1
|
Sazdova I, Hadzi-Petrushev N, Keremidarska-Markova M, Stojchevski R, Sopi R, Shileiko S, Mitrokhin V, Gagov H, Avtanski D, Lubomirov LT, Mladenov M. SIRT-associated attenuation of cellular senescence in vascular wall. Mech Ageing Dev 2024; 220:111943. [PMID: 38762036 DOI: 10.1016/j.mad.2024.111943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/20/2024]
Abstract
This review focuses on the vital function that SIRT1 and other sirtuins play in promoting cellular senescence in vascular smooth muscle cells, which is a key element in the pathogenesis of vascular aging and associated cardiovascular diseases. Vascular aging is a gradual process caused by the accumulation of senescent cells, which results in increased vascular remodeling, stiffness, and diminished angiogenic ability. Such physiological alterations are characterized by a complex interplay of environmental and genetic variables, including oxidative stress and telomere attrition, which affect gene expression patterns and trigger cell growth arrest. SIRT1 has been highlighted for its potential to reduce cellular senescence through modulation of multiple signaling cascades, particularly the endothelial nitric oxide (eNOS)/NO signaling pathway. It also modulates cell cycle through p53 inactivation and suppresses NF-κB mediated expression of adhesive molecules at the vascular level. The study also examines the therapeutic potential of sirtuin modulation in vascular health, identifying SIRT1 and its sirtuin counterparts as potential targets for reducing vascular aging. This study sheds light on the molecular basis of vascular aging and the beneficial effects of sirtuins, paving the way for the development of tailored therapies aimed at enhancing vascular health and prolonging life.
Collapse
Affiliation(s)
- Iliyana Sazdova
- Department of Animal and Human Physiology, Faculty of Biology, Sofia University 'St. Kliment Ohridski', Sofia 1504, Bulgaria
| | - Nikola Hadzi-Petrushev
- Institute of Biology, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Skopje 1000, North Macedonia
| | - Milena Keremidarska-Markova
- Department of Animal and Human Physiology, Faculty of Biology, Sofia University 'St. Kliment Ohridski', Sofia 1504, Bulgaria
| | - Radoslav Stojchevski
- Friedman Diabetes Institute, Lenox Hill Hospital, Northwell Health, 110 E 59th Street, New York, NY 10022, USA
| | - Ramadan Sopi
- Faculty of Medicine, University of Prishtina, Prishtina 10 000, Kosovo
| | - Stanislav Shileiko
- Department of Fundamental and Applied Physiology, Russian States Medical University, Moscow 117997, Russia
| | - Vadim Mitrokhin
- Department of Fundamental and Applied Physiology, Russian States Medical University, Moscow 117997, Russia
| | - Hristo Gagov
- Department of Animal and Human Physiology, Faculty of Biology, Sofia University 'St. Kliment Ohridski', Sofia 1504, Bulgaria
| | - Dimitar Avtanski
- Friedman Diabetes Institute, Lenox Hill Hospital, Northwell Health, 110 E 59th Street, New York, NY 10022, USA
| | - Lubomir T Lubomirov
- Vascular Biology Research Group (RenEVA), Research Institute, Medical University-Varna, Varna, Bulgaria; Institute of Physiology and Pathophysiology, Faculty of Health - School of Medicine, Biomedical Center for Education and Research (ZBAF), Witten/Herdecke University, Witten, Germany
| | - Mitko Mladenov
- Institute of Biology, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Skopje 1000, North Macedonia; Department of Fundamental and Applied Physiology, Russian States Medical University, Moscow 117997, Russia.
| |
Collapse
|
2
|
Boothe PF, Kumar VP, Kong Y, Wang K, Levinson H, Mu D, Brown ML. Radiation Induced Skin Fibrosis (RISF): Opportunity for Angiotensin II-Dependent Intervention. Int J Mol Sci 2024; 25:8261. [PMID: 39125831 PMCID: PMC11312688 DOI: 10.3390/ijms25158261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Medical procedures, such as radiation therapy, are a vital element in treating many cancers, significantly contributing to improved survival rates. However, a common long-term complication of such exposure is radiation-induced skin fibrosis (RISF), a complex condition that poses substantial physical and psychological challenges. Notably, about 50% of patients undergoing radiation therapy may achieve long-term remission, resulting in a significant number of survivors managing the aftereffects of their treatment. This article delves into the intricate relationship between RISF, reactive oxygen species (ROS), and angiotensin II (Ang II) signaling. It proposes the underlying mechanisms and examines potential treatments for mitigating skin fibrosis. The primary goal is to offer essential insights in order to better care for and improve the quality of life of cancer survivors who face the risk of developing RISF.
Collapse
Affiliation(s)
- Patricia F. Boothe
- Department of Internal Medicine, Macon & Joan Brock Virginia Health Sciences at Old Dominion University, Norfolk, VA 23507, USA
| | - Vidya P. Kumar
- Armed Forces Radiobiology Research Institute, The Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA
| | - Yali Kong
- Department of Biomedical and Translational Sciences, Macon & Joan Brock Virginia Health Sciences at Old Dominion University, Norfolk, VA 23507, USA; (Y.K.); (D.M.)
| | - Kan Wang
- Department of Biomedical and Translational Sciences, Macon & Joan Brock Virginia Health Sciences at Old Dominion University, Norfolk, VA 23507, USA; (Y.K.); (D.M.)
| | - Howard Levinson
- The Center for Plastic Surgery at Sentara, 301 Riverview Ave. #400, Norfolk, VA 23510, USA;
| | - David Mu
- Department of Biomedical and Translational Sciences, Macon & Joan Brock Virginia Health Sciences at Old Dominion University, Norfolk, VA 23507, USA; (Y.K.); (D.M.)
- Leroy T. Canoles Jr. Cancer Research Center, Macon & Joan Brock Virginia Health Sciences at Old Dominion University, Norfolk, VA 23507, USA
| | - Milton L. Brown
- Department of Internal Medicine, Macon & Joan Brock Virginia Health Sciences at Old Dominion University, Norfolk, VA 23507, USA
| |
Collapse
|
3
|
Xu L, Liu H, Rang Y, Zhou L, Wang X, Li Y, Liu C. Lycium barbarum polysaccharides attenuate nonylphenol and octylphenol-induced oxidative stress and neurotransmitter disorders in PC-12 cells. Toxicology 2024; 505:153808. [PMID: 38642822 DOI: 10.1016/j.tox.2024.153808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/05/2024] [Accepted: 04/16/2024] [Indexed: 04/22/2024]
Abstract
Nonylphenol (NP) and octylphenol (OP) are environmental contaminants with potential endocrine disrupting effects. However, there is limited research on the mechanisms and intervention of combined NP and OP exposure-induced neurotoxicity. This study aims to explore the cytotoxicity of combined NP and OP exposure and evaluate the potential of Lycium barbarum polysaccharides (LBP) in mitigating the aforementioned toxicity. In present study, LBP (62.5, 125 and 250 µg/mL) were applied to intervene rat adrenal pheochromocytoma (PC-12) cells treated with combined NP and OP (NP: OP = 4:1, w/w; 1, 2, 4 and 8 µg/mL). The results showed that NP and OP induced oxidative stress, disrupted the 5-hydroxytryptamine (5-HT) and cholinergic systems in PC-12 cells. Additionally, they activated the p38 protein kinase (p38) and suppressed the expression of silent information regulation type 1 (SIRT1), monoamine oxidase A (MAOA), phosphorylated cyclic-AMP response binding protein (p-CREB), brain-derived neurotrophic factor (BDNF) and phosphorylated tropomyosin-related kinase receptor type B (p-TrkB). However, N-acetyl-L-cysteine (NAC) treatment counteracted the changes of signalling molecule p38, SIRT1/MAOA and CREB/BDNF/TrkB pathways-related proteins induced by NP and OP. LBP pretreatment ameliorated combined NP and OP exposure-induced oxidative stress and neurotransmitter imbalances. Furthermore, the application of LBP and administration of a p38 inhibitor both reversed the alterations in the signaling molecule p38, as well as the proteins associated to the SIRT1/MAOA and CREB/BDNF/TrkB pathways. These results implied that LBP may have neuroprotective effects via p38-mediated SIRT1/MAOA and CREB/BDNF/TrkB pathways.
Collapse
Affiliation(s)
- Linjing Xu
- College of Food Science, South China Agricultural University, Guangzhou 510642, China; The Key Laboratory of Food Quality and Safety of Guangdong Province, Guangzhou 510642, China
| | - Huan Liu
- College of Life Sciences, Hubei Normal University, Huangshi 435000, China
| | - Yifeng Rang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China; The Key Laboratory of Food Quality and Safety of Guangdong Province, Guangzhou 510642, China
| | - Lizi Zhou
- College of Food Science, South China Agricultural University, Guangzhou 510642, China; The Key Laboratory of Food Quality and Safety of Guangdong Province, Guangzhou 510642, China
| | - Xukai Wang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China; The Key Laboratory of Food Quality and Safety of Guangdong Province, Guangzhou 510642, China
| | - Yinhuan Li
- College of Food Science, South China Agricultural University, Guangzhou 510642, China; The Key Laboratory of Food Quality and Safety of Guangdong Province, Guangzhou 510642, China
| | - Chunhong Liu
- College of Food Science, South China Agricultural University, Guangzhou 510642, China; The Key Laboratory of Food Quality and Safety of Guangdong Province, Guangzhou 510642, China.
| |
Collapse
|
4
|
Shizukuda Y, Rosing DR. Hereditary hemochromatosis with homozygous C282Y HFE mutation: possible clinical model to assess effects of elevated reactive oxygen species on the development of cardiovascular disease. Mol Cell Biochem 2024; 479:617-627. [PMID: 37133674 DOI: 10.1007/s11010-023-04726-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/31/2023] [Indexed: 05/04/2023]
Abstract
Hereditary hemochromatosis with the homozygous C282Y HFE mutation (HH-282H) is a genetic condition which causes iron overload (IO) and elevated reactive oxygen species (ROS) secondary to the IO. Interestingly, even after successful iron removal therapy, HH-282H subjects demonstrate chronically elevated ROS. Raised ROS are also associated with the development of multiple cardiovascular diseases and HH-282H subjects may be at risk to develop these complications. In this narrative review, we consider HH-282H subjects as a clinical model for assessing the contribution of elevated ROS to the development of cardiovascular diseases in subjects with fewer confounding clinical risk factors as compared to other disease conditions with high ROS. We identify HH-282H subjects as a potentially unique clinical model to assess the impact of chronically elevated ROS on the development of cardiovascular disease and to serve as a clinical model to detect effective interventions for anti-ROS therapy.
Collapse
Affiliation(s)
- Yukitaka Shizukuda
- Cardiovascular Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
- Division of Cardiology, Department of Internal Medicine, Cincinnati VA Medical Center, Cincinnati, OH, 45220, USA.
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, 45267, USA.
| | - Douglas R Rosing
- Cardiovascular Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
5
|
Bețiu AM, Noveanu L, Hâncu IM, Lascu A, Petrescu L, Maack C, Elmér E, Muntean DM. Mitochondrial Effects of Common Cardiovascular Medications: The Good, the Bad and the Mixed. Int J Mol Sci 2022; 23:13653. [PMID: 36362438 PMCID: PMC9656474 DOI: 10.3390/ijms232113653] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/20/2022] [Accepted: 10/28/2022] [Indexed: 07/25/2023] Open
Abstract
Mitochondria are central organelles in the homeostasis of the cardiovascular system via the integration of several physiological processes, such as ATP generation via oxidative phosphorylation, synthesis/exchange of metabolites, calcium sequestration, reactive oxygen species (ROS) production/buffering and control of cellular survival/death. Mitochondrial impairment has been widely recognized as a central pathomechanism of almost all cardiovascular diseases, rendering these organelles important therapeutic targets. Mitochondrial dysfunction has been reported to occur in the setting of drug-induced toxicity in several tissues and organs, including the heart. Members of the drug classes currently used in the therapeutics of cardiovascular pathologies have been reported to both support and undermine mitochondrial function. For the latter case, mitochondrial toxicity is the consequence of drug interference (direct or off-target effects) with mitochondrial respiration/energy conversion, DNA replication, ROS production and detoxification, cell death signaling and mitochondrial dynamics. The present narrative review aims to summarize the beneficial and deleterious mitochondrial effects of common cardiovascular medications as described in various experimental models and identify those for which evidence for both types of effects is available in the literature.
Collapse
Affiliation(s)
- Alina M. Bețiu
- Doctoral School Medicine-Pharmacy, “Victor Babeș” University of Medicine and Pharmacy from Timișoara, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
- Center for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy from Timișoara, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Lavinia Noveanu
- Department of Functional Sciences—Pathophysiology, “Victor Babeș” University of Medicine and Pharmacy from Timișoara, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Iasmina M. Hâncu
- Doctoral School Medicine-Pharmacy, “Victor Babeș” University of Medicine and Pharmacy from Timișoara, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
- Center for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy from Timișoara, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Ana Lascu
- Center for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy from Timișoara, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
- Department of Functional Sciences—Pathophysiology, “Victor Babeș” University of Medicine and Pharmacy from Timișoara, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Lucian Petrescu
- Doctoral School Medicine-Pharmacy, “Victor Babeș” University of Medicine and Pharmacy from Timișoara, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
- Center for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy from Timișoara, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Christoph Maack
- Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, 97078 Würzburg, Germany
- Department of Internal Medicine 1, University Clinic Würzburg, 97078 Würzburg, Germany
| | - Eskil Elmér
- Mitochondrial Medicine, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, BMC A13, 221 84 Lund, Sweden
- Abliva AB, Medicon Village, 223 81 Lund, Sweden
| | - Danina M. Muntean
- Center for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy from Timișoara, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
- Department of Functional Sciences—Pathophysiology, “Victor Babeș” University of Medicine and Pharmacy from Timișoara, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
| |
Collapse
|
6
|
Scisciola L, Fontanella RA, Surina, Garofalo G, Rizzo MR, Paolisso G, Barbieri M. Potential Role of Lisinopril in Reducing Atherosclerotic Risk: Evidence of an Antioxidant Effect in Human Cardiomyocytes Cell Line. Front Pharmacol 2022; 13:868365. [PMID: 35656292 PMCID: PMC9152216 DOI: 10.3389/fphar.2022.868365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/21/2022] [Indexed: 11/17/2022] Open
Abstract
The cellular mechanisms involved in myocardial ischemia/reperfusion injury (I/R) pathogenesis are complex but attributable to reactive oxygen species (ROS) production. ROS produced by coronary endothelial cells, blood cells (e.g., leukocytes and platelets), and cardiac myocytes have the potential to damage vascular cells directly and cardiac myocytes, initiating mechanisms that induce apoptosis, inflammation, necrosis, and fibrosis of myocardial cells. In addition to reducing blood pressure, lisinopril, a new non-sulfhydryl angiotensin-converting enzyme (ACE) inhibitor, increases the antioxidant defense in animals and humans. Recently, it has been shown that lisinopril can attenuate renal oxidative injury in the l-NAME-induced hypertensive rat and cause an impressive improvement in the antioxidant defense system of Wistar rats treated with doxorubicin. The potential effect of lisinopril on oxidative damage and fibrosis in human cardiomyocytes has not been previously investigated. Thus, the present study aims to investigate the effect of different doses of lisinopril on oxidative stress and fibrotic mediators in AC16 human cardiomyocytes, along with a 7-day presence in the culture medium. The results revealed that AC16 human cardiomyocytes exposed to lisinopril treatment significantly showed an upregulation of proteins involved in protecting against oxidative stress, such as catalase, SOD2, and thioredoxin, and a reduction of osteopontin and Galectin-3, critical proteins involved in cardiac fibrosis. Moreover, lisinopril treatment induced an increment in Sirtuin 1 and Sirtuin 6 protein expression. These findings demonstrated that, in AC16 human cardiomyocytes, lisinopril could protect against oxidative stress and fibrosis via the activation of Sirtuin 1 and Sirtuin 6 pathways.
Collapse
Affiliation(s)
- Lucia Scisciola
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Rosaria Anna Fontanella
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Surina
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giovanna Garofalo
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Maria Rosaria Rizzo
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giuseppe Paolisso
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy.,Mediterranea Cardiocentro, Napoli, Italy
| | - Michelangela Barbieri
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
7
|
Wahba NS, Ghareib SA, Abdel-Ghany RH, Abdel-Aal M, Alsemeh AE. Vitamin D3 potentiates the nephroprotective effects of metformin in a rat model of metabolic syndrome: role of AMPK/SIRT1 activation and DPP-4 inhibition. Can J Physiol Pharmacol 2021; 99:685-697. [PMID: 33108744 DOI: 10.1139/cjpp-2020-0435] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The current study aimed to investigate the molecular mechanisms of metformin and vitamin D3-induced nephroprotection in a metabolic syndrome (MetS) rat model, evaluating the capacity of vitamin D3 to potentiate metformin action. MetS was induced by 10% fructose in drinking water and 3% salt in the diet. After 6 weeks, serum lipid profile and uric acid were measured, an oral glucose tolerance test (OGTT) was performed, and kidney function was investigated. In conjunction with the same concentrations of fructose and salt feeding, MetS rats with significant weight gain, dyslipidemia, hyperuricemia, and dysglycemia were treated orally with metformin (200 mg/kg), vitamin D3 (10 µg/kg), or both daily for 6 weeks. At the end of the study period, anthropometrical parameters were recorded, OGTT was reperformed, urine and blood samples were collected, and tissue samples were harvested at sacrifice. MetS rats showed dramatically declined renal function, enhanced intrarenal oxidative stress and inflammation, and extravagant renal histopathological damage with interstitial fibrosis. Metformin and vitamin D3 significantly reversed all the aforementioned deleterious effects in MetS rats. The study has verified the nephroprotective effects of metformin and vitamin D3 in MetS, accentuating the critical role of AMP-activated protein kinase/sirtuin-1 activation and dipeptidyl peptidase-4 inhibition. Given the synergistic effects of the combination, vitamin D3 is worth being investigated as an additional therapeutic agent for preventing MetS-induced nephropathy.
Collapse
Affiliation(s)
- Nehal S Wahba
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Salah A Ghareib
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Rasha H Abdel-Ghany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Mohamed Abdel-Aal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Amira E Alsemeh
- Department of Anatomy and Embryology, Faculty of Human Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
8
|
Packer M. Longevity genes, cardiac ageing, and the pathogenesis of cardiomyopathy: implications for understanding the effects of current and future treatments for heart failure. Eur Heart J 2021; 41:3856-3861. [PMID: 32460327 PMCID: PMC7599035 DOI: 10.1093/eurheartj/ehaa360] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 03/26/2020] [Accepted: 04/17/2020] [Indexed: 12/11/2022] Open
Abstract
The two primary molecular regulators of lifespan are sirtuin-1 (SIRT1) and mammalian target of rapamycin complex 1 (mTORC1). Each plays a central role in two highly interconnected pathways that modulate the balance between cellular growth and survival. The activation of SIRT1 [along with peroxisome proliferator-activated receptor-gamma coactivator (PGC-1α) and adenosine monophosphate-activated protein kinase (AMPK)] and the suppression of mTORC1 (along with its upstream regulator, Akt) act to prolong organismal longevity and retard cardiac ageing. Both activation of SIRT1/PGC-1α and inhibition of mTORC1 shifts the balance of cellular priorities so as to promote cardiomyocyte survival over growth, leading to cardioprotective effects in experimental models. These benefits may be related to direct actions to modulate oxidative stress, organellar function, proinflammatory pathways, and maladaptive hypertrophy. In addition, a primary shared benefit of both SIRT1/PGC-1α/AMPK activation and Akt/mTORC1 inhibition is the enhancement of autophagy, a lysosome-dependent degradative pathway, which clears the cytosol of dysfunctional organelles and misfolded proteins that drive the ageing process by increasing oxidative and endoplasmic reticulum stress. Autophagy underlies the ability of SIRT1/PGC-1α/AMPK activation and Akt/mTORC1 suppression to extend lifespan, mitigate cardiac ageing, alleviate cellular stress, and ameliorate the development and progression of cardiomyopathy; silencing of autophagy genes abolishes these benefits. Loss of SIRT1/PGC-1α/AMPK function or hyperactivation of Akt/mTORC1 is a consistent feature of experimental cardiomyopathy, and reversal of these abnormalities mitigates the development of heart failure. Interestingly, most treatments that have been shown to be clinically effective in the treatment of chronic heart failure with a reduced ejection fraction have been reported experimentally to exert favourable effects to activate SIRT1/PGC-1α/AMPK and/or suppress Akt/mTORC1, and thereby, to promote autophagic flux. Therefore, the impairment of autophagy resulting from derangements in longevity gene signalling is likely to represent a seminal event in the evolution and progression of cardiomyopathy. ![]()
Collapse
Affiliation(s)
- Milton Packer
- Baylor Heart and Vascular Institute, Baylor University Medical Center, 621 N. Hall Street, Dallas, TX 75226, USA.,Imperial College, London, UK
| |
Collapse
|
9
|
Bo Y, Jian Z, Zhi-Jun S, Quing W, Hua Z, Chuan-Wei L, Yu-Kang C. Panax notoginseng saponins alleviates advanced glycation end product-induced apoptosis by upregulating SIRT1 and antioxidant expression levels in HUVECs. Exp Ther Med 2020; 20:99. [PMID: 32973948 PMCID: PMC7506886 DOI: 10.3892/etm.2020.9229] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Accepted: 04/18/2019] [Indexed: 12/12/2022] Open
Abstract
The present study examined whether Panax notoginseng saponins (PNS) alleviated advanced glycation end product (AGE)-induced apoptosis in human umbilical vein endothelial cells (HUVECs). HUVECs were incubated with 300 µg/ml AGEs alone or AGEs and PNS (0.05, 0.5 or 1 mg/ml) for 48 h. The results of the present study demonstrated that PNS effectively promoted cell viability, inhibited apoptosis and suppressed the activity of caspase-3 in AGE-induced HUVECs. The activities of monocyte chemoattractant protein-1 and malondialdehyde were reduced, and superoxide dismutase activity was increased following treatment with PNS. Furthermore, PNS significantly increased the expression of silent information regulator 1 (SIRT1) and transforming growth factor (TGF)-β1 proteins, and suppressed the expression of inducible nitric oxide synthase and cyclooxyggenase-2 proteins in AGE-induced HUVECs. Therefore, the present study demonstrated that PNS reduced AGE-induced apoptosis by upregulating SIRT1 and antioxidants in HUVECs. The present findings suggest that the PNS may as an important pharmacological agent for AGE-induced cardiovascular injury.
Collapse
Affiliation(s)
- Yang Bo
- Department of Cardiology, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Zhang Jian
- Department of Cardiology, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Sun Zhi-Jun
- Department of Cardiology, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Wu Quing
- Department of Cardiology, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Zhao Hua
- Department of Cardiology, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Li Chuan-Wei
- Department of Cardiology, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Cao Yu-Kang
- Department of Cardiology, Chinese PLA General Hospital, Beijing 100853, P.R. China
| |
Collapse
|
10
|
Budbazar E, Rodriguez F, Sanchez JM, Seta F. The Role of Sirtuin-1 in the Vasculature: Focus on Aortic Aneurysm. Front Physiol 2020; 11:1047. [PMID: 32982786 PMCID: PMC7477329 DOI: 10.3389/fphys.2020.01047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 07/30/2020] [Indexed: 12/19/2022] Open
Abstract
Sirtuin-1 (SirT1) is a nicotinamide adenine dinucleotide-dependent deacetylase and the best characterized member of the sirtuins family in mammalians. Sirtuin-1 shuttles between the cytoplasm and the nucleus, where it deacetylates histones and non-histone proteins involved in a plethora of cellular processes, including survival, growth, metabolism, senescence, and stress resistance. In this brief review, we summarize the current knowledge on the anti-oxidant, anti-inflammatory, anti-apoptotic, and anti-senescence effects of SirT1 with an emphasis on vascular diseases. Specifically, we describe recent research advances on SirT1-mediated molecular mechanisms in aortic aneurysm (AA), and how these processes relate to oxidant stress and the heme-oxygenase (HO) system. HO-1 and HO-2 catalyze the rate-limiting step of cellular heme degradation and, similar to SirT1, HO-1 exerts beneficial effects in the vasculature through the activation of anti-oxidant, anti-inflammatory, anti-apoptotic, and anti-proliferative signaling pathways. SirT1 and HO-1 are part of an integrated system for cellular stress tolerance, and may positively interact to regulate vascular function. We further discuss sex differences in HO-1 and SirT1 activity or expression, and the potential interactions between the two proteins, in relation to the progression and severity of AA, as well as the ongoing efforts for translational applications of SirT1 activation and HO-1 induction in the treatment of cardiovascular diseases including AA.
Collapse
Affiliation(s)
- Enkhjargal Budbazar
- Vascular Biology Section, Boston University School of Medicine, Boston, MA, United States
| | - Francisca Rodriguez
- Department of Physiology, University of Murcia and Biomedical Research Institute in Murcia (IMIB), Murcia, Spain
| | - José M Sanchez
- Department of Physiology, University of Murcia and Biomedical Research Institute in Murcia (IMIB), Murcia, Spain
| | - Francesca Seta
- Vascular Biology Section, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
11
|
Packer M. Molecular, Cellular, and Clinical Evidence That Sodium-Glucose Cotransporter 2 Inhibitors Act as Neurohormonal Antagonists When Used for the Treatment of Chronic Heart Failure. J Am Heart Assoc 2020; 9:e016270. [PMID: 32791029 PMCID: PMC7660825 DOI: 10.1161/jaha.120.016270] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Sodium-glucose cotransporter 2 (SGLT2) inhibitors reduce the risk of cardiovascular death and hospitalization for heart failure in patients with chronic heart failure. Initially, these drugs were believed to have a profile similar to diuretics or hemodynamically active drugs, but they do not rapidly reduce natriuretic peptides or cardiac filling pressures, and they exert little early benefit on symptoms, exercise tolerance, quality of life, or signs of congestion. Clinically, the profile of SGLT2 inhibitors resembles that of neurohormonal antagonists, whose benefits emerge gradually during sustained therapy. In experimental models, SGLT2 inhibitors produce a characteristic pattern of cellular effects, which includes amelioration of oxidative stress, mitigation of mitochondrial dysfunction, attenuation of proinflammatory pathways, and a reduction in myocardial fibrosis. These cellular effects are similar to those produced by angiotensin converting enzyme inhibitors, β-blockers, mineralocorticoid receptor antagonists, and neprilysin inhibitors. At a molecular level, SGLT2 inhibitors induce transcriptional reprogramming of cardiomyocytes that closely mimics that seen during nutrient deprivation. This shift in signaling activates the housekeeping pathway of autophagy, which clears the cytosol of dangerous cytosolic constituents that are responsible for cellular stress, thereby ameliorating the development of cardiomyopathy. Interestingly, similar changes in cellular signaling and autophagic flux have been seen with inhibitors of the renin-angiotensin system, β-blockers, mineralocorticoid receptor antagonists, and neprilysin inhibitors. The striking parallelism of these molecular, cellular, and clinical profiles supports the premise that SGLT2 inhibitors should be regarded as neurohormonal antagonists when prescribed for the treatment of heart failure with a reduced ejection fraction.
Collapse
Affiliation(s)
- Milton Packer
- Baylor Heart and Vascular InstituteBaylor University Medical CenterDallasTX
- Imperial CollegeLondonUnited Kingdom
| |
Collapse
|
12
|
High Concentrations of Uric Acid and Angiotensin II Act Additively to Produce Endothelial Injury. Mediators Inflamm 2020; 2020:8387654. [PMID: 32565731 PMCID: PMC7261330 DOI: 10.1155/2020/8387654] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/22/2020] [Accepted: 03/10/2020] [Indexed: 12/22/2022] Open
Abstract
Renin angiotensin (Ang) system (RAS) activation in metabolic syndrome (MS) patients is associated with elevated uric acid (UA) levels, resulting in endothelial system dysfunction. Our previous study demonstrated that excessive UA could cause endothelial injury through the aldose reductase (AR) pathway. This study is the first to show that a high concentration of Ang II in human umbilical vein endothelial cells (HUVECs) increases reactive oxygen species (ROS) components, including O2·- and H2O2, and further aggravates endothelial system injury induced by high UA (HUA). In a MS/hyperuricemia model, nitric oxide (NO) production was decreased, followed by a decrease in total antioxidant capacity (TAC), and the concentration of the endothelial injury marker von Willebrand factor (vWF) in the serum was increased. Treatment with catalase and polyethylene glycol covalently linked to superoxide dismutase (PEG-SOD) to individually remove H2O2 and O2·- or treatment with the AR inhibitor epalrestat decreased ROS and H2O2, increased NO levels and TAC, and reduced vWF release. Taken together, these data indicate that HUA and Ang II act additively to cause endothelial dysfunction via oxidative stress, and specific elimination of O2·- and H2O2 improves endothelial function. We provide theoretical evidence to prevent or delay endothelial injury caused by metabolic diseases.
Collapse
|
13
|
Zhu Z, Li H, Chen W, Cui Y, Huang A, Qi X. Perindopril Improves Cardiac Function by Enhancing the Expression of SIRT3 and PGC-1α in a Rat Model of Isoproterenol-Induced Cardiomyopathy. Front Pharmacol 2020; 11:94. [PMID: 32153406 PMCID: PMC7046591 DOI: 10.3389/fphar.2020.00094] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/27/2020] [Indexed: 12/13/2022] Open
Abstract
Mitochondrial biosynthesis regulated by the PGC-1α-NRF1-TFAM pathway is considered a novel potential therapeutic target to treat heart failure (HF). Perindopril (PER) is an angiotensin-converting enzyme inhibitor that has proven efficacy in the prevention of HF; however, its mechanism is not well established. In this study, to investigate the mechanisms of PER in cardiac protection, a rat model of cardiomyopathy was established by continuous isoproterenol (ISO) stimulation. Changes in the body weight, heart weight index, echocardiography, histological staining, mitochondrial microstructure, and biochemical indicators were examined. Our results demonstrate that PER reduced myocardial remodeling, inhibited deterioration of cardiac function, and delayed HF onset in rats with ISO-induced cardiomyopathy. PER markedly reduced reactive oxygen species (ROS) production, increased the levels of antioxidant enzymes, inhibited mitochondrial structural destruction and increases the number of mitochondria, improved the function of the mitochondrial respiratory chain, and promoted ATP production in myocardial tissues. In addition, PER inhibited cytochrome C release in mitochondria and caspase-3 activation in the cytosol, thereby reducing the apoptosis of myocardial cells. Notably, PER remarkably up-regulated the mRNA and protein expression levels of Sirtuin 3 (SIRT3), peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), nuclear respiratory factor 1 (NRF1), and mitochondrial transcription factor A (TFAM) in myocardial cells. Collectively, our results suggest that PER induces mitochondrial biosynthesis-mediated enhancement of SIRT3 and PGC-1α expression, thereby improving the cardiac function in rats with ISO-induced cardiomyopathy.
Collapse
Affiliation(s)
- Zhenyu Zhu
- School of Graduate Studies, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Department of Cardiology, Tianjin Union Medical Center, Tianjin, China
| | - Huihui Li
- School of Graduate Studies, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wanli Chen
- School of Graduate Studies, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yameng Cui
- School of Graduate Studies, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Anan Huang
- School of Medicine, Nankai University, Tianjin, China
| | - Xin Qi
- Department of Cardiology, Tianjin Union Medical Center, Tianjin, China
| |
Collapse
|
14
|
Wang H, Shi X, Qiu M, Lv S, Liu H. Hydrogen Sulfide Plays an Important Protective Role through Influencing Endoplasmic Reticulum Stress in Diseases. Int J Biol Sci 2020; 16:264-271. [PMID: 31929754 PMCID: PMC6949148 DOI: 10.7150/ijbs.38143] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 09/10/2019] [Indexed: 02/06/2023] Open
Abstract
The endoplasmic reticulum is an important organelle responsible for protein synthesis, modification, folding, assembly and transport of new peptide chains. When the endoplasmic reticulum protein folding ability is impaired, the unfolded or misfolded proteins accumulate to lead to endoplasmic reticulum stress. Hydrogen sulfide is an important signaling molecule that regulates many physiological and pathological processes. Recent studies indicate that H2S plays an important protective role in many diseases through influencing endoplasmic reticulum stress, but its mechanism is not fully understood. This article reviewed the progress about the effect of H2S on endoplasmic reticulum stress and its mechanisms involved in diseases in recent years to provide theoretical basis for in-depth study.
Collapse
Affiliation(s)
- Honggang Wang
- Institute of Biomedical Informatics, Bioinformatics Center, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475000, China
| | - Xingzhuo Shi
- School of Life Science, Henan University, Kaifeng, Henan, 475000, China
| | - Mengyuan Qiu
- Institute of Biomedical Informatics, Bioinformatics Center, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475000, China
| | - Shuangyu Lv
- Institute of Biomedical Informatics, Bioinformatics Center, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475000, China
| | - Huiyang Liu
- Institute of Biomedical Informatics, Bioinformatics Center, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475000, China
| |
Collapse
|
15
|
Gao P, Li L, Wei X, Wang M, Hong Y, Wu H, Shen Y, Ma T, Wei X, Zhang Q, Fang X, Wang L, Yan Z, Du GH, Zheng H, Yang G, Liu D, Zhu Z. Activation of Transient Receptor Potential Channel Vanilloid 4 by DPP-4 (Dipeptidyl Peptidase-4) Inhibitor Vildagliptin Protects Against Diabetic Endothelial Dysfunction. Hypertension 2019; 75:150-162. [PMID: 31735085 DOI: 10.1161/hypertensionaha.119.13778] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Endothelial dysfunction is an early step to the progression of cardiovascular diseases in diabetes. Apart from their anti-diabetic action, DPP-4 (dipeptidyl peptidase-4) inhibitors also reduce cardiovascular events in diabetic patients. However, the underlying mechanism of the beneficial effect of DPP-4 inhibitor on endothelial function is still obscure. In this study, we intervened type 1 or 2 diabetic model mice with vildagliptin for 4 weeks and measured the vascular reactivity. We found that vildagliptin improved endothelium-dependent vasodilation in diabetic mice independent of GLP-1 (glucagonlike peptide-1), but this effect was blocked by a SIRT1 (Sirtuin 1) inhibitor, Ex527. Mechanistically, vildagliptin-activated Transient Receptor Potential Channel Vanilloid 4 (TRPV4) to promote extracellular calcium uptake in endothelial cells, which activated AMPK (AMP-activated protein kinase)/SIRT1 pathway to counteract hyperglycemia-induced endothelial reactive oxygen species generation and senescence. Vildagliptin directly binds to TRPV4 by forming a hydrogen bond, which is critical to vildagliptin-evoked endothelial calcium intake. Knockout or inhibition of TRPV4 erased the beneficial role of vildagliptin. In addition, activation of SIRT1 by SRT1720 improved endothelial function independent of TRPV4 and reduced TRPV4 transcription to maintain an appropriate calcium level. In summary, our findings prove that vildagliptin protects against hyperglycemia-induced endothelial dysfunction by activating TRPV4-meditaed Ca2+ uptake, which helps to re-understand the mechanism of DPP-4 inhibitors and expand the therapeutic scope.
Collapse
Affiliation(s)
- Peng Gao
- From the Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, China (P.G., Xiao Wei, Y.H., H.W., T.M., Xing Wei, L.W., Z.Y., D.L., Z.Z.)
| | - Li Li
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, China (L.L., Y.S., G.-H.D.)
| | - Xiao Wei
- From the Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, China (P.G., Xiao Wei, Y.H., H.W., T.M., Xing Wei, L.W., Z.Y., D.L., Z.Z.)
| | - Miao Wang
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University and Chongqing Clinical Research Center for Geriatrics, China (M.W., Q.Z., X.F., G.Y.)
| | - Yangning Hong
- From the Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, China (P.G., Xiao Wei, Y.H., H.W., T.M., Xing Wei, L.W., Z.Y., D.L., Z.Z.)
| | - Hao Wu
- From the Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, China (P.G., Xiao Wei, Y.H., H.W., T.M., Xing Wei, L.W., Z.Y., D.L., Z.Z.)
| | - Yanjia Shen
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, China (L.L., Y.S., G.-H.D.)
| | - Tianyi Ma
- From the Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, China (P.G., Xiao Wei, Y.H., H.W., T.M., Xing Wei, L.W., Z.Y., D.L., Z.Z.)
| | - Xing Wei
- From the Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, China (P.G., Xiao Wei, Y.H., H.W., T.M., Xing Wei, L.W., Z.Y., D.L., Z.Z.)
| | - Qin Zhang
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University and Chongqing Clinical Research Center for Geriatrics, China (M.W., Q.Z., X.F., G.Y.)
| | - Xia Fang
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University and Chongqing Clinical Research Center for Geriatrics, China (M.W., Q.Z., X.F., G.Y.)
| | - Lijuan Wang
- From the Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, China (P.G., Xiao Wei, Y.H., H.W., T.M., Xing Wei, L.W., Z.Y., D.L., Z.Z.)
| | - Zhencheng Yan
- From the Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, China (P.G., Xiao Wei, Y.H., H.W., T.M., Xing Wei, L.W., Z.Y., D.L., Z.Z.)
| | - Guan-Hua Du
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, China (L.L., Y.S., G.-H.D.)
| | - Hongting Zheng
- Department of Endocrinology, Translational Research Key Laboratory for Diabetes, Xinqiao Hospital, Third Military Medical University, Chongqing, China (H.Z.)
| | - Gangyi Yang
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University and Chongqing Clinical Research Center for Geriatrics, China (M.W., Q.Z., X.F., G.Y.)
| | - Daoyan Liu
- From the Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, China (P.G., Xiao Wei, Y.H., H.W., T.M., Xing Wei, L.W., Z.Y., D.L., Z.Z.)
| | - Zhiming Zhu
- From the Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, China (P.G., Xiao Wei, Y.H., H.W., T.M., Xing Wei, L.W., Z.Y., D.L., Z.Z.)
| |
Collapse
|
16
|
Liu J, Li X, Lu Q, Ren D, Sun X, Rousselle T, Li J, Leng J. AMPK: a balancer of the renin-angiotensin system. Biosci Rep 2019; 39:BSR20181994. [PMID: 31413168 PMCID: PMC6722492 DOI: 10.1042/bsr20181994] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 07/24/2019] [Accepted: 08/12/2019] [Indexed: 02/07/2023] Open
Abstract
The renin-angiotensin system (RAS) is undisputedly well-studied as one of the oldest and most critical regulators for arterial blood pressure, fluid volume, as well as renal function. In recent studies, RAS has also been implicated in the development of obesity, diabetes, hyperlipidemia, and other diseases, and also involved in the regulation of several signaling pathways such as proliferation, apoptosis and autophagy, and insulin resistance. AMP-activated protein kinase (AMPK), an essential cellular energy sensor, has also been discovered to be involved in these diseases and cellular pathways. This would imply a connection between the RAS and AMPK. Therefore, this review serves to draw attention to the cross-talk between RAS and AMPK, then summering the most recent literature which highlights AMPK as a point of balance between physiological and pathological functions of the RAS.
Collapse
Affiliation(s)
- Jia Liu
- Department of Geriatrics, The First Hospital of Jilin University, Changchun 130021, China
- Department of Surgery, University of South Florida, Tampa, FL 33612, U.S.A
| | - Xuan Li
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, U.S.A
| | - Qingguo Lu
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, U.S.A
| | - Di Ren
- Department of Surgery, University of South Florida, Tampa, FL 33612, U.S.A
| | - Xiaodong Sun
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, U.S.A
| | - Thomas Rousselle
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, U.S.A
| | - Ji Li
- Department of Surgery, University of South Florida, Tampa, FL 33612, U.S.A
| | - Jiyan Leng
- Department of Geriatrics, The First Hospital of Jilin University, Changchun 130021, China
| |
Collapse
|
17
|
Song J, Huang S, Wang K, Li W, Pao L, Chen F, Zhao X. Long Non-coding RNA MEG3 Attenuates the Angiotensin II-Induced Injury of Human Umbilical Vein Endothelial Cells by Interacting With p53. Front Genet 2019; 10:78. [PMID: 30838022 PMCID: PMC6389612 DOI: 10.3389/fgene.2019.00078] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 01/28/2019] [Indexed: 01/01/2023] Open
Abstract
Angiotensin II (Ang II)-induced damage to endothelial cells (ECs) plays a crucial role in the pathogenesis of cardiovascular disease. This study aimed to investigate the role of maternally expressed gene 3 (Meg3) in endothelial cell injury. A lncRNA human gene expression microarray analysis was used to identify differentially expressed lncRNAs in human umbilical vein endothelial cell (HUVECs). Cell viability, apoptosis, and migration were then assessed Ang II-treated HUVECs. qRT-PCR and western blotting were performed to detect the expression level of p53 after Meg3 knockdown and overexpression. We observed that Ang II treatment decreased the Meg3 level in HUVECs. Next, both knockdown of Meg3 and Ang II decreased cell viability, increased apoptotic cell rate and impair migration function in HUVECs. Furthermore, overexpression of Meg3 inhibited cell apoptosis, and increased cell migration by enhancing p53 transcription on its target genes, including CRP, ICAM-1, VEGF, and HIF-1α. Our findings indicate that Meg3 might be associated with cardiovascular disease development.
Collapse
Affiliation(s)
- Jingwen Song
- Department of Cardiovascularology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Songqun Huang
- Department of Cardiovascularology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Kaizhong Wang
- Department of Cardiovascularology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Wei Li
- Institute of Tumor, Second Military Medical University, Shanghai, China
| | - Lizhi Pao
- Department of Cardiovascularology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Feng Chen
- Department of Cardiovascularology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Xianxian Zhao
- Department of Cardiovascularology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
18
|
Cui J, Zhuang S, Qi S, Li L, Zhou J, Zhang W, Zhao Y, Qi N, Yin Y, Huang L. Hydrogen sulfide facilities production of nitric oxide via the Akt/endothelial nitric oxide synthases signaling pathway to protect human umbilical vein endothelial cells from injury by angiotensin II. Mol Med Rep 2017; 16:6255-6261. [DOI: 10.3892/mmr.2017.7328] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 04/27/2017] [Indexed: 11/06/2022] Open
|
19
|
Maiese K. Harnessing the Power of SIRT1 and Non-coding RNAs in Vascular Disease. Curr Neurovasc Res 2017; 14:82-88. [PMID: 27897112 PMCID: PMC5383524 DOI: 10.2174/1567202613666161129112822] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 10/31/2016] [Accepted: 11/14/2016] [Indexed: 02/06/2023]
Abstract
Noncommunicable diseases (NCDs) contribute to a significant amount of disability and death in the world. Of these disorders, vascular disease is ranked high, falls within the five leading causes of death, and impacts multiple other disease entities such as those of the cardiac system, nervous system, and metabolic disease. Targeting the silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1) pathway and the modulation of micro ribonucleic acids (miRNAs) may hold great promise for the development of novel strategies for the treatment of vascular disease since each of these pathways are highly relevant to cardiac and nervous system disorders as well as to metabolic dysfunction. SIRT1 is vital in determining the course of stem cell development and the survival, metabolism, and life span of differentiated cells that are overseen by both autophagy and apoptosis. SIRT1 interfaces with a number of pathways that involve forkhead transcription factors, mechanistic of rapamycin (mTOR), AMP activated protein kinase (AMPK) and Wnt1 inducible signaling pathway protein 1 (WISP1) such that the level of activity of SIRT1 can become a critical determinant for biological and clinical outcomes. The essential fine control of SIRT1 is directly tied to the world of non-coding RNAs that ultimately oversee SIRT1 activity to either extend or end cellular survival. Future studies that can further elucidate the crosstalk between SIRT1 and non-coding RNAs should serve well our ability to harness the power of SIRT1 and non-coding RNAs for the treatment of vascular disorders.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, Newark, New Jersey 07101
| |
Collapse
|
20
|
Hu HJ, Jiang ZS, Zhou SH, Liu QM. Hydrogen sulfide suppresses angiotensin II-stimulated endothelin-1 generation and subsequent cytotoxicity-induced endoplasmic reticulum stress in endothelial cells via NF-κB. Mol Med Rep 2016; 14:4729-4740. [DOI: 10.3892/mmr.2016.5827] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 08/09/2016] [Indexed: 11/06/2022] Open
|
21
|
Kurylowicz A, Owczarz M, Polosak J, Jonas MI, Lisik W, Jonas M, Chmura A, Puzianowska-Kuznicka M. SIRT1 and SIRT7 expression in adipose tissues of obese and normal-weight individuals is regulated by microRNAs but not by methylation status. Int J Obes (Lond) 2016; 40:1635-1642. [PMID: 27480132 DOI: 10.1038/ijo.2016.131] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 05/30/2016] [Accepted: 06/25/2016] [Indexed: 12/27/2022]
Abstract
BACKGROUND/OBJECTIVE Given their importance in the regulation of metabolism, sirtuins (SIRTs) constitute promising subjects of research on the pathogenesis of obesity and the metabolic syndrome. The aim of this study was to assess whether obesity in humans is associated with changes in the expression of SIRT genes in adipose tissue and whether epigenetic mechanisms, DNA methylation and microRNA (miRNA) interference, mediate in this phenomenon. SUBJECTS/METHODS The expression of SIRTs and of SIRT1 and SIRT7 mRNA-interacting miRNAs was evaluated by real-time PCR in visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) of 58 obese (body mass index (BMI) >40 kg m-2) and 31 normal-weight (BMI 20-24.9 kg m-2) individuals. The methylation status of SIRTs was studied by the methylation-sensitive digestion/real-time PCR method. RESULTS SIRT1 mRNA levels were lower in adipose tissues of obese patients than of normal-weight controls (VAT: P=0.0002, SAT: P=0.008). In contrast, expression of SIRT7 was higher in adipose tissues of obese patients than in the control group (VAT: P=0.001, SAT: P=0.008). The mean methylation of the SIRT1 and SIRT7 CpG islands was similar in tissues with high and low expression of these genes, and there was no correlation between the level of expression and the level of methylation. On the other hand, expression of SIRT1 in VAT of obese subjects correlated negatively with the expression of miR-22-3p (P<0.0001, rs=-0.514), miR-34a-5p (P=0.01, rs=-0.326) and miR-181a-3p (P<0.0001, rs=-0.536). In turn, expression of SIRT7 in VAT of slim individuals correlated negatively with the expression of miR-125a-5p (P=0.003, rs=-0.562) and miR-125b-5p (P=0.018, rs=-0.460). CONCLUSIONS We observed obesity-associated downregulation of SIRT1 and upregulation of SIRT7 mRNA levels that were not associated with the methylation status of their promoters. We found a negative correlation between mRNA levels of SIRT1 in VAT of obese individuals and SIRT7 in VAT of the normal-weight subjects and expression of the relevant miRNAs.
Collapse
Affiliation(s)
- A Kurylowicz
- Department of Human Epigenetics, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - M Owczarz
- Department of Human Epigenetics, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - J Polosak
- Department of Human Epigenetics, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - M I Jonas
- Department of Human Epigenetics, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - W Lisik
- Department of General and Transplantation Surgery, Medical University of Warsaw, Warsaw, Poland
| | - M Jonas
- Department of General and Transplantation Surgery, Medical University of Warsaw, Warsaw, Poland
| | - A Chmura
- Department of General and Transplantation Surgery, Medical University of Warsaw, Warsaw, Poland
| | - M Puzianowska-Kuznicka
- Department of Human Epigenetics, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland.,Department of Geriatrics and Gerontology, Medical Centre of Postgraduate Education, Warsaw, Poland
| |
Collapse
|
22
|
Metformin treatment status and abdominal aortic aneurysm disease progression. J Vasc Surg 2016; 64:46-54.e8. [PMID: 27106243 DOI: 10.1016/j.jvs.2016.02.020] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 02/01/2016] [Indexed: 12/11/2022]
Abstract
OBJECTIVE In population-based studies performed on multiple continents during the past two decades, diabetes mellitus has been negatively associated with the prevalence and progression of abdominal aortic aneurysm (AAA) disease. We investigated the possibility that metformin, the primary oral hypoglycemic agent in use worldwide, may influence the progression of AAA disease. METHODS Preoperative AAA patients with diabetes were identified from an institutional database. After tabulation of individual cardiovascular and demographic risk factors and prescription drug regimens, odds ratios for categorical influences on annual AAA enlargement were calculated through nominal logistical regression. Experimental AAA modeling experiments were subsequently performed in normoglycemic mice to validate the database-derived observations as well as to suggest potential mechanisms of metformin-mediated aneurysm suppression. RESULTS Fifty-eight patients met criteria for study inclusion. Of 11 distinct classes of medication considered, only metformin use was negatively associated with AAA enlargement. This association remained significant after controlling for gender, age, cigarette smoking status, and obesity. The median enlargement rate in AAA patients not taking oral diabetic medication was 1.5 mm/y; by nominal logistic regression, metformin, hyperlipidemia, and age ≥70 years were associated with below-median enlargement, whereas sulfonylurea therapy, initial aortic diameter ≥40 mm, and statin use were associated with above-median enlargement. In experimental modeling, metformin dramatically suppressed the formation and progression, with medial elastin and smooth muscle preservation and reduced aortic mural macrophage, CD8 T cell, and neovessel density. CONCLUSIONS Epidemiologic evidence of AAA suppression in diabetes may be attributable to concurrent therapy with the oral hypoglycemic agent metformin.
Collapse
|
23
|
Marampon F, Gravina GL, Festuccia C, Popov VM, Colapietro A, Sanità P, Musio D, De Felice F, Lenzi A, Jannini EA, Di Cesare E, Tombolini V. Vitamin D protects endothelial cells from irradiation-induced senescence and apoptosis by modulating MAPK/SirT1 axis. J Endocrinol Invest 2016; 39:411-22. [PMID: 26335302 DOI: 10.1007/s40618-015-0381-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 08/11/2015] [Indexed: 01/07/2023]
Abstract
PURPOSE Radiotherapy toxicity is related to oxidative stress-mediated endothelial dysfunction. Here, we investigated on radioprotective properties of Vitamin D (Vit.D) on human endothelial cells (HUVEC). METHODS HUVEC, pre-treated with Vit.D, were exposed to ionizing radiation (IR): ROS production, cellular viability, apoptosis, senescence and western blot for protein detection were performed. The role of MAPKs pathway was investigated by using U0126 (10 μM) MEKs/ERKs-, SB203580 (2.5 μM) p38-inhibitor or by over/expressing MKK6 p38-upstream activator. RESULTS Vit.D reduced IR-induced ROS production protecting proliferating and quiescent HUVEC from cellular apoptosis or senescence, respectively, by regulating MAPKs pathways. In proliferating HUVEC, Vit.D prevented IR-induced apoptosis by activating ERKs while in quiescent HUVEC counteracted IR-induced senescence by inhibiting the p38-IR-induced activation. MEKs&ERKs inhibition in proliferating or MKK6/mediated p38 activation in quiescent HUVEC, respectively, reverted anti-apoptotic or anti-senescent Vit.D properties. SirT1 protein expression levels were up-regulated by Vit.D. ERKs inhibition blocked Vit.D-induced SirT1 protein up-regulation in proliferating cells. In quiescent HUVEC cells, p38 inhibition counteracted the IR-induced SirT1 protein down-regulation, while MKK6 transfection abrogated the Vit.D positive effects on SirT1 protein levels after irradiation. SirT1 inhibition by sirtinol blocked the Vit.D radioprotective effects. CONCLUSION Vit.D protects HUVEC from IR induced/oxidative stress by positively regulating the MAPKs/SirT1 axis.
Collapse
Affiliation(s)
- F Marampon
- Division of Radiotherapy and Radiobiology, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - G L Gravina
- Division of Radiotherapy and Radiobiology, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy.
| | - C Festuccia
- Division of Radiotherapy and Radiobiology, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - V M Popov
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - A Colapietro
- Division of Radiotherapy and Radiobiology, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - P Sanità
- Division of Radiotherapy and Radiobiology, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - D Musio
- Department of Radiotherapy, Policlinico Umberto I "Sapienza" University of Rome, Rome, Italy
| | - F De Felice
- Department of Radiotherapy, Policlinico Umberto I "Sapienza" University of Rome, Rome, Italy
| | - A Lenzi
- Department Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| | - E A Jannini
- Department of System Medicine, University of Tor Vergata, 00133, Rome, Italy
| | - E Di Cesare
- Division of Radiotherapy and Radiobiology, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - V Tombolini
- Department of Radiotherapy, Policlinico Umberto I "Sapienza" University of Rome, Rome, Italy
| |
Collapse
|
24
|
Kerimi A, Williamson G. At the interface of antioxidant signalling and cellular function: Key polyphenol effects. Mol Nutr Food Res 2016; 60:1770-88. [PMID: 26887821 PMCID: PMC5021119 DOI: 10.1002/mnfr.201500940] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/09/2016] [Accepted: 02/10/2016] [Indexed: 12/18/2022]
Abstract
The hypothesis that dietary (poly)phenols promote well‐being by improving chronic disease‐risk biomarkers, such as endothelial dysfunction, chronic inflammation and plasma uric acid, is the subject of intense current research, involving human interventions studies, animal models and in vitro mechanistic work. The original claim that benefits were due to the direct antioxidant properties of (poly)phenols has been mostly superseded by detailed mechanistic studies on specific molecular targets. Nevertheless, many proposed mechanisms in vivo and in vitro are due to modulation of oxidative processes, often involving binding to specific proteins and effects on cell signalling. We review the molecular mechanisms for 3 actions of (poly)phenols on oxidative processes where there is evidence in vivo from human intervention or animal studies. (1) Effects of (poly) phenols on pathways of chronic inflammation leading to prevention of some of the damaging effects associated with the metabolic syndrome. (2) Interaction of (poly)phenols with endothelial cells and smooth muscle cells, leading to effects on blood pressure and endothelial dysfunction, and consequent reduction in cardiovascular disease risk. (3) The inhibition of xanthine oxidoreductase leading to modulation of intracellular superoxide and plasma uric acid, a risk factor for developing type 2 diabetes.
Collapse
Affiliation(s)
- Asimina Kerimi
- School of Food Science and Nutrition, University of Leeds, Leeds, UK
| | - Gary Williamson
- School of Food Science and Nutrition, University of Leeds, Leeds, UK
| |
Collapse
|
25
|
Shi MQ, Su FF, Xu X, Liu XT, Wang HT, Zhang W, Li X, Lian C, Zheng QS, Feng ZC. Cilostazol suppresses angiotensin II-induced apoptosis in endothelial cells. Mol Med Rep 2016; 13:2597-605. [PMID: 26862035 PMCID: PMC4768974 DOI: 10.3892/mmr.2016.4881] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 01/20/2016] [Indexed: 01/14/2023] Open
Abstract
Patients with essential hypertension undergo endothelial dysfunction, particularly in the conduit arteries. Cilostazol, a type III phosphodiesterase inhibitor, serves a role in the inhibition of platelet aggregation and it is widely used in the treatment of peripheral vascular diseases. Previous studies have suggested that cilostazol suppresses endothelial dysfunction; however, it remains unknown whether cilostazol protects the endothelial function in essential hypertension. The aim of the present study was to investigate whether, and how, cilostazol suppresses angiotensin II (angII)-induced endothelial dysfunction. Human umbilical vein endothelial cells (HUVECs) and Sprague Dawley rats were exposed to angII and treated with cilostazol. Endothelial cell apoptosis and function, nitric oxide and superoxide production, phosphorylation (p) of Akt, and caspase-3 protein expression levels were investigated. AngII exposure resulted in the apoptosis of endothelial cells in vitro and in vivo. In vitro, cilostazol significantly suppressed the angII-induced apoptosis of HUVECs; however, this effect was reduced in the presence of LY294002, a phosphoinositide 3 kinase (PI3K) inhibitor. Furthermore, cilostazol suppressed the angII-induced p-Akt downregulation and cleaved caspase-3 upregulation. These effects were also alleviated by LY294002. In vivo, cilostazol suppressed the angII-induced endothelial cell apoptosis and dysfunction. Cilostazol was also demonstrated to partially reduced the angII-induced increase in superoxide production. The results of the present study suggested that cilostazol suppresses endothelial apoptosis and dysfunction by modulating the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Miao-Qian Shi
- Department of Pediatrics, Affiliated Bayi Children's Hospital, General Military Hospital of Beijing PLA, Beijing Key Laboratory of Pediatric Organ Failure, Beijing 100700, P.R. China
| | - Fei-Fei Su
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Xuan Xu
- Department of Pediatrics, Affiliated Bayi Children's Hospital, General Military Hospital of Beijing PLA, Beijing Key Laboratory of Pediatric Organ Failure, Beijing 100700, P.R. China
| | - Xiong-Tao Liu
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Hong-Tao Wang
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Wei Zhang
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Xue Li
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Cheng Lian
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Qiang-Sun Zheng
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Zhi-Chun Feng
- Department of Pediatrics, Affiliated Bayi Children's Hospital, General Military Hospital of Beijing PLA, Beijing Key Laboratory of Pediatric Organ Failure, Beijing 100700, P.R. China
| |
Collapse
|
26
|
Gkaliagkousi E, Gavriilaki E, Triantafyllou A, Douma S. Clinical Significance of Endothelial Dysfunction in Essential Hypertension. Curr Hypertens Rep 2016; 17:85. [PMID: 26371063 DOI: 10.1007/s11906-015-0596-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The endothelium is recognized as a major determinant of vascular physiology and pathophysiology. Over the last few decades, a plethora of studies have implicated endothelial dysfunction in the progression of atherosclerosis and the subclinical target organ damage observed in essential hypertension. However, the clinical significance of diagnosing endothelial dysfunction in patients with essential hypertension remains under investigation. Although a number of vascular and non-vascular markers of endothelial dysfunction have been proposed, there is an ongoing quest for a marker in the clinical setting that is optimal, inexpensive, and reproducible. In addition, endothelial dysfunction emerges as a promising therapeutic target of agents that are readily available in clinical practice. In this context, a better understanding of its role in essential hypertension becomes of great importance. Here, we aim to investigate the clinical significance of endothelial dysfunction in essential hypertension by accumulating novel data on (a) early diagnosis using robust markers with prognostic value in cardiovascular risk prediction, (b) the association of endothelial dysfunction with subclinical vascular organ damage, and (c) potential therapeutic targets.
Collapse
Affiliation(s)
- Eugenia Gkaliagkousi
- 3rd Department of Internal Medicine, Papageorgiou Hospital, Aristotle University of Thessaloniki, Ring Road Nea Eukarpia, 564 03, Thessaloniki, Greece.
| | - Eleni Gavriilaki
- 3rd Department of Internal Medicine, Papageorgiou Hospital, Aristotle University of Thessaloniki, Ring Road Nea Eukarpia, 564 03, Thessaloniki, Greece
| | - Areti Triantafyllou
- 3rd Department of Internal Medicine, Papageorgiou Hospital, Aristotle University of Thessaloniki, Ring Road Nea Eukarpia, 564 03, Thessaloniki, Greece
| | - Stella Douma
- 3rd Department of Internal Medicine, Papageorgiou Hospital, Aristotle University of Thessaloniki, Ring Road Nea Eukarpia, 564 03, Thessaloniki, Greece
| |
Collapse
|
27
|
Jialal I, Adams-Huet B, Pahwa R. Selective increase in monocyte p38 mitogen-activated protein kinase activity in metabolic syndrome. Diab Vasc Dis Res 2016; 13:93-6. [PMID: 26449239 DOI: 10.1177/1479164115607829] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE Metabolic syndrome is a common disorder that predisposes to both cardiovascular disease and diabetes. There is paucity of data on cellular signal transduction pathways in metabolic syndrome. This study determined monocyte mitogen-activated protein kinase activity in patients with metabolic syndrome. RESEARCH DESIGN AND METHODS The p38, extracellular signal-regulated kinase-1/2 and Jun N-terminal kinase-mitogen-activated protein kinase activities were assayed in isolated monocytes from patients with metabolic syndrome and controls (n = 36 per group) and correlated with features of metabolic syndrome, inflammation and oxidative stress biomarkers. RESULTS A significant increase in p38 mitogen-activated protein kinase activity was observed in metabolic syndrome even following adjustment for adiposity. There were no significant differences in extracellular signal-regulated kinase-1/2 and Jun N-terminal kinase activities. P38 mitogen-activated protein kinase activity correlated significantly with homeostasis model assessment-estimated insulin resistance and biomarkers of inflammation and oxidative stress. CONCLUSIONS We are first to observe a selective increase in monocyte p38 mitogen-activated protein kinase activity in metabolic syndrome and suggest it as a pivotal molecular target for ameliorating insulin resistance and inflammation.
Collapse
Affiliation(s)
- Ishwarlal Jialal
- Laboratory of Atherosclerosis and Metabolic Research, Department of Pathology and Internal Medicine, University of California Davis Medical Center, Sacramento, CA, USA Veterans Affairs Medical Center, Mather, CA, USA
| | - Beverley Adams-Huet
- Department of Biostatistics, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Roma Pahwa
- Laboratory of Atherosclerosis and Metabolic Research, Department of Pathology and Internal Medicine, University of California Davis Medical Center, Sacramento, CA, USA
| |
Collapse
|
28
|
Kida Y, Goligorsky MS. Sirtuins, Cell Senescence, and Vascular Aging. Can J Cardiol 2015; 32:634-41. [PMID: 26948035 DOI: 10.1016/j.cjca.2015.11.022] [Citation(s) in RCA: 221] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 11/10/2015] [Accepted: 11/29/2015] [Indexed: 01/03/2023] Open
Abstract
The sirtuins (SIRTs) constitute a class of proteins with nicotinamide adenine dinucleotide-dependent deacetylase or adenosine diphosphate-ribosyltransferase activity. Seven SIRT family members have been identified in mammals, from SIRT1, the best studied for its role in vascular aging, to SIRT7. SIRT1 and SIRT2 are localized in the nucleus and cytoplasm. SIRT3, SIRT4, and SIRT5 are mitochondrial, and SIRT6 and SIRT7 are nuclear. Extensive studies have clearly revealed that SIRT proteins regulate diverse cell functions and responses to stressors. Vascular aging involves the aging process (senescence) of endothelial and vascular smooth muscle cells. Two types of cell senescence have been identified: (1) replicative senescence with telomere attrition; and (2) stress-induced premature senescence without telomere involvement. Both types of senescence induce vascular cell growth arrest and loss of vascular homeostasis, and contribute to the initiation and progression of cardiovascular diseases. Previous mechanistic studies have revealed in detail that SIRT1, SIRT3, and SIRT6 show protective functions against vascular aging, and definite vascular function of other SIRTs is under investigation. Thus, direct SIRT modulation and nicotinamide adenine dinucleotide stimulation of SIRT are promising candidates for cardiovascular disease therapy. A small number of pilot studies have been conducted to assess SIRT modulation in humans. These clinical studies have not yet provided convincing evidence that SIRT proteins alleviate morbidity and mortality in patients with cardiovascular diseases. The outcomes of multiple ongoing clinical trials are awaited to define the efficacy of SIRT modulators and SIRT activators in cardiovascular diseases, along with the potential adverse effects of chronic SIRT modulation.
Collapse
Affiliation(s)
- Yujiro Kida
- Departments of Medicine, Pharmacology, and Physiology, Renal Research Institute, New York Medical College, Valhalla, New York, USA.
| | - Michael S Goligorsky
- Departments of Medicine, Pharmacology, and Physiology, Renal Research Institute, New York Medical College, Valhalla, New York, USA
| |
Collapse
|
29
|
Raj P, Aloud BM, Louis XL, Yu L, Zieroth S, Netticadan T. Resveratrol is equipotent to perindopril in attenuating post-infarct cardiac remodeling and contractile dysfunction in rats. J Nutr Biochem 2015; 28:155-63. [PMID: 26878793 DOI: 10.1016/j.jnutbio.2015.09.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 09/17/2015] [Accepted: 09/24/2015] [Indexed: 02/04/2023]
Abstract
BACKGROUND Angiotensin-converting enzyme (ACE) inhibitors improve prognosis in patients with post-myocardial infarction (MI) related cardiac dysfunction. Resveratrol is a polyphenol that has been reported to be beneficial in hypertension, ischemic heart disease, and cardiotoxicity in preclinical studies. Accordingly, we investigated the comparative and combinatorial efficacy of resveratrol and perindopril (ACE inhibitor) treatment on MI-related cardiac remodeling and contractile dysfunction. METHODS Left anterior descending artery-ligated and sham-operated male Sprague-Dawley rats were gavaged with vehicle, resveratrol, perindopril, and combination of resveratrol+perindopril (2.5 mg/kg bodyweight/day) for 8 weeks (starting immediately after acute MI). Echocardiography was performed to assess cardiac structure and function at baseline and 8 weeks. RESULTS At 8 weeks, vehicle-MI rats had a significantly lower left ventricular ejection fraction (LVEF) and increased LV dilatation compared to vehicle-sham rats. MI rats treated with resveratrol, perindopril and a combination of both had significantly improved LVEF and reduced LV dilatation. Vehicle-treated MI rats also had increased level of lipid peroxidation product- malondialdehyde (MDA), proinflammatory protein- tumor necrosis factor-alpha (TNF-α) and cardiac fibrosis marker- collagen and decreased enzymatic activity of superoxide dismutase and catalase compared to vehicle-sham rats. Resveratrol, perindopril and combination of both significantly prevented the /ed to determine systolic functional parameter increase in MDA, TNF-α and collagen and improved the activity of superoxide dismutase and catalase in MI rats compared to vehicle-MI rats. CONCLUSION Treatment with resveratrol or perindopril was equivalent in significantly improving remodeling and attenuation of contractile dysfunction in MI rats. Combination treatment also attenuated the cardiac abnormalities. The improvement in cardiac abnormalities may partly be through reducing oxidative stress by preventing the decrease in the activity of superoxide dismutase and catalase, and decreasing cardiac inflammation and fibrosis.
Collapse
Affiliation(s)
- Pema Raj
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg; Canadian Centre for Agri-Food Research in Health and Medicine, Winnipeg
| | - Basma Milad Aloud
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg; Canadian Centre for Agri-Food Research in Health and Medicine, Winnipeg
| | - Xavier Lieben Louis
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg; Canadian Centre for Agri-Food Research in Health and Medicine, Winnipeg
| | - Liping Yu
- Canadian Centre for Agri-Food Research in Health and Medicine, Winnipeg; Agriculture and Agri-Food Canada
| | - Shelley Zieroth
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg; Section of Cardiology, Department of Medicine, University of Manitoba, Winnipeg.
| | - Thomas Netticadan
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg; Canadian Centre for Agri-Food Research in Health and Medicine, Winnipeg; Agriculture and Agri-Food Canada.
| |
Collapse
|
30
|
New Insights for Oxidative Stress and Diabetes Mellitus. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:875961. [PMID: 26064426 PMCID: PMC4443788 DOI: 10.1155/2015/875961] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 04/15/2015] [Indexed: 12/12/2022]
Abstract
The release of reactive oxygen species (ROS) and the generation of oxidative stress are considered critical factors for the pathogenesis of diabetes mellitus (DM), a disorder that is growing in prevalence and results in significant economic loss. New therapeutic directions that address the detrimental effects of oxidative stress may be especially warranted to develop effective care for the millions of individuals that currently suffer from DM. The mechanistic target of rapamycin (mTOR), silent mating type information regulation 2 homolog 1 (S. cerevisiae) (SIRT1), and Wnt1 inducible signaling pathway protein 1 (WISP1) are especially justified to be considered treatment targets for DM since these pathways can address the complex relationship between stem cells, trophic factors, impaired glucose tolerance, programmed cell death pathways of apoptosis and autophagy, tissue remodeling, cellular energy homeostasis, and vascular biology that greatly impact the biology and disease progression of DM. The translation and development of these pathways into viable therapies will require detailed understanding of their proliferative nature to maximize clinical efficacy and limit adverse effects that have the potential to lead to unintended consequences.
Collapse
|
31
|
de Cavanagh EMV, Inserra F, Ferder L. Angiotensin II blockade: how its molecular targets may signal to mitochondria and slow aging. Coincidences with calorie restriction and mTOR inhibition. Am J Physiol Heart Circ Physiol 2015; 309:H15-44. [PMID: 25934099 DOI: 10.1152/ajpheart.00459.2014] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 04/30/2015] [Indexed: 02/07/2023]
Abstract
Caloric restriction (CR), renin angiotensin system blockade (RAS-bl), and rapamycin-mediated mechanistic target of rapamycin (mTOR) inhibition increase survival and retard aging across species. Previously, we have summarized CR and RAS-bl's converging effects, and the mitochondrial function changes associated with their physiological benefits. mTOR inhibition and enhanced sirtuin and KLOTHO signaling contribute to the benefits of CR in aging. mTORC1/mTORC2 complexes contribute to cell growth and metabolic regulation. Prolonged mTORC1 activation may lead to age-related disease progression; thus, rapamycin-mediated mTOR inhibition and CR may extend lifespan and retard aging through mTORC1 interference. Sirtuins by deacetylating histone and transcription-related proteins modulate signaling and survival pathways and mitochondrial functioning. CR regulates several mammalian sirtuins favoring their role in aging regulation. KLOTHO/fibroblast growth factor 23 (FGF23) contribute to control Ca(2+), phosphate, and vitamin D metabolism, and their dysregulation may participate in age-related disease. Here we review how mTOR inhibition extends lifespan, how KLOTHO functions as an aging suppressor, how sirtuins mediate longevity, how vitamin D loss may contribute to age-related disease, and how they relate to mitochondrial function. Also, we discuss how RAS-bl downregulates mTOR and upregulates KLOTHO, sirtuin, and vitamin D receptor expression, suggesting that at least some of RAS-bl benefits in aging are mediated through the modulation of mTOR, KLOTHO, and sirtuin expression and vitamin D signaling, paralleling CR actions in age retardation. Concluding, the available evidence endorses the idea that RAS-bl is among the interventions that may turn out to provide relief to the spreading issue of age-associated chronic disease.
Collapse
Affiliation(s)
- Elena M V de Cavanagh
- Center of Hypertension, Cardiology Department, Austral University Hospital, Derqui, Argentina; School of Biomedical Sciences, Austral University, Buenos Aires, Argentina; and
| | - Felipe Inserra
- Center of Hypertension, Cardiology Department, Austral University Hospital, Derqui, Argentina; School of Biomedical Sciences, Austral University, Buenos Aires, Argentina; and
| | - León Ferder
- Department of Physiology and Pharmacology, Ponce School of Medicine, Ponce, Puerto Rico
| |
Collapse
|
32
|
Maiese K. SIRT1 and stem cells: In the forefront with cardiovascular disease, neurodegeneration and cancer. World J Stem Cells 2015; 7:235-242. [PMID: 25815111 PMCID: PMC4369483 DOI: 10.4252/wjsc.v7.i2.235] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 12/10/2014] [Accepted: 01/19/2015] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular disease, nervous system disorders, and cancer in association with other diseases such as diabetes mellitus result in greater than sixty percent of the global annual deaths. These noncommunicable diseases also affect at least one-third of the population in low and middle-income countries and lead to hypertension, elevated cholesterol, malignancy, and neurodegenerative disorders such as Alzheimer’s disease and stroke. With the climbing lifespan of the world’s population, increased prevalence of these disorders is expected requiring the development of new therapeutic strategies against these disabling disease entities. Targeting stem cell proliferation for cardiac disease, vascular disorders, cancer, and neurodegenerative disorders is receiving great enthusiasm, especially those that focus upon SIRT1, a mammalian homologue of the yeast silent information regulator-2. Modulation of the cellular activity of SIRT1 can involve oversight by nicotinamide/nicotinic acid mononucleotide adenylyltransferase, mammalian forkhead transcription factors, mechanistic of rapamycin pathways, and cysteine-rich protein 61, connective tissue growth factor, and nephroblastoma over-expressed gene family members that can impact cytoprotective outcomes. Ultimately, the ability of SIRT1 to control the programmed cell death pathways of apoptosis and autophagy can determine not only cardiac, vascular, and neuronal stem cell development and longevity, but also the onset of tumorigenesis and the resistance against chemotherapy. SIRT1 therefore has a critical role and holds exciting prospects for new therapeutic strategies that can offer reparative processes for cardiac, vascular, and nervous system degenerative disorders as well as targeted control of aberrant cell growth during cancer.
Collapse
|
33
|
Sirtuins in vascular diseases: Emerging roles and therapeutic potential. Biochim Biophys Acta Mol Basis Dis 2015; 1852:1311-22. [PMID: 25766107 DOI: 10.1016/j.bbadis.2015.03.001] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 02/20/2015] [Accepted: 03/04/2015] [Indexed: 11/20/2022]
Abstract
Silent information regulator-2 (Sir-2) proteins, or sirtuins, are a highly conserved protein family of histone deacetylases that promote longevity by mediating many of the beneficial effects of calorie restriction which extends life span and reduces the incidence of cancer, cardiovascular disease (CVD), and diabetes. Here, we review the role of sirtuins (SIRT1-7) in vascular homeostasis and diseases by providing an update on the latest knowledge about their roles in endothelial damage and vascular repair mechanisms. Among all sirtuins, in the light of the numerous functions reported on SIRT1 in the vascular system, herein we discuss its roles not only in the control of endothelial cells (EC) functionality but also in other cell types beyond EC, including endothelial progenitor cells (EPC), smooth muscle cells (SMC), and immune cells. Furthermore, we also provide an update on the growing field of compounds under clinical evaluation for the modulation of SIRT1 which, at the state of the art, represents the most promising target for the development of novel drugs against CVD, especially when concomitant with type 2 diabetes.
Collapse
|
34
|
Maiese K. Programming apoptosis and autophagy with novel approaches for diabetes mellitus. Curr Neurovasc Res 2015; 12:173-88. [PMID: 25742566 PMCID: PMC4380829 DOI: 10.2174/1567202612666150305110929] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 02/16/2015] [Accepted: 02/19/2015] [Indexed: 12/13/2022]
Abstract
According to the World Health Organization, diabetes mellitus (DM) in the year 2030 will be ranked the seventh leading cause of death in the world. DM impacts all systems of the body with oxidant stress controlling cell fate through endoplasmic reticulum stress, mitochondrial dysfunction, alterations in uncoupling proteins, and the induction of apoptosis and autophagy. Multiple treatment approaches are being entertained for DM with Wnt1 inducible signaling pathway protein 1 (WISP1), mechanistic target of rapamycin (mTOR), and silent mating type information regulation 2 homolog) 1 (S. cerevisiae) (SIRT1) generating significant interest as target pathways that can address maintenance of glucose homeostasis as well as prevention of cellular pathology by controlling insulin resistance, stem cell proliferation, and the programmed cell death pathways of apoptosis and autophagy. WISP1, mTOR, and SIRT1 can rely upon similar pathways such as AMP activated protein kinase as well as govern cellular metabolism through cytokines such as EPO and oral hypoglycemics such as metformin. Yet, these pathways require precise biological control to exclude potentially detrimental clinical outcomes. Further elucidation of the ability to translate the roles of WISP1, mTOR, and SIRT1 into effective clinical avenues offers compelling prospects for new therapies against DM that can benefit hundreds of millions of individuals throughout the globe.
Collapse
Affiliation(s)
- Kenneth Maiese
- MD, Cellular and Molecular Signaling, Newark, New Jersey 07101, USA.
| |
Collapse
|
35
|
Turkmen K, Karagoz A, Kucuk A. Sirtuins as novel players in the pathogenesis of diabetes mellitus. World J Diabetes 2014; 5:894-900. [PMID: 25512793 PMCID: PMC4265877 DOI: 10.4239/wjd.v5.i6.894] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 09/04/2014] [Accepted: 10/10/2014] [Indexed: 02/05/2023] Open
Abstract
Diabetes mellitus (DM) is a systemic and complex disease with micro and macrovascular complications that result from impaired metabolic pathways and genetic susceptibilities. DM has been accepted as an epidemic worldwide during the last two decades. A substantial gap in our knowledge exists regarding the pathophysiology of this metabolic disorder despite the improved diagnostic tools and therapeutic approaches. Sirtuins are a group of NAD+ dependent enzymes that are involved in cellular homeostasis due to their deacetylating activity. In the present review, we aimed to discuss the role of associated sirtuins in the pathogenesis and treatment of diabetes mellitus.
Collapse
|
36
|
|
37
|
Gao P, Xu TT, Lu J, Li L, Xu J, Hao DL, Chen HZ, Liu DP. Overexpression of SIRT1 in vascular smooth muscle cells attenuates angiotensin II-induced vascular remodeling and hypertension in mice. J Mol Med (Berl) 2013; 92:347-57. [PMID: 24352856 DOI: 10.1007/s00109-013-1111-4] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 11/25/2013] [Accepted: 11/28/2013] [Indexed: 12/14/2022]
Abstract
UNLABELLED Angiotensin II (AngII) induces the development of vascular hypertrophy and hypertension. We have shown previously that overexpression of class III deacetylase SIRT1 inhibits AngII-induced hypertrophy in vascular smooth muscle cells (VSMCs). However, the direct role of SIRT1 in VSMCs in response to AngII infusion in vivo remains unclear. Here, we found that the expression and activity of SIRT1 in mouse aortas was decreased significantly by AngII infusion. VSMC-specific SIRT1 transgene (SV-Tg) prevented the increase in systolic blood pressure (SBP) caused by AngII infusion without affecting heart function in mice. SIRT1 overexpression alleviated vascular remodeling in mouse thoracic and renal aortas induced by AngII infusion, and significantly inhibited reactive oxygen species (ROS) generation, vascular inflammation, and collagen synthesis in arterial walls. Reduced expression of transforming growth factor-β 1 (TGF-β1) was also observed in the aortas of AngII-infused SV-Tg mice. Moreover, SIRT1 overexpression decreased AngII-increased binding of nuclear factor-κB on its specific binding sites on TGF-β1 promoter. Taken together, these data demonstrate that SIRT1 overexpression in VSMCs reduces SBP and inhibits AngII-induced vascular remodeling in mice. The inhibition of vascular remodeling contributes, at least in part, to the antihypertensive effect of SIRT1. KEY MESSAGE SIRT1 is reduced in aortas of AngII-infused hypertensive mice. SIRT1 VSMC transgene alleviates AngII-increased systolic blood pressure. SIRT1 VSMC transgene attenuates AngII-induced vascular remodeling. VSMC SIRT1 overexpression inhibits remodeling-related pathological changes. VSMC SIRT1 overexpression reduces AngII-induced TGF-β1 expression.
Collapse
Affiliation(s)
- Peng Gao
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, No.5 Dong Dan San Tiao, Beijing, 100050, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|