articles spanning 2001 to 2023, of which 17 have passed the selection process, satisfying all its criteria. We have found a total of 570 proteins detected by MS-based proteomics in the TME of OSCC; among them, 542 are identified by a single study, while 28 are cited by two or more studies. These 28 proteins participate in extracellular matrix remodeling and/or energy metabolism. Here, we propose them as markers that could be used to characterize the TME of OSCC for diagnostic/prognostic purposes. Noteworthy, most of the 28 individuated proteins share one feature: being modulated by the hypoxia that is present in the proliferating OSCC mass.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Giovanni Barillari
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier, 00133 Rome, Italy; (S.P.); (O.M.); (L.C.); (R.B.); (M.G.); (V.C.)
| |
Collapse
|
3
|
Boxhammer E, Paar V, Wernly B, Kiss A, Mirna M, Aigner A, Acar E, Watzinger S, Podesser BK, Zauner R, Wally V, Ablinger M, Hackl M, Hoppe UC, Lichtenauer M. MicroRNA-30d-5p-A Potential New Therapeutic Target for Prevention of Ischemic Cardiomyopathy after Myocardial Infarction. Cells 2023; 12:2369. [PMID: 37830583 PMCID: PMC10571870 DOI: 10.3390/cells12192369] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 10/14/2023] Open
Abstract
(1) Background and Objective: MicroRNAs (miRs) are biomarkers for assessing the extent of cardiac remodeling after myocardial infarction (MI) and important predictors of clinical outcome in heart failure. Overexpression of miR-30d-5p appears to have a cardioprotective effect. The aim of the present study was to demonstrate whether miR-30d-5p could be used as a potential therapeutic target to improve post-MI adverse remodeling. (2) Methods and Results: MiR profiling was performed by next-generation sequencing to assess different expression patterns in ischemic vs. healthy myocardium in a rat model of MI. MiR-30d-5p was significantly downregulated (p < 0.001) in ischemic myocardium and was selected as a promising target. A mimic of miR-30d-5p was administered in the treatment group, whereas the control group received non-functional, scrambled siRNA. To measure the effect of miR-30d-5p on infarct area size of the left ventricle, the rats were randomized and treated with miR-30d-5p or scrambled siRNA. Histological planimetry was performed 72 h and 6 weeks after induction of MI. Infarct area was significantly reduced at 72 h and at 6 weeks by using miR-30d-5p (72 h: 22.89 ± 7.66% vs. 35.96 ± 9.27%, p = 0.0136; 6 weeks: 6.93 ± 4.58% vs. 12.48 ± 7.09%, p = 0.0172). To gain insight into infarct healing, scratch assays were used to obtain information on cell migration in human umbilical vein endothelial cells (HUVECs). Gap closure was significantly faster in the mimic-treated cells 20 h post-scratching (12.4% more than the scrambled control after 20 h; p = 0.013). To analyze the anti-apoptotic quality of miR-30d-5p, the ratio between phosphorylated p53 and total p53 was evaluated in human cardiomyocytes using ELISA. Under the influence of the miR-30d-5p mimic, cardiomyocytes demonstrated a decreased pp53/total p53 ratio (0.66 ± 0.08 vs. 0.81 ± 0.17), showing a distinct tendency (p = 0.055) to decrease the apoptosis rate compared to the control group. (3) Conclusion: Using a mimic of miR-30d-5p underlines the cardioprotective effect of miR-30d-5p in MI and could reduce the risk for development of ischemic cardiomyopathy.
Collapse
Affiliation(s)
- Elke Boxhammer
- Internal Medicine II, Department of Cardiology, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria; (E.B.)
| | - Vera Paar
- Internal Medicine II, Department of Cardiology, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria; (E.B.)
| | - Bernhard Wernly
- Department of Internal Medicine, General Hospital Oberndorf, Teaching Hospital of the Paracelsus Medical University, 5110 Oberndorf, Austria
| | - Attila Kiss
- Ludwig Boltzmann Cluster for Cardiovascular Research, Center for Biomedical Research and Translational Surgery, Medical University Vienna, 1090 Vienna, Austria; (A.K.)
| | - Moritz Mirna
- Internal Medicine II, Department of Cardiology, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria; (E.B.)
| | - Achim Aigner
- Rudolf Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Leipzig University, 04107 Leipzig, Germany;
| | - Eylem Acar
- Ludwig Boltzmann Cluster for Cardiovascular Research, Center for Biomedical Research and Translational Surgery, Medical University Vienna, 1090 Vienna, Austria; (A.K.)
| | - Simon Watzinger
- Ludwig Boltzmann Cluster for Cardiovascular Research, Center for Biomedical Research and Translational Surgery, Medical University Vienna, 1090 Vienna, Austria; (A.K.)
| | - Bruno K. Podesser
- Ludwig Boltzmann Cluster for Cardiovascular Research, Center for Biomedical Research and Translational Surgery, Medical University Vienna, 1090 Vienna, Austria; (A.K.)
| | - Roland Zauner
- Dermatology, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
| | - Verena Wally
- Dermatology, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
| | - Michael Ablinger
- Dermatology, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
| | | | - Uta C. Hoppe
- Internal Medicine II, Department of Cardiology, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria; (E.B.)
| | - Michael Lichtenauer
- Internal Medicine II, Department of Cardiology, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria; (E.B.)
| |
Collapse
|
4
|
Donovan C, Bai X, Chan YL, Feng M, Ho KF, Guo H, Chen H, Oliver BG. Tenascin C in Lung Diseases. BIOLOGY 2023; 12:biology12020199. [PMID: 36829478 PMCID: PMC9953172 DOI: 10.3390/biology12020199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023]
Abstract
Tenascin C (TNC) is a multifunctional large extracellular matrix protein involved in numerous cellular processes in embryonic development and can be increased in disease, or under conditions of trauma or cell stress in adults. However, the role of TNC in lung diseases remains unclear. In this study, we investigated the expression of TNC during development, in offspring following maternal particulate matter (PM) exposure, asthma, chronic obstructive pulmonary disease (COPD) and lung cancer. TNC expression is increased during lung development in biopsy cells, endothelial cells, mesenchymal cells, and epithelial cells. Maternal PM exposure increased TNC and collagen deposition, which was not affected by the removal of PM exposure after pregnancy. TNC expression was also increased in basal epithelial cells and fibroblasts in patients with asthma and AT2 and endothelial cells in patients with COPD. Furthermore, there was an increase in the expression of TNC in stage II compared to stage IA lung cancer; however, overall survival analysis showed no correlation between levels of TNC and survival. In conclusion, TNC is increased during lung development, in offspring following maternal PM exposure, and in asthma, COPD, and lung cancer tissues. Therefore, targeting TNC may provide a novel therapeutic target for lung diseases.
Collapse
Affiliation(s)
- Chantal Donovan
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
- Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW 2050, Australia
| | - Xu Bai
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
- Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, Sydney, NSW 2037, Australia
| | - Yik Lung Chan
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Min Feng
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
- Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, Sydney, NSW 2037, Australia
| | - Kin-Fai Ho
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Hai Guo
- Air Quality Studies, Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hong Kong SAR 999077, China
| | - Hui Chen
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Brian G. Oliver
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
- Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, Sydney, NSW 2037, Australia
- Correspondence: ; Tel.: +61-2-9114-0367
| |
Collapse
|
5
|
Song W, Qiu N. MiR-495-3p depletion contributes to myocardial ischemia/reperfusion injury in cardiomyocytes by targeting TNC. Regen Ther 2022; 21:380-388. [PMID: 36161101 PMCID: PMC9478495 DOI: 10.1016/j.reth.2022.08.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/08/2022] [Accepted: 08/25/2022] [Indexed: 11/24/2022] Open
Abstract
Background Tenascin-C (TNC) has been found to abnormally express in myocardial ischemia/reperfusion injury (MI/RI), but its effect on cardiomyocytes apoptosis is unknown and is worthy of investigation. Methods H9C2 cells were given hypoxia/reoxygenation (H/R) treatment to obtain the replica of MI/RI in vitro. The effect of H/R on viability, apoptosis and inflammation was studied by CCK-8 assay, flow cytometry, mitochondrial membrane potential (MMP) and Ca2+ measurements as well as enzyme linked immunosorbent assay. We applied bioinformatics analysis and luciferase reporter assay to screened and validated TNC-targeting miR-495-3p which was then mechanistically investigated by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot. With the assistance of cell transfection, rescue assays were conducted. Results H9C2 cells showed diminished viability, accelerated apoptosis, elevated tumour necrosis factor alpha (TNF-α) and interleukin 1 beta (IL-1β), and TNC overexpression in response to H/R induction, while silencing of TNC partially reversed the effect of H/R treatment on the H9C2 cells. TNC silencing reduced Ca2+ level and enhanced MMP level in the H/R-stimulated cells. MiR-495-3p targeted TNC and showed a low expression in the H/R-stimulated cells. The expression of TNC was negatively regulated by miR-495-3p. Inhibition of miR-495-3p repressed viability and MMP level, and facilitated apoptosis and levels of Ca2+, TNF-α and IL-1β in the H/R-stimulated cells. The effect of TNC silencing and miR-495-3p depletion on H/R-induced cardiomyocyte injury was mutually reversed in vitro. Conclusion MiR-495-3p targeted TNC to regulate the apoptosis and inflammation of cardiomyocytes in H/R induction, which was associated with Ca2+ overload.
Collapse
Affiliation(s)
- Wei Song
- Department of Cardiology, Taizhou Central Hospital (Taizhou University Hospital), 999 Donghai Avenue, Jiaojiang District, Taizhou, Zhejiang Province, China
| | - Naiyan Qiu
- Department of Cardiology, The Fifth People's Hospital of Jinan, No. 24297 Jingshi Road, Huaiyin District, Jinan, Shandong Province, 250021, China
| |
Collapse
|
6
|
Wang Y, Wang G, Liu H. Tenascin-C: A Key Regulator in Angiogenesis during Wound Healing. Biomolecules 2022; 12:1689. [PMID: 36421704 PMCID: PMC9687801 DOI: 10.3390/biom12111689] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 08/27/2023] Open
Abstract
(1) Background: Injury repair is a complex physiological process in which multiple cells and molecules are involved. Tenascin-C (TNC), an extracellular matrix (ECM) glycoprotein, is essential for angiogenesis during wound healing. This study aims to provide a comprehensive review of the dynamic changes and functions of TNC throughout tissue regeneration and to present an up-to-date synthesis of the body of knowledge pointing to multiple mechanisms of TNC at different restoration stages. (2) Methods: A review of the PubMed database was performed to include all studies describing the pathological processes of damage restoration and the role, structure, expression, and function of TNC in post-injury treatment; (3) Results: In this review, we first introduced the construction and expression signature of TNC. Then, the role of TNC during the process of damage restoration was introduced. We highlight the temporal heterogeneity of TNC levels at different restoration stages. Furthermore, we are surprised to find that post-injury angiogenesis is dynamically consistent with changes in TNC. Finally, we discuss the strategies for TNC in post-injury treatment. (4) Conclusions: The dynamic expression of TNC has a significant impact on angiogenesis and healing wounds and counters many negative aspects of poorly healing wounds, such as excessive inflammation, ischemia, scarring, and wound infection.
Collapse
Affiliation(s)
- Yucai Wang
- Department of Orthopaedic Surgery, Tangdu Hospital, AirForce Medical University, Xi’an 710000, China
| | - Guangfu Wang
- Vasculocardiology Department, The Fourth People’s Hospital of Jinan, Jinan 250000, China
| | - Hao Liu
- Division of Vascular and Interventional Radiology, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510000, China
| |
Collapse
|
7
|
Upregulation of miR-335-5p Contributes to Right Ventricular Remodeling via Calumenin in Pulmonary Arterial Hypertension. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9294148. [PMID: 36246958 PMCID: PMC9557250 DOI: 10.1155/2022/9294148] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/08/2022] [Accepted: 09/16/2022] [Indexed: 11/18/2022]
Abstract
Right ventricular (RV) failure determines the prognosis in pulmonary arterial hypertension (PAH), but the underlying mechanism is still unclear. Growing evidence has shown that microRNAs participate in RV remodeling. This study is undertaken to explore the role of miR-335-5p in regulating RV remodeling induced by PAH. Two PAH models were used in the study, including the monocrotaline rat model and hypoxia/su5416 mouse model. miRNA sequencing and RT-qPCR validation identified that miR-335-5p was elevated in the RV of PAH rats. In vitro, miR-335-5p expression was increased after angiotensin II treatment, and miR-335-5p inhibition relieved angiotensin II-induced cardiomyocyte hypertrophy. The luciferase reporter assay showed that calumenin was a target gene for miR-335-5p. Pretreatment with miR-335-5p inhibitors could rescue calumenin downregulation induced by angiotensin II in H9C2 cells. Moreover, intracellular Ca2+ concentration and apoptosis were increased after angiotensin II treatment, and miR-335-5p inhibition decreased intracellular Ca2+ accumulation and apoptosis. Finally, in vivo miR-335-5p downregulation (antagomir miR-335-5p) attenuated RV remodeling and rescued calumenin downregulation under conditions of hypoxia/su5416 exposure. Our work highlights the role of miR-335-5p and calumenin in RV remodeling and may lead to the development of novel therapeutic strategies for right heart failure.
Collapse
|
8
|
Markel M, Tse WH, DeLeon N, Patel D, Kahnamouizadeh S, Lacher M, Wagner R, Keijzer R. Tenascin C is dysregulated in hypoplastic lungs of miR-200b -/- mice. Pediatr Surg Int 2022; 38:695-700. [PMID: 35235015 DOI: 10.1007/s00383-022-05096-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/02/2022] [Indexed: 10/19/2022]
Abstract
PURPOSE We previously demonstrated that absence of miR-200b results in abnormal lung development in congenital diaphragmatic hernia due to imbalance between epithelial and mesenchymal cells. Tenascin C is a highly conserved extracellular matrix protein involved in epithelial to mesenchymal transition, tissue regeneration and lung development. Considering the involvement of Tenascin C and miR-200b and their potential interaction, we aimed to study Tenascin C during lung development in the absence of miR-200b. METHODS We collected lungs of miR-200b-/- mice (male, 8 weeks). We performed Western blot (WB) analysis (N = 6) and immunofluorescence (N = 5) for Tenascin C and alpha smooth muscle actin and RT-qPCR for Tenascin C gene expression (N = 4). RESULTS Using WB analysis, we observed a decreased total protein abundance of Tenascin C in miR-200b-/- lungs (miR-200b+/+: 3.8 × 107 ± 1 × 107; miR-200b-/-: 1.9 × 107 ± 5 × 106; p = 0.002). Immunofluorescence confirmed decreased total Tenascin C in miR-200b-/- lungs. Tenascin C was significantly decreased in the mesenchyme but relatively increased in the airways of mutant lungs. Total lung RNA expression of Tenascin C was higher in miR-200b-/- lungs. CONCLUSION We report dysregulation of Tenascin C in lungs of miR-200b-/- mice. This suggests that absence of miR-200b results in abnormal Tenascin C abundance contributing to the lung hypoplasia observed in miR-200b-/- mice.
Collapse
Affiliation(s)
- Moritz Markel
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital Research Institute of Manitoba, University of Manitoba, AE402-820 Sherbrook Street, Winnipeg, MB, R3A 1S1, Canada.,Department of Pediatric Surgery, University of Leipzig, Leipzig, Germany
| | - Wai Hei Tse
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital Research Institute of Manitoba, University of Manitoba, AE402-820 Sherbrook Street, Winnipeg, MB, R3A 1S1, Canada
| | - Nolan DeLeon
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital Research Institute of Manitoba, University of Manitoba, AE402-820 Sherbrook Street, Winnipeg, MB, R3A 1S1, Canada
| | - Daywin Patel
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital Research Institute of Manitoba, University of Manitoba, AE402-820 Sherbrook Street, Winnipeg, MB, R3A 1S1, Canada
| | - Shana Kahnamouizadeh
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital Research Institute of Manitoba, University of Manitoba, AE402-820 Sherbrook Street, Winnipeg, MB, R3A 1S1, Canada
| | - Martin Lacher
- Department of Pediatric Surgery, University of Leipzig, Leipzig, Germany
| | - Richard Wagner
- Department of Pediatric Surgery, University of Leipzig, Leipzig, Germany
| | - Richard Keijzer
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital Research Institute of Manitoba, University of Manitoba, AE402-820 Sherbrook Street, Winnipeg, MB, R3A 1S1, Canada.
| |
Collapse
|
9
|
Liu S, Wang Z, Zhu D, Yang J, Lou D, Gao R, Wang Z, Li A, Lv Y, Fan Q. Effect of Shengmai Yin on the DNA methylation status of nasopharyngeal carcinoma cell and its radioresistant strains. J Pharm Anal 2022; 11:783-790. [PMID: 35028184 PMCID: PMC8740367 DOI: 10.1016/j.jpha.2020.11.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 11/22/2020] [Accepted: 11/27/2020] [Indexed: 12/20/2022] Open
Abstract
Shengmai Yin (SMY) is a Chinese herbal decoction that effectively alleviates the side effects of radiotherapy in various cancers and helps achieve radiotherapy's clinical efficacy. In this study, we explored the interaction mechanism among SMY, DNA methylation, and nasopharyngeal carcinoma (NPC). We identified differences in DNA methylation levels in NPC CNE-2 cells and its radioresistant cells (CNE-2R) using the methylated DNA immunoprecipitation array and found that CNE-2R cells showed genome-wide changes in methylation status towards a state of hypomethylation. SMY may restore its original DNA methylation status, and thus, enhance radiosensitivity. Furthermore, we confirmed that the differential gene Tenascin-C (TNC) was overexpressed in CNE-2R cells and that SMY downregulated TNC expression. This downregulation of TNC inhibited NPC cell radiation resistance, migration, and invasion. Furthermore, we found that TNC was hypomethylated in CNE-2R cells and partially restored to a hypermethylated state after SMY intervention. DNA methyltransferases 3a may be the key protein in DNA methylation of TNC. A significant difference in the genome-wide methylation status between Nasopharyngeal carcinoma CNE-2 cells and its radioresistant strain. Shengmai Yin-mediated enhancement of radiosensitivity might be mediated by restoration of its original DNA methylation status. Tenascin-C was downregulated and restored to partially hypermethylated in CNE-2R after Shengmai Yin intervention, DNMT3a maybe the key protein of DNA methylation of TNC. The downregulation of TNC inhibited NPC cell radiation resistance, migration and invasion.
Collapse
Affiliation(s)
- Shiya Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | | | - Daoqi Zhu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Jiabin Yang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Dandan Lou
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Ruijiao Gao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Zetai Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Aiwu Li
- NanFang Hospital, Guangzhou, 510515, China
| | - Ying Lv
- NanFang Hospital, Guangzhou, 510515, China
| | - Qin Fan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
10
|
Ceauşu Z, Popa M, Socea B, Gorecki G, Costache M, Ceauşu M. Influence of the microenvironment dynamics on extracellular matrix evolution under hypoxic ischemic conditions in the myocardium. Exp Ther Med 2022; 23:199. [DOI: 10.3892/etm.2022.11122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/29/2021] [Indexed: 11/05/2022] Open
Affiliation(s)
- Zenaida Ceauşu
- Pathology Department, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Manuela Popa
- Pathology Department, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Bogdan Socea
- Department of Surgery, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Gabriel Gorecki
- Department of Anesthesiology, ‘Sf. Pantelimon’ Emergency Hospital, 021659 Bucharest, Romania
| | - Mariana Costache
- Pathology Department, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Mihai Ceauşu
- Pathology Department, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania
| |
Collapse
|
11
|
Szabó PL, Dostal C, Pilz PM, Hamza O, Acar E, Watzinger S, Mathew S, Kager G, Hallström S, Podesser BK, Kiss A. Remote Ischemic Perconditioning Ameliorates Myocardial Ischemia and Reperfusion-Induced Coronary Endothelial Dysfunction and Aortic Stiffness in Rats. J Cardiovasc Pharmacol Ther 2021; 26:702-713. [PMID: 34342526 PMCID: PMC8547239 DOI: 10.1177/10742484211031327] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/20/2021] [Indexed: 11/15/2022]
Abstract
BACKGROUND Vascular stiffness and endothelial dysfunction are accelerated by acute myocardial infarction (AMI) and subsequently increase the risk for recurrent coronary events. AIM To explore whether remote ischemic perconditioning (RIPerc) protects against coronary and aorta endothelial dysfunction as well as aortic stiffness following AMI. METHODS Male OFA-1 rats were subjected to 30 min of occlusion of the left anterior descending artery (LAD) followed by reperfusion either 3 or 28 days with or without RIPerc. Three groups: (1) sham operated (Sham, without LAD occlusion); (2) myocardial ischemia and reperfusion (MIR) and (3) MIR + RIPerc group with 3 cycles of 5 minutes of IR on hindlimb performed during myocardial ischemia were used. Assessment of vascular reactivity in isolated septal coronary arteries (non-occluded) and aortic rings as well as aortic stiffness was assessed by wire myography either 3 or 28 days after AMI, respectively. Markers of pro-inflammatory cytokines, adhesion molecules were assessed by RT-qPCR and ELISA. RESULTS MIR promotes impaired endothelial-dependent relaxation in septal coronary artery segments, increased aortic stiffness and adverse left ventricular remodeling. These changes were markedly attenuated in rats treated with RIPerc and associated with a significant decline in P-selectin, IL-6 and TNF-α expression either in infarcted or non-infarcted myocardial tissue samples. CONCLUSIONS Our study for the first time demonstrated that RIPerc alleviates MIR-induced coronary artery endothelial dysfunction in non-occluded artery segments and attenuates aortic stiffness in rats. The vascular protective effects of RIPerc are associated with ameliorated inflammation and might therefore be caused by reduced inflammatory signaling.
Collapse
Affiliation(s)
- Petra Lujza Szabó
- Ludwig Boltzmann Institute for Cardiovascular Research at the Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Christopher Dostal
- Ludwig Boltzmann Institute for Cardiovascular Research at the Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Patrick Michael Pilz
- Ludwig Boltzmann Institute for Cardiovascular Research at the Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
- Stanford Cardiovascular Institute, School of Medicine, Stanford University, Stanford, CA, USA
| | - Ouafa Hamza
- Ludwig Boltzmann Institute for Cardiovascular Research at the Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Eylem Acar
- Ludwig Boltzmann Institute for Cardiovascular Research at the Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Simon Watzinger
- Ludwig Boltzmann Institute for Cardiovascular Research at the Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Shalett Mathew
- Ludwig Boltzmann Institute for Cardiovascular Research at the Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Gerd Kager
- Division of Physiological Chemistry, Otto Loewi Research Center, Medical University Graz, Graz, Austria
| | - Seth Hallström
- Division of Physiological Chemistry, Otto Loewi Research Center, Medical University Graz, Graz, Austria
| | - Bruno K. Podesser
- Ludwig Boltzmann Institute for Cardiovascular Research at the Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Attila Kiss
- Ludwig Boltzmann Institute for Cardiovascular Research at the Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
12
|
Alterations in ACE and ACE2 Activities and Cardiomyocyte Signaling Underlie Improved Myocardial Function in a Rat Model of Repeated Remote Ischemic Conditioning. Int J Mol Sci 2021; 22:ijms222011064. [PMID: 34681724 PMCID: PMC8537248 DOI: 10.3390/ijms222011064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 11/23/2022] Open
Abstract
Post-ischemic left ventricular (LV) remodeling and its hypothetical prevention by repeated remote ischemic conditioning (rRIC) in male Sprague–Dawley rats were studied. Myocardial infarction (MI) was evoked by permanent ligation of the left anterior descending coronary artery (LAD), and myocardial characteristics were tested in the infarcted anterior and non-infarcted inferior LV regions four and/or six weeks later. rRIC was induced by three cycles of five-minute-long unilateral hind limb ischemia and five minutes of reperfusion on a daily basis for a period of two weeks starting four weeks after LAD occlusion. Sham operated animals served as controls. Echocardiographic examinations and invasive hemodynamic measurements revealed distinct changes in LV systolic function between four and six weeks after MI induction in the absence of rRIC (i.e., LV ejection fraction (LVEF) decreased from 52.8 ± 2.1% to 50 ± 1.6%, mean ± SEM, p < 0.05) and in the presence of rRIC (i.e., LVEF increased from 48.2 ± 4.8% to 55.2 ± 4.1%, p < 0.05). Angiotensin-converting enzyme (ACE) activity was about five times higher in the anterior LV wall at six weeks than that in sham animals. Angiotensin-converting enzyme 2 (ACE2) activity roughly doubled in post-ischemic LVs. These increases in ACE and ACE2 activities were effectively mitigated by rRIC. Ca2+-sensitivities of force production (pCa50) of LV permeabilized cardiomyocytes were increased at six weeks after MI induction together with hypophosphorylation of 1) cardiac troponin I (cTnI) in both LV regions, and 2) cardiac myosin-binding protein C (cMyBP-C) in the anterior wall. rRIC normalized pCa50, cTnI and cMyBP-C phosphorylations. Taken together, post-ischemic LV remodeling involves region-specific alterations in ACE and ACE2 activities together with changes in cardiomyocyte myofilament protein phosphorylation and function. rRIC has the potential to prevent these alterations and to improve LV performance following MI.
Collapse
|
13
|
Martins-Marques T. Connecting different heart diseases through intercellular communication. Biol Open 2021; 10:bio058777. [PMID: 34494646 PMCID: PMC8443862 DOI: 10.1242/bio.058777] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 07/12/2021] [Indexed: 12/22/2022] Open
Abstract
Well-orchestrated intercellular communication networks are pivotal to maintaining cardiac homeostasis and to ensuring adaptative responses and repair after injury. Intracardiac communication is sustained by cell-cell crosstalk, directly via gap junctions (GJ) and tunneling nanotubes (TNT), indirectly through the exchange of soluble factors and extracellular vesicles (EV), and by cell-extracellular matrix (ECM) interactions. GJ-mediated communication between cardiomyocytes and with other cardiac cell types enables electrical impulse propagation, required to sustain synchronized heart beating. In addition, TNT-mediated organelle transfer has been associated with cardioprotection, whilst communication via EV plays diverse pathophysiological roles, being implicated in angiogenesis, inflammation and fibrosis. Connecting various cell populations, the ECM plays important functions not only in maintaining the heart structure, but also acting as a signal transducer for intercellular crosstalk. Although with distinct etiologies and clinical manifestations, intercellular communication derailment has been implicated in several cardiac disorders, including myocardial infarction and hypertrophy, highlighting the importance of a comprehensive and integrated view of complex cell communication networks. In this review, I intend to provide a critical perspective about the main mechanisms contributing to regulate cellular crosstalk in the heart, which may be considered in the development of future therapeutic strategies, using cell-based therapies as a paradigmatic example. This Review has an associated Future Leader to Watch interview with the author.
Collapse
Affiliation(s)
- Tania Martins-Marques
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, 3000-548 Coimbra, Portugal
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3004-504 Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), 3004-561 Coimbra, Portugal
| |
Collapse
|
14
|
Li M, Qi C, Song R, Xiong C, Zhong X, Song Z, Ning Z, Song X. Inhibition of Long Noncoding RNA SNHG20 Improves Angiotensin II-Induced Cardiac Fibrosis and Hypertrophy by Regulating the MicroRNA 335/ Galectin-3 Axis. Mol Cell Biol 2021; 41:e0058020. [PMID: 34228494 PMCID: PMC8384070 DOI: 10.1128/mcb.00580-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 11/29/2020] [Accepted: 06/12/2021] [Indexed: 11/20/2022] Open
Abstract
Cardiac fibrosis is a hallmark of various heart diseases and ultimately leads to heart failure. Although long noncoding RNA (lncRNA) SNHG20 has been reported to play important roles in various cancers, its function in cardiac fibrosis remains unclear. The expression of SNHG20 and microRNA 335 (miR-335) in heart tissues of angiotensin II-induced mice and angiotensin II-stimulated mouse cardiomyocyte cell line HL-1 were detected by quantitative real-time PCR (qRT-PCR). Cell viability was evaluated by cell counting kit-8 assay. The expression of galectin-3, fibrosis-related proteins (fibronectin, collagen IaI, and α-SMA), and apoptosis-related proteins [cleaved caspase-3 and cleaved poly(ADP-ribose) polymerase (PARP)] was detected by Western blotting. Bioinformatics prediction, luciferase reporter assay, and RNA pulldown assay were performed to determine the relationship between SNHG20 and miR-335 as well as miR-335 and Galectin-3. Gain- and loss-function assays were performed to determine the role of SNHG20/miR-335/Galectin-3 in cardiac fibrosis. SNHG20 was significantly upregulated and miR-335 was downregulated in heart tissues of angiotensin II-treated mice and angiotensin II-stimulated HL-1 cells. Downregulation of SNHG20 effectively enhanced cell viability and decreased cell size of HL-1 cells and the expression levels of fibrosis-related proteins (fibronectin, collagen IaI, and α-SMA) and apoptosis-related proteins (cleaved caspase-3 and cleaved PARP), which were induced by angiotensin II treatment. Furthermore, SNHG20 elevated the expression levels of Galectin-3 by directly regulating miR-335. Our study revealed that downregulation of SNHG20 improved angiotensin II-induced cardiac fibrosis by targeting the miR-335/Galectin-3 axis, suggesting that SNHG20 is a therapeutic target for cardiac fibrosis and hypertrophy.
Collapse
Affiliation(s)
- Mingyang Li
- Department of Cardiology, The Fourth Affiliated Hospital, Harbin Medical University, Heilongjiang, China
| | - Chunli Qi
- Department of Cardiology, The Fourth Affiliated Hospital, Harbin Medical University, Heilongjiang, China
| | - Renxing Song
- Department of Cardiology, The Fourth Affiliated Hospital, Harbin Medical University, Heilongjiang, China
| | - Chunming Xiong
- Department of Cardiology, The Fourth Affiliated Hospital, Harbin Medical University, Heilongjiang, China
| | - Xiao Zhong
- Department of Cardiology, The Fourth Affiliated Hospital, Harbin Medical University, Heilongjiang, China
| | - Ziguang Song
- Department of Cardiology, The Fourth Affiliated Hospital, Harbin Medical University, Heilongjiang, China
| | - Zhongping Ning
- Shanghai University of Medicine & Health Sciences, Zhoupu Hospital, Shanghai, China
| | - Xiang Song
- Shanghai University of Medicine & Health Sciences, Zhoupu Hospital, Shanghai, China
| |
Collapse
|
15
|
Imanaka-Yoshida K. Tenascin-C in Heart Diseases-The Role of Inflammation. Int J Mol Sci 2021; 22:ijms22115828. [PMID: 34072423 PMCID: PMC8198581 DOI: 10.3390/ijms22115828] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 12/20/2022] Open
Abstract
Tenascin-C (TNC) is a large extracellular matrix (ECM) glycoprotein and an original member of the matricellular protein family. TNC is transiently expressed in the heart during embryonic development, but is rarely detected in normal adults; however, its expression is strongly up-regulated with inflammation. Although neither TNC-knockout nor -overexpressing mice show a distinct phenotype, disease models using genetically engineered mice combined with in vitro experiments have revealed multiple significant roles for TNC in responses to injury and myocardial repair, particularly in the regulation of inflammation. In most cases, TNC appears to deteriorate adverse ventricular remodeling by aggravating inflammation/fibrosis. Furthermore, accumulating clinical evidence has shown that high TNC levels predict adverse ventricular remodeling and a poor prognosis in patients with various heart diseases. Since the importance of inflammation has attracted attention in the pathophysiology of heart diseases, this review will focus on the roles of TNC in various types of inflammatory reactions, such as myocardial infarction, hypertensive fibrosis, myocarditis caused by viral infection or autoimmunity, and dilated cardiomyopathy. The utility of TNC as a biomarker for the stratification of myocardial disease conditions and the selection of appropriate therapies will also be discussed from a clinical viewpoint.
Collapse
Affiliation(s)
- Kyoko Imanaka-Yoshida
- Department of Pathology and Matrix Biology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan;
- Mie University Research Center for Matrix Biology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| |
Collapse
|
16
|
Yonebayashi S, Tajiri K, Hara M, Saito H, Suzuki N, Sakai S, Kimura T, Sato A, Sekimoto A, Fujita S, Okamoto R, Schwartz RJ, Yoshida T, Imanaka-Yoshida K. Generation of Transgenic Mice that Conditionally Overexpress Tenascin-C. Front Immunol 2021; 12:620541. [PMID: 33763067 PMCID: PMC7982461 DOI: 10.3389/fimmu.2021.620541] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 02/10/2021] [Indexed: 02/05/2023] Open
Abstract
Tenascin-C (TNC) is an extracellular matrix glycoprotein that is expressed during embryogenesis. It is not expressed in normal adults, but is up-regulated under pathological conditions. Although TNC knockout mice do not show a distinct phenotype, analyses of disease models using TNC knockout mice combined with in vitro experiments revealed the diverse functions of TNC. Since high TNC levels often predict a poor prognosis in various clinical settings, we developed a transgenic mouse that overexpresses TNC through Cre recombinase-mediated activation. Genomic walking showed that the transgene was integrated into and truncated the Atp8a2 gene. While homozygous transgenic mice showed a severe neurological phenotype, heterozygous mice were viable, fertile, and did not exhibit any distinct abnormalities. Breeding hemizygous mice with Nkx2.5 promoter-Cre or α-myosin heavy chain promoter Cre mice induced the heart-specific overexpression of TNC in embryos and adults. TNC-overexpressing mouse hearts did not have distinct histological or functional abnormalities. However, the expression of proinflammatory cytokines/chemokines was significantly up-regulated and mortality rates during the acute stage after myocardial infarction were significantly higher than those of the controls. Our novel transgenic mouse may be applied to investigations on the role of TNC overexpression in vivo in various tissue/organ pathologies using different Cre donors.
Collapse
Affiliation(s)
- Saori Yonebayashi
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Kazuko Tajiri
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Mari Hara
- Department of Pathology and Matrix Biology, Graduate School of Medicine, Mie University, Tsu, Japan.,Research Center for Matrix Biology, Mie University, Tsu, Japan
| | - Hiromitsu Saito
- Department of Animal Genomics, Functional Genomics Institute, Mie University Life Science Research Center, Tsu, Japan
| | - Noboru Suzuki
- Department of Animal Genomics, Functional Genomics Institute, Mie University Life Science Research Center, Tsu, Japan
| | - Satoshi Sakai
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Taizo Kimura
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Akira Sato
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Akiyo Sekimoto
- Department of Pathology and Matrix Biology, Graduate School of Medicine, Mie University, Tsu, Japan
| | - Satoshi Fujita
- Department of Cardiology, Graduate School of Medicine, Mie University, Tsu, Japan
| | - Ryuji Okamoto
- Department of Cardiology, Graduate School of Medicine, Mie University, Tsu, Japan
| | - Robert J Schwartz
- Department of Biology and Biochemistry, University of Houston, Houston, TX, United States
| | - Toshimichi Yoshida
- Department of Pathology and Matrix Biology, Graduate School of Medicine, Mie University, Tsu, Japan.,Research Center for Matrix Biology, Mie University, Tsu, Japan
| | - Kyoko Imanaka-Yoshida
- Department of Pathology and Matrix Biology, Graduate School of Medicine, Mie University, Tsu, Japan.,Research Center for Matrix Biology, Mie University, Tsu, Japan
| |
Collapse
|
17
|
Perera-Gonzalez M, Kiss A, Kaiser P, Holzweber M, Nagel F, Watzinger S, Acar E, Szabo PL, Gonçalves IF, Weber L, Pilz PM, Budinsky L, Helbich T, Podesser BK. The Role of Tenascin C in Cardiac Reverse Remodeling Following Banding-Debanding of the Ascending Aorta. Int J Mol Sci 2021; 22:ijms22042023. [PMID: 33670747 PMCID: PMC7921966 DOI: 10.3390/ijms22042023] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/08/2021] [Accepted: 02/11/2021] [Indexed: 11/16/2022] Open
Abstract
Background: Tenascin-C (TN-C) plays a maladaptive role in left ventricular (LV) hypertrophy following pressure overload. However, the role of TN-C in LV regression following mechanical unloading is unknown. Methods: LV hypertrophy was induced by transverse aortic constriction for 10 weeks followed by debanding for 2 weeks in wild type (Wt) and TN-C knockout (TN-C KO) mice. Cardiac function was assessed by serial magnetic resonance imaging. The expression of fibrotic markers and drivers (angiotensin-converting enzyme-1, ACE-1) was determined in LV tissue as well as human cardiac fibroblasts (HCFs) after TN-C treatment. Results: Chronic pressure overload resulted in a significant decline in cardiac function associated with LV dilation as well as upregulation of TN-C, collagen 1 (Col 1), and ACE-1 in Wt as compared to TN-C KO mice. Reverse remodeling in Wt mice partially improved cardiac function and fibrotic marker expression; however, TN-C protein expression remained unchanged. In HCF, TN-C strongly induced the upregulation of ACE 1 and Col 1. Conclusions: Pressure overload, when lasting long enough to induce HF, has less potential for reverse remodeling in mice. This may be due to significant upregulation of TN-C expression, which stimulates ACE 1, Col 1, and alpha-smooth muscle actin (α-SMA) upregulation in fibroblasts. Consequently, addressing TN-C in LV hypertrophy might open a new window for future therapeutics.
Collapse
Affiliation(s)
- Mireia Perera-Gonzalez
- Ludwig Boltzmann Institute for Cardiovascular Research at the Center for Biomedical Research, Medical University of Vienna, 1090 Vienna, Austria; (M.P.-G.); (A.K.); (P.K.); (M.H.); (F.N.); (S.W.); eylem-@hotmail.com (E.A.); (P.L.S.); (I.F.G.); (L.W.); (P.M.P.)
- Bioengineering and Aerospace Engineering Department, Carlos III University of Madrid, 28911 Madrid, Spain
| | - Attila Kiss
- Ludwig Boltzmann Institute for Cardiovascular Research at the Center for Biomedical Research, Medical University of Vienna, 1090 Vienna, Austria; (M.P.-G.); (A.K.); (P.K.); (M.H.); (F.N.); (S.W.); eylem-@hotmail.com (E.A.); (P.L.S.); (I.F.G.); (L.W.); (P.M.P.)
| | - Philipp Kaiser
- Ludwig Boltzmann Institute for Cardiovascular Research at the Center for Biomedical Research, Medical University of Vienna, 1090 Vienna, Austria; (M.P.-G.); (A.K.); (P.K.); (M.H.); (F.N.); (S.W.); eylem-@hotmail.com (E.A.); (P.L.S.); (I.F.G.); (L.W.); (P.M.P.)
| | - Michael Holzweber
- Ludwig Boltzmann Institute for Cardiovascular Research at the Center for Biomedical Research, Medical University of Vienna, 1090 Vienna, Austria; (M.P.-G.); (A.K.); (P.K.); (M.H.); (F.N.); (S.W.); eylem-@hotmail.com (E.A.); (P.L.S.); (I.F.G.); (L.W.); (P.M.P.)
| | - Felix Nagel
- Ludwig Boltzmann Institute for Cardiovascular Research at the Center for Biomedical Research, Medical University of Vienna, 1090 Vienna, Austria; (M.P.-G.); (A.K.); (P.K.); (M.H.); (F.N.); (S.W.); eylem-@hotmail.com (E.A.); (P.L.S.); (I.F.G.); (L.W.); (P.M.P.)
- Department of Cardiac Surgery, University Hospital St. Poelten, 3100 St. Poelten, Austria
| | - Simon Watzinger
- Ludwig Boltzmann Institute for Cardiovascular Research at the Center for Biomedical Research, Medical University of Vienna, 1090 Vienna, Austria; (M.P.-G.); (A.K.); (P.K.); (M.H.); (F.N.); (S.W.); eylem-@hotmail.com (E.A.); (P.L.S.); (I.F.G.); (L.W.); (P.M.P.)
| | - Eylem Acar
- Ludwig Boltzmann Institute for Cardiovascular Research at the Center for Biomedical Research, Medical University of Vienna, 1090 Vienna, Austria; (M.P.-G.); (A.K.); (P.K.); (M.H.); (F.N.); (S.W.); eylem-@hotmail.com (E.A.); (P.L.S.); (I.F.G.); (L.W.); (P.M.P.)
| | - Petra Lujza Szabo
- Ludwig Boltzmann Institute for Cardiovascular Research at the Center for Biomedical Research, Medical University of Vienna, 1090 Vienna, Austria; (M.P.-G.); (A.K.); (P.K.); (M.H.); (F.N.); (S.W.); eylem-@hotmail.com (E.A.); (P.L.S.); (I.F.G.); (L.W.); (P.M.P.)
| | - Inês Fonseca Gonçalves
- Ludwig Boltzmann Institute for Cardiovascular Research at the Center for Biomedical Research, Medical University of Vienna, 1090 Vienna, Austria; (M.P.-G.); (A.K.); (P.K.); (M.H.); (F.N.); (S.W.); eylem-@hotmail.com (E.A.); (P.L.S.); (I.F.G.); (L.W.); (P.M.P.)
| | - Lukas Weber
- Ludwig Boltzmann Institute for Cardiovascular Research at the Center for Biomedical Research, Medical University of Vienna, 1090 Vienna, Austria; (M.P.-G.); (A.K.); (P.K.); (M.H.); (F.N.); (S.W.); eylem-@hotmail.com (E.A.); (P.L.S.); (I.F.G.); (L.W.); (P.M.P.)
| | - Patrick Michael Pilz
- Ludwig Boltzmann Institute for Cardiovascular Research at the Center for Biomedical Research, Medical University of Vienna, 1090 Vienna, Austria; (M.P.-G.); (A.K.); (P.K.); (M.H.); (F.N.); (S.W.); eylem-@hotmail.com (E.A.); (P.L.S.); (I.F.G.); (L.W.); (P.M.P.)
| | - Lubos Budinsky
- Preclinical Imaging Lab at the Center of Biomedical Research, Department of Radiology, Medical University of Vienna, 1090 Vienna, Austria; (L.B.); (T.H.)
| | - Thomas Helbich
- Preclinical Imaging Lab at the Center of Biomedical Research, Department of Radiology, Medical University of Vienna, 1090 Vienna, Austria; (L.B.); (T.H.)
| | - Bruno Karl Podesser
- Ludwig Boltzmann Institute for Cardiovascular Research at the Center for Biomedical Research, Medical University of Vienna, 1090 Vienna, Austria; (M.P.-G.); (A.K.); (P.K.); (M.H.); (F.N.); (S.W.); eylem-@hotmail.com (E.A.); (P.L.S.); (I.F.G.); (L.W.); (P.M.P.)
- Department of Cardiac Surgery, University Hospital St. Poelten, 3100 St. Poelten, Austria
- Correspondence: ; Tel.: +43-1-40400-52210
| |
Collapse
|
18
|
Imanaka-Yoshida K, Tawara I, Yoshida T. Tenascin-C in cardiac disease: a sophisticated controller of inflammation, repair, and fibrosis. Am J Physiol Cell Physiol 2020; 319:C781-C796. [PMID: 32845719 DOI: 10.1152/ajpcell.00353.2020] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Tenascin-C (TNC) is a large extracellular matrix glycoprotein classified as a matricellular protein that is generally upregulated at high levels during physiological and pathological tissue remodeling and is involved in important biological signaling pathways. In the heart, TNC is transiently expressed at several important steps during embryonic development and is sparsely detected in normal adult heart but is re-expressed in a spatiotemporally restricted manner under pathological conditions associated with inflammation, such as myocardial infarction, hypertensive cardiac fibrosis, myocarditis, dilated cardiomyopathy, and Kawasaki disease. Despite its characteristic and spatiotemporally restricted expression, TNC knockout mice develop a grossly normal phenotype. However, various disease models using TNC null mice combined with in vitro experiments have revealed many important functions for TNC and multiple molecular cascades that control cellular responses in inflammation, tissue repair, and even myocardial regeneration. TNC has context-dependent diverse functions and, thus, may exert both harmful and beneficial effects in damaged hearts. However, TNC appears to deteriorate adverse ventricular remodeling by proinflammatory and profibrotic effects in most cases. Its specific expression also makes TNC a feasible diagnostic biomarker and target for molecular imaging to assess inflammation in the heart. Several preclinical studies have shown the utility of TNC as a biomarker for assessing the prognosis of patients and selecting appropriate therapy, particularly for inflammatory heart diseases.
Collapse
Affiliation(s)
- Kyoko Imanaka-Yoshida
- Department of Pathology and Matrix Biology, Mie University Graduate School of Medicine, Tsu, Japan.,Mie University Research Center for Matrix Biology, Tsu, Japan
| | - Isao Tawara
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, Tsu, Japan.,Mie University Research Center for Matrix Biology, Tsu, Japan
| | - Toshimichi Yoshida
- Department of Pathology and Matrix Biology, Mie University Graduate School of Medicine, Tsu, Japan.,Mie University Research Center for Matrix Biology, Tsu, Japan
| |
Collapse
|
19
|
Santer D, Nagel F, Gonçalves IF, Kaun C, Wojta J, Fagyas M, Krššák M, Balogh Á, Papp Z, Tóth A, Bánhegyi V, Trescher K, Kiss A, Podesser BK. Tenascin-C aggravates ventricular dilatation and angiotensin-converting enzyme activity after myocardial infarction in mice. ESC Heart Fail 2020; 7:2113-2122. [PMID: 32639674 PMCID: PMC7524253 DOI: 10.1002/ehf2.12794] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/08/2020] [Accepted: 05/13/2020] [Indexed: 02/06/2023] Open
Abstract
AIMS Tenascin-C (TN-C) is suggested to be detrimental in cardiac remodelling after myocardial infarction (MI). The aim of this study is to reveal the effects of TN-C on extracellular matrix organization and its haemodynamic influence in an experimental mouse model of MI and in myocardial cell culture during hypoxic conditions. METHODS AND RESULTS Myocardial infarction was induced in TN-C knockout (TN-C KO) and wild-type mice. Six weeks later, cardiac function was studied by magnetic resonance imaging and under isolated working heart conditions. Myocardial mRNA levels and immunoreactivity of TN-C, TIMP-1, TIMP-3, and matrix metalloproteinase (MMP)-9, as well as serum and tissue activities of angiotensin-converting enzyme (ACE), were determined at 1 and 6 weeks after infarction. Cardiac output and external heart work were higher, while left ventricular wall stress and collagen expression were decreased (P < 0.05) in TN-C KO mice as compared with age-matched controls at 6 weeks after infarction. TIMP-1 expression was down-regulated at 1 and 6 weeks, and TIMP-3 expression was up-regulated at 1 week (P < 0.01) after infarction in knockout mice. MMP-9 level was lower in TN-C KO at 6 weeks after infarction (P < 0.05). TIMP-3/MMP-9 ratio was higher in knockout mice at 1 and 6 weeks after infarction (P < 0.01). ACE activity in the myocardial border zone (i.e. between scar and free wall) was significantly lower in knockout than in wild-type mice 1 week after MI (P < 0.05). CONCLUSIONS Tenascin-C expression is induced by hypoxia in association with ACE activity and MMP-2 and MMP-9 elevations, thereby promoting left ventricular dilatation after MI.
Collapse
Affiliation(s)
- David Santer
- Ludwig Boltzmann Institute for Cardiovascular Research, Medical University of Vienna, Waehringer Guertel 18-20, 1Q, Vienna, 1090, Austria.,Center for Biomedical Research, Medical University of Vienna, Vienna, Austria.,Department of Cardiac Surgery, University Hospital of Basel, Basel, Switzerland
| | - Felix Nagel
- Ludwig Boltzmann Institute for Cardiovascular Research, Medical University of Vienna, Waehringer Guertel 18-20, 1Q, Vienna, 1090, Austria.,Center for Biomedical Research, Medical University of Vienna, Vienna, Austria.,Department of Cardiac Surgery, Karl Landsteiner Private University for Health Sciences, St. Pölten, Austria
| | - Inês Fonseca Gonçalves
- Ludwig Boltzmann Institute for Cardiovascular Research, Medical University of Vienna, Waehringer Guertel 18-20, 1Q, Vienna, 1090, Austria.,Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Christoph Kaun
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Johann Wojta
- Ludwig Boltzmann Institute for Cardiovascular Research, Medical University of Vienna, Waehringer Guertel 18-20, 1Q, Vienna, 1090, Austria.,Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Miklós Fagyas
- Division of Clinical Physiology, Department of Cardiology, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Martin Krššák
- Department of Internal Medicine III, Division of Endocrinology and Metabolism, Medical University of Vienna, Vienna, Austria
| | - Ágnes Balogh
- Division of Clinical Physiology, Department of Cardiology, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zoltán Papp
- Division of Clinical Physiology, Department of Cardiology, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Attila Tóth
- Division of Clinical Physiology, Department of Cardiology, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Viktor Bánhegyi
- Division of Clinical Physiology, Department of Cardiology, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Karola Trescher
- Ludwig Boltzmann Institute for Cardiovascular Research, Medical University of Vienna, Waehringer Guertel 18-20, 1Q, Vienna, 1090, Austria.,Center for Biomedical Research, Medical University of Vienna, Vienna, Austria.,Department of Cardiac Surgery, Karl Landsteiner Private University for Health Sciences, St. Pölten, Austria
| | - Attila Kiss
- Ludwig Boltzmann Institute for Cardiovascular Research, Medical University of Vienna, Waehringer Guertel 18-20, 1Q, Vienna, 1090, Austria.,Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Bruno K Podesser
- Ludwig Boltzmann Institute for Cardiovascular Research, Medical University of Vienna, Waehringer Guertel 18-20, 1Q, Vienna, 1090, Austria.,Center for Biomedical Research, Medical University of Vienna, Vienna, Austria.,Department of Cardiac Surgery, Karl Landsteiner Private University for Health Sciences, St. Pölten, Austria
| |
Collapse
|
20
|
Anti-CD3 Antibody Treatment Reduces Scar Formation in a Rat Model of Myocardial Infarction. Cells 2020; 9:cells9020295. [PMID: 31991811 PMCID: PMC7072364 DOI: 10.3390/cells9020295] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/18/2020] [Accepted: 01/21/2020] [Indexed: 02/07/2023] Open
Abstract
Introduction: Antibody treatment with anti-thymocyte globulin (ATG) has been shown to be cardioprotective. We aimed to evaluate which single anti-T-cell epitope antibody alters chemokine expression at a level similar to ATG and identified CD3, which is a T-cell co-receptor mediating T-cell activation. Based on these results, the effects of anti-CD3 antibody treatment on angiogenesis and cardioprotection were tested in vitro and in vivo. Methods: Concentrations of IL-8 and MCP-1 in supernatants of human peripheral blood mononuclear cell (PBMC) cultures following distinct antibody treatments were evaluated by Enzyme-linked Immunosorbent Assay (ELISA). In vivo, anti-CD3 antibodies or vehicle were injected intravenously in rats subjected to acute myocardial infarction (AMI). Chemotaxis and angiogenesis were evaluated using tube and migration assays. Intracellular pathways were assessed using Western blot. Extracellular vesicles (EVs) were quantitatively evaluated using fluorescence-activated cell scanning, exoELISA, and nanoparticle tracking analysis. Also, microRNA profiles were determined by next-generation sequencing. Results: Only PBMC stimulation with anti-CD3 antibody led to IL-8 and MCP-1 changes in secretion, similar to ATG. In a rat model of AMI, systemic treatment with an anti-CD3 antibody markedly reduced infarct scar size (27.8% (Inter-quartile range; IQR 16.2–34.9) vs. 12.6% (IQR 8.3–27.2); p < 0.01). The secretomes of anti-CD3 treated PBMC neither induced cardioprotective pathways in cardiomyocytes nor pro-angiogenic mechanisms in human umbilical vein endothelial cell (HUVECs) in vitro. While EVs quantities remained unchanged, PBMC incubation with an anti-CD3 antibody led to alterations in EVs miRNA expression. Conclusion: Treatment with an anti-CD3 antibody led to decreased scar size in a rat model of AMI. Whereas cardioprotective and pro-angiogenetic pathways were unaltered by anti-CD3 treatment, qualitative changes in the EVs miRNA expression could be observed, which might be causal for the observed cardioprotective phenotype. We provide evidence that EVs are a potential cardioprotective treatment target. Our findings will also provide the basis for a more detailed analysis of putatively relevant miRNA candidates.
Collapse
|