1
|
Kuneš J, Zicha J. Research on Experimental Hypertension in Prague (1966-2009). Physiol Res 2024; 73:S49-S66. [PMID: 39016152 PMCID: PMC11412355 DOI: 10.33549/physiolres.935425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 06/14/2024] [Indexed: 09/04/2024] Open
Abstract
The study of ontogenetic aspects of water and electrolyte metabolism performed in the Institute of Physiology (Czechoslovak Academy of Sciences) led to the research on the increased susceptibility of immature rats to salt-dependent forms of hypertension since 1966. Hemodynamic studies in developing rats paved the way to the evaluation of hemodynamic mechanisms during the development of genetic hypertension in SHR. A particular attention was focused on altered renal function and kidney damage in both salt and genetic hypertension with a special respect to renin-angiotensin system. Renal damage associated with hypertension progression was in the center of interest of several research groups in Prague. The alterations in ion transport, cell calcium handling and membrane structure as well as their relationship to abnormal lipid metabolism were studied in a close cooperation with laboratories in Munich, Glasgow, Montreal and Paris. The role of NO and oxidative stress in various forms of hypertension was a subject of a joint research with our Slovak colleagues focused mainly on NO-deficient hypertension elicited by chronic L-NAME administration. Finally, we adopted a method enabling us to evaluate the balance of vasoconstrictor and vasodilator mechanisms in BP maintenance. Using this method we demonstrated sympathetic hyperactivity and relative NO deficiency in rats with either salt-dependent or genetic hypertension. At the end of the first decennium of this century we were ready to modify our traditional approach towards modern trends in the research of experimental hypertension. Keywords: Salt-dependent hypertension o Genetic hypertension o Body fluids o Hemodynamics o Ion transport o Cell membrane structure and function o Renal function o Renin-angiotensin systems.
Collapse
Affiliation(s)
- J Kuneš
- Laboratory of Experimental Hypertension, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic.
| | | |
Collapse
|
2
|
Karimi F, Nematbakhsh M. Renal vascular responses to angiotensin II infusion in two kidneys-one clip hypertensive rats under partial ischemia/reperfusion with and without ischemia preconditioning: the roles of AT1R blockade and co-blockades of AT1R and MasR. Res Pharm Sci 2023; 18:392-403. [PMID: 37614612 PMCID: PMC10443668 DOI: 10.4103/1735-5362.378086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/14/2023] [Accepted: 05/22/2023] [Indexed: 08/25/2023] Open
Abstract
Background and purpose The renin-angiotensin system activation, partial ischemia/reperfusion (IR) injury, and hypertension contribute to the development of acute kidney injury. The study aims to look at the vascular responses of angiotensin II (Ang II) during Ang II type 1 receptor (AT1R) blockade (losartan) or co-blockades of AT1R and Mas receptor (A779) in two kidneys one clip (2K1C) hypertensive rats which subjected to partial IR injury with and without ischemia preconditioning (IPC). Experimental approach Thirty-three 2K1C male Wistar rats with systolic blood pressure ≥ 150 mmHg were divided into three groups of sham, IR, and IPC + IR divided into two sub-groups receiving losartan or losartan + A779. The IR group had 45 min partial kidney ischemia, while the IPC + IR group had two 5 min cycles of partial ischemia followed by 10 min of reperfusion and then 45 min of partial kidney ischemia followed by reperfusion. The sham group was subjected to similar surgical procedures except for IR or IPC. Findings/Results Ang II increased mean arterial pressure in all the groups, but there were no significant differences between the sub-groups. A significant difference was observed in the renal blood flow response to Ang II between two sub-groups of sham and IR groups treated with AT1R blockade alone or co-blockades of AT1R + A779. Conclusion and implications These findings demonstrated the significance of AT1R and Mas receptor following partial renal IR in the renal blood flow responses to Ang II in 2K1C hypertensive rats.
Collapse
Affiliation(s)
- Farzaneh Karimi
- Department of Physiology, Behbahan Faculty of Medical Sciences, Behbahan, Iran
| | - Mehdi Nematbakhsh
- Water & Electrolytes Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
3
|
Li XC, Hassan R, Leite APO, Katsurada A, Dugas C, Sato R, Zhuo JL. Genetic Deletion of AT 1a Receptor or Na +/H + Exchanger 3 Selectively in the Proximal Tubules of the Kidney Attenuates Two-Kidney, One-Clip Goldblatt Hypertension in Mice. Int J Mol Sci 2022; 23:ijms232415798. [PMID: 36555438 PMCID: PMC9779213 DOI: 10.3390/ijms232415798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/30/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
The roles of angiotensin II (Ang II) AT1 (AT1a) receptors and its downstream target Na+/H+ exchanger 3 (NHE3) in the proximal tubules in the development of two-kidney, 1-clip (2K1C) Goldblatt hypertension have not been investigated previously. The present study tested the hypothesis that deletion of the AT1a receptor or NHE3 selectively in the proximal tubules of the kidney attenuates the development of 2K1C hypertension using novel mouse models with proximal tubule-specific deletion of AT1a receptors or NHE3. 2K1C Goldblatt hypertension was induced by placing a silver clip (0.12 mm) on the left renal artery for 4 weeks in adult male wild-type (WT), global Agtr1a−/−, proximal tubule (PT)-specific PT-Agtr1a−/− or PT-Nhe3−/− mice, respectively. As expected, telemetry blood pressure increased in a time-dependent manner in WT mice, reaching a maximal response by Week 3 (p < 0.01). 2K1C hypertension in WT mice was associated with increases in renin expression in the clipped kidney and decreases in the nonclipped kidney (p < 0.05). Plasma and kidney Ang II were significantly increased in WT mice with 2K1C hypertension (p < 0.05). Tubulointerstitial fibrotic responses were significantly increased in the clipped kidney (p < 0.01). Whole-body deletion of AT1a receptors completely blocked the development of 2K1C hypertension in Agtr1a−/− mice (p < 0.01 vs. WT). Likewise, proximal tubule-specific deletion of Agtr1a in PT-Agtr1a−/− mice or NHE3 in PT-Nhe3−/− mice also blocked the development of 2K1C hypertension (p < 0.01 vs. WT). Taken together, the present study provides new evidence for a critical role of proximal tubule Ang II/AT1 (AT1a)/NHE3 axis in the development of 2K1C Goldblatt hypertension.
Collapse
Affiliation(s)
- Xiao Chun Li
- Tulane Hypertension and Renal Center of Excellence, 1430 Tulane Avenue, New Orleans, LA 70112, USA
- Department of Physiology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| | - Rumana Hassan
- Tulane Hypertension and Renal Center of Excellence, 1430 Tulane Avenue, New Orleans, LA 70112, USA
- Department of Physiology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| | - Ana Paula O. Leite
- Tulane Hypertension and Renal Center of Excellence, 1430 Tulane Avenue, New Orleans, LA 70112, USA
- Department of Physiology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| | - Akemi Katsurada
- Tulane Hypertension and Renal Center of Excellence, 1430 Tulane Avenue, New Orleans, LA 70112, USA
- Department of Physiology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| | - Courtney Dugas
- Tulane Hypertension and Renal Center of Excellence, 1430 Tulane Avenue, New Orleans, LA 70112, USA
- Department of Physiology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| | - Ryosuke Sato
- Tulane Hypertension and Renal Center of Excellence, 1430 Tulane Avenue, New Orleans, LA 70112, USA
- Department of Physiology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| | - Jia Long Zhuo
- Tulane Hypertension and Renal Center of Excellence, 1430 Tulane Avenue, New Orleans, LA 70112, USA
- Department of Physiology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA
- Correspondence: ; Tel.: +1-504-988-4363; Fax: +1-504-988-2675
| |
Collapse
|
4
|
Hu XQ, Zhang L. Oxidative Regulation of Vascular Ca v1.2 Channels Triggers Vascular Dysfunction in Hypertension-Related Disorders. Antioxidants (Basel) 2022; 11:antiox11122432. [PMID: 36552639 PMCID: PMC9774363 DOI: 10.3390/antiox11122432] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/28/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Blood pressure is determined by cardiac output and peripheral vascular resistance. The L-type voltage-gated Ca2+ (Cav1.2) channel in small arteries and arterioles plays an essential role in regulating Ca2+ influx, vascular resistance, and blood pressure. Hypertension and preeclampsia are characterized by high blood pressure. In addition, diabetes has a high prevalence of hypertension. The etiology of these disorders remains elusive, involving the complex interplay of environmental and genetic factors. Common to these disorders are oxidative stress and vascular dysfunction. Reactive oxygen species (ROS) derived from NADPH oxidases (NOXs) and mitochondria are primary sources of vascular oxidative stress, whereas dysfunction of the Cav1.2 channel confers increased vascular resistance in hypertension. This review will discuss the importance of ROS derived from NOXs and mitochondria in regulating vascular Cav1.2 and potential roles of ROS-mediated Cav1.2 dysfunction in aberrant vascular function in hypertension, diabetes, and preeclampsia.
Collapse
|
5
|
Steckelings UM, Widdop RE, Sturrock ED, Lubbe L, Hussain T, Kaschina E, Unger T, Hallberg A, Carey RM, Sumners C. The Angiotensin AT 2 Receptor: From a Binding Site to a Novel Therapeutic Target. Pharmacol Rev 2022; 74:1051-1135. [PMID: 36180112 PMCID: PMC9553111 DOI: 10.1124/pharmrev.120.000281] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 05/19/2022] [Accepted: 06/27/2022] [Indexed: 11/22/2022] Open
Abstract
Discovered more than 30 years ago, the angiotensin AT2 receptor (AT2R) has evolved from a binding site with unknown function to a firmly established major effector within the protective arm of the renin-angiotensin system (RAS) and a target for new drugs in development. The AT2R represents an endogenous protective mechanism that can be manipulated in the majority of preclinical models to alleviate lung, renal, cardiovascular, metabolic, cutaneous, and neural diseases as well as cancer. This article is a comprehensive review summarizing our current knowledge of the AT2R, from its discovery to its position within the RAS and its overall functions. This is followed by an in-depth look at the characteristics of the AT2R, including its structure, intracellular signaling, homo- and heterodimerization, and expression. AT2R-selective ligands, from endogenous peptides to synthetic peptides and nonpeptide molecules that are used as research tools, are discussed. Finally, we summarize the known physiological roles of the AT2R and its abundant protective effects in multiple experimental disease models and expound on AT2R ligands that are undergoing development for clinical use. The present review highlights the controversial aspects and gaps in our knowledge of this receptor and illuminates future perspectives for AT2R research. SIGNIFICANCE STATEMENT: The angiotensin AT2 receptor (AT2R) is now regarded as a fully functional and important component of the renin-angiotensin system, with the potential of exerting protective actions in a variety of diseases. This review provides an in-depth view of the AT2R, which has progressed from being an enigma to becoming a therapeutic target.
Collapse
Affiliation(s)
- U Muscha Steckelings
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Robert E Widdop
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Edward D Sturrock
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Lizelle Lubbe
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Tahir Hussain
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Elena Kaschina
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Thomas Unger
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Anders Hallberg
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Robert M Carey
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Colin Sumners
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| |
Collapse
|
6
|
Interactions between the intrarenal dopaminergic and the renin-angiotensin systems in the control of systemic arterial pressure. Clin Sci (Lond) 2022; 136:1205-1227. [PMID: 35979889 DOI: 10.1042/cs20220338] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/31/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022]
Abstract
Systemic arterial hypertension is one of the leading causes of morbidity and mortality in the general population, being a risk factor for many cardiovascular diseases. Although its pathogenesis is complex and still poorly understood, some systems appear to play major roles in its development. This review aims to update the current knowledge on the interaction of the intrarenal renin-angiotensin system (RAS) and dopaminergic system in the development of hypertension, focusing on recent scientific hallmarks in the field. The intrarenal RAS, composed of several peptides and receptors, has a critical role in the regulation of blood pressure (BP) and, consequently, the development of hypertension. The RAS is divided into two main intercommunicating axes: the classical axis, composed of angiotensin-converting enzyme, angiotensin II, and angiotensin type 1 receptor, and the ACE2/angiotensin-(1-7)/Mas axis, which appears to modulate the effects of the classical axis. Dopamine and its receptors are also increasingly showing an important role in the pathogenesis of hypertension, as abnormalities in the intrarenal dopaminergic system impair the regulation of renal sodium transport, regardless of the affected dopamine receptor subtype. There are five dopamine receptors, which are divided into two major subtypes: the D1-like (D1R and D5R) and D2-like (D2R, D3R, and D4R) receptors. Mice deficient in any of the five dopamine receptor subtypes have increased BP. Intrarenal RAS and the dopaminergic system have complex interactions. The balance between both systems is essential to regulate the BP homeostasis, as alterations in the control of both can lead to hypertension.
Collapse
|
7
|
Lara LS, Gonzalez AA, Hennrikus MT, Prieto MC. Hormone-Dependent Regulation of Renin and Effects on Prorenin Receptor Signaling in the Collecting Duct. Curr Hypertens Rev 2022; 18:91-100. [PMID: 35170417 PMCID: PMC10132771 DOI: 10.2174/1573402118666220216105357] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 10/22/2021] [Accepted: 12/13/2021] [Indexed: 01/27/2023]
Abstract
The production of renin by the principal cells of the collecting duct has widened our understanding of the regulation of intrarenal angiotensin II (Ang II) generation and blood pressure. In the collecting duct, Ang II increases the synthesis and secretion of renin by mechanisms involving the activation of Ang II type 1 receptor (AT1R) via stimulation of the PKCα, Ca2+, and cAMP/PKA/CREB pathways. Additionally, paracrine mediators, including vasopressin (AVP), prostaglandins, bradykinin (BK), and atrial natriuretic peptide (ANP), regulate renin in principal cells. During Ang II-dependent hypertension, despite plasma renin activity suppression, renin and prorenin receptor (RPR) are upregulated in the collecting duct and promote de novo formation of intratubular Ang II. Furthermore, activation of PRR by its natural agonists, prorenin and renin, may contribute to the stimulation of profibrotic factors independent of Ang II. Thus, the interactions of RAS components with paracrine hormones within the collecting duct enable tubular compartmentalization of the RAS to orchestrate complex mechanisms that increase intrarenal Ang II, Na+ reabsorption, and blood pressure.
Collapse
Affiliation(s)
- Lucienne S Lara
- Instituto de Ciencias Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alexis A Gonzalez
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Matthew T Hennrikus
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Minolfa C Prieto
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA, USA.,Tulane Renal and Hypertension Center of Excellence, Tulane University School of Medicine, New Orleans, LA, USA
| |
Collapse
|
8
|
Meireles GS, Aires R, Côco LZ, Kampke EH, Barroso ME, Vasquez EC, Pereira TM, Meyrelles SS, Campagnaro BP. DNA damage and repair on hematopoietic stem cells: impact of oxidative stress in renovascular hypertension. Clin Exp Hypertens 2022; 44:627-633. [PMID: 35844144 DOI: 10.1080/10641963.2022.2101658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
BACKGROUND This study investigated oxidative damage to bone marrow cells in the pathogenesis of renovascular hypertension (RH). METHODS Male C57BL/6 J mice (10-week-old and ~23 g) were divided into two groups: Sham-operated and 2K1C, which has a stainless-steel clip placed around the left renal artery. After twenty-eight days, the animals were anesthetized for hemodynamic measurements and bone marrow cells isolation. The intracellular production of ROS, DNA damage, and DNA repair kinetics were evaluated. RESULTS Our results show that RH increases HSCs ROS production and that the 2K1C group showed a significant reduction of HSCs in the G0/G1 phase, increased p53 expression, DNA fragmentation, low DNA repair capacity, and a higher percentage of apoptotic cells when compared with the Sham group. CONCLUSIONS Our data imply that RH can compromise the hematopoiesis by increased oxidative stress leading to impaired DNA repair activity. Furthermore, this study provides new insights into the influence of hypertension on bone marrow homeostasis. This study showed for the first time that RH leads to oxidative damage, including genotoxic, to bone marrow cells. Thus, these findings provide new insights into the consequences of RH on bone marrow cells.
Collapse
Affiliation(s)
- Giselle S Meireles
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha, Brazil
| | - Rafaela Aires
- Laboratory of Translational Physiology, Health Sciences Center, Federal University of Espirito Santo (UFES), Vitoria, Brazil
| | - Larissa Z Côco
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha, Brazil
| | - Edgar H Kampke
- Laboratory of Translational Physiology, Health Sciences Center, Federal University of Espirito Santo (UFES), Vitoria, Brazil
| | - Maria Es Barroso
- Laboratory of Translational Physiology, Health Sciences Center, Federal University of Espirito Santo (UFES), Vitoria, Brazil
| | - Elisardo C Vasquez
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha, Brazil
| | - Thiago Mc Pereira
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha, Brazil.,Federal Institute of Education, Science and Technology (IFES), Vila Velha, Brazil
| | - Silvana S Meyrelles
- Laboratory of Translational Physiology, Health Sciences Center, Federal University of Espirito Santo (UFES), Vitoria, Brazil
| | - Bianca P Campagnaro
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha, Brazil
| |
Collapse
|
9
|
Effects of Renal Denervation on the Enhanced Renal Vascular Responsiveness to Angiotensin II in High-Output Heart Failure: Angiotensin II Receptor Binding Assessment and Functional Studies in Ren-2 Transgenic Hypertensive Rats. Biomedicines 2021; 9:biomedicines9121803. [PMID: 34944619 PMCID: PMC8698780 DOI: 10.3390/biomedicines9121803] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/16/2021] [Accepted: 11/27/2021] [Indexed: 02/01/2023] Open
Abstract
Detailed mechanism(s) of the beneficial effects of renal denervation (RDN) on the course of heart failure (HF) remain unclear. The study aimed to evaluate renal vascular responsiveness to angiotensin II (ANG II) and to characterize ANG II type 1 (AT1) and type 2 (AT2) receptors in the kidney of Ren-2 transgenic rats (TGR), a model of ANG II-dependent hypertension. HF was induced by volume overload using aorto-caval fistula (ACF). The studies were performed two weeks after RDN (three weeks after the creation of ACF), i.e., when non-denervated ACF TGR enter the decompensation phase of HF whereas those after RDN are still in the compensation phase. We found that ACF TGR showed lower renal blood flow (RBF) and its exaggerated response to intrarenal ANG II (8 ng); RDN further augmented this responsiveness. We found that all ANG II receptors in the kidney cortex were of the AT1 subtype. ANG II receptor binding characteristics in the renal cortex did not significantly differ between experimental groups, hence AT1 alterations are not responsible for renal vascular hyperresponsiveness to ANG II in ACF TGR, denervated or not. In conclusion, maintained renal AT1 receptor binding combined with elevated ANG II levels and renal vascular hyperresponsiveness to ANG II in ACF TGR influence renal hemodynamics and tubular reabsorption and lead to renal dysfunction in the high-output HF model. Since RDN did not attenuate the RBF decrease and enhanced renal vascular responsiveness to ANG II, the beneficial actions of RDN on HF-related mortality are probably not dominantly mediated by renal mechanism(s).
Collapse
|
10
|
Alawi LF, Dhakal S, Emberesh SE, Sawant H, Hosawi A, Thanekar U, Grobe N, Elased KM. Effects of Angiotensin II Type 1A Receptor on ACE2, Neprilysin and KIM-1 in Two Kidney One Clip (2K1C) Model of Renovascular Hypertension. Front Pharmacol 2021; 11:602985. [PMID: 33708117 PMCID: PMC7941277 DOI: 10.3389/fphar.2020.602985] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/29/2020] [Indexed: 12/11/2022] Open
Abstract
Activation of the renin angiotensin system plays a pivotal role in the regulation of blood pressure, which is mainly attributed to the formation of angiotensin-II (Ang II). The actions of Ang II are mediated through binding to the Ang-II type 1 receptor (AT1R) which leads to increased blood pressure, fluid retention, and aldosterone secretion. In addition, Ang II is also involved in cell injury, vascular remodeling, and inflammation. The actions of Ang II could be antagonized by its conversion to the vasodilator peptide Ang (1-7), partly generated by the action of angiotensin converting enzyme 2 (ACE2) and/or neprilysin (NEP). Previous studies demonstrated increased urinary ACE2 shedding in the db/db mouse model of diabetic kidney disease. The aim of the study was to investigate whether renal and urinary ACE2 and NEP are altered in the 2K1C Goldblatt hypertensive mice. Since AT1R is highly expressed in the kidney, we also researched the effect of global deletion of AT1R on renal and urinary ACE2, NEP, and kidney injury marker (KIM-1). Hypertension and albuminuria were induced in AT1R knock out (AT1RKO) and WT mice by unilateral constriction of the renal artery of one kidney. The 24 h mean arterial blood pressure (MAP) was measured using radio-telemetry. Two weeks after 2K1C surgery, MAP and albuminuria were significantly increased in WT mice compared to AT1RKO mice. Results demonstrated a correlation between MAP and albuminuria. Unlike db/db diabetic mice, ACE2 and NEP expression and activities were significantly decreased in the clipped kidney of WT and AT1RKO compared with the contralateral kidney and sham control (p < 0.05). There was no detectable urinary ACE2 and NEP expression and activity in 2K1C mice. KIM-1 was significantly increased in the clipped kidney of WT and AT1KO (p < 0.05). Deletion of AT1R has no effect on the increased urinary KIM-1 excretion detected in 2K1C mice. In conclusion, renal injury in 2K1C Goldblatt mouse model is associated with loss of renal ACE2 and NEP expression and activity. Urinary KIM-1 could serve as an early indicator of acute kidney injury. Deletion of AT1R attenuates albuminuria and hypertension without affecting renal ACE2, NEP, and KIM-1 expression.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Khalid M. Elased
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| |
Collapse
|
11
|
Chen XJ, Kim SR, Jiang K, Ferguson CM, Tang H, Zhu XY, Lerman A, Eirin A, Lerman LO. Renovascular Disease Induces Senescence in Renal Scattered Tubular-Like Cells and Impairs Their Reparative Potency. Hypertension 2021; 77:507-518. [PMID: 33390051 DOI: 10.1161/hypertensionaha.120.16218] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Scattered tubular-like cells (STCs), dedifferentiated renal tubular epithelial cells, contribute to renal self-healing, but severe injury might blunt their effectiveness. We hypothesized that ischemic renovascular disease (RVD) induces senescence in STC and impairs their reparative potency. CD24+/CD133+ STCs were isolated from swine kidneys after 16 weeks of RVD or healthy controls. To test their reparative capabilities in injured kidneys, control or RVD-STC (5×105) were prelabeled and injected into the aorta of 2 kidneys, 1-clip (2k,1c) mice 2 weeks after surgery. Murine renal function and oxygenation were studied in vivo 2 weeks after injection using micro-magnetic resonance imaging, and fibrosis, tubulointerstitial injury, capillary density, and expression of profibrotic and inflammatory genes ex vivo. STC isolated from swine RVD kidneys showed increased gene expression of senescence and senescence-associated secretory phenotype markers and positive SA-β-gal staining. Delivery of normal pig STCs in 2k,1c mice improved murine renal perfusion, blood flow, and glomerular filtration rate, and downregulated profibrotic and inflammatory gene expression. These renoprotective effects were blunted using STC harvested from RVD kidneys, which also failed to attenuate hypoxia, fibrosis, tubular injury, and capillary loss in injured mouse 2k,1c kidneys. Hence, RVD may induce senescence in endogenous STC and impair their reparative capacity. These observations implicate cellular senescence in the pathophysiology of ischemic kidney disease and support senolytic therapy to permit self-healing of senescent kidneys.
Collapse
Affiliation(s)
- Xiao-Jun Chen
- From the Division of Nephrology and Hypertension (X.-J.C., S.R.K., K.J., C.M.F., H.T., X.-Y.Z., A.E., L.O.L.), Mayo Clinic, Rochester, MN.,Department of Nephrology, The Second Xiangya Hospital of Central-South University, Changsha, Hunan, China (X.-J.C.)
| | - Seo Rin Kim
- From the Division of Nephrology and Hypertension (X.-J.C., S.R.K., K.J., C.M.F., H.T., X.-Y.Z., A.E., L.O.L.), Mayo Clinic, Rochester, MN.,Division of Nephrology, Pusan National University Yangsan Hospital, Korea (S.R.K.)
| | - Kai Jiang
- From the Division of Nephrology and Hypertension (X.-J.C., S.R.K., K.J., C.M.F., H.T., X.-Y.Z., A.E., L.O.L.), Mayo Clinic, Rochester, MN
| | - Christopher M Ferguson
- From the Division of Nephrology and Hypertension (X.-J.C., S.R.K., K.J., C.M.F., H.T., X.-Y.Z., A.E., L.O.L.), Mayo Clinic, Rochester, MN
| | - Hui Tang
- From the Division of Nephrology and Hypertension (X.-J.C., S.R.K., K.J., C.M.F., H.T., X.-Y.Z., A.E., L.O.L.), Mayo Clinic, Rochester, MN
| | - Xiang-Yang Zhu
- From the Division of Nephrology and Hypertension (X.-J.C., S.R.K., K.J., C.M.F., H.T., X.-Y.Z., A.E., L.O.L.), Mayo Clinic, Rochester, MN
| | - Amir Lerman
- Department of Cardiovascular Diseases (A.L.), Mayo Clinic, Rochester, MN
| | - Alfonso Eirin
- From the Division of Nephrology and Hypertension (X.-J.C., S.R.K., K.J., C.M.F., H.T., X.-Y.Z., A.E., L.O.L.), Mayo Clinic, Rochester, MN
| | - Lilach O Lerman
- From the Division of Nephrology and Hypertension (X.-J.C., S.R.K., K.J., C.M.F., H.T., X.-Y.Z., A.E., L.O.L.), Mayo Clinic, Rochester, MN
| |
Collapse
|
12
|
Drábková N, Hojná S, Zicha J, Vaněčková I. Contribution of selected vasoactive systems to blood pressure regulation in two models of chronic kidney disease. Physiol Res 2020; 69:405-414. [PMID: 32469227 DOI: 10.33549/physiolres.934392] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
It is generally accepted that angiotensin II plays an important role in high blood pressure (BP) development in both 2-kidney-1-clip (2K1C) Goldblatt hypertension and in partial nephrectomy (NX) model of chronic kidney disease (CKD). The contribution of sympathetic nervous system and nitric oxide to BP control in these models is less clear. Partial nephrectomy or stenosis of the renal artery was performed in adult (10-week-old) male hypertensive heterozygous Ren-2 transgenic rats (TGR) and normotensive control Hannover Sprague Dawley (HanSD) rats and in Wistar rats. One and four weeks after the surgery, basal blood pressure (BP) and acute BP responses to the consecutive blockade of renin-angiotensin (RAS), sympathetic nervous (SNS), and nitric oxide (NO) systems were determined in conscious rats. Both surgical procedures increased plasma urea, a marker of renal damage; the effect being more pronounced following partial nephrectomy in hypertensive TGR than in normotensive HanSD rats with a substantially smaller effect in Wistar rats after renal artery stenosis. We demonstrated that the renin-angiotensin system does not play so fundamental role in blood pressure maintenance during hypertension development in either CKD model. By contrast, a more important role is exerted by the sympathetic nervous system, the activity of which is increased in hypertensive TGR-NX in the developmental phase of hypertension, while in HanSD-NX or Wistar-2K1C it is postponed to the established phase. The contribution of the vasoconstrictor systems (RAS and SNS) was increased following hypertension induction. The role of NO-dependent vasodilation was unchanged in 5/6 NX HanSD and in 2K1C Wistar rats, while it gradually decreased in 5/6 NX TGR rats.
Collapse
Affiliation(s)
- N Drábková
- Laboratory of Experimental Hypertension, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | | | | | | |
Collapse
|
13
|
DeLalio LJ, Hahn S, Katayama PL, Wenner MM, Farquhar WB, Straub AC, Stocker SD. Excessive dietary salt promotes aortic stiffness in murine renovascular hypertension. Am J Physiol Heart Circ Physiol 2020; 318:H1346-H1355. [PMID: 32302491 PMCID: PMC7346535 DOI: 10.1152/ajpheart.00601.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 03/18/2020] [Accepted: 04/12/2020] [Indexed: 12/22/2022]
Abstract
Renovascular hypertension is characterized by activation of the renin-angiotensin-aldosterone system, blunted natriuretic responses, and elevated sympathetic nerve activity. Excess dietary salt intake exaggerates arterial blood pressure (ABP) in multiple models of experimental hypertension. The present study tested whether a high-salt diet exaggerated ABP and vascular dysfunction in a 2-kidney, 1-clip (2K1C) murine model. Male C57BL/6J mice (8-12 wk) were randomly assigned, and fed a 0.1% or 4.0% NaCl diet, and instrumented with telemetry units to measure ABP. Then, the 2K1C model was produced by placing a cuff around the right renal artery. Systolic, diastolic, and mean ABP were significantly higher in mice fed 4.0% vs. 0.1% NaCl at 1 wk but not after 3 wk. Interestingly, 2K1C hypertension progressively increased arterial pulse pressure in both groups; however, the magnitude was significantly greater in mice fed 4.0% vs. 0.1% NaCl at 3 wk. Moreover, pulse wave velocity was significantly greater in 2K1C mice fed 4.0% vs. 0.1% NaCl diet or sham-operated mice fed either diet. Histological assessment of aortas indicated no structural differences among groups. Finally, endothelium-dependent vasodilation was significantly and selectively attenuated in the aorta but not mesenteric arteries of 2K1C mice fed 4.0% NaCl vs. 0.1% NaCl or sham-operated control mice. The findings suggest that dietary salt loading transiently exaggerates 2K1C renovascular hypertension but promotes chronic aortic stiffness and selective aortic vascular dysfunction.NEW & NOTEWORTHY High dietary salt exaggerates hypertension in multiple experimental models. Here we demonstrate that a high-salt diet produces a greater increase in arterial blood pressure at 1 wk after induction of 2-kidney, 1-clip (2K1C) hypertension but not at 3 wk. Interestingly, 2K1C mice fed a high-salt diet displayed an exaggerated pulse pressure, elevated pulse wave velocity, and reduced endothelium-dependent vasodilation of the aorta but not mesenteric arteries. These findings suggest that dietary salt may interact with underlying cardiovascular disease to promote selective vascular dysfunction and aortic stiffness.
Collapse
Affiliation(s)
- Leon J DeLalio
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Scott Hahn
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Pedro L Katayama
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Megan M Wenner
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware
| | - William B Farquhar
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware
| | - Adam C Straub
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Pittsburgh, Pennsylvania
| | - Sean D Stocker
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
14
|
Gatineau E, Cohn DM, Poglitsch M, Loria AS, Gong M, Yiannikouris F. Losartan prevents the elevation of blood pressure in adipose-PRR deficient female mice while elevated circulating sPRR activates the renin-angiotensin system. Am J Physiol Heart Circ Physiol 2019; 316:H506-H515. [PMID: 30550352 PMCID: PMC6734055 DOI: 10.1152/ajpheart.00473.2018] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 12/07/2018] [Accepted: 12/13/2018] [Indexed: 12/30/2022]
Abstract
Deletion of the prorenin receptor (PRR) in adipose tissue elevates systolic blood pressure (SBP) and the circulating soluble form of PRR (sPRR) in male mice fed a high-fat (HF) diet. However, sex differences in the contribution of adipose-PRR and sPRR to the regulation of the renin-angiotensin system (RAS) in key organs for blood pressure control are undefined. Therefore, we assessed blood pressure and the systemic and intrarenal RAS status in adipose-PRR knockout (KO) female mice. Blockade of RAS with losartan blunted SBP elevation in HF diet-fed adipose-PRR KO mice. ANG II levels were significantly increased in the renal cortex of HF diet-fed adipose-PRR KO female mice, but not systemically. HF diet-fed adipose-PRR KO mice exhibited higher vasopressin levels, water retention, and lower urine output than wild-type (WT) mice. The results also showed that deletion of adipose-PRR increased circulating sPRR and total hepatic sPRR contents, suggesting the liver as a major source of elevated plasma sPRR in adipose-PRR KO mice. To mimic the elevation of circulating sPRR and define the direct contribution of systemic sPRR to the regulation of the RAS and vasopressin, C57BL/6 female mice fed a standard diet were infused with recombinant sPRR. sPRR infusion increased plasma renin levels, renal and hepatic angiotensinogen expression, and vasopressin. Together, these results demonstrate that the deletion of adipose-PRR induced an elevation of SBP likely mediated by an intrarenal ANG II-dependent mechanism and that sPRR participates in RAS regulation and body fluid homeostasis via its capacity to activate the RAS and increase vasopressin levels. NEW & NOTEWORTHY The elevation of systolic blood pressure appears to be primarily mediated by cortical ANG II in high-fat diet-fed adipose-prorenin receptor knockout female mice. In addition, our data support a role for soluble prorenin receptor in renin-angiotensin system activation and vasopressin regulation.
Collapse
Affiliation(s)
- Eva Gatineau
- Department of Pharmacology and Nutritional Sciences, University of Kentucky , Lexington, Kentucky
| | - Dianne M Cohn
- Department of Pharmacology and Nutritional Sciences, University of Kentucky , Lexington, Kentucky
| | | | - Analia S Loria
- Department of Pharmacology and Nutritional Sciences, University of Kentucky , Lexington, Kentucky
| | - Ming Gong
- Department of Physiology, University of Kentucky , Lexington, Kentucky
| | - Frédérique Yiannikouris
- Department of Pharmacology and Nutritional Sciences, University of Kentucky , Lexington, Kentucky
| |
Collapse
|
15
|
Lumbers ER, Delforce SJ, Arthurs AL, Pringle KG. Causes and Consequences of the Dysregulated Maternal Renin-Angiotensin System in Preeclampsia. Front Endocrinol (Lausanne) 2019; 10:563. [PMID: 31551925 PMCID: PMC6746881 DOI: 10.3389/fendo.2019.00563] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 08/02/2019] [Indexed: 12/11/2022] Open
Abstract
A healthy pregnancy outcome depends on the activation of the renin-angiotensin-aldosterone system (RAAS) as a regulated, integrated response to the growing demands of the conceptus. Both the circulating RAAS and the intrarenal renin-angiotensin system (iRAS) play major roles in cardiovascular function and fluid and electrolyte homeostasis. The circulating RAAS becomes dysfunctional in preeclampsia and we propose that dysregulation of the iRAS plays a role in development of the clinical syndrome known as preeclampsia. Experimental studies in animals have shown that placental renin, when released into the maternal circulation, can cause hypertension. We postulate that abnormal placental development is associated with over-secretion of renin and other RAS proteins/angiotensin (Ang) peptides by the placenta/decidua into the maternal circulation. We hypothesise that this is because of increased shedding of exosomes and other placental particles into the maternal circulation that not only contain RAS proteins and peptides but also microRNAs (miRNAs) that target RAS mRNAs, and Ang II type 1 receptor autoantibodies (AT1R-AAs), that are agonists for, and have the same actions as, Ang II. As a result, there is both suppression of the circulating RAAS that is responsible for maintaining maternal homeostasis and activation of the iRAS. Together with altered vascular reactivity to Ang peptides, the iRAS causes hypertension, renal damage and secondary changes in the neurohumoral control of the maternal circulation and fluid and electrolyte balance, which contribute to the pathophysiology of preeclampsia.
Collapse
Affiliation(s)
- Eugenie R. Lumbers
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle upon Tyne, NSW, Australia
- Priority Research Centre for Reproductive Sciences, University of Newcastle, Newcastle upon Tyne, NSW, Australia
- Pregnancy and Reproduction Program, Hunter Medical Research Institute, Newcastle upon Tyne, NSW, Australia
- *Correspondence: Eugenie R. Lumbers
| | - Sarah J. Delforce
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle upon Tyne, NSW, Australia
- Priority Research Centre for Reproductive Sciences, University of Newcastle, Newcastle upon Tyne, NSW, Australia
- Pregnancy and Reproduction Program, Hunter Medical Research Institute, Newcastle upon Tyne, NSW, Australia
| | - Anya L. Arthurs
- Flinders Centre for Innovation in Cancer, Flinders University, Bedford Park, SA, Australia
| | - Kirsty G. Pringle
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle upon Tyne, NSW, Australia
- Priority Research Centre for Reproductive Sciences, University of Newcastle, Newcastle upon Tyne, NSW, Australia
- Pregnancy and Reproduction Program, Hunter Medical Research Institute, Newcastle upon Tyne, NSW, Australia
| |
Collapse
|
16
|
Jiang H, Wang HY, Wang JW, Lou DY, Niu N, Li GH, Qu P. NF-κB inhibitor on Toll-like receptor 4 signal-induced expression of angiotensinogen and AT1a receptor in neonatal rat left ventricular myocytes. Exp Ther Med 2018; 16:3875-3882. [PMID: 30344664 PMCID: PMC6176165 DOI: 10.3892/etm.2018.6697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 08/09/2018] [Indexed: 12/28/2022] Open
Abstract
Effects of toll-like receptor 4 (TLR4)/nuclear factor-κB (NF-κB) pathway on expression of angiotensinogen and AT1a receptor were investigated, to explore the role of TLR4/NF-κB signaling pathway in cardiovascular disease. Neonatal rat left ventricular myocytes (NRVMs) were cultured and cardiomyocytes were identified by immunocytochemical staining of sarcomeric α-actin. NRVMs were treated with lipopolysaccharide (LPS) at a dose of 10, 100 and 1,000 ng/ml, and RT-PCR was performed 24 h later to detect the expression of TLR4, angiotensinogen (ATG) and AT1a at mRNA level. NRVMs were cultured and pretreated with caffeic acid phenethylester (CAPE) for 30 min. Then NRVMs were stimulated with LPS (1,000 ng/ml) for 24 h. Nuclear translocation of NF-κB p65 was detected by immunocytochemistry. Expression of TLR4, angiotensinogen and AT1a receptor after CAPE stimulation was detected by RT-PCR. TLR4 mRNA was highly expressed in in vitro cultured NRVMs, and the expression level was significantly increased by LPS (10-1,000 ng/ml) stimulation in a dose-dependent manner (P<0.05). LPS stimulation also significantly increased the expression levels of angiotensinogen and AT1a receptor in a dose-dependent manner (P<0.05). NF-κB was activated and nuclear translocation of NF-κB p65 occurred after stimulation with LPS (1,000 ng/ml) for 24 h, while CAPE (20 µg/ml) inhibited the nuclear translocation of NF-κB p65 and inhibited LPS-induced expression of angiotensinogen and AT1a receptor. With LPS stimulation, TLR4 signaling positively regulates the expression of TLR4 and upregulates the expression of angiotensinogen and AT1a receptor in NRVMs. CAPE, an inhibitor of NF-κB, inhibited NF-κB p65 activation and inhibited the upregulation of TLR4, angiotensinogen and AT1a receptors induced by LPS. These results suggest that NF-κB plays a key regulatory role in the above-mentioned effects induced by LPS. Intervention with TLR4/NF-κB signaling may become a new target for prevention and treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Hua Jiang
- Department of Cardiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116027, P.R. China
| | - Hong-Yan Wang
- Department of Cardiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116027, P.R. China
| | - Ji-Wen Wang
- Department of Cardiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116027, P.R. China
| | - Da-Yuan Lou
- Department of Cardiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116027, P.R. China
| | - Nan Niu
- Department of Cardiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116027, P.R. China
| | - Gui-Hua Li
- Department of Cardiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116027, P.R. China
| | - Peng Qu
- Department of Cardiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116027, P.R. China
| |
Collapse
|
17
|
Fenofibrate Attenuates Hypertension in Goldblatt Hypertensive Rats: Role of 20-Hydroxyeicosatetraenoic Acid in the Nonclipped Kidney. Am J Med Sci 2017. [DOI: 10.1016/j.amjms.2017.04.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
18
|
Sporková A, Reddy RN, Falck JR, Imig JD, Kopkan L, Sadowski J, Červenka L. Interlobular Arteries From 2-Kidney, 1-Clip Goldblatt Hypertensive Rats' Exhibit-Impaired Vasodilator Response to Epoxyeicosatrienoic Acids. Am J Med Sci 2016; 351:513-9. [PMID: 27140711 PMCID: PMC5021442 DOI: 10.1016/j.amjms.2016.02.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 11/12/2015] [Indexed: 11/28/2022]
Abstract
BACKGROUND Small renal arteries have a significant role in the regulation of renal hemodynamics and blood pressure (BP). To study potential changes in the regulation of vascular function in hypertension, we examined renal vasodilatory responses of small arteries from nonclipped kidneys of the 2-kidney, 1-clip Goldblatt hypertensive rats to native epoxyeicosatrienoic acids (EETs) that are believed to be involved in the regulation of renal vascular function and BP. A total of 2 newly synthesized EET analogues were also examined. MATERIALS AND METHODS Renal interlobular arteries isolated from the nonclipped kidneys on day 28 after clipping were preconstricted with phenylephrine, pressurized and the effects of a 14,15-EET analogue, native 14,15-EET and 11,12-ether-EET-8ZE, an analogue of 11,12-EET, on the vascular diameter were determined and compared to the responses of arteries from the kidneys of sham-operated rats. RESULTS In the arteries from nonclipped kidneys isolated in the maintenance phase of Goldblatt hypertension, the maximal vasodilatory response to 14,15-EET analogue was 30.1 ± 2.8% versus 49.8 ± 7.2% in sham-operated rats; the respective values for 11,12-ther-EET-8ZE were 31.4 ± 6.4% versus 80.4 ± 6%, and for native EETs they were 41.7 ± 6.6% versus 62.8 ± 4.4% (P ≤ 0.05 for each difference). CONCLUSIONS We propose that reduced vasodilatory action and decreased intrarenal bioavailability of EETs combined with intrarenal angiotensin II levels that are inappropriately high for hypertensive rats underlie functional derangements of the nonclipped kidneys of 2-kidney, 1-clip Goldblatt hypertensive rats. These derangements could play an important role in pathophysiology of sustained BP elevation observed in this animal model of human renovascular hypertension.
Collapse
Affiliation(s)
- Alexandra Sporková
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
| | - Rami N Reddy
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas
| | - John R Falck
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas
| | - John D Imig
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Libor Kopkan
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Janusz Sadowski
- Department of Renal and Body Fluid Physiology, M. Mossakowski Medical Research Centre, Polish Academy of Science, Warsaw, Poland
| | - Luděk Červenka
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic; Department of Pathophysiology, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
19
|
Mendes-Júnior LDG, Guimarães DD, Gadelha DDA, Diniz TF, Brandão MCR, Athayde-Filho PF, Lemos VS, França-Silva MDS, Braga VA. The new nitric oxide donor cyclohexane nitrate induces vasorelaxation, hypotension, and antihypertensive effects via NO/cGMP/PKG pathway. Front Physiol 2015; 6:243. [PMID: 26379557 PMCID: PMC4553900 DOI: 10.3389/fphys.2015.00243] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 08/13/2015] [Indexed: 12/19/2022] Open
Abstract
We investigated the cardiovascular effects induced by the nitric oxide donor Cyclohexane Nitrate (HEX). Vasodilatation, NO release and the effects of acute or sub-chronic treatment with HEX on cardiovascular parameters were evaluated. HEX induced endothelium-independent vasodilatation (Maximum effect [efficacy, ME] = 100.4 ± 4.1%; potency [pD2] = 5.1 ± 0.1). Relaxation was attenuated by scavenging nitric oxide (ME = 44.9 ± 9.4% vs. 100.4 ± 4.1%) or by inhibiting the soluble guanylyl cyclase (ME = 38.5 ± 9.7% vs. 100.4 ± 4.1%). In addition, pD2 was decreased after non-selective blockade of K+ channels (pD2 = 3.6 ± 0.1 vs. 5.1 ± 0.1) or by inhibiting KATP channels (pD2 = 4.3 ± 0.1 vs. 5.1 ± 0.1). HEX increased NO levels in mesenteric arteries (33.2 ± 2.3 vs. 10.7 ± 0.2 au, p < 0.0001). Intravenous acute administration of HEX (1–20 mg/kg) induced hypotension and bradycardia in normotensive and hypertensive rats. Furthermore, starting at 6 weeks after the induction of 2K1C hypertension, oral treatment with the HEX (10 mg/Kg/day) for 7 days reduced blood pressure in hypertensive animals (134 ± 6 vs. 170 ± 4 mmHg, respectively). Our data demonstrate that HEX is a NO donor able to produce vasodilatation via NO/cGMP/PKG pathway and activation of the ATP-sensitive K+ channels. Furthermore, HEX acutely reduces blood pressure and heart rate as well as produces antihypertensive effect in renovascular hypertensive rats.
Collapse
Affiliation(s)
| | | | | | - Thiago F Diniz
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais Belo Horizonte, Brazil
| | - Maria C R Brandão
- Department of Chemistry, Federal University of Paraíba João Pessoa, Brazil
| | | | - Virginia S Lemos
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais Belo Horizonte, Brazil
| | | | - Valdir A Braga
- Biotechnology Center, Federal University of Paraíba João Pessoa, Brazil
| |
Collapse
|
20
|
Varcabova S, Huskova Z, Kramer HJ, Hwang SH, Hammock BD, Imig JD, Kitada K, Cervenka L. Antihypertensive action of soluble epoxide hydrolase inhibition in Ren-2 transgenic rats is mediated by suppression of the intrarenal renin-angiotensin system. Clin Exp Pharmacol Physiol 2015; 40:273-81. [PMID: 23039246 DOI: 10.1111/1440-1681.12018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 09/27/2012] [Accepted: 09/30/2012] [Indexed: 01/13/2023]
Abstract
The aim of the present study was to evaluate the hypothesis that the antihypertensive effects of inhibition of soluble epoxide hydrolase (sEH) are mediated by increased intrarenal availability of epoxyeicosatrienoic acids (EETs), with consequent improvement in renal haemodynamic autoregulatory efficiency and the pressure-natriuresis relationship. Ren-2 transgenic rats (TGR), a model of angiotensin (Ang) II-dependent hypertension, and normotensive transgene-negative Hannover Sprague-Dawley (HanSD) rats were treated with the sEH inhibitor cis-4-(4-(3-adamantan-1-yl-ureido)cyclohexyloxy)benzoic acid (c-AUCB; 26 mg/L) for 48 h. Then, the effects on blood pressure (BP), autoregulation of renal blood flow (RBF) and glomerular filtration rate (GFR), and on the pressure-natriuresis relationship in response to stepwise reductions in renal arterial pressure (RAP) were determined. Treatment with c-AUCB did not significantly change BP, renal autoregulation or pressure-natriuresis in normotensive HanSD rats. In contrast, c-AUCB treatment significantly reduced BP, increased intrarenal bioavailability of EETs and significantly suppressed AngII levels in TGR. However, treatment with c-AUCB did not significantly improve the autoregulatory efficiency of RBF and GFR in response to reductions of RAP and to restore the blunted pressure-natriuresis relationship in TGR. Together, the data indicate that the antihypertensive actions of sEH inhibition in TGR are predominantly mediated via significant suppression of intrarenal renin-angiotensin system activity.
Collapse
Affiliation(s)
- Sarka Varcabova
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Experimental models of hypertension and patients with inappropriately increased renin formation due to a stenotic kidney, arteriosclerotic narrowing of the renal arterioles or a rare juxtaglomerular cell tumor have shown a progressive augmentation of the intrarenal/intratubular renin-angiotensin system (RAS). The increased intrarenal angiotensin II (Ang II) elicits renal vasoconstriction and enhanced tubular sodium reabsorption in proximal and distal nephron segments. The enhanced intrarenal Ang II levels are due to both increased Ang II type 1 (AT1) receptor mediated Ang II uptake and AT1 receptor dependent stimulation of renal angiotensinogen (AGT) mRNA and augmented AGT production. The increased AGT formation and secretion into the proximal tubular lumen leads to local formation of Ang II, which stimulates proximal transporters such as the sodium/hydrogen exchanger. Enhanced AGT production also leads to spillover of AGT into the distal nephron segments as reflected by AGT in the urine, which provides an index of intrarenal RAS activity. There is also increased Ang II concentration in distal nephron with stimulation of distal sodium transport. Increased urinary excretion of AGT has been demonstrated in patients with hypertension, type 1 and type 2 diabetes mellitus, and several types of chronic kidney diseases indicating an upregulation of intrarenal RAS activity.
Collapse
Affiliation(s)
- Ryousuke Satou
- Department of Physiology and the Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Weijian Shao
- Department of Physiology and the Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - L Gabriel Navar
- Department of Physiology, Tulane University Health Sciences Center, SL39, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| |
Collapse
|
22
|
Abstract
Intrarenal autoregulatory mechanisms maintain renal blood flow (RBF) and glomerular filtration rate (GFR) independent of renal perfusion pressure (RPP) over a defined range (80-180 mmHg). Such autoregulation is mediated largely by the myogenic and the macula densa-tubuloglomerular feedback (MD-TGF) responses that regulate preglomerular vasomotor tone primarily of the afferent arteriole. Differences in response times allow separation of these mechanisms in the time and frequency domains. Mechanotransduction initiating the myogenic response requires a sensing mechanism activated by stretch of vascular smooth muscle cells (VSMCs) and coupled to intracellular signaling pathways eliciting plasma membrane depolarization and a rise in cytosolic free calcium concentration ([Ca(2+)]i). Proposed mechanosensors include epithelial sodium channels (ENaC), integrins, and/or transient receptor potential (TRP) channels. Increased [Ca(2+)]i occurs predominantly by Ca(2+) influx through L-type voltage-operated Ca(2+) channels (VOCC). Increased [Ca(2+)]i activates inositol trisphosphate receptors (IP3R) and ryanodine receptors (RyR) to mobilize Ca(2+) from sarcoplasmic reticular stores. Myogenic vasoconstriction is sustained by increased Ca(2+) sensitivity, mediated by protein kinase C and Rho/Rho-kinase that favors a positive balance between myosin light-chain kinase and phosphatase. Increased RPP activates MD-TGF by transducing a signal of epithelial MD salt reabsorption to adjust afferent arteriolar vasoconstriction. A combination of vascular and tubular mechanisms, novel to the kidney, provides for high autoregulatory efficiency that maintains RBF and GFR, stabilizes sodium excretion, and buffers transmission of RPP to sensitive glomerular capillaries, thereby protecting against hypertensive barotrauma. A unique aspect of the myogenic response in the renal vasculature is modulation of its strength and speed by the MD-TGF and by a connecting tubule glomerular feedback (CT-GF) mechanism. Reactive oxygen species and nitric oxide are modulators of myogenic and MD-TGF mechanisms. Attenuated renal autoregulation contributes to renal damage in many, but not all, models of renal, diabetic, and hypertensive diseases. This review provides a summary of our current knowledge regarding underlying mechanisms enabling renal autoregulation in health and disease and methods used for its study.
Collapse
Affiliation(s)
- Mattias Carlström
- Department of Medicine, Division of Nephrology and Hypertension and Hypertension, Kidney and Vascular Research Center, Georgetown University, Washington, District of Columbia; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; and Department of Cell Biology and Physiology, UNC Kidney Center, and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Christopher S Wilcox
- Department of Medicine, Division of Nephrology and Hypertension and Hypertension, Kidney and Vascular Research Center, Georgetown University, Washington, District of Columbia; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; and Department of Cell Biology and Physiology, UNC Kidney Center, and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - William J Arendshorst
- Department of Medicine, Division of Nephrology and Hypertension and Hypertension, Kidney and Vascular Research Center, Georgetown University, Washington, District of Columbia; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; and Department of Cell Biology and Physiology, UNC Kidney Center, and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
23
|
Grobe N, Leiva O, Morris M, Elased KM. Loss of prolyl carboxypeptidase in two-kidney, one-clip goldblatt hypertensive mice. PLoS One 2015; 10:e0117899. [PMID: 25706121 PMCID: PMC4338234 DOI: 10.1371/journal.pone.0117899] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 01/05/2015] [Indexed: 11/19/2022] Open
Abstract
It is well documented that angiotensin (Ang) II contributes to kidney disease progression. The protease prolyl carboxypeptidase (PRCP) is highly expressed in the kidney and may be renoprotective by degrading Ang II to Ang-(1-7). The aim of the study was to investigate whether renal PRCP protein expression and activity are altered in two-kidney, one-clip (2K1C) Goldblatt hypertensive mice. Left renal artery was constricted by using 0.12 mm silver clips. Blood pressure was measured using telemetry over the eleven weeks of study period and revealed an immediate increase in 2K1C animals during the first week of clip placement which was followed by a gradual decrease to baseline blood pressure. Similarly, urinary albumin excretion was significantly increased one week after 2K1C and returned to baseline levels during the following weeks. At 2 weeks and at the end of the study, renal pathologies were exacerbated in the 2K1C model as revealed by a significant increase in mesangial expansion and renal fibrosis. Renal PRCP expression and activity were significantly reduced in clipped kidneys. Immunofluorescence revealed the loss of renal tubular PRCP but not glomerular PRCP. In contrast, expression of prolyl endopeptidase, another enzyme capable of converting Ang II into Ang-(1-7), was not affected, while angiotensin converting enzyme was elevated in unclipped kidneys and renin was increased in clipped kidneys. Results suggest that PRCP is suppressed in 2K1C and that this downregulation may attenuate renoprotective effects via impaired Ang II degradation by PRCP.
Collapse
Affiliation(s)
- Nadja Grobe
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, United States of America
- * E-mail:
| | - Orly Leiva
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, United States of America
| | - Mariana Morris
- College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, Florida, United States of America
| | - Khalid M. Elased
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, United States of America
| |
Collapse
|
24
|
Kujal P, Čertíková Chábová V, Škaroupková P, Husková Z, Vernerová Z, Kramer HJ, Walkowska A, Kompanowska-Jezierska E, Sadowski J, Kitada K, Nishiyama A, Hwang SH, Hammock BD, Imig JD, Červenka L. Inhibition of soluble epoxide hydrolase is renoprotective in 5/6 nephrectomized Ren-2 transgenic hypertensive rats. Clin Exp Pharmacol Physiol 2014; 41:227-37. [PMID: 24471737 PMCID: PMC4038339 DOI: 10.1111/1440-1681.12204] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Revised: 11/18/2013] [Accepted: 12/20/2013] [Indexed: 01/13/2023]
Abstract
1. The aim of the present study was to test the hypothesis that increasing kidney tissue concentrations of epoxyeicosatrienoic acids (EETs) by preventing their degradation to the biologically inactive dihydroxyeicosatrienoic acids (DHETEs) using blockade of soluble epoxide hydrolase (sEH) would attenuate the progression of chronic kidney disease (CKD). 2. Ren-2 transgenic rats (TGR) after 5/6 renal mass reduction (5/6 NX) served as a model of CKD associated with angiotensin (Ang) II-dependent hypertension. Soluble epoxide hydrolase was inhibited using cis-4-[4-(3-adamantan-1-yl-ureido)cyclohexyloxy]benzoic acid (c-AUCB; 3 mg/L drinking water) for 20 weeks after 5/6 NX. Sham-operated normotensive transgene-negative Hannover Sprague-Dawley (HanSD) rats served as controls. 3. When applied in TGR subjected to 5/6 NX, c-AUCB treatment improved survival rate, prevented the increase in blood pressure, retarded the progression of cardiac hypertrophy, reduced proteinuria and the degree of glomerular and tubulointerstitial injury and reduced glomerular volume. All these organ-protective actions were associated with normalization of the intrarenal EETs : DHETEs ratio, an index of the availability of biologically active EETs, to levels observed in sham-operated HanSD rats. There were no significant concurrent changes of increased intrarenal AngII content. 4. Together, these results show that 5/6 NX TGR exhibit a profound deficiency of intrarenal availability of active epoxygenase metabolites (EETs), which probably contributes to the progression of CKD in this model of AngII-dependent hypertension, and that restoration of intrarenal availability of EETs using long-term c-AUCB treatment exhibits substantial renoprotective actions.
Collapse
Affiliation(s)
- Petr Kujal
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Charles University, Prague, Czech Republic; Department of Pathology, 3rd Faculty of Medicine, Charles University, Prague, Czech Republic
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Dias AT, Cintra AS, Frossard JC, Palomino Z, Casarini DE, Gomes IBS, Balarini CM, Gava AL, Campagnaro BP, Pereira TMC, Meyrelles SS, Vasquez EC. Inhibition of phosphodiesterase 5 restores endothelial function in renovascular hypertension. J Transl Med 2014; 12:250. [PMID: 25223948 PMCID: PMC4172908 DOI: 10.1186/s12967-014-0250-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 08/30/2014] [Indexed: 01/25/2023] Open
Abstract
Background The clipping of an artery supplying one of the two kidneys (2K1C) activates the renin-angiotensin (Ang) system (RAS), resulting in hypertension and endothelial dysfunction. Recently, we demonstrated the intrarenal beneficial effects of sildenafil on the high levels of Ang II and reactive oxygen species (ROS) and on high blood pressure (BP) in 2K1C mice. Thus, in the present study, we tested the hypothesis that sildenafil improves endothelial function in hypertensive 2K1C mice by improving the NO/ROS balance. Methods 2K1C hypertension was induced in C57BL/6 mice. Two weeks later, they were treated with sildenafil (40 mg/kg/day, via oral) or vehicle for 2 weeks and compared with sham mice. At the end of the treatment, the levels of plasma and intrarenal Ang peptides were measured. Endothelial function and ROS production were assessed in mesenteric arterial bed (MAB). Results The 2K1C mice exhibited normal plasma levels of Ang I, II and 1–7, whereas the intrarenal Ang I and II were increased (~35% and ~140%) compared with the Sham mice. Sildenafil normalized the intrarenal Ang I and II and increased the plasma (~45%) and intrarenal (+15%) Ang 1–7. The 2K1C mice exhibited endothelial dysfunction, primarily due to increased ROS and decreased NO productions by endothelial cells, which were ameliorated by treatment with sildenafil. Conclusion These data suggest that the effects of sildenafil on endothelial dysfunction in 2K1C mice may be due to interaction with RAS and restoring NO/ROS balance in the endothelial cells from MAB. Thus, sildenafil is a promising candidate drug for the treatment of hypertension accompanied by endothelial dysfunction and kidney disease.
Collapse
|
26
|
Červenka L, Bíbová J, Husková Z, Vaňourková Z, Kramer HJ, Herget J, Jíchová Š, Sadowski J, Hampl V. Combined suppression of the intrarenal and circulating vasoconstrictor renin-ACE-ANG II axis and augmentation of the vasodilator ACE2-ANG 1-7-Mas axis attenuates the systemic hypertension in Ren-2 transgenic rats exposed to chronic hypoxia. Physiol Res 2014; 64:11-24. [PMID: 25194129 DOI: 10.33549/physiolres.932842] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The aim of the present study was to test the hypothesis that chronic hypoxia would aggravate hypertension in Ren-2 transgenic rats (TGR), a well-defined monogenetic model of hypertension with increased activity of endogenous renin-angiotensin system (RAS). Systolic blood pressure (SBP) in conscious rats and mean arterial pressure (MAP) in anesthetized TGR and normotensive Hannover Sprague-Dawley (HanSD) rats were determined under normoxia that was either continuous or interrupted by two weeks´ hypoxia. Expression, activities and concentrations of individual components of RAS were studied in plasma and kidney of TGR and HanSD rats under normoxic conditions and after exposure to chronic hypoxia. In HanSD rats two weeks´ exposure to chronic hypoxia did not alter SBP and MAP. Surprisingly, in TGR it decreased markedly SBP and MAP; this was associated with substantial reduction in plasma and kidney renin activities and also of angiotensin II (ANG II) levels, without altering angiotensin-converting enzyme (ACE) activities. Simultaneously, in TGR the exposure to hypoxia increased kidney ACE type 2 (ACE2) activity and angiotensin 1-7 (ANG 1-7) concentrations as compared with TGR under continuous normoxia. Based on these results, we propose that suppression of the hypertensiogenic ACE-ANG II axis in the circulation and kidney tissue, combined with augmentation of the intrarenal vasodilator ACE2-ANG 1-7 axis, is the main mechanism responsible for the blood pressure-lowering effects of chronic hypoxia in TGR.
Collapse
Affiliation(s)
- L Červenka
- Department of Pathophysiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Muñoz MC, Burghi V, Miquet JG, Giani JF, Banegas RD, Toblli JE, Fang Y, Wang F, Bartke A, Dominici FP. Downregulation of the ACE2/Ang-(1-7)/Mas axis in transgenic mice overexpressing GH. J Endocrinol 2014; 221:215-27. [PMID: 24756097 PMCID: PMC5987768 DOI: 10.1530/joe-13-0497] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The renin-angiotensin system (RAS) plays a crucial role in the regulation of physiological homeostasis and diseases such as hypertension, coronary artery disease, and chronic renal failure. In this cascade, the angiotensin-converting enzyme (ACE)/angiotensin II (Ang II)/AT1 receptor axis induces pathological effects, such as vasoconstriction, cell proliferation, and fibrosis, while the ACE2/Ang-(1-7)/Mas receptor axis is protective for end-organ damage. The altered function of the RAS could be a contributing factor to the cardiac and renal alterations induced by GH excess. To further explore this issue, we evaluated the consequences of chronic GH exposure on the in vivo levels of Ang II, Ang-(1-7), ACE, ACE2, and Mas receptor in the heart and the kidney of GH-transgenic mice (bovine GH (bGH) mice). At the age of 7-8 months, female bGH mice displayed increased systolic blood pressure (SBP), a high degree of both cardiac and renal fibrosis, as well as increased levels of markers of tubular and glomerular damage. Angiotensinogen abundance was increased in the liver and the heart of bGH mice, along with a concomitant increase in cardiac Ang II levels. Importantly, the levels of ACE2, Ang-(1-7), and Mas receptor were markedly decreased in both tissues. In addition, Ang-(1-7) administration reduced SBP to control values in GH-transgenic mice, indicating that the ACE2/Ang-(1-7)/Mas axis is involved in GH-mediated hypertension. The data indicate that the altered expression profile of the ACE2/Ang-(1-7)/Mas axis in the heart and the kidney of bGH mice could contribute to the increased incidence of hypertension, cardiovascular, and renal alterations observed in these animals.
Collapse
Affiliation(s)
- Marina C Muñoz
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Instituto de Química y Fisicoquímica Biológicas (UBA-CONICET), Universidad de Buenos Aires, Junín 956 (1113) Buenos Aires, Argentina Departments of Biomedical Sciences and Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA Laboratorio de Medicina Experimental, Hospital Alemán, Buenos Aires, Argentina Department of Internal Medicine, Geriatrics Research, School of Medicine, Southern Illinois University, Springfield, Illinois 62702-4910, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Aqueous extract of dioscorea opposita thunb. normalizes the hypertension in 2K1C hypertensive rats. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 14:36. [PMID: 24447776 PMCID: PMC3904168 DOI: 10.1186/1472-6882-14-36] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 11/21/2013] [Indexed: 12/17/2022]
Abstract
BACKGROUND Dioscorea opposita Thunb. (Huai Shan Yao, DOT), a common staple food in China, has been used for more than 2000 years in traditional Chinese medicine (TCM) to treat different systemic diseases including hypertension. The objective of this study was to investigate the possible antihypertensive effects of the aqueous extract of (DOT) in renovascular hypertensive rats as well as the mechanism in reducing blood pressure. METHODS The two-kidney one-clip (2K1C) Goldblatt model of renovascular hypertension was used in Wistar rats. Rats with captopril, low-dose DOT and high-dose DOT treated 2K1C groups for 6 weeks. The blood pressure, cardiac mass index (heart weight/body weight), plasma level of angiotensin-II (Ang-II), endothelin-1(ET-1), superoxide dismutase (SOD) and malondialdehyde (MDA) were evaluated. RESULTS DOT significantly reduced mean systolic and diastolic blood pressure after treatment. DOT also significantly increased plasma SOD activity but decreased plasma MDA concentration. Renal function was improved with captopril and DOT. DOT reduced plasma Ang-II activity and plasma ET concentration. They couldalso significantly reduce the left ventricular hypertrophy and cardiac mass index. CONCLUSIONS Our results suggest that DOT may have an antihypertensive effect on hypertension by inhibit ET-converting enzyme and antioxidant activity, which warrant further exploration.
Collapse
|
29
|
Čertíková Chábová V, Vernerová Z, Kujal P, Husková Z, Škaroupková P, Tesař V, Kramer HJ, Kompanowska-Jezierska E, Walkowska A, Sadowski J, Červenka L, Vaněčková I. Addition of ET(A) receptor blockade increases renoprotection provided by renin-angiotensin system blockade in 5/6 nephrectomized Ren-2 transgenic rats. Life Sci 2013; 118:297-305. [PMID: 24373834 DOI: 10.1016/j.lfs.2013.12.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 11/22/2013] [Accepted: 12/13/2013] [Indexed: 01/13/2023]
Abstract
AIMS There is evidence that in addition to hypertension and hyperactivity of the renin-angiotensin system (RAS), enhanced intrarenal activity of endothelin (ET) system contributes to the pathophysiology and progression of chronic kidney disease (CKD). This prompted us to examine if this progression would be alleviated by addition of type A ET receptor (ETA) blockade to the standard blockade of RAS. MAIN METHODS Ren-2 transgenic rats (TGR) after 5/6 renal ablation (5/6 NX) served as a model of CKD. For RAS inhibition a combination of angiotensin-converting enzyme inhibitor (trandolapril, 6 mg/L drinking water) and angiotensin II type 1 receptor blocker (losartan, 100 mg/L drinking water) was used. Alternatively, ETA receptor blocker (atrasentan, 5 mg·kg(-1)·day(-1) in drinking water) was added to the combined RAS blockade. The follow-up period was 44 weeks after 5/6 NX, and the rats' survival rate, systolic blood pressure (SBP), proteinuria and indices of renal glomerular damage were evaluated. KEY FINDINGS The survival rate was at first improved, by either therapeutic regime, however, the efficiency of RAS blockade alone considerably decreased 36 weeks after 5/6 NX: final survival rate of 65% was significantly lower than 91% achieved with combined RAS and ETA receptor blockade. SBP was not affected by the addition of ETA blockade while proteinuria and renal glomerular damage were further reduced. SIGNIFICANCE Our data show that a combined RAS and ETA receptor blockade exhibits additional beneficial effects on survival rate and the progression of CKD in 5/6 NX TGR, as compared with RAS inhibition alone.
Collapse
Affiliation(s)
- Věra Čertíková Chábová
- Department of Nephrology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Zdenka Vernerová
- Department of Pathology, 3rd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Petr Kujal
- Department of Pathology, 3rd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Zuzana Husková
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Petra Škaroupková
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Vladimír Tesař
- Department of Nephrology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Herbert J Kramer
- Section of Nephrology, Medical Policlinic, Department of Medicine, University of Bonn, Bonn, Germany
| | - Elzbieta Kompanowska-Jezierska
- Department of Renal and Body Fluid Physiology, M. Mossakowski Medical Research Centre, Polish Academy of Science, Warsaw, Poland
| | - Agnieszka Walkowska
- Department of Renal and Body Fluid Physiology, M. Mossakowski Medical Research Centre, Polish Academy of Science, Warsaw, Poland
| | - Janusz Sadowski
- Department of Renal and Body Fluid Physiology, M. Mossakowski Medical Research Centre, Polish Academy of Science, Warsaw, Poland
| | - Luděk Červenka
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Ivana Vaněčková
- Institute of Physiology v.v.i., Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| |
Collapse
|
30
|
Translational studies on augmentation of intratubular renin-angiotensin system in hypertension. Kidney Int Suppl (2011) 2013; 3:321-325. [PMID: 25019012 PMCID: PMC4089772 DOI: 10.1038/kisup.2013.67] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Various models of experimental hypertension and clinical examples of increased renin formation from a stenotic kidney or a juxtaglomerular cell tumor have shown that increased circulating angiotensin II (Ang II) stimulates the intrarenal/intratubular renin–angiotensin system (RAS) that elicits renal vasoconstriction, enhanced tubular sodium reabsorption, and progressive development of hypertension and renal injury. The enhanced intrarenal Ang II activity is due to both receptor-mediated Ang II uptake and Ang II type 1 (AT1) receptor–mediated stimulation of renal angiotensinogen (AGT) mRNA and protein by proximal tubule cells. The increased AGT secretion leads to local formation of Ang II and spillover of AGT into the distal nephron segments as reflected by increased AGT excretion in the urine, which provides an index of intrarenal RAS activity. In clinical studies, increased urinary excretion of AGT has been demonstrated in hypertension, type 1 and type 2 diabetes mellitus, and several types of chronic kidney diseases. In addition, renin secretion from principal cells of the collecting ducts is increased by AT1 receptor activation and acts on AGT from the proximal tubule to form more Ang I. Renin and/or (pro)renin activity is enhanced by binding to the (pro)renin receptor (PRR) on intercalated cells or secreted as soluble PRR contributing further to AGT cleavage, thus making more substrate available for Ang II conversion by local angiotensin-converting enzyme. The augmented intratubular Ang II concentrations together with elevated renal interstitial Ang II concentrations contribute to sustained stimulation of sodium reabsorption, vasoconstriction, development of hypertension, and progressive renal injury and fibrosis.
Collapse
|
31
|
Ebrahimi B, Crane JA, Knudsen BE, Macura SI, Grande JP, Lerman LO. Evolution of cardiac and renal impairment detected by high-field cardiovascular magnetic resonance in mice with renal artery stenosis. J Cardiovasc Magn Reson 2013; 15:98. [PMID: 24160179 PMCID: PMC3874758 DOI: 10.1186/1532-429x-15-98] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 10/16/2013] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Renal artery stenosis (RAS) promotes hypertension and cardiac dysfunction. The 2-kidney, 1-clip mouse model in many ways resembles RAS in humans and is amenable for genetic manipulation, but difficult to evaluate noninvasively. We hypothesized that cardiovascular magnetic resonance (CMR) is capable of detecting progressive cardiac and renal dysfunction in mice with RAS and monitoring the progression of the disease longitudinally. METHODS RAS was induced at baseline in eighteen mice by constricting the renal artery. Nine additional animals served as normal controls. CMR scans (16.4 T) were performed in all mice one week before and 2 and 4 weeks after baseline. Renal volumes and hemodynamics were assessed using 3D fast imaging with steady-state precession and arterial spin labelling, and cardiac function using CMR cine. Renal hypoxia was investigated using blood oxygen-level dependent (BOLD) MR. RESULTS Two weeks after surgery, mean arterial pressure was elevated in RAS mice. The stenotic kidney (STK) showed atrophy, while the contra-lateral kidney (CLK) showed hypertrophy. Renal blood flow (RBF) and cortical oxygenation level declined in the STK but remained unchanged in CLK. Moreover, cardiac end-diastolic and stroke volumes decreased and myocardial mass increased. At 4 weeks, STK RBF remained declined and the STK cortex and medulla showed development of hypoxia. Additionally, BOLD detected a mild hypoxia in CLK cortex. Cardiac end-diastolic and stroke volumes remained reduced and left ventricular hypertrophy worsened. Left ventricular filling velocities (E/A) indicated progression of cardiac dysfunction towards restrictive filling. CONCLUSIONS CMR detected longitudinal progression of cardiac and renal dysfunction in 2K, 1C mice. These observations support the use of high-field CMR to obtain useful information regarding chronic cardiac and renal dysfunction in small animals.
Collapse
MESH Headings
- Animals
- Arterial Pressure
- Atrophy
- Cardio-Renal Syndrome/diagnosis
- Cardio-Renal Syndrome/etiology
- Cardio-Renal Syndrome/physiopathology
- Disease Models, Animal
- Disease Progression
- Heart Rate
- Hypertension, Renovascular/diagnosis
- Hypertension, Renovascular/etiology
- Hypertension, Renovascular/physiopathology
- Hypertrophy
- Hypertrophy, Left Ventricular/diagnosis
- Hypertrophy, Left Ventricular/etiology
- Hypertrophy, Left Ventricular/physiopathology
- Kidney/blood supply
- Kidney/pathology
- Magnetic Resonance Imaging, Cine
- Male
- Mice
- Mice, 129 Strain
- Predictive Value of Tests
- Renal Artery Obstruction/complications
- Renal Artery Obstruction/diagnosis
- Renal Artery Obstruction/physiopathology
- Renal Circulation
- Time Factors
- Ventricular Dysfunction, Left/diagnosis
- Ventricular Dysfunction, Left/etiology
- Ventricular Dysfunction, Left/physiopathology
- Ventricular Function, Left
Collapse
Affiliation(s)
- Behzad Ebrahimi
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - John A Crane
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Bruce E Knudsen
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Slobodan I Macura
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Joseph P Grande
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Lilach O Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
32
|
DNA damage and augmented oxidative stress in bone marrow mononuclear cells from Angiotensin-dependent hypertensive mice. Int J Hypertens 2013; 2013:305202. [PMID: 23476745 PMCID: PMC3586517 DOI: 10.1155/2013/305202] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 01/16/2013] [Indexed: 02/07/2023] Open
Abstract
It has been proposed that the nonhemodynamic effects of angiotensin II are important for the damage observed in the two-kidney, one-clip (2K1C) renovascular hypertension model. Much evidence confirms that angiotensin II is directly involved in NAD(P)H oxidase activation and consequent superoxide anion production, which can damage DNA. The current study was performed to examine the effects of angiotensin-II-dependent hypertension in bone marrow mononuclear cells (BM-MNC); dihydroethidium staining was used to assess reactive oxygen species (ROS) production, and the comet assay was used to assess DNA fragmentation in 2K1C hypertensive mice 14 days after renal artery clipping. In this study we demonstrated that 2K1C hypertensive mice have an elevated lymphocyte count, while undifferentiated BM-MNC counts were diminished. 2K1C mice also showed an augmented ROS production and marked BM-MNC DNA fragmentation. In conclusion, endogenous renin angiotensin system activation-induced arterial hypertension is characterized by excessive ROS production in BM-MNC, which might cause marked DNA damage.
Collapse
|
33
|
Singh P, Bahrami L, Castillo A, Majid DSA. TNF-α type 2 receptor mediates renal inflammatory response to chronic angiotensin II administration with high salt intake in mice. Am J Physiol Renal Physiol 2013; 304:F991-9. [PMID: 23389459 DOI: 10.1152/ajprenal.00525.2012] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Tumor necrosis factor-alpha (TNF-α) has been implicated in salt-sensitive hypertension and renal injury (RI) induced by angiotensin II (ANG II). To determine the receptor type of TNF-α involved in this mechanism, we evaluated the responses to chronic ANG II infusion (25 ng/min by implanted minipump) given with high-salt diet (HS; 4% NaCl) for 2 wk in gene knockout mice for TNF-α receptor type 1 (TNFR1KO; n = 6) and type 2 (TNFR2KO; n = 6) and compared the responses with those in wild-type (WT; C57BL/6; n = 6) mice. Blood pressure in these mice was measured by implanted radiotelemetry as well as by tail-cuff plethysmography. RI responses were assessed by measuring macrophage cell infiltration (CD68(+) immunohistochemistry), glomerulosclerosis (PAS staining), and interstitial fibrosis (Gomori's trichrome staining) in renal tissues at the end of the treatment period. The increase in mean arterial pressure induced by ANG II + HS treatment was not different in these three groups of mice (TNFR1KO, 114 ± 1 to 161 ± 7 mmHg; TNFR2KO, 113 ± 1 to 161 ± 3 mmHg; WT, 110 ± 3 to 154 ± 3 mmHg). ANG II + HS-induced RI changes were similar in TNFR1KO mice but significantly less in TNFR2KO mice (macrophage infiltration, 0.02 ± 0.01 vs. 1.65 ± 0.45 cells/mm(2); glomerulosclerosis, 26.3 ± 2.6 vs. 35.7 ± 2.2% area; and interstitial fibrosis, 5.2 ± 0.6 vs. 8.1 ± 1.1% area) compared with the RI changes in WT mice. The results suggest that a direct activation of TNF-α receptors may not be required in inducing hypertensive response to chronic ANG II administration with HS intake, but the induction of inflammatory responses leading to renal injury are mainly mediated by TNF-α receptor type 2.
Collapse
Affiliation(s)
- Purnima Singh
- Department of Physiology, Hypertension & Renal Center of Excellence, Tulane University Health Sciences Center, New Orleans, LA 70112, USA
| | | | | | | |
Collapse
|
34
|
Reinhold SW, Uihlein DC, Böger CA, Kloiber S, Frölich K, Bergler T, Banas B, Schweda F, Krämer BK. Renin, endothelial NO synthase and endothelin gene expression in the 2kidney-1clip Goldblatt model of long-term renovascular hypertension. Eur J Med Res 2013; 14:520-5. [PMID: 20149985 PMCID: PMC3351937 DOI: 10.1186/2047-783x-14-12-520] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Objective Numerous reports have shown the influence of renin, nitric oxide (NO) and the endothelin (ET) systems for regulation of blood pressure and renal function. Furthermore, interactions between these peptides have been reported. Aim of our study was to investigate the relative contribution of these compounds in long-term renovascular hypertension/renal ischemia. Methods Hypertension/left-sided renal ischemia was induced using the 2K1C-Goldblatt rat model. Renal renin, ET-1, ET-3 and endothelial NO synthase (eNOS) gene expression was measured by means of RNAse protection assay at different timepoints up to 10 weeks after induction of renal artery stenosis. Results Plasma renin activity and renal renin gene expression in the left kidney were increased in the clipped animals while eNOS expression was unchanged. Furthermore, an increase in ET-1 expression and a decrease of ET-3 expression was detected in early stenosis. Conclusions While renin is obviously involved in regulation of blood pressure and renal function in unilateral renal artery stenosis, ET-1, ET-3 and endothelium derived NO do not appear to play an important role in renal adaptation processes in long-term renal artery stenosis, although ET-1 and ET-3 might be involved in short-term adaptation processes.
Collapse
Affiliation(s)
- S W Reinhold
- Klinik und Poliklinik für Innere Medizin II, University of Regensburg, Regensburg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Fox KA, Longo M, Tamayo E, Gamble P, Makhlouf M, Mateus JF, Saade GR. Sex-specific effects of nicotine exposure on developmental programming of blood pressure and vascular reactivity in the C57Bl/6J mouse. Am J Obstet Gynecol 2012; 207:208.e1-9. [PMID: 22789524 DOI: 10.1016/j.ajog.2012.06.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 04/26/2012] [Accepted: 06/12/2012] [Indexed: 10/28/2022]
Abstract
OBJECTIVE The objective of the study was to determine whether perinatal nicotine exposure adversely affects cardiovascular health in adulthood. STUDY DESIGN C57Bl/6J female mice were randomized to 200 μg/mL nicotine in 2% saccharin or 2% saccharin alone from 2 weeks before breeding until weaning. Offspring weight, vital signs, and carotid artery vascular reactivity were studied. A second cohort was subjected to shaker stress on day 4 of 7 days. Selected mediators of vascular tone were evaluated by molecular studies. Student t or Mann-Whitney U test was performed for statistical analysis (significance: P < .05). RESULTS Nicotine-exposed compared with control female offspring had significantly elevated mean blood pressure under normal and stress conditions. Nicotine females lacked heart rate elevation after stress. Nicotine males had higher mean heart rate and a blunted contractile response to phenylephrine compared with controls, without an increase in blood pressure. CONCLUSION Perinatal nicotine exposure has an impact on the developmental programming of future cardiovascular health, with adverse effects more evident in female offspring.
Collapse
|
36
|
Kopkan L, Husková Z, Sporková A, Varcabová Š, Honetschlägerová Z, Hwang SH, Tsai HJ, Hammock BD, Imig JD, Kramer HJ, Bürgelová M, Vojtíšková A, Kujal P, Vernerová Z, Červenka L. Soluble epoxide hydrolase inhibition exhibits antihypertensive actions independently of nitric oxide in mice with renovascular hypertension. Kidney Blood Press Res 2012; 35:595-607. [PMID: 22948718 PMCID: PMC3604982 DOI: 10.1159/000339883] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2011] [Accepted: 06/01/2012] [Indexed: 01/13/2023] Open
Abstract
OBJECTIVE The present study was performed to examine whether the blood pressure (BP)-lowering effects of soluble epoxide hydrolase (sEH) inhibition in two-kidney, one-clip (2K1C) Goldblatt hypertension are nitric oxide (NO) dependent. METHODS Mice lacking the endothelial NO synthase (eNOS) gene (eNOS-/-) and their wild-type controls (eNOS+/+) underwent clipping of one renal artery. BP was monitored by radiotelemetry and the treatment with the sEH inhibitor cis-4-[4-(3-adamantan-1-yl-ureido)cyclohex-yloxy]-benzoic acid (c-AUCB) was initiated on day 25 after clipping and lasted for 14 days. Renal concentrations of epoxyeicosatrienoic acids (EETs) and their inactive metabolite dihydroxyeicosatrienoic acids (DHETs) were measured in the nonclipped kidney. Renal NO synthase (NOS) activity was determined by measuring the rate of formation of L-[(14)C]citruline from L-[(14)C]arginine. RESULTS Treatment with the sEH inhibitor elicited similar BP decreases that were associated with increases in daily sodium excretion in 2K1C eNOS+/+ as well as 2K1C eNOS-/- mice. In addition, treatment with the sEH inhibitor increased the ratio of EETs/DHETs in the nonclipped kidney of 2K1C eNOS+/+ as well as 2K1C eNOS-/- mice. Treatment with the sEH inhibitor did not alter renal NOS activity in any of the experimental groups. CONCLUSIONS Collectively, our present data suggest that the BP-lowering effects of chronic sEH inhibition in 2K1C mice are mainly associated with normalization of the reduced availability of biologically active EETs in the nonclipped kidney and their direct natriuretic actions.
Collapse
Affiliation(s)
- Libor Kopkan
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Zuzana Husková
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Alexandra Sporková
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Šárka Varcabová
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Zuzana Honetschlägerová
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Sung Hee Hwang
- Department of Entomology and UCD Cancer Center, University of California, Davis, One Shields Avenue, Davis, California 95616-8584, USA
| | - Hsing-Ju Tsai
- Department of Entomology and UCD Cancer Center, University of California, Davis, One Shields Avenue, Davis, California 95616-8584, USA
| | - Bruce D. Hammock
- Department of Entomology and UCD Cancer Center, University of California, Davis, One Shields Avenue, Davis, California 95616-8584, USA
| | - John D. Imig
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Wisconsin, USA
| | - Herbert J. Kramer
- Section of Nephrology, Medical Policlinic, Department of Medicine, University of Bonn, Bonn, Germany
| | - Marcela Bürgelová
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Alžběta Vojtíšková
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Petr Kujal
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- Department of Pathology, 3 Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Zdenka Vernerová
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- Department of Pathology, 3 Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Luděk Červenka
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- Department of Physiology, 2 Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
37
|
Kava L, Rossi NF, Mattingly R, Yingst DR. Increased expression of Na,K-ATPase and a selective increase in phosphorylation at Ser-11 in the cortex of the 2-kidney, 1-clip hypertensive rat. Am J Hypertens 2012; 25:487-91. [PMID: 22237155 DOI: 10.1038/ajh.2011.247] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND The mechanism by which blood pressure increases during renovascular hypertension is incompletely understood. We, therefore, tested the hypothesis that in the 2-kidney, 1-clip (2K-1C) rat, in which hypertension develops due to increased angiotensin II (Ang II) levels, there is increased expression and phosphorylation of Na,K-ATPase at Ser-11 and Ser-18 in the kidney cortex. The rationale is Ang II is reported to directly stimulate Na,K-ATPase activity in proximal tubules, which reabsorb 2/3 of filtered sodium, via increased phosphorylation at Ser-11 and Ser-18 and the Na,K-ATPase drives sodium reabsorption. METHODS Five-week-old Sprague-Dawley rats underwent unilateral or sham clipping of the right renal artery and placement of telemetry transmitters. Six weeks later blood pressure and plasma Ang II were measured and kidneys harvested. The amount of Na,K-ATPase, phosphorylation at Ser-11 and Ser-18, and the expression of β-actin in each kidney cortex were measured by quantitative immunoblotting. RESULTS Clipping significantly increased mean arterial pressure from 110 ± 3 to 148 ± 13 mm Hg, plasma Ang II, cortical Na,K-ATPase in the unclipped kidney of 2K-1C compared to sham-clipped rats, the total cortical Na,K-ATPase in both kidneys compared to sham-clipped rats, and the extent to which the Na,K-ATPase was phosphorylated at Ser-11. Clipping did not significantly change phosphorylation at Ser-18, β-actin, or the total protein in the cortexes of both kidneys. CONCLUSIONS Thus, in the kidney cortex of rats with renovascular hypertension there is increased expression of Na,K-ATPase and a selective increase in its phosphorylation at Ser-11 that could increase the capacity to reabsorb sodium and water.
Collapse
|
38
|
Gwathmey TM, Alzayadneh EM, Pendergrass KD, Chappell MC. Novel roles of nuclear angiotensin receptors and signaling mechanisms. Am J Physiol Regul Integr Comp Physiol 2012; 302:R518-30. [PMID: 22170620 PMCID: PMC3311515 DOI: 10.1152/ajpregu.00525.2011] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Accepted: 12/07/2011] [Indexed: 12/22/2022]
Abstract
The renin-angiotensin system (RAS) constitutes an important hormonal system in the physiological regulation of blood pressure. The dysregulation of the RAS is considered a major influence in the development and progression of cardiovascular disease and other pathologies. Indeed, experimental and clinical evidence indicates that blockade of this system with angiotensin-converting enzyme (ACE) inhibitors or angiotensin type 1 receptor (AT1R) antagonists is an effective therapy to attenuate hypertension and diabetic renal injury, and to improve heart failure. Originally defined as a circulating system, multiple tissues express a complete RAS, and compelling evidence now favors an intracellular system involved in cell signaling and function. Within the kidney, intracellular expression of the three predominant ANG receptor subtypes is evident in the nuclear compartment. The ANG type 1 receptor (AT1R) is coupled to the generation of reactive oxygen species (ROS) through the activation of phosphoinositol-3 kinase (PI3K) and PKC. In contrast, both ANG type 2 (AT2R) and ANG-(1-7) (AT7R) receptors stimulate nitric oxide (NO) formation, which may involve nuclear endothelial NO synthase (eNOS). Moreover, blockade of either ACE2-the enzyme that converts ANG II to ANG-(1-7)-or the AT7 receptor exacerbates the ANG II-ROS response on renal nuclei. Finally, in a model of fetal programmed hypertension, the nuclear ROS response to ANG II is enhanced, while both AT2 and AT7 stimulation of NO is attenuated, suggesting that an imbalance in the intracellular RAS may contribute to the development of programming events. We conclude that a functional intracellular or nuclear RAS may have important implications in the therapeutic approaches to cardiovascular disease.
Collapse
Affiliation(s)
- TanYa M Gwathmey
- The Hypertension and Vascular Research Center, Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1032, USA
| | | | | | | |
Collapse
|
39
|
Vanecková I, Kujal P, Husková Z, Vanourková Z, Vernerová Z, Certíková Chábová V, karoupková P, Kramer HJ, Tesar V, Cervenka L. Effects of Combined Endothelin A Receptor and Renin-Angiotensin System Blockade on the Course of End-Organ Damage in 5/6 Nephrectomized Ren-2 Hypertensive Rats. ACTA ACUST UNITED AC 2012; 35:382-92. [DOI: 10.1159/000336823] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 01/26/2012] [Indexed: 01/13/2023]
|
40
|
Lorenz JN, Lasko VM, Nieman ML, Damhoff T, Prasad V, Beierwaltes WH, Lingrel JB. Renovascular hypertension using a modified two-kidney, one-clip approach in mice is not dependent on the α1 or α2 Na-K-ATPase ouabain-binding site. Am J Physiol Renal Physiol 2011; 301:F615-21. [PMID: 21632957 PMCID: PMC3174550 DOI: 10.1152/ajprenal.00158.2011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 05/30/2011] [Indexed: 02/04/2023] Open
Abstract
Endogenous cardiotonic steroids, through their interaction with the ouabain-binding site of the Na-K-ATPase α-subunit, have been implicated in a variety of cardiovascular disease states including hypertension. We have previously shown that ACTH-induced hypertension is abolished in mutant mice expressing ouabain-resistant α1- and α2-subunits. To further evaluate hypertension resistance in these mutant mice, we examined blood pressure changes in a modified model of 2-kidney, 1-clip (2K1C) renovascular hypertension. To reliably generate 2K1C hypertension, we used polyvinyl tubing (inner diameter: ∼0.27 mm) to accurately gauge the degree of renal artery stenosis. Using this method, virtually all of the clipped mice became hypertensive and there was no incidence of apparent renal ischemia. By telemetry, in response to renal artery clipping, blood pressure in wild-type mice (α1 ouabain-resistant, α2 ouabain-sensitive) increased from 97 ± 3 to 136 ± 7 mmHg. In α1-resistant, α2-resistant mice, pressure increased from 93 ± 2 to 123 ± 4 mmHg, and in α1-sensitive, α2-resistant mice, blood pressure increased from 95 ± 2 to 139 ± 5 mmHg. Blood pressure changes were equivalent in all three groups. In sham mice, blood pressure did not change (96 ± 1 to 95 ± 2 mmHg). Renin mRNA expression was dramatically elevated in the left vs. the right kidney, and plasma renin concentration was elevated similarly in all genotypes. These data indicate that sensitivity of the α1- or α2-Na-K-ATPase binding site to cardiotonic steroids is not a prerequisite for the development of 2K1C renovascular hypertension. In addition, use of a polyurethane cuff to constrict the renal artery provides a reliable method for producing 2K1C hypertension in mice.
Collapse
Affiliation(s)
- John N Lorenz
- Dept. of Molecular and Cellular Physiology, Univ. of Cincinnati College of Medicine, OH 45267-0576, USA.
| | | | | | | | | | | | | |
Collapse
|
41
|
Sporková A, Kopkan L, Varcabová S, Husková Z, Hwang SH, Hammock BD, Imig JD, Kramer HJ, Cervenka L. Role of cytochrome P-450 metabolites in the regulation of renal function and blood pressure in 2-kidney 1-clip hypertensive rats. Am J Physiol Regul Integr Comp Physiol 2011; 300:R1468-75. [PMID: 21411763 PMCID: PMC3119161 DOI: 10.1152/ajpregu.00215.2010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Accepted: 02/21/2011] [Indexed: 01/13/2023]
Abstract
Alterations in renal function contribute to Goldblatt two-kidney, one-clip (2K1C) hypertension. A previous study indicated that bioavailability of cytochrome P-450 metabolites epoxyeicosatrienoic acids (EETs) is decreased while that of 20-hydroxyeicosatetraenoic acids (20-HETE) is increased in this model. We utilized the inhibitor of soluble epoxide hydrolase cis-4-[4-(3-adamantan-1-yl-ureido)-cyclohexyloxy]-benzoic acid (c-AUCB) and HET-0016, the inhibitor of 20-HETE production, to study the role of EETs and 20-HETE in the regulation of renal function. Chronic c-AUCB treatment significantly decreased systolic blood pressure (SBP) (133 ± 1 vs. 163 ± 3 mmHg) and increased sodium excretion (1.23 ± 0.10 vs. 0.59 ± 0.03 mmol/day) in 2K1C rats. HET-0016 did not affect SBP and sodium excretion. In acute experiments, renal blood flow (RBF) was decreased in 2K1C rats (5.0 ± 0.2 vs. 6.9 ± 0.2 ml·min(-1)·g(-1)). c-AUCB normalized RBF in 2K1C rats (6.5 ± 0.6 ml·min(-1)·g(-1)). HET-0016 also increased RBF in 2K1C rats (5.8 ± 0.2 ml·min(-1)·g(-1)). Although RBF and glomerular filtration rate (GFR) remained stable in normotensive rats during renal arterial pressure (RAP) reductions, both were significantly reduced at 100 mmHg RAP in 2K1C rats. c-AUCB did not improve autoregulation but increased RBF at all RAPs and shifted the pressure-natriuresis curve to the left. HET-0016-treated 2K1C rats exhibited impaired autoregulation of RBF and GFR. Our data indicate that c-AUCB displays antihypertensive properties in 2K1C hypertension that are mediated by an improvement of RBF and pressure natriuresis. While HET-0016 enhanced RBF, its anti-natriuretic effect likely prevented it from producing a blood pressure-lowering effect in the 2K1C model.
Collapse
Affiliation(s)
- Alexandra Sporková
- Department of Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Navar LG, Prieto MC, Satou R, Kobori H. Intrarenal angiotensin II and its contribution to the genesis of chronic hypertension. Curr Opin Pharmacol 2011; 11:180-6. [PMID: 21339086 PMCID: PMC3075356 DOI: 10.1016/j.coph.2011.01.009] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 01/27/2011] [Accepted: 01/28/2011] [Indexed: 12/20/2022]
Abstract
The increased activity of intrarenal renin-angiotensin system (RAS) in a setting of elevated arterial pressure elicits renal vasoconstriction, increased sodium reabsorption, proliferation, fibrosis and renal injury. Increases in intrarenal and interstitial angiotensin (Ang) II levels are due to increased AT(1) receptor mediated Ang II uptake and stimulation of renal angiotensinogen (AGT) mRNA and protein expression. Augmented proximal tubule AGT production increases tubular AGT secretion and spillover of AGT into the distal nephron and urine. Increased renin formation by principal cells of the collecting ducts forms Ang I from AGT thus increasing Ang II. The catalytic actions of renin and prorenin are enhanced by prorenin receptors (PRRs) on the intercalated cells. The resultant increased intrarenal Ang II levels contribute to the genesis of chronic hypertension.
Collapse
Affiliation(s)
- L Gabriel Navar
- Department of Physiology and the Hypertension and Renal Center of Excellence, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA, USA.
| | | | | | | |
Collapse
|
43
|
Navar LG, Kobori H, Prieto MC, Gonzalez-Villalobos RA. Intratubular renin-angiotensin system in hypertension. Hypertension 2011; 57:355-62. [PMID: 21282552 PMCID: PMC3073668 DOI: 10.1161/hypertensionaha.110.163519] [Citation(s) in RCA: 182] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 01/05/2011] [Indexed: 01/12/2023]
Affiliation(s)
- L Gabriel Navar
- Department of Physiology, SL39, Tulane University Health Science Center, 1430 Tulane Ave, New Orleans, LA 70112, USA.
| | | | | | | |
Collapse
|
44
|
Navar LG. Rebuttal from Navar. J Appl Physiol (1985) 2010; 109:2001-2. [PMID: 21148351 DOI: 10.1152/japplphysiol.00182.2010c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- L Gabriel Navar
- Department of Physiology, Center of Biomedical Research Excellence in Hypertension and Renal Biology, Tulane University Health Sciences Center, 1430 Tulane Avenue, SL39 New Orleans, LA 70112, USA.
| |
Collapse
|
45
|
Kujal P, Chábová VČ, Vernerová Z, Walkowska A, Kompanowska-Jezierska E, Sadowski J, Vaňourková Z, Husková Z, Opočenský M, Škaroupková P, Schejbalová S, Kramer HJ, Rakušan D, Malý J, Netuka I, Vaněčková I, Kopkan L, Červenka L. Similar renoprotection after renin-angiotensin-dependent and -independent antihypertensive therapy in 5/6-nephrectomized Ren-2 transgenic rats: are there blood pressure-independent effects? Clin Exp Pharmacol Physiol 2010; 37:1159-69. [DOI: 10.1111/j.1440-1681.2010.05453.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
46
|
Kopkan L, Hess A, Husková Z, Cervenka L, Navar LG, Majid DSA. High-salt intake enhances superoxide activity in eNOS knockout mice leading to the development of salt sensitivity. Am J Physiol Renal Physiol 2010; 299:F656-63. [PMID: 20610532 DOI: 10.1152/ajprenal.00047.2010] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
A deficiency in nitric oxide (NO) generation leads to salt-sensitive hypertension, but the role of increased superoxide (O(2)(-)) in such salt sensitivity has not been delineated. We examined the hypothesis that an enhancement in O(2)(-) activity induced by high-salt (HS) intake under deficient NO production contributes to the development of salt-sensitive hypertension. Endothelial NO synthase knockout (eNOS KO; total n = 64) and wild-type (WT; total n = 58) mice were given diets containing either normal (NS; 0.4%) or high-salt (HS; 4%) for 2 wk. During this period, mice were chronically treated with a O(2)(-) scavenger, tempol (400 mg/l), or an inhibitor of NADPH oxidase, apocynin (1 g/l), in drinking water or left untreated (n = 6-8 per group). Blood pressure was measured by radiotelemetry and 24-h urine samples were collected in metabolic cages. Basal mean arterial pressure (MAP) in eNOS KO was higher (125 +/- 4 vs. 106 +/- 3 mmHg) compared with WT. Feeding HS diet did not alter MAP in WT but increased it in eNOS KO to 166 +/- 9 mmHg. Both tempol and apocynin treatment significantly attenuated the MAP response to HS in eNOS KO (134 +/- 3 and 139 +/- 4 mmHg, respectively). Basal urinary 8-isoprostane excretion rates (U(Iso)V), a marker for endogenous O(2)(-) activity, were similar (2.8 +/- 0.2 and 2.4 +/- 0.3 ng/day) in both eNOS KO and WT mice. However, HS increased U(Iso)V more in eNOS KO than in WT (4.6 +/- 0.3 vs. 3.8 +/- 0.2 ng/day); these were significantly attenuated by both tempol and apocynin treatment. These data indicate that an enhancement in O(2)(-) activity contributes substantially to the development of salt-sensitive hypertension under NO-deficient conditions.
Collapse
Affiliation(s)
- Libor Kopkan
- Department of Physiology, Tulane Hypertension and Renal Center of Excellence, Tulane University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | | | | | | | | | | |
Collapse
|
47
|
Intrarenal cytochrome P-450 metabolites of arachidonic acid in the regulation of the nonclipped kidney function in two-kidney, one-clip Goldblatt hypertensive rats. J Hypertens 2010; 28:582-93. [PMID: 19940786 DOI: 10.1097/hjh.0b013e328334dfd4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
OBJECTIVE The contribution of epoxyeicosatrienoic acids (EETs) and 20-hydroxyeicosatetraenoic acid (20-HETE) as cytochrome P-450 metabolites of arachidonic acid in the regulation of the nonclipped kidney function in two-kidney, one-clip (2K1C) Goldblatt hypertensive rats was investigated during the phases of initial and stable hypertension, that is, 7 or 27 days after clipping, respectively. METHODS Male Hannover Sprague-Dawley rats had the right renal artery clipped or underwent sham operation. Urinary excretion of EETs, their inactive metabolites dihydroxyeicosatrienoic acids and of 20-HETE was measured. Intrarenal cytochrome P-450 protein expression and the activities of epoxygenase, omega-hydroxylase and soluble epoxide hydrolase were also determined. The responses of renal hemodynamics and electrolyte excretion of the nonclipped kidney to left renal artery infusions of inhibitors of EETs or 20-HETE formation (MS-PPOH and DDMS, respectively) were measured. RESULTS In 2K1C rats, urinary excretion of EETs was significantly lower and that of 20-HETE was higher than that in sham-operated animals only on day 27 after clipping. Intrarenal inhibition of EETs significantly decreased renal hemodynamics and sodium excretion in sham-operated but not in 2K1C rats. Intrarenal inhibition of 20-HETE decreased sodium excretion in sham-operated rats but elicited increases in renal hemodynamics and sodium excretion in 2K1C rats. CONCLUSION Our results indicate that the nonclipped kidney of Goldblatt 2K1C rats in the phase of sustained hypertension exhibits decreased intrarenal EETs and elevated 20-HETE levels as compared with the kidney of sham-operated animals. This suggests that altered production and action of cytochrome P-450-derived metabolites during this stable phase contributes to the mechanism of Goldblatt 2K1C hypertension.
Collapse
|
48
|
Inappropriately high circulating and intrarenal angiotensin II levels during dietary salt loading exacerbate hypertension in Cyp1a1–Ren-2 transgenic rats. J Hypertens 2010; 28:495-509. [DOI: 10.1097/hjh.0b013e3283345d69] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
49
|
Impairment of the angiotensin-converting enzyme 2-angiotensin-(1-7)-Mas axis contributes to the acceleration of two-kidney, one-clip Goldblatt hypertension. J Hypertens 2010; 27:1988-2000. [PMID: 19593210 DOI: 10.1097/hjh.0b013e32832f0d06] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Recent studies have shown that the heptapeptide angiotensin-(1-7) [Ang-(1-7)] exerts important vasoactive actions and can act as an endogenous physiological antagonist of angiotensin II (Ang II) within the renin-angiotensin system (RAS). The present study was performed to evaluate the effects, first, of chronic increases of Ang-(1-7) levels, second, of [7-D-Ala], an Ang-(1-7) receptor antagonist, and, third, of an angiotensin-converting enzyme 2 (ACE2) inhibitor on the course of hypertension and of renal function of the nonclipped kidney in two-kidney, one-clip (2K1C) Goldblatt hypertensive rats. METHODS Blood pressure (BP) was monitored by radiotelemetry. Elevation of the effect of circulating Ang-(1-7) levels was achieved either by chronic subcutaneous infusion of Ang-(1-7) through osmotic minipumps or by employing transgenic rats that express an Ang-(1-7)-producing fusion protein [Ang-(1-7)TGR+/+] (and its control Ang-(1-7)TGR-/-). [7-D-Ala] was also infused subcutaneously and the ACE2 inhibitor was administrated in drinking water. On day 25 after clipping, rats were anesthetized and renal function was evaluated. RESULTS Chronic infusion of Ang-(1-7) did not modify the course of 2K1C hypertension and did not alter renal function as compared with saline vehicle-infused 2K1C rats. Chronic infusion of [7-D-Ala] or treatment with the ACE2 inhibitor worsened the course of hypertension and elicited decreases in renal hemodynamics. [Ang-(1-7)TGR+/+] and [Ang-(1-7)TGR-/-] rats exhibited a similar course of hypertension. CONCLUSION The present data support the notion that Ang-(1-7) serves as an important endogenous vasodilator and natriuretic agent and its deficiency might contribute to the acceleration of 2K1C Goldblatt hypertension.
Collapse
|
50
|
Impairment of the autoregulation of renal hemodynamics and of the pressure-natriuresis relationship precedes the development of hypertension in Cyp1a1-Ren-2 transgenic rats. J Hypertens 2009; 27:575-86. [PMID: 19330918 DOI: 10.1097/hjh.0b013e32831cbd5a] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
OBJECTIVE The present study was performed to characterize the autoregulatory efficiency of renal blood flow and glomerular filtration rate and the pressure-natriuresis relationship in transgenic rats with inducible angiotensin II (ANG II)-dependent hypertension (Cyp1a1-Ren-2 rats). METHODS The renin gene was induced in Cyp1a1-Ren-2 rats through dietary administration of the natural xenobiotic indole-3-carbinol (I3C, 0.3%) for 12 and 24 h, respectively. Noninduced rats served as controls. Anesthetized rats were prepared for renal function studies and an aortic clamp was placed above the junction of the left renal artery to regulate the level of renal arterial pressure. Plasma renin activity, ANG II and aldosterone levels were measured at the end of the experiment by radioimmunoassay. RESULTS Administration of I3C resulted in progressive increases in plasma renin activity and plasma and kidney ANG II levels; however, it did not significantly alter aldosterone levels as compared with those in noninduced rats. I3C induction for 12 h did not cause significant changes in blood pressure as compared with those in noninduced rats. I3C induction for 24 h elicited a significant rise in blood pressure. Twelve-hour I3C induction caused an impairment of the autoregulatory efficiency of renal blood flow and glomerular filtration rate and of the pressure-natriuresis relationship as compared with that in noninduced rats. In addition, 24 h I3C induction of the renin gene resulted in a marked reduction in renal blood flow and glomerular filtration rate and a further impairment of the pressure-natriuresis mechanism as compared with that in noninduced rats. CONCLUSION Our findings indicate that an impairment of the pressure-natriuresis mechanism precedes the development of ANG II-dependent hypertension in Cyp1a1-Ren-2 transgenic rats.
Collapse
|