1
|
Yilmaz Y. Health-Promoting Effects of Black Tea: A Narrative Review of Clinical Trials. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2025; 2025:8560718. [PMID: 40008375 PMCID: PMC11858714 DOI: 10.1155/ijfo/8560718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 02/01/2025] [Indexed: 02/27/2025]
Abstract
Black tea, a popular beverage, is rich in polyphenols. However, thorough analyses of clinical trial evidence supporting its health benefits are lacking. This narrative review is aimed at addressing this knowledge gap by synthesizing findings across pivotal clinical domains and identifying critical areas for further investigation. A comprehensive search of PubMed/MEDLINE, PubMed Central, Scopus, Web of Science, and Google Scholar was performed for English-language papers from January 1990 to July 2024, focusing on cardiovascular and metabolic health, as well as cognitive function. Findings from clinical trials indicated that consuming black tea regularly enhances endothelial and vascular health, notably by improving flow-mediated vasodilation. These advantages are largely due to the tea's antioxidant, anti-inflammatory, and gut microbiota-modulating effects, including the promotion of beneficial bacterial species such as Flavonifractor plautii. Effects on metabolic health, such as lipid profiles and glucose metabolism, were inconsistent. However, black tea was linked to improved cognitive function, especially attention and alertness, likely due to caffeine and L-theanine. Despite these promising results, further research is needed to overcome limitations like small sample sizes and short study durations. Future studies should be aimed at standardizing black tea preparations to optimize health benefits.
Collapse
Affiliation(s)
- Yusuf Yilmaz
- Department of Gastroenterology, School of Medicine, Recep Tayyip Erdoğan University, Rize, Türkiye
| |
Collapse
|
2
|
Stankovic S, Mutavdzin Krneta S, Djuric D, Milosevic V, Milenkovic D. Plant Polyphenols as Heart's Best Friends: From Health Properties, to Cellular Effects, to Molecular Mechanisms of Action. Int J Mol Sci 2025; 26:915. [PMID: 39940685 PMCID: PMC11816429 DOI: 10.3390/ijms26030915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 12/22/2024] [Accepted: 01/18/2025] [Indexed: 02/16/2025] Open
Abstract
Polyphenols are micronutrients found in fruits, vegetables, tea, coffee, cocoa, medicinal herbs, fish, crustaceans, and algae. They can also be synthesized using recombinant microorganisms. Interest in plant-derived natural compounds has grown due to their potential therapeutic effects with minimal side effects. This is particularly important as the aging population faces increasing rates of chronic diseases such as cancer, diabetes, arthritis, cardiovascular, and neurological disorders. Studies have highlighted polyphenols' capacity to reduce risk factors linked to the onset of chronic illnesses. This narrative review discusses polyphenol families and their metabolism, and the cardioprotective effects of polyphenols evidenced from in vitro studies, as well as from in vivo studies, on different animal models of cardiac disease. This study also explores the molecular mechanisms underlying these benefits. Current research suggests that polyphenols may protect against ischemia, hypertension, cardiac hypertrophy, heart failure, and myocardial injury through complex mechanisms, including epigenetic and genomic modulation. However, further studies under nutritionally and physiologically relevant conditions, using untargeted multigenomic approaches, are needed to more comprehensively elucidate these mechanisms and firmly prove the cardioprotective effects of polyphenols.
Collapse
Affiliation(s)
- Sanja Stankovic
- Center for Medical Biochemistry, University Clinical Center of Serbia, 11000 Belgrade, Serbia
- Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Slavica Mutavdzin Krneta
- Institute of Medical Physiology “Richard Burian”, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (S.M.K.); (D.D.)
| | - Dragan Djuric
- Institute of Medical Physiology “Richard Burian”, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (S.M.K.); (D.D.)
| | - Verica Milosevic
- Department of Anatomy, Faculty of Medicine, University of Niš, 18000 Nis, Serbia;
| | - Dragan Milenkovic
- Department of Food, Bioprocessing and Nutrition Sciences, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC 28081, USA
- Department of Nutrition, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
3
|
Schini-Kerth VB, Diouf I, Muzammel H, Said A, Auger C. Natural Products to Promote Vascular Health. Handb Exp Pharmacol 2025; 287:33-60. [PMID: 39317849 DOI: 10.1007/164_2024_721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Maintaining good vascular health is a major component in healthy ageing as it reduces the risk of cardiovascular diseases. Endothelial dysfunction, in particular, is a key mechanism in the development of major cardiovascular diseases including hypertension, atherosclerosis and diabetes. Recently, endothelial senescence has emerged as a pivotal early event in age-related endothelial dysfunction. Endothelial function is characterized by an imbalance between the endothelial formation of vasoprotective mechanisms, including the formation of nitric oxide (NO) and endothelium-dependent hyperpolarization responses, and an increased level of oxidative stress involving several pro-oxidant enzymes such as NADPH oxidases and, often also, the appearance of cyclooxygenase-derived vasoconstrictors. Pre-clinical studies have indicated that natural products, in particular several polyphenol-rich foods, can trigger activating pathways in endothelial cells promoting an increased formation of NO and endothelium-dependent hyperpolarization. In addition, some can even exert beneficial effects on endothelial senescence. Moreover, some of these products have been associated with the prevention and/or improvement of established endothelial dysfunction in several experimental models of cardiovascular diseases and in humans with cardiovascular diseases. Therefore, intake of certain natural products, such as dietary and plant-derived polyphenol-rich products, appears to be an attractive approach for a healthy vascular system in ageing.
Collapse
Affiliation(s)
- Valérie B Schini-Kerth
- Translational Cardiovascular Medicine, UR 3074, CRBS, University of Strasbourg, Strasbourg, France.
| | - Ibrahima Diouf
- Translational Cardiovascular Medicine, UR 3074, CRBS, University of Strasbourg, Strasbourg, France
| | - Hira Muzammel
- Translational Cardiovascular Medicine, UR 3074, CRBS, University of Strasbourg, Strasbourg, France
| | - Amissi Said
- Translational Cardiovascular Medicine, UR 3074, CRBS, University of Strasbourg, Strasbourg, France
| | - Cyril Auger
- Regenerative Nanomedicine, INSERM UMR 1260, CRBS, University of Strasbourg, Strasbourg, France
| |
Collapse
|
4
|
Theodoridis X, Chourdakis M, Papaemmanouil A, Chaloulakou S, Papageorgiou N, Georgakou AV, Chatzis G, Triantafyllou A. The Association between Food Groups, Nutraceuticals, and Food Supplements Consumption on Vascular Health Outcomes: A Literature Review. Life (Basel) 2024; 14:1210. [PMID: 39337992 PMCID: PMC11433244 DOI: 10.3390/life14091210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/29/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Vascular aging, marked by alterations in the structure and function of blood vessels, including heightened arterial stiffness and impaired endothelial function, is linked to a higher likelihood of developing cardiovascular and age-associated pathological conditions. Oxidative stress and inflammation are key stimulation factors in vascular aging. Engaging in healthy dietary habits could enhance the functioning of blood vessels. The aim of this study was to conduct a literature review of the evidence regarding the relationship between food regimens, nutraceuticals, and dietary supplements and vascular health. A search of electronic databases, including PubMed, Scopus, and Web of Science Core Collection, was performed. Experimental and observational studies evaluating the association between food groups, nutraceuticals, supplements, and endothelial function and/or arterial stiffness were deemed eligible for this narrative review. Based on the current body of the included studies, food groups, nutraceuticals, and dietary supplements may not demonstrate superiority over placebos in enhancing markers of vascular health. To obtain more reliable evidence on the effectiveness of interventions in vascular health, additional RCTs with larger sample sizes, extended follow-up periods, and multi-center participation are necessary. Enhancing the credibility of these RCTs requires better control of dietary variables and more precise measurement of vascular health markers.
Collapse
Affiliation(s)
- Xenophon Theodoridis
- Laboratory of Hygiene, Social and Preventive Medicine and Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece; (X.T.); (A.P.); (S.C.); (N.P.); (A.V.G.)
- Third Department of Internal Medicine, Papageorgiou Hospital, Aristotle University of Thessaloniki, 56429 Thessaloniki, Greece
| | - Michail Chourdakis
- Laboratory of Hygiene, Social and Preventive Medicine and Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece; (X.T.); (A.P.); (S.C.); (N.P.); (A.V.G.)
| | - Androniki Papaemmanouil
- Laboratory of Hygiene, Social and Preventive Medicine and Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece; (X.T.); (A.P.); (S.C.); (N.P.); (A.V.G.)
| | - Stavroula Chaloulakou
- Laboratory of Hygiene, Social and Preventive Medicine and Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece; (X.T.); (A.P.); (S.C.); (N.P.); (A.V.G.)
| | - Niki Papageorgiou
- Laboratory of Hygiene, Social and Preventive Medicine and Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece; (X.T.); (A.P.); (S.C.); (N.P.); (A.V.G.)
| | - Athina Vasiliki Georgakou
- Laboratory of Hygiene, Social and Preventive Medicine and Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece; (X.T.); (A.P.); (S.C.); (N.P.); (A.V.G.)
| | - Georgios Chatzis
- School of Physical Education and Sports Science, Aristotle University of Thessaloniki, 57001 Thessaloniki, Greece;
| | - Areti Triantafyllou
- Third Department of Internal Medicine, Papageorgiou Hospital, Aristotle University of Thessaloniki, 56429 Thessaloniki, Greece
| |
Collapse
|
5
|
Komai M, Takeno D, Fujii C, Nakano J, Ohsaki Y, Shirakawa H. Nailfold Capillaroscopy: A Comprehensive Review on Its Usefulness in Both Clinical Diagnosis and Improving Unhealthy Dietary Lifestyles. Nutrients 2024; 16:1914. [PMID: 38931269 PMCID: PMC11206784 DOI: 10.3390/nu16121914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/16/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Since the 1970s, the utility of nailfold capillaroscopy (NFC) in diagnosing rheumatological disorders such as systemic sclerosis has been well established. Further studies have also shown that NFC can detect non-rheumatic diseases such as diabetes, glaucoma, dermatitis, and Alzheimer disease. In the past decade, nailfold capillary morphological changes have also been reported as symptoms of unhealthy lifestyle habits such as poor diet, smoking, sleep deprivation, and even psychological stress, all of which contribute to slow blood flow. Therefore, studying the relationships between the morphology of nailfold capillaries and lifestyle habits has a high potential to indicate unhealthy states or even pre-disease conditions. Simple, inexpensive, and non-invasive methods such as NFC are important and useful for routine medical examinations. The present study began with a systematic literature search of the PubMed database followed by a summary of studies reporting the assessment of morphological changes detected by NFC, and a comprehensive review of NFC's utility in clinical diagnosis and improving unhealthy dietary lifestyles. It culminates in a summary of dietary and lifestyle health promotion strategy, assessed based on NFC and other related measurements that indicate healthy microvascular blood flow and endothelial function.
Collapse
Affiliation(s)
- Michio Komai
- Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (Y.O.); (H.S.)
| | - Dan Takeno
- At Co., Ltd., Osaka 541-0042, Japan; (D.T.); (C.F.); (J.N.)
| | - Chiharu Fujii
- At Co., Ltd., Osaka 541-0042, Japan; (D.T.); (C.F.); (J.N.)
| | - Joe Nakano
- At Co., Ltd., Osaka 541-0042, Japan; (D.T.); (C.F.); (J.N.)
| | - Yusuke Ohsaki
- Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (Y.O.); (H.S.)
| | - Hitoshi Shirakawa
- Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (Y.O.); (H.S.)
| |
Collapse
|
6
|
Martemucci G, Khalil M, Di Luca A, Abdallah H, D’Alessandro AG. Comprehensive Strategies for Metabolic Syndrome: How Nutrition, Dietary Polyphenols, Physical Activity, and Lifestyle Modifications Address Diabesity, Cardiovascular Diseases, and Neurodegenerative Conditions. Metabolites 2024; 14:327. [PMID: 38921462 PMCID: PMC11206163 DOI: 10.3390/metabo14060327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 06/27/2024] Open
Abstract
Several hallmarks of metabolic syndrome, such as dysregulation in the glucose and lipid metabolism, endothelial dysfunction, insulin resistance, low-to-medium systemic inflammation, and intestinal microbiota dysbiosis, represent a pathological bridge between metabolic syndrome and diabesity, cardiovascular, and neurodegenerative disorders. This review aims to highlight some therapeutic strategies against metabolic syndrome involving integrative approaches to improve lifestyle and daily diet. The beneficial effects of foods containing antioxidant polyphenols, intestinal microbiota control, and physical activity were also considered. We comprehensively examined a large body of published articles involving basic, animal, and human studie, as well as recent guidelines. As a result, dietary polyphenols from natural plant-based antioxidants and adherence to the Mediterranean diet, along with physical exercise, are promising complementary therapies to delay or prevent the onset of metabolic syndrome and counteract diabesity and cardiovascular diseases, as well as to protect against neurodegenerative disorders and cognitive decline. Modulation of the intestinal microbiota reduces the risks associated with MS, improves diabetes and cardiovascular diseases (CVD), and exerts neuroprotective action. Despite several studies, the estimation of dietary polyphenol intake is inconclusive and requires further evidence. Lifestyle interventions involving physical activity and reduced calorie intake can improve metabolic outcomes.
Collapse
Affiliation(s)
| | - Mohamad Khalil
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari Medical School, 70121 Bari, Italy;
| | - Alessio Di Luca
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, 70126 Bari, Italy; (A.D.L.); (A.G.D.)
| | - Hala Abdallah
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari Medical School, 70121 Bari, Italy;
| | | |
Collapse
|
7
|
Palić B, Brizić I, Sher EK, Cvetković I, Džidić-Krivić A, Abdelghani HTM, Sher F. Effects of Zofenopril on Arterial Stiffness in Hypertension Patients. Mol Biotechnol 2023:10.1007/s12033-023-00861-5. [PMID: 37702881 DOI: 10.1007/s12033-023-00861-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/29/2023] [Indexed: 09/14/2023]
Abstract
Angiotensin-converting enzyme inhibitors (ACEIs) reduce arterial stiffness beyond their antihypertensive effect. Studies showed that sulfhydryl ACEIs have the antioxidative potential to improve endothelial function, which might have a clinical effect on arterial distensibility. However, there are no studies that directly compare the effects of sulfhydryl (zofenopril) and non-sulfhydryl ACEIs (enalapril) on arterial stiffness. Therefore, this prospective study aims to compare the effects of enalapril and zofenopril on arterial stiffness and oxidative stress in both short- and long-term treatment of arterial hypertension (AH). Baseline and post-treatment peripheral and central arterial pressure indices, augmentation index (Aix), aortic pulse wave velocity (ao-PWV), serum levels of oxidized low-density cholesterol lipoprotein, LDL and uric acid (UA) were measured. The results showed that acute treatment with zofenopril, in contrast to enalapril, significantly decreased peripheral and central Aix (p < 0.001). Chronic treatment with zofenopril showed a superior effect over enalapril on the reduction of the peripheral systolic arterial pressure with reduction of ao-PWV (p = 0.004), as well as a reduction in peripheral Aix (p = 0.021) and central Aix (p = 0.021). Therefore, this study indicates that zofenopril has beneficial effects on the reduction of arterial stiffness compared to enalapril. It has potent clinical efficacy in AH treatment and further studies should compare its safety and long-term efficacy to other AH drugs that would aid clinicians in treating AH and other various cardiovascular diseases that have arterial stiffness as a common denominator.
Collapse
Affiliation(s)
- Benjamin Palić
- Department of Internal Medicine, University Clinical Hospital Mostar, 88000, Mostar, Bosnia and Herzegovina
| | - Ivica Brizić
- Department of Internal Medicine, University Clinical Hospital Mostar, 88000, Mostar, Bosnia and Herzegovina
| | - Emina Karahmet Sher
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK.
| | - Ivona Cvetković
- Department of Laboratory Diagnostics, University Clinical Hospital Mostar, 88000, Mostar, Bosnia and Herzegovina
| | - Amina Džidić-Krivić
- Department of Neurology, Cantonal Hospital Zenica, 72000, Zenica, Bosnia and Herzegovina
- International Society of Engineering Science and Technology, Nottingham, UK
| | - Heba Taha Mohmmed Abdelghani
- Department of Physiology of Physical Activity, College of Sport Sciences and Physical Activity, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Farooq Sher
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK.
| |
Collapse
|
8
|
Lange KW. Tea in cardiovascular health and disease: a critical appraisal of the evidence. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2021.12.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
9
|
Grassi D, Necozione S, Desideri G, Abballe S, Mai F, De Feo M, Carducci A, Ferri C. Acute and Long Term Effects of a Nutraceutical Combination on Lipid Profile, Glucose Metabolism and Vascular Function in Patients with Dyslipidaemia with and Without Cigarette Smoking. High Blood Press Cardiovasc Prev 2021; 28:483-491. [PMID: 34519016 PMCID: PMC8484132 DOI: 10.1007/s40292-021-00468-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/25/2021] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION Lifestyle changes present a fundamental role in cardiovascular prevention. Nutraceuticals also supplementing diet could help in controlling the cardiometabolic risk. AIM (1) to evaluate acute effects of a combination of nutraceuticals (cNUT) on vascular function, BP, metabolism in dyslipidaemic patients before and after smoking; (2) to evaluate 12 weeks effects of the cNUT on lipid profile, insulin resistance and vascular function in patients with hypercholesterolemia not on statins. METHODS After 14 d run-in period, 33 patients assumed a cNUT [patented formula containing: berberine (531.25 mg), red yeast rice powder (220 mg, 3.3 mg monacolin K) and leaf extract of Morus alba (200 mg) (LopiGLIK®, Akademy Pharma)]. To evaluate acute effects, cNUT or cNUT + smoking (in smoking subjects) on the morning of the first day of the study and then 26 patients prolonged 12 weeks effects. RESULTS In non smokers, cNUT improved FMD (p = 0.041 for treatment). In smokers, FMD decreased after smoking, this was counteracted by intake of cNUT. In smokers, DBP increased after smoking a cigarette (p = 0.042 for treatment), counteracted by the cNUT intake. In non smokers, thermogenesis was increased after cNUT administration (p < 0.0001 for treatment). After 12 weeks of cNUT, FMD significantly increased (p < 0.05) and SBP (p = 0.04), total cholesterol and LDL cholesterol (p = 0.03) decreased. CONCLUSIONS Our study suggests benefits of cNUT on cardiovascular prevention in hypercolesterolemic patients, non statin treated, that goes beyond the cholesterol and insulin resistance reduction protecting the subject from negative effects induced by smoking too.
Collapse
Affiliation(s)
- Davide Grassi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Viale S Salvatore, Delta 6 Medicina, 67100, L'Aquila, Coppito, Italy.
| | - Stefano Necozione
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Viale S Salvatore, Delta 6 Medicina, 67100, L'Aquila, Coppito, Italy
| | - Giovambattista Desideri
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Viale S Salvatore, Delta 6 Medicina, 67100, L'Aquila, Coppito, Italy
| | - Stefano Abballe
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Viale S Salvatore, Delta 6 Medicina, 67100, L'Aquila, Coppito, Italy
| | - Francesca Mai
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Viale S Salvatore, Delta 6 Medicina, 67100, L'Aquila, Coppito, Italy
| | - Martina De Feo
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Viale S Salvatore, Delta 6 Medicina, 67100, L'Aquila, Coppito, Italy
| | - Augusto Carducci
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Viale S Salvatore, Delta 6 Medicina, 67100, L'Aquila, Coppito, Italy
| | - Claudio Ferri
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Viale S Salvatore, Delta 6 Medicina, 67100, L'Aquila, Coppito, Italy
| |
Collapse
|
10
|
Roberts KA, Draijer R, Hopkins ND, de Graaf Y, Holder SM, Carter SE, Thijssen DHJ, Low DA. Impact of green tea on the deleterious cardiometabolic effects of 7-days unhealthy lifestyle in young healthy males. Physiol Rep 2021; 9:e14720. [PMID: 33682367 PMCID: PMC7937942 DOI: 10.14814/phy2.14720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/15/2020] [Accepted: 12/15/2020] [Indexed: 11/24/2022] Open
Abstract
PURPOSE The aim of this study was to examine if catechin-rich green tea abrogates the negative effects of 7-days of physical inactivity and excessive calorie-intake on insulin homeostasis and peripheral vascular function. METHODS Using a randomized, double-blind, crossover design, twelve healthy men (29 ± 6 yrs) underwent 7-days unhealthy lifestyle (UL), including physical inactivity (-50% steps/day) and overfeeding (+50% kcal/day). This was combined with green tea consumption (UL-tea; 3 doses/day) or placebo (UL-placebo). Before and after each intervention, we examined postprandial blood glucose and insulin (3-h after a 1,202 kcal meal) and upper and lower limb vascular function (flow-mediated dilation (FMD%)) and carotid artery reactivity (CAR%). RESULTS UL-placebo increased postprandial glucose and insulin, while UL-tea decreased postprandial glucose and insulin (Time*Intervention interaction effects: both p < 0.05). UL-placebo decreased CAR% and femoral FMD%, while UL-tea prevented these effects (Time*Intervention interaction effects of p < 0.04 and p < 0.001, respectively). There was no main effect of Time or Time*Intervention interaction (both p > 0.05) for brachial FMD%. CONCLUSION Seven days of physical inactivity and overfeeding impair insulin homeostasis and vascular function. These effects were mitigated by a daily intake of catechin-rich green tea.
Collapse
Affiliation(s)
- Kirsty A Roberts
- Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool, UK
| | - Richard Draijer
- Unilever Foods Innovation Centre, Wageningen, The Netherlands
| | - Nicola D Hopkins
- Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool, UK
| | - Young de Graaf
- Unilever Foods Innovation Centre, Wageningen, The Netherlands
| | - Sophie M Holder
- Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool, UK
| | - Sophie E Carter
- Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool, UK
| | - Dick H J Thijssen
- Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool, UK.,Department of Physiology, Research Institute for Health Science, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - David A Low
- Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool, UK
| |
Collapse
|
11
|
Burcham PC, Le J, Ma L. An immunoblot assay for cysteine oxidation by reactive oxygen species allows detection of novel thioprotective efficacy of black tea extracts. J Pharmacol Toxicol Methods 2021; 108:106957. [PMID: 33636341 DOI: 10.1016/j.vascn.2021.106957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/09/2021] [Accepted: 02/16/2021] [Indexed: 11/24/2022]
Abstract
INTRODUCTION While cysteine thiol groups help to maintain the redox status of many proteins, they can be very susceptible to damaging oxidants. Despite broad interest in their antioxidant properties, whether tea polyphenols protect against protein thiol damage of this kind is unclear. This study sought to develop a simple immunoassay for use in screening tea extracts and other antioxidants for thioprotective efficacy at protein thiol groups. METHODS Fresh aqueous extracts were prepared from commercially sourced green, white, black and red teas. Traut's reagent (2-iminothiolane) was used to prepare surface-thiolated bovine serum albumin for use as assay substrate in the protein oxidation assay. Oxidative damage was induced during a 15 min incubation with hydrogen peroxide (H2O2) in the presence of tea extracts and reference antioxidants. The substrate protein was then derivatised with dimedone before samples were loaded onto a nitrocellulose membrane housed within a Slot-Blot apparatus. After blocking nonspecific protein binding a commercially available antibody was used to detect dimedone-labelled groups. RESULTS While the total phenol content of tea extracts typically correlated with their activity in lipid peroxidation and galvinoxyl radical-trapping assays, the former did not fully predict their abilities to suppress H2O2-induced cysteine oxidation, with black tea extracts displaying greater activity than the other teas and an apparent ability to reverse pre-existing cysteine oxidation. Among the model antioxidants tested, quercetin displayed a heightened ability to suppress cysteine oxidation. DISCUSSION This slot-blot immunoassay is a convenient method that facilitates standardised comparisons between the thioprotective properties of structurally- and constitutively-diverse antioxidants.
Collapse
Affiliation(s)
- Philip C Burcham
- Division of Pharmacy, School of Allied Health, The University of Western Australia, Nedlands, Western Australia 6007, Australia; Division of Pharmacology, School of Biomedical Science, The University of Western Australia, Nedlands, Western Australia 6007, Australia.
| | - Julie Le
- Division of Pharmacology, School of Biomedical Science, The University of Western Australia, Nedlands, Western Australia 6007, Australia.
| | - Louis Ma
- School of Medicine, The University of Western Australia, Nedlands, Western Australia 6007, Australia
| |
Collapse
|
12
|
Tea consumption and its effects on primary and secondary prevention of coronary artery disease: Qualitative synthesis of evidence from randomized controlled trials. Clin Nutr ESPEN 2021; 41:77-87. [PMID: 33487310 DOI: 10.1016/j.clnesp.2020.11.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/27/2020] [Accepted: 11/10/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIMS There is a general interest in understanding how the consumption of tea impacts cardiovascular function in individuals at risk of developing cardiovascular disease (CVD). The current review focuses on evidence from randomized controlled trials (RCTs) reporting on associations between tea consumption and endothelial function, in the primary and secondary prevention of coronary artery disease (CAD). METHODS PubMed, EMBASE, and Google Scholar databases/search engines were used to identify eligible studies. Included studies had to report on the impact of tea supplementation of endothelial function or CAD related markers. In addition to flow-mediated dilation (FMD), makers of oxidative stress and inflammation such as oxidized low-density lipoprotein and C-reactive protein were considered as determinants of endothelial function. A total of 34 RCTs met the inclusion criteria, and these reported on the impact of tea consumption on endothelial function in individuals at risk of CVD or patients with CAD. RESULTS The current qualitative synthesis of literature demonstrates that beyond enhancing nitric oxide bioavailability and lowering blood pressure, regular consumption of tea and its active ingredients such as epigallocatechin gallate may be beneficial in reducing markers of oxidative stress and inflammation. Moreover, the reduction of oxidized low-density lipoprotein and C-reactive protein levels, could be a sign of improved endothelial function in individuals at increased risk of developing CVD. CONCLUSIONS The cumulative evidence also suggests that the development of epigallocatechin gallate as a nutraceutical or enriching foods with this bioactive compound could be a feasible strategy to improve endothelial function and lower CVD-risk. However, well-designed RCTs are still necessary to confirm long-term benefits of tea consumption on vascular health.
Collapse
|
13
|
Anti-hyperglycaemic and insulin-releasing effects of Camellia sinensis leaves and isolation and characterisation of active compounds. Br J Nutr 2020; 126:1149-1163. [PMID: 33331251 DOI: 10.1017/s0007114520005085] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Anti-diabetic actions of Camellia sinensis leaves, used traditionally for type 2 diabetes (T2DM) treatment, have been determined. Insulin release, membrane potential and intra-cellular Ca were studied using the pancreatic β-cell line, BRIN-BD11 and primary mouse pancreatic islets. Cellular glucose-uptake/insulin action by 3T3-L1 adipocytes, starch digestion, glucose diffusion, dipeptidyl peptidase-4 (DPP-IV) activity and glycation were determined together with in vivo studies assessing glucose homoeostasis in high-fat-fed (HFF) rats. Active phytoconstituents with insulinotropic activity were isolated using reversed-phase HPLC, LCMS and NMR. A hot water extract of C. sinensis increased insulin secretion in a concentration-dependent manner. Insulinotropic effects were significantly reduced by diazoxide, verapamil and under Ca-free conditions, being associated with membrane depolarisation and increased intra-cellular Ca2+. Insulin-releasing effects were observed in the presence of KCl, tolbutamide and isobutylmethylxanthine, indicating actions beyond K+ and Ca2+ channels. The extract also increased glucose uptake/insulin action in 3T3L1 adipocyte cells and inhibited protein glycation, DPP-IV enzyme activity, starch digestion and glucose diffusion. Oral administration of the extract enhanced glucose tolerance and insulin release in HFF rats. Extended treatment (250 mg/5 ml per kg orally) for 9 d led to improvements of body weight, energy intake, plasma and pancreatic insulin, and corrections of both islet size and β-cell mass. These effects were accompanied by lower glycaemia and significant reduction of plasma DPP-IV activity. Compounds isolated by HPLC/LCMS, isoquercitrin and rutin (464·2 Da and 610·3 Da), stimulated insulin release and improved glucose tolerance. These data indicate that C. sinensis leaves warrant further evaluation as an effective adjunctive therapy for T2DM and source of bioactive compounds.
Collapse
|
14
|
Ma C, Zheng X, Yang Y, Bu P. The effect of black tea supplementation on blood pressure: a systematic review and dose-response meta-analysis of randomized controlled trials. Food Funct 2020; 12:41-56. [PMID: 33237083 DOI: 10.1039/d0fo02122a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The main goal of this work was to clarify the effects of black tea supplementation on blood pressure (BP) by performing a systematic review according to the PRISMA (preferred reporting items for systematic reviews and meta-analyses) guidelines, followed by a dose-response meta-analysis of randomized controlled trials (RCTs). Electronic search was carried out in PubMed, Embase and the Cochrane Library databases published up to March 2020. To be included, RCTs had to report the effect of black tea supplementation on systolic blood pressure (SBP) or diastolic blood pressure (DBP) in adults. A total of 13 trials, including 22 study arms were eligible for inclusion in the final quantitative analysis. It was observed that black tea supplementation significantly reduced SBP (WMD - 1.04 mmHg; 95% CI - 2.05 to -0.03; and P = 0.04) and DBP (WMD - 0.59 mmHg; 95% CI - 1.05 to -0.13; and P = 0.01) compared to the control. However, nonlinear analysis failed to indicate a significant influence of black tea flavonoid supplementation dose or duration on both SBP and DBP. Sensitivity analysis showed that no individual study had a significant impact on our results. In addition, we found no evidence for the presence of small-study effects among studies for both SBP and DBP. Thus, the favorable effect of black tea supplementation emerging from the current meta-analysis suggests the possible use of this tea as an active compound in order to promote cardiovascular health, mostly when used for longer duration (>7 days) and in men. Furthermore RCTs using different doses of black tea and various durations may contribute to confirming our conclusion.
Collapse
Affiliation(s)
- Chang Ma
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.
| | - Xuehui Zheng
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.
| | - Yi Yang
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Peili Bu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
15
|
Suzuki K, Hirashima N, Fujii Y, Fushimi T, Yamamoto A, Ueno T, Akagi R, Osakabe N. Theaflavins decrease skeletal muscle wasting in disuse atrophy induced by hindlimb suspension in mice. J Clin Biochem Nutr 2020; 68:228-234. [PMID: 34025025 PMCID: PMC8129979 DOI: 10.3164/jcbn.20-68] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 08/05/2020] [Indexed: 01/08/2023] Open
Abstract
We previously found that a single dose of theaflavins induced skeletal muscle metabolic changes. In this study, we examined the effect of theaflavins on disuse muscle atrophy model mice by hindlimb suspension. Mice were assigned to 4 groups; ground-vehicle, ground-theaflavins, suspension-vehicle, and suspension-theaflavins, dosed with theaflavins (250 mg/kg/day) for 2 weeks. The peak of myotube size of cross sectional area was significantly moved to the smaller side in the suspension-vehicle group compared with the ground-vehicle group, and these shifts were significantly reduced by the treatment with theaflavins in both soleus and extensor digitorum longus. The level of phosphorylated eukaryotic translation initiation factor 4E-binding protein (4EBP)-1, located downstream of the Akt/mTOR pathway, was significantly different between suspension-vehicle and suspension-theaflavins in soleus. The ratio of forkhead box O (FoxO) 3a to phosphorylated FoxO3a significantly increased in soleus or tended to rise in extensor digitorum longus of suspension-vehicle group compared with ground-vehicle. In contrast, these changes were not observed in suspension-theaflavins group. These results suggested that theaflavins inhibited the progress of disuse muscle atrophy through modulation of protein metabolism.
Collapse
Affiliation(s)
- Kenta Suzuki
- Department of Bio-science and Engineering, Shibaura Institute of Technology, 307 Fukasaku, Munumaku, Saitama 337-8570, Japan
| | - Nayuta Hirashima
- Department of Bio-science and Engineering, Shibaura Institute of Technology, 307 Fukasaku, Munumaku, Saitama 337-8570, Japan
| | - Yasuyuki Fujii
- Department of Bio-science and Engineering, Shibaura Institute of Technology, 307 Fukasaku, Munumaku, Saitama 337-8570, Japan
| | - Taiki Fushimi
- Department of Bio-science and Engineering, Shibaura Institute of Technology, 307 Fukasaku, Munumaku, Saitama 337-8570, Japan
| | - Ayaka Yamamoto
- Division of Research and Development, Yaizu Suisankagaku Ind. Co. Ltd., 5-8-13 Kogawashinmachi, Yaizu, Shizuoka 425-8570, Japan
| | - Tomoya Ueno
- Division of Research and Development, Yaizu Suisankagaku Ind. Co. Ltd., 5-8-13 Kogawashinmachi, Yaizu, Shizuoka 425-8570, Japan
| | - Ryota Akagi
- Department of Bio-science and Engineering, Shibaura Institute of Technology, 307 Fukasaku, Munumaku, Saitama 337-8570, Japan
| | - Naomi Osakabe
- Department of Bio-science and Engineering, Shibaura Institute of Technology, 307 Fukasaku, Munumaku, Saitama 337-8570, Japan
| |
Collapse
|
16
|
Wang M, Bai Y, Wang Z, Zhang Z, Liu D, Lian X. Higher tea consumption is associated with decreased risk of small vessel stroke. Clin Nutr 2020; 40:1430-1435. [PMID: 32943239 DOI: 10.1016/j.clnu.2020.08.039] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/25/2020] [Accepted: 08/28/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIM Observational studies have reported that tea consumption is associated with risk of stroke. However, this observed association is inconsistent, and whether this observed association is due to confounding factors or reverse causation remains unclear. Thus, we applied a two-sample mendelian randomization (MR) approach to determine whether genetically predicted tea consumption is causally associated with risk of stroke, ischemic stroke (IS), and IS subtypes. METHODS UK Biobank available data (349,376 samples of European ancestry) was used to identify single nucleotide polymorphisms associated with tea consumption (cups/day). The summary statistics for stroke, IS, and IS subtypes were obtained from the MEGASTROKE consortium with 40,585 stroke cases and 406,111 controls. RESULTS We found that genetically predicted an extra daily cup of tea consumption was casually associated with a reduced risk of small vessel stroke (odds ratio (OR), 0.79; 95% confidence interval (CI), 0.69-0.91; P = 0.001), but not with cardioembolic stroke (OR, 0.97; 95% CI, 0.86-1.09; P = 0.582), large artery stroke (OR, 0.95; 95% CI, 0.82-1.10; P = 0.506), stroke (OR, 1.00; 95% CI, 0.95-1.06; P = 0.889) or IS (OR, 0.95; 95% CI, 0.89-1.01; P = 0.083). CONCLUSIONS Our study provided evidence that genetically predicted an extra daily cup of tea consumption is causally associated with a reduced risk of small vessel stroke.
Collapse
Affiliation(s)
- Mengmeng Wang
- Department of Neurology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Yongjie Bai
- Department of Neurology, First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Zhen Wang
- Department of Neurology, Changsha Central Hospital, Changsha, China
| | - Zhizhong Zhang
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Dandan Liu
- Department of Geriatrics, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Xuegan Lian
- Department of Neurology, The Third Affiliated Hospital of Soochow University, Changzhou, China.
| |
Collapse
|
17
|
Yamashita Y, Wang L, Nakamura A, Nanba F, Saito S, Toda T, Nakagawa J, Ashida H. Black soybean improves the vascular function through an increase in nitric oxide and a decrease in oxidative stress in healthy women. Arch Biochem Biophys 2020; 688:108408. [PMID: 32470460 DOI: 10.1016/j.abb.2020.108408] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/06/2020] [Accepted: 05/09/2020] [Indexed: 01/07/2023]
Abstract
Vascular dysfunction and injurious stimuli such as oxidative stress is closely related to the risk of cardiovascular diseases (CVD). Dietary polyphenols is reported to exert the beneficial effects on reducing the risk of CVD. Black soybean is rich in polyphenols, including isoflavones, anthocyanidins and flavan-3-ols, and its prevention effects on CVD risk were reported in the animal experiments. In this study, we investigated the effect of black soybean consumption on the vascular function and oxidative stress associating with the polyphenol concentrations in healthy women. Lowered vascular age was observed in 33 out of 44 volunteers who completed the 8-week trial. It was observed that improvement of the vascular stiffness, increasing in the urinary NO2 and NO3 level, and decreasing in the oxidative stress markers, 8-hydroxy-2'-deoxyguanosine, hexanoyl-lysine and myeloperoxidase. In addition, concentration of 12 polyphenols in black soybean increased in the plasma and urine. Increased concentration of polyphenols would be involved in the decreased oxidative stress. Thus, black soybean consumption improved the vascular function through an increase in nitric oxide and a decrease in oxidative stress accompanied by increasing the polyphenol concentrations in healthy women.
Collapse
Affiliation(s)
- Yoko Yamashita
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe, 657-8501, Japan.
| | - Liuqing Wang
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe, 657-8501, Japan
| | - Asuka Nakamura
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe, 657-8501, Japan
| | - Fumio Nanba
- Fujicco Co. Ltd, Research Development, 6-13-4, Minatojima-Nakamachi, Chuo-Ku, Kobe, 650-8558, Japan
| | - Shizuka Saito
- Fujicco Co. Ltd, Research Development, 6-13-4, Minatojima-Nakamachi, Chuo-Ku, Kobe, 650-8558, Japan
| | - Toshiya Toda
- Fujicco Co. Ltd, Research Development, 6-13-4, Minatojima-Nakamachi, Chuo-Ku, Kobe, 650-8558, Japan
| | - Junichi Nakagawa
- Nakagawa Clinic, 3-15-4, Higashisonoda-cho, Amagasaki, 661-0953, Japan
| | - Hitoshi Ashida
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe, 657-8501, Japan
| |
Collapse
|
18
|
Effect of dark chocolate on flow-mediated dilatation: Systematic review, meta-analysis, and dose–response analysis of randomized controlled trials. Clin Nutr ESPEN 2020; 36:17-27. [DOI: 10.1016/j.clnesp.2019.10.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 10/24/2019] [Accepted: 10/25/2019] [Indexed: 02/07/2023]
|
19
|
Luo D, Chen X, Zhu X, Liu S, Li J, Xu J, Zhao J, Ji X. Pu-Erh Tea Relaxes the Thoracic Aorta of Rats by Reducing Intracellular Calcium. Front Pharmacol 2019; 10:1430. [PMID: 31849675 PMCID: PMC6892945 DOI: 10.3389/fphar.2019.01430] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 11/08/2019] [Indexed: 01/05/2023] Open
Abstract
Previous studies suggested that pu-erh tea aqueous extract could lower blood pressure and ameliorate hypertension symptoms. However, the antihypertension mechanisms of pu-erh tea remain unclear. In this work, the direct effects of pu-erh tea on vessels and cells were investigated by detecting isometric tension and intracellular calcium ([Ca2+]i), respectively. Additionally, to identify the main active components, the aqueous extract of pu-erh was separated by organic solvents to obtain various fractions, and the effects of these fractions on arteries were assessed. The results showed that pu-erh aqueous extract vasodilated rat thoracic aortas preconstricted by phenylephrine or KCl. These vasodilation effects were not significantly affected by the removal of the endothelium or by preincubation with potassium channel blockers (tetraethylammonium, glibenclamide, aminopyridine, or barium chloride). Moreover, pu-erh aqueous extract could reduce the vessel contractibility induced by CaCl2 and phenylephrine under KCl-depolarizing or Ca2+-free buffer conditions, respectively. Furthermore, pu-erh aqueous extract attenuated the KCl-induced increase in [Ca2+]i in cultured rat aortic smooth muscle A7r5 cells. In addition, the chloroform precipitate of pu-erh aqueous extract produced the most potent vasodilation. Theabrownins (the characteristic components of pu-erh tea) accounted for 41.91 ± 1.09 % of the chloroform precipitate and vasodilated arteries in an endothelium-independent manner. In addition, the vasodilation effect of caffeine was verified. In conclusion, theabrownins and caffeine should be the two main active components in pu-erh tea. Pu-erh aqueous extract vasodilated arteries in an endothelium-independent manner, which might partly be attributed to the decrease in extracellular Ca2+ influx. Moreover, our study provided data on the potential mechanism of the hypotensive actions of pu-erh tea, which might improve our understanding of the effect of pu-erh tea on the prevention and treatment of hypertension.
Collapse
Affiliation(s)
- Dan Luo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xuejiao Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xu Zhu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shuang Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jie Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jianping Xu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Jinhua Zhao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Xu Ji
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.,Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, China
| |
Collapse
|
20
|
Higashi Y. Coffee and Endothelial Function: A Coffee Paradox? Nutrients 2019; 11:nu11092104. [PMID: 31487926 PMCID: PMC6770186 DOI: 10.3390/nu11092104] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/28/2019] [Accepted: 09/01/2019] [Indexed: 02/07/2023] Open
Abstract
Coffee is a popular beverage throughout the world. Coffee contains various chemical compounds (e.g., caffeine, chlorogenic acids, hydroxyhydroquinone, kahweol, cafestol, and complex chemical mixtures). Caffeine is also the most widely consumed pharmacological substance in the world and is included in various beverages (e.g., coffee, tea, soft drinks, and energy drinks), products containing chocolate, and drugs. The effects of coffee and caffeine on cardiovascular diseases remain controversial. It is well known that there are J-curve-type or U-curve-type associations of coffee consumption with cardiovascular events including myocardial infarction and stroke. However, there is little information on the direct and indirect effects of coffee consumption on endothelial function in humans. It is likely that the coffee paradox or caffeine paradox exists the association of coffee intake with cardiovascular diseases, cardiovascular outcomes, and endothelial function. This review focusses on the effects of coffee and caffeine on endothelial function from molecular mechanisms to clinical perspectives.
Collapse
Affiliation(s)
- Yukihito Higashi
- Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan.
- Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima 734-8551, Japan.
| |
Collapse
|
21
|
De Bruyne T, Steenput B, Roth L, De Meyer GRY, Santos CND, Valentová K, Dambrova M, Hermans N. Dietary Polyphenols Targeting Arterial Stiffness: Interplay of Contributing Mechanisms and Gut Microbiome-Related Metabolism. Nutrients 2019; 11:E578. [PMID: 30857217 PMCID: PMC6471395 DOI: 10.3390/nu11030578] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/01/2019] [Accepted: 03/04/2019] [Indexed: 12/15/2022] Open
Abstract
Increased arterial stiffness is a degenerative vascular process, progressing with age that leads to a reduced capability of arteries to expand and contract in response to pressure changes. This progressive degeneration mainly affects the extracellular matrix of elastic arteries and causes loss of vascular elasticity. Recent studies point to significant interference of dietary polyphenols with mechanisms involved in the pathophysiology and progression of arterial stiffness. This review summarizes data from epidemiological and interventional studies on the effect of polyphenols on vascular stiffness as an illustration of current research and addresses possible etiological factors targeted by polyphenols, including pathways of vascular functionality, oxidative status, inflammation, glycation, and autophagy. Effects can either be inflicted directly by the dietary polyphenols or indirectly by metabolites originated from the host or microbial metabolic processes. The composition of the gut microbiome, therefore, determines the resulting metabolome and, as a consequence, the observed activity. On the other hand, polyphenols also influence the intestinal microbial composition, and therefore the metabolites available for interaction with relevant targets. As such, targeting the gut microbiome is another potential treatment option for arterial stiffness.
Collapse
Affiliation(s)
- Tess De Bruyne
- Laboratory of Natural Products and Food-Research and Analysis (NatuRA), University of Antwerp, 2610 Antwerpen, Belgium.
| | - Bieke Steenput
- Laboratory of Natural Products and Food-Research and Analysis (NatuRA), University of Antwerp, 2610 Antwerpen, Belgium.
| | - Lynn Roth
- Laboratory of Physiopharmacology, University of Antwerp, 2610 Antwerpen, Belgium.
| | - Guido R Y De Meyer
- Laboratory of Physiopharmacology, University of Antwerp, 2610 Antwerpen, Belgium.
| | - Claudia Nunes Dos Santos
- Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal.
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal.
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo Mártires da Pátria, 130, 1169-056 Lisboa, Portugal.
| | - Kateřina Valentová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic.
| | - Maija Dambrova
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia.
| | - Nina Hermans
- Laboratory of Natural Products and Food-Research and Analysis (NatuRA), University of Antwerp, 2610 Antwerpen, Belgium.
| |
Collapse
|
22
|
Cicero AFG, Grassi D, Tocci G, Galletti F, Borghi C, Ferri C. Nutrients and Nutraceuticals for the Management of High Normal Blood Pressure: An Evidence-Based Consensus Document. High Blood Press Cardiovasc Prev 2019; 26:9-25. [DOI: 10.1007/s40292-018-0296-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 12/18/2018] [Indexed: 12/28/2022] Open
|
23
|
Sánchez M, Romero M, Gómez-Guzmán M, Tamargo J, Pérez-Vizcaino F, Duarte J. Cardiovascular Effects of Flavonoids. Curr Med Chem 2019; 26:6991-7034. [DOI: 10.2174/0929867326666181220094721] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 10/29/2018] [Accepted: 10/29/2018] [Indexed: 02/07/2023]
Abstract
:
Cardiovascular Disease (CVD) is the major cause of death worldwide, especially in Western
society. Flavonoids are a large group of polyphenolic compounds widely distributed in plants, present
in a considerable amount in fruit and vegetable. Several epidemiological studies found an inverse association
between flavonoids intake and mortality by CVD. The antioxidant effect of flavonoids was
considered the main mechanism of action of flavonoids and other polyphenols. In recent years, the role
of modulation of signaling pathways by direct interaction of flavonoids with multiple protein targets,
namely kinases, has been increasingly recognized and involved in their cardiovascular protective effect.
There are strong evidence, in in vitro and animal experimental models, that some flavonoids induce
vasodilator effects, improve endothelial dysfunction and insulin resistance, exert platelet antiaggregant
and atheroprotective effects, and reduce blood pressure. Despite interacting with multiple targets, flavonoids
are surprisingly safe. This article reviews the recent evidence about cardiovascular effects that
support a beneficial role of flavonoids on CVD and the potential molecular targets involved.
Collapse
Affiliation(s)
- Manuel Sánchez
- Department of Pharmacology, School of Pharmacy, University of Granada, and Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Miguel Romero
- Department of Pharmacology, School of Pharmacy, University of Granada, and Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Manuel Gómez-Guzmán
- Department of Pharmacology, School of Pharmacy, University of Granada, and Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Juan Tamargo
- Department of Pharmacology, School of Medicine, Complutense University of Madrid and Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
| | - Francisco Pérez-Vizcaino
- Department of Pharmacology, School of Medicine, Complutense University of Madrid and Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
| | - Juan Duarte
- Department of Pharmacology, School of Pharmacy, University of Granada, and Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| |
Collapse
|
24
|
The Effects of Flavonoids on Cardiovascular Health: A Review of Human Intervention Trials and Implications for Cerebrovascular Function. Nutrients 2018; 10:nu10121852. [PMID: 30513729 PMCID: PMC6315948 DOI: 10.3390/nu10121852] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 11/21/2018] [Accepted: 11/21/2018] [Indexed: 01/01/2023] Open
Abstract
Research has suggested a number of beneficial effects arising from the consumption of dietary flavonoids, found in foods such as cocoa, apples, tea, citrus fruits and berries on cardiovascular risk factors such as high blood pressure and endothelial dysfunction. These effects are thought to have a significant impact upon both vascular and cerebrovascular health, ultimately with the potential to prevent cardiovascular and potentially neurodegenerative disease with a vascular component, for example vascular dementia. This review explores the current evidence for the effects of flavonoid supplementation on human endothelial function and both peripheral and cerebral blood flow (CBF). Evidence presented includes their potential to reduce blood pressure in hypertensive individuals, as well as increasing peripheral blood perfusion and promoting CBF in both healthy and at-risk populations. However, there is great variation in the literature due to the heterogeneous nature of the randomised controlled trials conducted. As such, there is a clear need for further research and understanding within this area in order to maximise potential health benefits.
Collapse
|
25
|
Casas R, Estruch R, Sacanella E. Influence of Bioactive Nutrients on the Atherosclerotic Process: A Review. Nutrients 2018; 10:E1630. [PMID: 30400153 PMCID: PMC6266892 DOI: 10.3390/nu10111630] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/19/2018] [Accepted: 10/26/2018] [Indexed: 12/18/2022] Open
Abstract
The protective effects of a dietary intervention as a useful tool in the prevention of atherosclerosis disease has gained greater attention in recent years. Several epidemiological studies have demonstrated the importance of diet in reducing expensive treatments or possible undesirable side effects. The main aim of this review is to examine the effects of specific nutrients on the development and progression of atherosclerosis in patients with cardiovascular disease. Various mechanisms have been proposed to explain the cardioprotective effect of different nutrients. In this sense, results have shown stabilization of vulnerable atherosclerotic plaques or downregulation of biomarkers related to inflammation through nutrients such as Omega-3 polyunsaturated fatty acids, hydroxytyrosol of extra virgin olive oil, lycopen, phytosterols of plants, or flavonols of fruits and vegetables, among others. The accumulated evidence on the anti-inflammatory effects related to these nutrients is summarized in the present review.
Collapse
Affiliation(s)
- Rosa Casas
- Department of Internal Medicine, Hospital Clinic, Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), University of Barcelona, Villarroel, 170, 08036 Barcelona, Spain.
- CIBER 06/03: Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - Ramon Estruch
- Department of Internal Medicine, Hospital Clinic, Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), University of Barcelona, Villarroel, 170, 08036 Barcelona, Spain.
- CIBER 06/03: Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - Emilio Sacanella
- Department of Internal Medicine, Hospital Clinic, Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), University of Barcelona, Villarroel, 170, 08036 Barcelona, Spain.
- CIBER 06/03: Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain.
| |
Collapse
|
26
|
Murphy KJ, Walker KM, Dyer KA, Bryan J. Estimation of daily intake of flavonoids and major food sources in middle-aged Australian men and women. Nutr Res 2018; 61:64-81. [PMID: 30683440 DOI: 10.1016/j.nutres.2018.10.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 08/30/2018] [Accepted: 10/23/2018] [Indexed: 11/28/2022]
Abstract
Flavonoid consumption has reported health benefits such as reducing cardiovascular disease risk factors, improving endothelial function, and delaying age-related cognitive decline. However, there are little dietary intake data for Australians, which limit our ability to make dietary recommendations to increase intakes to a level where health benefits are seen. The aim of this cross-sectional study was to determine the intake of flavonoids, flavonoid classes, and flavonoid subclasses of 1183 Australians aged 39 to 65 years using a validated 215-item food frequency questionnaire. Based on limited global flavonoid intake data, flavanols are the major dietary flavonoid and are found predominantly in tea and cocoa. As Australians are large tea drinkers, we anticipated that flavanols would be the major flavonoid in the Australian diet. The flavonoid content of foods was determined using a combination of the United States Department of Agriculture Databases and the Phenol-Explorer Database. One-way analysis of variance was undertaken to examine differences between flavonoid intake between men and women. Total flavonoid intake was 626 ± 579 mg/d. Men and women consumed 566 ± 559 mg and 660 ± 588 mg of total flavonoids per day, respectively. Thearubigin accounted for 58% of the flavonoid intake. Women consumed more total flavonoids, thearubigins (both P < .01), anthocyanidins (P < .0001), flavan-3-ols, flavones, and flavonols (all P < .05) than men, whereas men consumed more flavanones than women (P = .01). There was no difference between sexes for the consumption of isoflavones. The data indicated that flavan-3-ols, predominantly thearubigin from tea, were the main flavonoid consumed by Australians. This information contributes to population flavonoid intakes, which should be considered when exploring flavonoid and health relationships.
Collapse
Affiliation(s)
- Karen J Murphy
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5000, Australia.
| | - Katie M Walker
- School of Psychology, Social Work and Social Policy, University of South Australian, Adelaide, SA 5000, Australia.
| | - Kathryn A Dyer
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5000, Australia.
| | - Janet Bryan
- School of Psychology, Social Work and Social Policy, University of South Australian, Adelaide, SA 5000, Australia.
| |
Collapse
|
27
|
Fernando WMADB, Somaratne G, Goozee KG, Williams S, Singh H, Martins RN. Diabetes and Alzheimer's Disease: Can Tea Phytochemicals Play a Role in Prevention? J Alzheimers Dis 2018; 59:481-501. [PMID: 28582855 DOI: 10.3233/jad-161200] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Dementia and diabetes mellitus are prevalent disorders in the elderly population. While recognized as two distinct diseases, diabetes has more recently recognized as a significant contributor to risk for developing dementia, and some studies make reference to type 3 diabetes, a condition resulting from insulin resistance in the brain. Alzheimer's disease, the most common form of dementia, and diabetes, interestingly, share underlying pathological processes, commonality in risk factors, and, importantly, pathways for intervention. Tea has been suggested to possess potent antioxidant properties. It is rich in phytochemicals including, flavonoids, tannins, caffeine, polyphenols, boheic acid, theophylline, theobromine, anthocyanins, gallic acid, and finally epigallocatechin-3-gallate, which is considered to be the most potent active ingredient. Flavonoid phytochemicals, known as catechins, within tea offer potential benefits for reducing the risk of diabetes and Alzheimer's disease by targeting common risk factors, including obesity, hyperlipidemia, hypertension, cardiovascular disease, and stroke. Studies also show that catechins may prevent the formation of amyloid-β plaques and enhance cognitive functions, and thus may be useful in treating patients who have Alzheimer's disease or dementia. Furthermore, other phytochemicals found within tea offer important antioxidant properties along with innate properties capable of modulating intracellular neuronal signal transduction pathways and mitochondrial function.
Collapse
Affiliation(s)
- Warnakulasuriya M A D B Fernando
- Centre of Excellence in Alzheimer's Disease Research and Care, School of Medical Sciences, Edith Cowan University, Joondalup, Australia
| | - Geeshani Somaratne
- Massey Institute of Food Science and Technology, Massey University, Palmerston North, New Zealand.,Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Kathryn G Goozee
- Centre of Excellence in Alzheimer's Disease Research and Care, School of Medical Sciences, Edith Cowan University, Joondalup, Australia.,School of Biomedical Science, Macquarie University, Sydney, NSW, Australia.,KARVIAH Research Centre, Anglicare, Castle Hill, NSW, Australia.,School of Psychiatry and Clinical Neurosciences, The University of Western Australia, Nedlands, WA, Australia.,Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia.,KaRa Institute of Neurological Diseases, Sydney, NSW, Australia
| | - Shehan Williams
- Faculty of Medicine, University of Kelaniya, Colombo, Sri Lanka
| | - Harjinder Singh
- Massey Institute of Food Science and Technology, Massey University, Palmerston North, New Zealand.,Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Ralph N Martins
- Centre of Excellence in Alzheimer's Disease Research and Care, School of Medical Sciences, Edith Cowan University, Joondalup, Australia.,School of Biomedical Science, Macquarie University, Sydney, NSW, Australia.,KARVIAH Research Centre, Anglicare, Castle Hill, NSW, Australia.,School of Psychiatry and Clinical Neurosciences, The University of Western Australia, Nedlands, WA, Australia.,Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia.,KaRa Institute of Neurological Diseases, Sydney, NSW, Australia
| |
Collapse
|
28
|
Pharmacological values and therapeutic properties of black tea (Camellia sinensis): A comprehensive overview. Biomed Pharmacother 2018; 100:521-531. [PMID: 29482046 DOI: 10.1016/j.biopha.2018.02.048] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 02/10/2018] [Accepted: 02/13/2018] [Indexed: 01/06/2023] Open
Abstract
Medicinal plants are essential parts of traditional medicine due to their phytochemical constituents having pharmacological values and therapeutic applications. Black tea have thousands of various biological compounds such as flavonoids (Thearubigins (TRs) and theaflavins (TFs) and catechins), amino acids (L.theanine), vitamins (A, C, K), phenolic acids (caffeic acid (CA), gallic acid (GA), chlorogenic acids (CGA) and cauramic acid), lipids, proteins, volatile compounds carbohydrates, β-carotene and fluoride that illustrated many promising pharmacological effects regarded as growth promoter, cardioprotector, potent cholesterol-lowering effect, antioxidant and antimicrobial, etc inhuman. Although there is an exponential growth in molecular evidence of cholesterol-lowering and antioxidant effect in human, there is still a lack of information of the pharmacological effects of black tea. To fill this information gap, therefore, this review article underscores broadening the new insight pertaining to black tea that could be used as safe food additive. This article also illuminates the interesting role of black tea as an herbal medicine that is the future demand to get rid of synthetic health promoters in the human health practice. Moreover, this information would be useful in terms of the low-cost practice of natural medicines with no residual effects, and a natural protection of the human being. In addition, further studies at a molecular level are needed to reveal its mechanism of action particularly for the hypocholesterolemic effect of black tea to overcome the heart-related diseases, fewer side effects and being a natural safeguard of human health.
Collapse
|
29
|
Al Owaifeer AM, Al Taisan AA. The Role of Diet in Glaucoma: A Review of the Current Evidence. Ophthalmol Ther 2018; 7:19-31. [PMID: 29423897 PMCID: PMC5997592 DOI: 10.1007/s40123-018-0120-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Indexed: 02/04/2023] Open
Abstract
Intraocular pressure (IOP) reduction by medications, laser, or surgery remains the mainstay of treatment in glaucoma. However, the role of complementary and alternative medicine (CAM) in glaucoma has received great interest from both patients and ophthalmologists. Previous evidence suggests that diet, a major domain of CAM, can influence an individual's IOP level. Furthermore, certain dietary components have been linked to the incidence and progression of glaucoma. In this review, we aim to provide a summary of the current evidence regarding the role of obesity, certain dietary components, and dietary supplements in glaucoma.
Collapse
Affiliation(s)
- Adi M Al Owaifeer
- Faculty of Ophthalmology, College of Medicine, King Faisal University, Al-Hasa, Saudi Arabia.
| | - Abdulaziz A Al Taisan
- Faculty of Ophthalmology, College of Medicine, King Faisal University, Al-Hasa, Saudi Arabia
| |
Collapse
|
30
|
Ahmad AF, Rich L, Koch H, Croft KD, Ferruzzi MG, Kay CD, Hodgson JM, Ward NC. Effect of adding milk to black tea on vascular function in healthy men and women: a randomised controlled crossover trial. Food Funct 2018; 9:6307-6314. [DOI: 10.1039/c8fo01019f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Addition of milk to black tea alters the acute/short-term benefical effect of regular black tea consumption on vascular function and blood pressure.
Collapse
Affiliation(s)
- Adilah F. Ahmad
- School of Biomedical Sciences and Curtin Health Innovation Research Institute
- Curtin University
- Perth
- Australia
| | - Lisa Rich
- School of Public Health
- Curtin University
- Perth
- Australia
| | - Henrietta Koch
- School of Biomedical Sciences
- University of Western Australia
- Perth
- Australia
| | - Kevin D. Croft
- School of Biomedical Sciences
- University of Western Australia
- Perth
- Australia
| | - Mario G. Ferruzzi
- Plants for Human Health Institute
- North Carolina State University
- Kannapolis
- USA
| | - Colin D. Kay
- Plants for Human Health Institute
- North Carolina State University
- Kannapolis
- USA
| | - Jonathan M. Hodgson
- School of Health & Medical Sciences
- Edith Cowan University
- Perth
- Australia
- School of Medicine
| | - Natalie C. Ward
- School of Biomedical Sciences and Curtin Health Innovation Research Institute
- Curtin University
- Perth
- Australia
- School of Public Health
| |
Collapse
|
31
|
Turck D, Bresson JL, Burlingame B, Dean T, Fairweather-Tait S, Heinonen M, Hirsch-Ernst KI, Mangelsdor I, McArdle HJ, Naska A, Neuhäuser-Berthold M, Nowicka G, Pentieva K, Sanz Y, Sjödin A, Stern M, Tomé D, Van Loveren H, Vinceti M, Willatts P, Martin A, Strain SJJ, Siani A. Black tea and maintenance of normal endothelium-dependent vasodilation: evaluation of a health claim pursuant to Article 13(5) of Regulation (EC) No 1924/2006. EFSA J 2018; 16:e05138. [PMID: 32625684 PMCID: PMC7009720 DOI: 10.2903/j.efsa.2018.5138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Following an application from Unilever NV, submitted for authorisation of a health claim pursuant to Article 13(5) of Regulation (EC) No 1924/2006 via the Competent Authority of Ireland, the EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA) was asked to deliver an opinion on the scientific substantiation of a health claim related to black tea and maintenance of normal endothelium-dependent vasodilation. The scope of the application was proposed to fall under a health claim based on newly developed scientific evidence. The food proposed by the applicant as the subject of the health claim is black tea beverages, either freshly prepared or reconstituted from water extract powders of black tea, characterised by the content of flavanols (expressed as catechins plus theaflavins) of at least 30 mg per 200 mL serving. The Panel considers that black tea characterised by the content of flavanols (expressed as catechins plus theaflavins) is sufficiently characterised. The claimed effect proposed by the applicant is 'improvement of endothelium-dependent vasodilation'. The Panel considers that maintenance of normal endothelium-dependent vasodilation is a beneficial physiological effect. Of the five human intervention studies provided on the chronic effect of black tea consumption on endothelium-dependent vasodilation, two investigated the effect after regular consumption of black tea for a sufficiently long time period (i.e. at least 4 weeks). These two studies did not allow an effect of black tea on endothelium-dependent vasodilation to be established. The Panel concludes that a cause and effect relationship has not been established between the consumption of black tea and maintenance of normal endothelium-dependent vasodilation.
Collapse
|
32
|
Costa C, Tsatsakis A, Mamoulakis C, Teodoro M, Briguglio G, Caruso E, Tsoukalas D, Margina D, Dardiotis E, Kouretas D, Fenga C. Current evidence on the effect of dietary polyphenols intake on chronic diseases. Food Chem Toxicol 2017; 110:286-299. [DOI: 10.1016/j.fct.2017.10.023] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/12/2017] [Accepted: 10/13/2017] [Indexed: 02/07/2023]
|
33
|
Greyling A, Wolters TLC, de Bresser DM, Roerink SHPP, Riksen NP, Mulder TP, Rowson MJ, Hopman MT, Thijssen DHJ. The acute effect of black tea consumption on resistance artery endothelial function in healthy subjects. A randomized controlled trial. Clin Nutr ESPEN 2017; 23:41-47. [PMID: 29460812 DOI: 10.1016/j.clnesp.2017.10.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 10/25/2017] [Indexed: 12/18/2022]
Abstract
BACKGROUND & AIMS Black tea is a main source of flavonoids in the Western diet and has been associated with reduced risk for cardiovascular disease, possibly through lowering blood pressure. These effects may be mediated through improving endothelial function of resistance arteries. The aim of this study was therefore to examine the acute impact of black tea on forearm resistance artery endothelial function in healthy, normotensive middle-aged subjects. METHODS Twenty middle-aged men and women (age-range 45-75 years) were recruited into a double-blind, randomized, placebo-controlled crossover intervention study. Forearm resistance artery blood flow (FBF, measured using venous occlusion plethysmography) in response to incremental doses of acetylcholine, sodium nitroprusside and L-NG-monomethyl arginine were determined 2 h after consumption of either black tea containing ∼400 mg flavonoids (equivalent to 2-3 cups of tea) or a taste- and color-matched placebo. RESULTS The mean FBF-response to acetylcholine after tea consumption was 23% higher compared to the response after placebo (95% CI: -20%, +88%), but this difference did not reach statistical significance (P = 0.32). No significant differences in the FBF-responses to sodium nitroprusside and L-NG-monomethyl arginine were found between the tea and placebo interventions (P = 0.96 and 0.74, respectively). Correcting FBF for changes in blood pressure did not alter the outcomes. CONCLUSIONS We found no evidence that acute intake of black tea significantly altered endothelium-dependent vasodilation of forearm resistance arteries in healthy middle-aged subjects. Interventions with a longer duration of tea ingestion are required to further explore the (long-term) impact of tea flavonoids on blood pressure regulatory mechanisms. This trial was registered at clinicaltrials.gov as NCT02328339.
Collapse
Affiliation(s)
- Arno Greyling
- Unilever Research & Development Vlaardingen, Vlaardingen, The Netherlands; Department of Physiology, Radboud University Medical Centre, Nijmegen, The Netherlands.
| | - Thalijn L C Wolters
- Department of Physiology, Radboud University Medical Centre, Nijmegen, The Netherlands; Department of Medicine, Division of Endocrinology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - David M de Bresser
- Department of Physiology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Sean H P P Roerink
- Department of Medicine, Division of Endocrinology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Niels P Riksen
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Theo P Mulder
- Unilever Research & Development Vlaardingen, Vlaardingen, The Netherlands
| | - Matthew J Rowson
- Unilever Research & Development, Colworth Science Park, Sharnbrook, Bedfordshire, United Kingdom
| | - Maria T Hopman
- Department of Physiology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Dick H J Thijssen
- Department of Physiology, Radboud University Medical Centre, Nijmegen, The Netherlands; Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| |
Collapse
|
34
|
Li X, Lyu P, Ren Y, An J, Dong Y. Arterial stiffness and cognitive impairment. J Neurol Sci 2017; 380:1-10. [PMID: 28870545 DOI: 10.1016/j.jns.2017.06.018] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 06/10/2017] [Accepted: 06/13/2017] [Indexed: 01/13/2023]
Abstract
BACKGROUND Arterial stiffness is one of the earliest indicators of changes in vascular wall structure and function and may be assessed using various indicators, such as pulse-wave velocity (PWV), the cardio-ankle vascular index (CAVI), the ankle-brachial index (ABI), pulse pressure (PP), the augmentation index (AI), flow-mediated dilation (FMD), carotid intima media thickness (IMT) and arterial stiffness index-β. Arterial stiffness is generally considered an independent predictor of cardiovascular and cerebrovascular diseases. To date, a significant number of studies have focused on the relationship between arterial stiffness and cognitive impairment. OBJECTIVES AND METHODS To investigate the relationships between specific arterial stiffness parameters and cognitive impairment, elucidate the pathophysiological mechanisms underlying the relationship between arterial stiffness and cognitive impairment and determine how to interfere with arterial stiffness to prevent cognitive impairment, we searched PUBMED for studies regarding the relationship between arterial stiffness and cognitive impairment that were published from 2000 to 2017. We used the following key words in our search: "arterial stiffness and cognitive impairment" and "arterial stiffness and cognitive impairment mechanism". Studies involving human subjects older than 30years were included in the review, while irrelevant studies (i.e., studies involving subjects with comorbid kidney disease, diabetes and cardiac disease) were excluded from the review. RESULTS We determined that arterial stiffness severity was positively correlated with cognitive impairment. Of the markers used to assess arterial stiffness, a higher PWV, CAVI, AI, IMT and index-β and a lower ABI and FMD were related to cognitive impairment. However, the relationship between PP and cognitive impairment remained controversial. The potential mechanisms linking arterial stiffness and cognitive impairment may be associated with arterial pulsatility, as greater arterial pulsatility damages the cerebral microcirculation, which causes various phenomena associated with cerebral small vessel diseases (CSVDs), such as white matter hyperintensities (WMHs), cerebral microbleeds (CMBs), and lacunar infarctions (LIs). The mechanisms underlying the relationship between arterial stiffness and cognitive impairment may also be associated with reductions in white matter and gray matter integrity, medial temporal lobe atrophy and Aβ protein deposition. Engaging in more frequent physical exercise; increasing flavonoid and long-chain n-3 polyunsaturated fatty acid consumption; increasing tea, nitrite, dietary calcium and vitamin D intake; losing weight and taking medications intended to improve insulin sensitivity; quitting smoking; and using antihypertensive drugs and statins are early interventions and lifestyle changes that may be effective in preventing arterial stiffness and thus preventing cognitive impairment. CONCLUSION Arterial stiffness is a sensitive predictor of cognitive impairment, and arterial stiffness severity has the potential to serve as an indicator used to facilitate treatments designed to prevent or delay the onset and progression of dementia in elderly individuals. Early treatment of arterial stiffness is beneficial and recommended.
Collapse
Affiliation(s)
- Xiaoxuan Li
- Department of Neurology, Hebei General Hospital, Shijiazhuang 050051, China; Graduate School, HeBei Medical University, Shijiazhuang 050017, China
| | - Peiyuan Lyu
- Department of Neurology, Hebei General Hospital, Shijiazhuang 050051, China; Graduate School, HeBei Medical University, Shijiazhuang 050017, China.
| | - Yanyan Ren
- Department of Neurology, Hebei General Hospital, Shijiazhuang 050051, China; Graduate School, HeBei Medical University, Shijiazhuang 050017, China
| | - Jin An
- Hebei North University, Zhangjiakou 075000, China
| | - Yanhong Dong
- Department of Neurology, Hebei General Hospital, Shijiazhuang 050051, China
| |
Collapse
|
35
|
Orem A, Alasalvar C, Vanizor Kural B, Yaman S, Orem C, Karadag A, Pelvan E, Zawistowski J. Cardio-protective effects of phytosterol-enriched functional black tea in mild hypercholesterolemia subjects. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.01.048] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
36
|
Acute black tea consumption improves cutaneous vascular function in healthy middle-aged humans. Clin Nutr 2016; 37:242-249. [PMID: 28034564 DOI: 10.1016/j.clnu.2016.12.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 11/21/2016] [Accepted: 12/15/2016] [Indexed: 11/20/2022]
Abstract
BACKGROUND & AIMS Dietary flavonoids, such as those present in black tea, are associated with reduced risk of cardiovascular disease (CVD), possibly through improving nitric oxide (NO) mediated vascular function. The aim of this study was to examine the effect of acute black tea ingestion on cutaneous microvascular function. METHODS Twenty healthy participants (58 ± 5 y, 9 men) attended two experimental trials (tea, placebo), 7-days apart in a randomised, controlled, double-blind, cross-over design. Participants ingested a single dose of 200 ml black tea or placebo, followed by assessment of forearm cutaneous perfusion using laser-Doppler flowmetry (LDF) using three distinct heating protocols, enabling us to distinguish between axon- and endothelium-dependent vasodilation: 1. rapid 42°C, 2. rapid 39°C and 3. gradual 42°C. On the contralateral arm, full-field laser perfusion imaging (FLPI) was used to assess forearm perfusion during gradual 42°C. Data were presented as cutaneous vascular conductance (CVC; flux/mean arterial pressure, MAP) and CVC expressed as a percentage of maximal CVC (%CVCmax). RESULTS Rapid local heating to 39°C or 42°C demonstrated no effect of tea for flux, CVC or %CVCmax (all P > 0.05). Gradual local heating to 42 °C, however, produced a higher skin blood flow following black tea ingestion for absolute CVC (P = 0.04) when measured by LDF, and higher absolute flux (P < 0.001) and CVC (P < 0.001) measured with FLPI. No effect of tea was found for %CVCmax when assessed by either LDF or FLPI. CONCLUSIONS Acute tea ingestion enhanced cutaneous vascular responses to gradual local heating to 42 °C in healthy, middle-aged participants, possibly through a mechanism related to activation of endothelium-derived chemical mediators, such as NO. These improvements may contribute to the cardiovascular health benefits of regular tea ingestion.
Collapse
|
37
|
Abbas M, Saeed F, Anjum FM, Afzaal M, Tufail T, Bashir MS, Ishtiaq A, Hussain S, Suleria HAR. Natural polyphenols: An overview. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2016. [DOI: 10.1080/10942912.2016.1220393] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Munawar Abbas
- Institute of Home and Food Sciences, Government College University, Faisalabad, Pakistan
| | - Farhan Saeed
- Institute of Home and Food Sciences, Government College University, Faisalabad, Pakistan
| | - Faqir Muhammad Anjum
- Institute of Home and Food Sciences, Government College University, Faisalabad, Pakistan
| | - Muhammad Afzaal
- Institute of Home and Food Sciences, Government College University, Faisalabad, Pakistan
| | - Tabussam Tufail
- Institute of Home and Food Sciences, Government College University, Faisalabad, Pakistan
| | - Muhammad Shakeel Bashir
- Institute of Agricultural Sciences, Department of Food Science and Nutrition, University of the Punjab, Lahore-Pakistan, King Saud University, Riyadh, SA
| | - Adnan Ishtiaq
- Institute of Agricultural Sciences, Department of Food Science and Nutrition, University of the Punjab, Lahore-Pakistan, King Saud University, Riyadh, SA
| | - Shahzad Hussain
- UQ School of Medicine, The University of Queensland, Australia
| | | |
Collapse
|
38
|
Greyling A, Bruno RM, Draijer R, Mulder T, Thijssen DH, Taddei S, Virdis A, Ghiadoni L. Effects of wine and grape polyphenols on blood pressure, endothelial function and sympathetic nervous system activity in treated hypertensive subjects. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.10.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
39
|
Grassi D, Draijer R, Schalkwijk C, Desideri G, D'Angeli A, Francavilla S, Mulder T, Ferri C. Black Tea Increases Circulating Endothelial Progenitor Cells and Improves Flow Mediated Dilatation Counteracting Deleterious Effects from a Fat Load in Hypertensive Patients: A Randomized Controlled Study. Nutrients 2016; 8:nu8110727. [PMID: 27854314 PMCID: PMC5133112 DOI: 10.3390/nu8110727] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/03/2016] [Accepted: 11/07/2016] [Indexed: 01/17/2023] Open
Abstract
(1) Background: Endothelial dysfunction predicts cardiovascular events. Circulating angiogenic cells (CACs) maintain and repair the endothelium regulating its function. Tea flavonoids reduce cardiovascular risk. We investigated the effects of black tea on the number of CACs and on flow-mediated dilation (FMD) before and after an oral fat in hypertensives; (2) Methods: In a randomized, double-blind, controlled, cross-over study, 19 patients were assigned to black tea (150 mg polyphenols) or a placebo twice a day for eight days. Measurements were obtained in a fasted state and after consuming whipping cream, and FMD was measured at baseline and after consumption of the products; (3) Results: Compared with the placebo, black tea ingestion increased functionally active CACs (36 ± 22 vs. 56 ± 21 cells per high-power field; p = 0.006) and FMD (5.0% ± 0.3% vs. 6.6% ± 0.3%, p < 0.0001). Tea further increased FMD 1, 2, 3, and 4 h after consumption, with maximal response 2 h after intake (p < 0.0001). Fat challenge decreased FMD, while tea consumption counteracted FMD impairment (p < 0.0001); (4) Conclusions: We demonstrated the vascular protective properties of black tea by increasing the number of CACs and preventing endothelial dysfunction induced by acute oral fat load in hypertensive patients. Considering that tea is the most consumed beverage after water, our findings are of clinical relevance and interest.
Collapse
Affiliation(s)
- Davide Grassi
- Department of Life, Health, and Environmental Sciences, University of L'Aquila, Viale S Salvatore, Delta 6 Medicina, 67100 L'Aquila, Italy.
| | - Richard Draijer
- Unilever Research and Development, 3133 AT Vlaardingen, The Netherlands.
| | - Casper Schalkwijk
- Department of Internal Medicine, CARIM School for Cardiovascular Diseases, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands.
| | - Giovambattista Desideri
- Department of Life, Health, and Environmental Sciences, University of L'Aquila, Viale S Salvatore, Delta 6 Medicina, 67100 L'Aquila, Italy.
| | - Anatolia D'Angeli
- Department of Life, Health, and Environmental Sciences, University of L'Aquila, Viale S Salvatore, Delta 6 Medicina, 67100 L'Aquila, Italy.
| | - Sandro Francavilla
- Department of Life, Health, and Environmental Sciences, University of L'Aquila, Viale S Salvatore, Delta 6 Medicina, 67100 L'Aquila, Italy.
| | - Theo Mulder
- Unilever Research and Development, 3133 AT Vlaardingen, The Netherlands.
| | - Claudio Ferri
- Department of Life, Health, and Environmental Sciences, University of L'Aquila, Viale S Salvatore, Delta 6 Medicina, 67100 L'Aquila, Italy.
| |
Collapse
|
40
|
Tomé-Carneiro J, Visioli F. Polyphenol-based nutraceuticals for the prevention and treatment of cardiovascular disease: Review of human evidence. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2016; 23:1145-1174. [PMID: 26776959 DOI: 10.1016/j.phymed.2015.10.018] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/28/2015] [Accepted: 10/30/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND In addition to prescription drugs, nutraceuticals/functional foods/medical foods are being increasingly added as adjunct treatment of cardiovascular disease (CVD), even though most of them have been exclusively studied in vitro. HYPOTHESIS/PURPOSE We review the available evidence (focusing on when the amount of polyphenols' intake was measured) coming from randomized controlled trials (RCTs) of (poly)phenol-based supplements. CONCLUSION We conclude that (poly)phenol-based nutraceuticals and functional foods might be indeed used as adjunct therapy of CVD, but additional long-term RCTs with adequate numerosity and with clinically relevant end points are needed to provide unequivocal evidence of their clinical usefulness.
Collapse
Affiliation(s)
- Joao Tomé-Carneiro
- Laboratory of Functional Foods, Madrid Institute for Advanced Studies (IMDEA) - Food, CEI UAM+CSIC, Madrid, Spain
| | - Francesco Visioli
- Laboratory of Functional Foods, Madrid Institute for Advanced Studies (IMDEA) - Food, CEI UAM+CSIC, Madrid, Spain; Department of Molecular Medicine, University of Padova, Viale G. Colombo 3, 35121 Padova, Italy .
| |
Collapse
|
41
|
Auger C, Said A, Nguyen PN, Chabert P, Idris-Khodja N, Schini-Kerth VB. Potential of Food and Natural Products to Promote Endothelial and Vascular Health. J Cardiovasc Pharmacol 2016; 68:11-8. [PMID: 26974893 DOI: 10.1097/fjc.0000000000000382] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Endothelial dysfunction is now well established as a pivotal early event in the development of major cardiovascular diseases including hypertension, atherosclerosis, and diabetes. The alteration of the endothelial function is often triggered by an imbalance between the endothelial formation of vasoprotective factors including nitric oxide (NO) and endothelium-dependent hyperpolarization, and an increased level of oxidative stress involving several prooxidant enzymes such as NADPH oxidase and, often also, the appearance of cyclooxygenase-derived vasoconstrictors. Preclinical studies have indicated that polyphenol-rich food and food-derived products such as grape-derived products, black and red berries, green and black teas and cocoa, and omega-3 fatty acids can trigger activating pathways in endothelial cells promoting an increased formation of nitric oxide and endothelium-dependent hyperpolarization. Moreover, intake of such food-derived products has been associated with the prevention and/or the improvement of an established endothelial dysfunction in several experimental models of cardiovascular diseases and in humans with cardiovascular diseases. This review will discuss both experimental and clinical evidences indicating that different types of food and natural products are able to promote endothelial and vascular health, as well as the underlying mechanisms.
Collapse
Affiliation(s)
- Cyril Auger
- UMR CNRS 7213, Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie, Université de Strasbourg, Strasbourg, France
| | | | | | | | | | | |
Collapse
|
42
|
Saito A, Nakazato R, Suhara Y, Shibata M, Fukui T, Ishii T, Asanuma T, Mochizuki K, Nakayama T, Osakabe N. The impact of theaflavins on systemic-and microcirculation alterations: The murine and randomized feasibility trials. J Nutr Biochem 2016; 32:107-14. [PMID: 27142743 DOI: 10.1016/j.jnutbio.2016.01.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 01/02/2016] [Accepted: 01/25/2016] [Indexed: 02/05/2023]
Abstract
Theaflavins are polyphenols found in black tea; their physiological activities were not well investigated. The present study in rats evaluated the influence of theaflavins on circulation. In addition, an intervention pilot study examined the influence of a theaflavin drink on postprandial hemodynamic change. In an animal study, a single oral dose of theaflavin rich fraction (TF, 10mg/kg) caused transient increase in mean blood pressure (MBP) and heart rate (HR). TF also elevated cremastric blood flow significantly, and the magnitude of this effect was in this order: theaflavin 3'-O-gallate (TF2B) >>theaflavin-3-O-gallate (TF2A) >>theaflavin (TF1)=theaflavin-3, 3'-di-O-gallate (TF3). In addition, these hemodynamic alterations in mammals totally disappeared when pretreated with carvedilol as an adrenaline blocker. We also treated 10-mg/kg/day TF to the rats for 2 weeks. At the end of the ingestion period, MBP was reduced significantly, and aortic eNOS level was elevated by the repeated ingestion of TF compared with distilled water. In the intervention trial, blood pressure of the volunteers was increased significantly 2 and 4h after ingestion of the TF drink (45mg/drink) compared with before treatment. A significant difference was observed in FMD between the placebo and theaflavin groups 4h after ingestion. These results suggested that theaflavin has potent activity to alter hemodynamics in both murine and healthy subjects. Further studies is needed to elucidate the details; however, the results of animal study suggested that the possible involvement of sympathetic nervous system in the hemodynamic changes caused by TF.
Collapse
Affiliation(s)
- Akiko Saito
- Department of Bio-science and Engineering, Shibaura Institute of Technology, 307 Fukasaku, Munumaku, Saitama, 337-8570, Japan
| | - Risa Nakazato
- Department of Bio-science and Engineering, Shibaura Institute of Technology, 307 Fukasaku, Munumaku, Saitama, 337-8570, Japan
| | - Yoshitomo Suhara
- Department of Bio-science and Engineering, Shibaura Institute of Technology, 307 Fukasaku, Munumaku, Saitama, 337-8570, Japan
| | - Masahiro Shibata
- Department of Bio-science and Engineering, Shibaura Institute of Technology, 307 Fukasaku, Munumaku, Saitama, 337-8570, Japan
| | - Toshiki Fukui
- NTT West Takamatsu Hospital, 649-8 Kanko-cho, Takamatsu, Kagawa, 760-0076, Japan
| | - Takeshi Ishii
- Department of Food and Nutritional Sciences, University of Shizuoka, Suruga-ku, Shizuoka 422-8526, Japan
| | - Toshimichi Asanuma
- Industrial Research Institute of Shizuoka Prefecture, Aoi-ku, Shizuoka, 421-1298, Japan
| | - Kazuo Mochizuki
- Industrial Research Institute of Shizuoka Prefecture, Aoi-ku, Shizuoka, 421-1298, Japan
| | - Tsutomu Nakayama
- School of Food Science and Technology, Nippon Veterinary and Life Science University, Musashinoshi, Tokyo, 180-8602, Japan
| | - Naomi Osakabe
- Department of Bio-science and Engineering, Shibaura Institute of Technology, 307 Fukasaku, Munumaku, Saitama, 337-8570, Japan.
| |
Collapse
|
43
|
Hügel HM, Jackson N, May B, Zhang AL, Xue CC. Polyphenol protection and treatment of hypertension. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2016; 23:220-231. [PMID: 26926184 DOI: 10.1016/j.phymed.2015.12.012] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 12/07/2015] [Accepted: 12/08/2015] [Indexed: 06/05/2023]
Abstract
INTRODUCTION High blood pressure is the major risk factor for cardiovascular diseases and the rising prevalence of human hypertension precedes the trend toward a global epidemic of unhealthy ageing. A focus on lifestyle and dietary interventions minimizes dependency on pharmacological antihypertensive therapies. REVIEW Observational studies indicate that the intake of dietary flavonoids is associated with a decreased risk of cardiovascular disease (CVD). The evidence suggests that the dietary intakes of polyphenol-rich foods, herbs and beverages including flavonols, anthocyanidins, proanthocyanidins, flavones, flavanones, isoflavones and flavan-3-ols, improves vascular health, thereby significantly reducing the risk of hypertension and CVD. Consumption is associated with an improvement in endothelial function via vascular eNOS and Akt activation. Increased NO bioavailability improves vasodilation and blood circulation, effects protein kinases, ion channels and phosphodiesterases, counteracting vascular inflammation and LDL oxidative stress. Importantly, some polyphenols also inhibit the activity of matrix metalloproteinases, inhibit angiotensin converting enzyme activity and thereby improving SBP and DSB. We review the improvement of polyphenol intake on blood pressure and endothelial function for the treatment of hypertension, including not only observational but also RCTs and pre-clinical studies. CONCLUSION The antihypertensive phytotherapy of polyphenol-rich foods for protection and improving endothelial function with vascular relaxation occurs via the NO-cGMP pathway and ACE inhibition. OPCs stimulate endothelium-dependent vasodilation, suppress vasoconstrictor ET-1 synthesis, activate a laminar shear stress response in endothelial cells and also inhibit the activity of metalloproteinases including ACE lowering blood pressure.
Collapse
Affiliation(s)
- Helmut M Hügel
- School of Applied Sciences, RMIT University, GPO Box 2476, Melbourne, VIC 3001, Australia .
| | - Neale Jackson
- School of Applied Sciences, RMIT University, GPO Box 2476, Melbourne, VIC 3001, Australia
| | - Brian May
- School of Health Sciences and China-Australia International Research Centre for Chinese Medicine, Health Innovations Research Institute, RMIT University, Melbourne, VIC 3001 Australia
| | - Anthony L Zhang
- School of Health Sciences and China-Australia International Research Centre for Chinese Medicine, Health Innovations Research Institute, RMIT University, Melbourne, VIC 3001 Australia
| | - Charlie C Xue
- School of Health Sciences and China-Australia International Research Centre for Chinese Medicine, Health Innovations Research Institute, RMIT University, Melbourne, VIC 3001 Australia
| |
Collapse
|
44
|
Lin QF, Qiu CS, Wang SL, Huang LF, Chen ZY, Chen Y, Chen G. A Cross-sectional Study of the Relationship Between Habitual Tea Consumption and Arterial Stiffness. J Am Coll Nutr 2015; 35:354-61. [DOI: 10.1080/07315724.2015.1058197] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
45
|
Wu CF, Liu PY, Wu TJ, Hung Y, Yang SP, Lin GM. Therapeutic modification of arterial stiffness: An update and comprehensive review. World J Cardiol 2015; 7:742-753. [PMID: 26635922 PMCID: PMC4660469 DOI: 10.4330/wjc.v7.i11.742] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 09/09/2015] [Accepted: 09/25/2015] [Indexed: 02/06/2023] Open
Abstract
Arterial stiffness has been recognized as a marker of cardiovascular disease and associated with long-term worse clinical outcomes in several populations. Age, hypertension, smoking, and dyslipidemia, known as traditional vascular risk factors, as well as diabetes, obesity, and systemic inflammation lead to both atherosclerosis and arterial stiffness. Targeting multiple modifiable risk factors has become the main therapeutic strategy to improve arterial stiffness in patients at high cardiovascular risk. Additionally to life style modifications, long-term ω-3 fatty acids (fish oil) supplementation in diet may improve arterial stiffness in the population with hypertension or metabolic syndrome. Pharmacological treatment such as renin-angiotensin-aldosterone system antagonists, metformin, and 3-hydroxy-3-methyl-glutaryl-CoA reductase inhibitors were useful in individuals with hypertension and diabetes. In obese population with obstructive sleep apnea, weight reduction, aerobic exercise, and continuous positive airway pressure treatment may also improve arterial stiffness. In the populations with chronic inflammatory disease such as rheumatoid arthritis, a use of antibodies against tumor necrosis factor-alpha could work effectively. Other therapeutic options such as renal sympathetic nerve denervation for patients with resistant hypertension are investigated in many ongoing clinical trials. Therefore our comprehensive review provides knowledge in detail regarding many aspects of pathogenesis, measurement, and management of arterial stiffness in several populations, which would be helpful for physicians to make clinical decision.
Collapse
Affiliation(s)
- Ching-Fen Wu
- Ching-Fen Wu, Department of Internal Medicine, Mennonite Christian Hospital, Hualien 97144, Taiwan
| | - Pang-Yen Liu
- Ching-Fen Wu, Department of Internal Medicine, Mennonite Christian Hospital, Hualien 97144, Taiwan
| | - Tsung-Jui Wu
- Ching-Fen Wu, Department of Internal Medicine, Mennonite Christian Hospital, Hualien 97144, Taiwan
| | - Yuan Hung
- Ching-Fen Wu, Department of Internal Medicine, Mennonite Christian Hospital, Hualien 97144, Taiwan
| | - Shih-Ping Yang
- Ching-Fen Wu, Department of Internal Medicine, Mennonite Christian Hospital, Hualien 97144, Taiwan
| | - Gen-Min Lin
- Ching-Fen Wu, Department of Internal Medicine, Mennonite Christian Hospital, Hualien 97144, Taiwan
| |
Collapse
|
46
|
Gostner J, Becker K, Croft K, Woodman R, Puddey I, Fuchs D, Hodgson J. Regular consumption of black tea increases circulating kynurenine concentrations: A randomized controlled trial. BBA CLINICAL 2015; 3:31-5. [PMID: 26673554 PMCID: PMC4661527 DOI: 10.1016/j.bbacli.2014.11.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 11/25/2014] [Accepted: 11/29/2014] [Indexed: 01/07/2023]
Abstract
BACKGROUND Circulating neopterin and the ratio of kynurenine to tryptophan (KYN/TRP) concentrations are biomarkers of immune activation that have been linked to cardiovascular and total mortality. Several in vitro studies indicated that tea flavonoids and other antioxidants can modulate tryptophan breakdown rates and neopterin production in immune cells. We aimed to assess the effects of regular black tea consumption on tryptophan and neopterin metabolisms in vivo. METHODS Participants were healthy individuals, with no major illnesses and having normal to mildly elevated systolic blood pressure. They were randomly assigned to consume 3 cups/day of either powdered black tea solids (tea; n = 45) or a flavonoid-free caffeine-matched beverage (control; n = 49). Serum concentrations of tryptophan, kynurenine and neopterin were assessed at baseline and again at 3 and 6 months after daily ingestion of the respective beverage. RESULTS Regular consumption of tea over 6 months, compared to control, did not significantly alter neopterin (p = 0.13) or tryptophan (p = 0.85) concentrations, but did result in significantly higher kynurenine (p = 0.016) and KYN/TRP (p = 0.012). Relative to the control group, in the tea group kynurenine and KYN/TRP increased during the treatment period by 0.28 μmol/L (95% CI: - 0.04, 0.60) and 3.2 μmol/mmol (95% CI: - 1.6, 8.0), respectively at 3 months, and by 0.48 μmol/L (95% CI: 0.16, 0.80) and 7.5 μmol/mmol (95% CI: 2.5, 12.5), respectively at 6 months. CONCLUSIONS Increased circulation of kynurenine and KYN/TRP following regular black tea consumption may indicate enhanced tryptophan breakdown, possibly due to immune activation-induced tryptophan degrading enzyme indoleamine 2,3-dioxygenase. GENERAL SIGNIFICANCE The influence of black tea consumption on biomarkers of immune system activation could relate to its general health benefits. Data suggests that the net effect strongly depends on the individual immune state, being stimulatory in healthy individuals, while acting more immune dampening in situations with an inflammatory background.
Collapse
Affiliation(s)
- J.M. Gostner
- Division of Medical Biochemistry, Medical University of Innsbruck, Austria
| | - K. Becker
- Division of Biological Chemistry, Medical University of Innsbruck, Austria
| | - K.D. Croft
- School of Medicine and Pharmacology, University of Western Australia, Perth, Western Australia, Australia
| | - R.J. Woodman
- Flinders Centre for Epidemiology and Biostatistics, School of Medicine, Flinders University, Adelaide, South Australia, Australia
| | - I.B. Puddey
- School of Medicine and Pharmacology, University of Western Australia, Perth, Western Australia, Australia
| | - D. Fuchs
- Division of Biological Chemistry, Medical University of Innsbruck, Austria
| | - J.M. Hodgson
- School of Medicine and Pharmacology, University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
47
|
Jovanovski E, Peeva V, Sievenpiper JL, Jenkins AL, Desouza L, Rahelic D, Sung MK, Vuksan V. Modulation of endothelial function by Korean red ginseng (Panax ginseng C.A. Meyer) and its components in healthy individuals: a randomized controlled trial. Cardiovasc Ther 2015; 32:163-9. [PMID: 24758417 DOI: 10.1111/1755-5922.12077] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
AIMS Ginseng root and its derivatives remain atop the most widely used medicinal herbs in cardiovascular disease, despite inadequate substantiation of efficacy. We previously reported the potential of Korean red ginseng (KRG) to affect vascular tone by decreasing arterial wave reflection via an unknown mechanism. Given the preclinical link between ginseng intake and vasoactivity related to nitric oxide (NO) production, we sought to directly evaluate the effects of KRG root and its major root components, on an established noninvasive measure of endothelial function. METHODS In an acute, randomized, placebo-controlled, double-blind, crossover design, 16 healthy participants (9M:7F, age:30 ± 9y, BMI: 24 kg ±3 kg/m(2) , systolicBP/diastolicBP: 109 ± 11/66 ± 8 mmHg) on four occasions were administered: KRG root (3 g), KRG ginsenosides extract, KRG polysaccharides extract, and cornstarch control. Extracted fractions were delivered at doses bioequivalent to those found in 3 g of KRG. Flow-mediated vasodilatation (FMD) assessment, preceding a brachial blood pressure measurement, was performed at baseline and at 90 and 180 min posttreatment to assess endothelial function. RESULTS KRG significantly improved FMD posttreatment. Maximal vasodilatation of Δ2.57 ± 2.8% occurred at 180 min compared with control (Δ-0.83 ± 2.7%, P = 0.003 for all comparisons). The ginsenoside extract produced a comparable response (Δ1.75 ± 2.6%), but not the polysaccharide fraction (Δ0.10 ± 2.7%). Brachial blood pressure remained unchanged for all treatments (P = 0.45). CONCLUSIONS KRG acutely improved endothelial function in healthy individuals, which appears to be attributable to its ginsenoside containing fraction. Our data confirm preclinical data and support the potential for these compounds as targets for therapeutic strategies in disorders involving endothelial dysfunction.
Collapse
Affiliation(s)
- Elena Jovanovski
- Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, ON, Canada; Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Satoh T, Igarashi M, Yamada S, Takahashi N, Watanabe K. Inhibitory effect of black tea and its combination with acarbose on small intestinal α-glucosidase activity. JOURNAL OF ETHNOPHARMACOLOGY 2015; 161:147-155. [PMID: 25523370 DOI: 10.1016/j.jep.2014.12.009] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 12/02/2014] [Accepted: 12/04/2014] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE It is said that black tea is effective against type 2 diabetes mellitus because it can help modulate postprandial hyperglycemia. However, the mechanism underlying its therapeutic and preventive effects on type 2 diabetes mellitus is unclear. In this study, we focused on the effect of black tea on the carbohydrate digestion and absorption process in the gastrointestinal tract. We examined whether black tea can modulate postprandial hyperglycemia. MATERIALS AND METHODS The freeze-dried powder of the aqueous extract of black tea leaves (JAT) was used for in vitro studies of α-amylase activity, α-glucosidase activity, and glucose uptake by glucose transporters in Caco-2 cells; ex vivo studies of small intestinal α-glucosidase activity; and in vivo studies of oral sugar tolerance in GK rats, an animal model of nonobese type 2 diabetes mellitus. RESULTS Half maximal inhibitory concentration values indicated that JAT significantly reduced α-glucosidase activity, but weakly reduced α-amylase activity. Kinetic studies of rat small intestinal α-glucosidase activity revealed that the combination of JAT and the α-glucosidase inhibitor, acarbose, showed a mixed-type inhibition. JAT had no effect on the uptake of 2'-deoxy-d-glucose by glucose transporter 2 (GLUT2) and the uptake of α-methyl-d-glucose by sodium-dependent glucose transporter 1 (SGLT1). In the oral sucrose tolerance test in GK rats, JAT reduced plasma glucose levels in a dose-dependent manner compared with the control group. The hypoglycemic action of JAT was also confirmed: JAT, in combination with acarbose, produced a synergistic inhibitory effect on plasma glucose levels in vivo. In contrast to the oral sucrose tolerance test, JAT showed no effect in the oral glucose tolerance test. CONCLUSIONS JAT was demonstrated to inhibit the degradation of disaccharides into monosaccharides by α-glucosidase in the small intestine. Thereby indirectly preventing the absorption of the dietary source of glucose mediated by SGLT1 and GLUT2 transporters localized at the apical side of enterocytes in the small intestine. The results indicate that black tea could be useful as a functional food in the dietary therapy for borderline type 2 diabetes mellitus that could modulate postprandial hyperglycemia.
Collapse
Affiliation(s)
- Takashi Satoh
- Hokkaido Pharmaceutical University School of Pharmacy, 7-1 Katsuraoka-cho, Otaru, Hokkaido 047-0264, Japan.
| | - Masaki Igarashi
- Hokkaido Pharmaceutical University School of Pharmacy, 7-1 Katsuraoka-cho, Otaru, Hokkaido 047-0264, Japan
| | - Shogo Yamada
- Hokkaido Pharmaceutical University School of Pharmacy, 7-1 Katsuraoka-cho, Otaru, Hokkaido 047-0264, Japan
| | - Natsuko Takahashi
- Hokkaido Pharmaceutical University School of Pharmacy, 7-1 Katsuraoka-cho, Otaru, Hokkaido 047-0264, Japan
| | - Kazuhiro Watanabe
- Hokkaido Pharmaceutical University School of Pharmacy, 7-1 Katsuraoka-cho, Otaru, Hokkaido 047-0264, Japan
| |
Collapse
|
49
|
Black tea lowers blood pressure and wave reflections in fasted and postprandial conditions in hypertensive patients: a randomised study. Nutrients 2015; 7:1037-51. [PMID: 25658240 PMCID: PMC4344573 DOI: 10.3390/nu7021037] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 01/19/2015] [Accepted: 01/21/2015] [Indexed: 11/17/2022] Open
Abstract
Hypertension and arterial stiffening are independent predictors of cardiovascular mortality. Flavonoids may exert some vascular protection. We investigated the effects of black tea on blood pressure (BP) and wave reflections before and after fat load in hypertensives. According to a randomized, double-blind, controlled, cross-over design, 19 patients were assigned to consume black tea (129 mg flavonoids) or placebo twice a day for eight days (13 day wash-out period). Digital volume pulse and BP were measured before and 1, 2, 3 and 4 h after tea consumption. Measurements were performed in a fasted state and after a fat load. Compared to placebo, reflection index and stiffness index decreased after tea consumption (p<0.0001). Fat challenge increased wave reflection, which was counteracted by tea consumption (p<0.0001). Black tea decreased systolic and diastolic BP (-3.2 mmHg, p<0.005 and -2.6 mmHg, p<0.0001; respectively) and prevented BP increase after a fat load (p<0.0001). Black tea consumption lowers wave reflections and BP in the fasting state, and during the challenging haemodynamic conditions after a fat load in hypertensives. Considering lipemia-induced impairment of arterial function may occur frequently during the day, our findings suggest regular consumption of black tea may be relevant for cardiovascular protection.
Collapse
|
50
|
Fuchs D, de Graaf Y, van Kerckhoven R, Draijer R. Effect of tea theaflavins and catechins on microvascular function. Nutrients 2014; 6:5772-85. [PMID: 25514559 PMCID: PMC4276998 DOI: 10.3390/nu6125772] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 10/28/2014] [Accepted: 11/07/2014] [Indexed: 11/25/2022] Open
Abstract
Beneficial effects of flavonoid-rich black and green tea on macrocirculation have been well established. Theaflavins are unique to black tea as they are formed from catechins during the enzymatic oxidation of tea leaves. The study was performed to gain more insight into the effects of theaflavins on microcirculation and to compare effects with another important flavonoid class, the green tea derived catechins, which have been reported to improve vascular function. Twenty-four healthy subjects were included in a double-blind, placebo-controlled, randomised, cross-over study. On six different days, subjects received capsules with a single dose of catechins (500 mg), four varying doses of theaflavins (100 to 500 mg) or placebo. Microcirculation was assessed after each treatment by Pulse Amplitude Tonometry (EndoPAT) at baseline and 2, 4 and 6 h after test product intake. The EndoPAT reactive hyperemia response was improved by 500 mg catechins (reactive hyperemia index (RHI): 0.2; p = 0.04) and by 500 mg theaflavins (RHI: 0.19; p = 0.06) compared to placebo. Also, 300 mg theaflavins increased the RHI (0.28; p = 0.02), but no effects were observed at lower doses. The study suggests moderate effects of single doses of catechins and theaflavins on peripheral microcirculation.
Collapse
Affiliation(s)
- Dagmar Fuchs
- Unilever Research & Development, 3133 AT Vlaardingen, The Netherlands.
| | - Young de Graaf
- Unilever Research & Development, 3133 AT Vlaardingen, The Netherlands.
| | | | - Richard Draijer
- Unilever Research & Development, 3133 AT Vlaardingen, The Netherlands.
| |
Collapse
|