1
|
Di Mambro A, Arroyo-Berdugo Y, Fioretti T, Randles M, Cozzuto L, Rajeeve V, Cevenini A, Austin MJ, Esposito G, Ponomarenko J, Lucas CM, Cutillas P, Gribben J, Williams O, Calle Y, Patel B, Esposito MT. SET-PP2A complex as a new therapeutic target in KMT2A (MLL) rearranged AML. Oncogene 2023; 42:3670-3683. [PMID: 37891368 PMCID: PMC10709139 DOI: 10.1038/s41388-023-02840-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 09/07/2023] [Accepted: 09/13/2023] [Indexed: 10/29/2023]
Abstract
KMT2A-rearranged (KMT2A-R) is an aggressive and chemo-refractory acute leukemia which mostly affects children. Transcriptomics-based characterization and chemical interrogation identified kinases as key drivers of survival and drug resistance in KMT2A-R leukemia. In contrast, the contribution and regulation of phosphatases is unknown. In this study we uncover the essential role and underlying mechanisms of SET, the endogenous inhibitor of Ser/Thr phosphatase PP2A, in KMT2A-R-leukemia. Investigation of SET expression in acute myeloid leukemia (AML) samples demonstrated that SET is overexpressed, and elevated expression of SET is correlated with poor prognosis and with the expression of MEIS and HOXA genes in AML patients. Silencing SET specifically abolished the clonogenic ability of KMT2A-R leukemic cells and the transcription of KMT2A targets genes HOXA9 and HOXA10. Subsequent mechanistic investigations showed that SET interacts with both KMT2A wild type and fusion proteins, and it is recruited to the HOXA10 promoter. Pharmacological inhibition of SET by FTY720 disrupted SET-PP2A interaction leading to cell cycle arrest and increased sensitivity to chemotherapy in KMT2A-R-leukemic models. Phospho-proteomic analyses revealed that FTY720 reduced the activity of kinases regulated by PP2A, including ERK1, GSK3β, AURB and PLK1 and led to suppression of MYC, supporting the hypothesis of a feedback loop among PP2A, AURB, PLK1, MYC, and SET. Our findings illustrate that SET is a novel player in KMT2A-R leukemia and they provide evidence that SET antagonism could serve as a novel strategy to treat this aggressive leukemia.
Collapse
Affiliation(s)
| | | | - Tiziana Fioretti
- CEINGE Biotecnologie Avanzate, Via Gaetano Salvatore, Napoli, Italy
| | - Michael Randles
- Chester Centre for Leukaemia Research, Chester Medical School, University of Chester, Chester, UK
| | - Luca Cozzuto
- Centre Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | | | - Armando Cevenini
- CEINGE Biotecnologie Avanzate, Via Gaetano Salvatore, Napoli, Italy
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via Pansini 5, 80131, Naples, Italy
| | - Michael J Austin
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Gabriella Esposito
- CEINGE Biotecnologie Avanzate, Via Gaetano Salvatore, Napoli, Italy
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via Pansini 5, 80131, Naples, Italy
| | - Julia Ponomarenko
- Centre Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- University Pompeu Fabra (UPF), Barcelona, Spain
| | - Claire M Lucas
- Chester Centre for Leukaemia Research, Chester Medical School, University of Chester, Chester, UK
| | - Pedro Cutillas
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | - John Gribben
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Owen Williams
- Great Ormond Street Institute of Child Health London, UCL, London, UK
| | - Yolanda Calle
- School of Life and Health Sciences, University of Roehampton, London, UK
| | - Bela Patel
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Maria Teresa Esposito
- School of Life and Health Sciences, University of Roehampton, London, UK.
- School of Biosciences, University of Surrey, Guildford, UK.
| |
Collapse
|
2
|
Zhao S, Mekbib KY, van der Ent MA, Allington G, Prendergast A, Chau JE, Smith H, Shohfi J, Ocken J, Duran D, Furey CG, Hao LT, Duy PQ, Reeves BC, Zhang J, Nelson-Williams C, Chen D, Li B, Nottoli T, Bai S, Rolle M, Zeng X, Dong W, Fu PY, Wang YC, Mane S, Piwowarczyk P, Fehnel KP, See AP, Iskandar BJ, Aagaard-Kienitz B, Moyer QJ, Dennis E, Kiziltug E, Kundishora AJ, DeSpenza T, Greenberg ABW, Kidanemariam SM, Hale AT, Johnston JM, Jackson EM, Storm PB, Lang SS, Butler WE, Carter BS, Chapman P, Stapleton CJ, Patel AB, Rodesch G, Smajda S, Berenstein A, Barak T, Erson-Omay EZ, Zhao H, Moreno-De-Luca A, Proctor MR, Smith ER, Orbach DB, Alper SL, Nicoli S, Boggon TJ, Lifton RP, Gunel M, King PD, Jin SC, Kahle KT. Mutation of key signaling regulators of cerebrovascular development in vein of Galen malformations. Nat Commun 2023; 14:7452. [PMID: 37978175 PMCID: PMC10656524 DOI: 10.1038/s41467-023-43062-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 10/30/2023] [Indexed: 11/19/2023] Open
Abstract
To elucidate the pathogenesis of vein of Galen malformations (VOGMs), the most common and most severe of congenital brain arteriovenous malformations, we performed an integrated analysis of 310 VOGM proband-family exomes and 336,326 human cerebrovasculature single-cell transcriptomes. We found the Ras suppressor p120 RasGAP (RASA1) harbored a genome-wide significant burden of loss-of-function de novo variants (2042.5-fold, p = 4.79 x 10-7). Rare, damaging transmitted variants were enriched in Ephrin receptor-B4 (EPHB4) (17.5-fold, p = 1.22 x 10-5), which cooperates with p120 RasGAP to regulate vascular development. Additional probands had damaging variants in ACVRL1, NOTCH1, ITGB1, and PTPN11. ACVRL1 variants were also identified in a multi-generational VOGM pedigree. Integrative genomic analysis defined developing endothelial cells as a likely spatio-temporal locus of VOGM pathophysiology. Mice expressing a VOGM-specific EPHB4 kinase-domain missense variant (Phe867Leu) exhibited disrupted developmental angiogenesis and impaired hierarchical development of arterial-capillary-venous networks, but only in the presence of a "second-hit" allele. These results illuminate human arterio-venous development and VOGM pathobiology and have implications for patients and their families.
Collapse
Affiliation(s)
- Shujuan Zhao
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Kedous Y Mekbib
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Martijn A van der Ent
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Garrett Allington
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Andrew Prendergast
- Yale Zebrafish Research Core, Yale School of Medicine, New Haven, CT, USA
| | - Jocelyn E Chau
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, CT, USA
| | - Hannah Smith
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - John Shohfi
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Jack Ocken
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Daniel Duran
- Department of Neurosurgery, University of Mississippi Medical Center, Jackson, MS, USA
| | - Charuta G Furey
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
- Department of Neurosurgery, Barrow Neurological Institute, Phoenix, AZ, USA
- Ivy Brain Tumor Center, Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Le Thi Hao
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Phan Q Duy
- Department of Neurosurgery, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Benjamin C Reeves
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Junhui Zhang
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | | | - Di Chen
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Boyang Li
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - Timothy Nottoli
- Yale Genome Editing Center, Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Suxia Bai
- Yale Genome Editing Center, Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Myron Rolle
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Xue Zeng
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, CT, USA
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY, USA
| | - Weilai Dong
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY, USA
| | - Po-Ying Fu
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Yung-Chun Wang
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Shrikant Mane
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Paulina Piwowarczyk
- Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Katie Pricola Fehnel
- Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alfred Pokmeng See
- Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Bermans J Iskandar
- Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Beverly Aagaard-Kienitz
- Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Quentin J Moyer
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Evan Dennis
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Emre Kiziltug
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Adam J Kundishora
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Tyrone DeSpenza
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Ana B W Greenberg
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Andrew T Hale
- Department of Neurosurgery, University of Alabama School of Medicine, Birmingham, AL, USA
| | - James M Johnston
- Department of Neurosurgery, University of Alabama School of Medicine, Birmingham, AL, USA
| | - Eric M Jackson
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Phillip B Storm
- Department of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Shih-Shan Lang
- Department of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - William E Butler
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Bob S Carter
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Paul Chapman
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Christopher J Stapleton
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Aman B Patel
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Georges Rodesch
- Service de Neuroradiologie Diagnostique et Thérapeutique, Hôpital Foch, Suresnes, France
- Department of Interventional Neuroradiology, Hôpital Fondation A. de Rothschild, Paris, France
| | - Stanislas Smajda
- Department of Interventional Neuroradiology, Hôpital Fondation A. de Rothschild, Paris, France
| | - Alejandro Berenstein
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tanyeri Barak
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | | | - Hongyu Zhao
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - Andres Moreno-De-Luca
- Department of Radiology, Autism & Developmental Medicine Institute, Genomic Medicine Institute, Geisinger, Danville, PA, USA
| | - Mark R Proctor
- Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Edward R Smith
- Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Darren B Orbach
- Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurointerventional Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Seth L Alper
- Division of Nephrology and Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Stefania Nicoli
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA
- Yale Cardiovascular Research Center, Department of Internal Medicine, Section of Cardiology, Yale School of Medicine, New Haven, CT, USA
| | - Titus J Boggon
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, CT, USA
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA
| | - Richard P Lifton
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY, USA
| | - Murat Gunel
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Philip D King
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Sheng Chih Jin
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA.
| | - Kristopher T Kahle
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA.
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, US.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
3
|
Zhao S, Mekbib KY, van der Ent MA, Allington G, Prendergast A, Chau JE, Smith H, Shohfi J, Ocken J, Duran D, Furey CG, Le HT, Duy PQ, Reeves BC, Zhang J, Nelson-Williams C, Chen D, Li B, Nottoli T, Bai S, Rolle M, Zeng X, Dong W, Fu PY, Wang YC, Mane S, Piwowarczyk P, Fehnel KP, See AP, Iskandar BJ, Aagaard-Kienitz B, Kundishora AJ, DeSpenza T, Greenberg ABW, Kidanemariam SM, Hale AT, Johnston JM, Jackson EM, Storm PB, Lang SS, Butler WE, Carter BS, Chapman P, Stapleton CJ, Patel AB, Rodesch G, Smajda S, Berenstein A, Barak T, Erson-Omay EZ, Zhao H, Moreno-De-Luca A, Proctor MR, Smith ER, Orbach DB, Alper SL, Nicoli S, Boggon TJ, Lifton RP, Gunel M, King PD, Jin SC, Kahle KT. Genetic dysregulation of an endothelial Ras signaling network in vein of Galen malformations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.18.532837. [PMID: 36993588 PMCID: PMC10055230 DOI: 10.1101/2023.03.18.532837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
To elucidate the pathogenesis of vein of Galen malformations (VOGMs), the most common and severe congenital brain arteriovenous malformation, we performed an integrated analysis of 310 VOGM proband-family exomes and 336,326 human cerebrovasculature single-cell transcriptomes. We found the Ras suppressor p120 RasGAP ( RASA1 ) harbored a genome-wide significant burden of loss-of-function de novo variants (p=4.79×10 -7 ). Rare, damaging transmitted variants were enriched in Ephrin receptor-B4 ( EPHB4 ) (p=1.22×10 -5 ), which cooperates with p120 RasGAP to limit Ras activation. Other probands had pathogenic variants in ACVRL1 , NOTCH1 , ITGB1 , and PTPN11 . ACVRL1 variants were also identified in a multi-generational VOGM pedigree. Integrative genomics defined developing endothelial cells as a key spatio-temporal locus of VOGM pathophysiology. Mice expressing a VOGM-specific EPHB4 kinase-domain missense variant exhibited constitutive endothelial Ras/ERK/MAPK activation and impaired hierarchical development of angiogenesis-regulated arterial-capillary-venous networks, but only when carrying a "second-hit" allele. These results illuminate human arterio-venous development and VOGM pathobiology and have clinical implications.
Collapse
|
4
|
Fioretti T, Cevenini A, Zanobio M, Raia M, Sarnataro D, Cattaneo F, Ammendola R, Esposito G. Nuclear FGFR2 Interacts with the MLL-AF4 Oncogenic Chimera and Positively Regulates HOXA9 Gene Expression in t(4;11) Leukemia Cells. Int J Mol Sci 2021; 22:ijms22094623. [PMID: 33924850 PMCID: PMC8124917 DOI: 10.3390/ijms22094623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 12/17/2022] Open
Abstract
The chromosomal translocation t(4;11) marks an infant acute lymphoblastic leukemia associated with dismal prognosis. This rearrangement leads to the synthesis of the MLL-AF4 chimera, which exerts its oncogenic activity by upregulating transcription of genes involved in hematopoietic differentiation. Crucial for chimera’s aberrant activity is the recruitment of the AF4/ENL/P-TEFb protein complex. Interestingly, a molecular interactor of AF4 is fibroblast growth factor receptor 2 (FGFR2). We herein analyze the role of FGFR2 in the context of leukemia using t(4;11) leukemia cell lines. We revealed the interaction between MLL-AF4 and FGFR2 by immunoprecipitation, western blot, and immunofluorescence experiments; we also tested the effects of FGFR2 knockdown, FGFR2 inhibition, and FGFR2 stimulation on the expression of the main MLL-AF4 target genes, i.e., HOXA9 and MEIS1. Our results show that FGFR2 and MLL-AF4 interact in the nucleus of leukemia cells and that FGFR2 knockdown, which is associated with decreased expression of HOXA9 and MEIS1, impairs the binding of MLL-AF4 to the HOXA9 promoter. We also show that stimulation of leukemia cells with FGF2 increases nuclear level of FGFR2 in its phosphorylated form, as well as HOXA9 and MEIS1 expression. In contrast, preincubation with the ATP-mimetic inhibitor PD173074, before FGF2 stimulation, reduced FGFR2 nuclear amount and HOXA9 and MEIS1 transcript level, thereby indicating that MLL-AF4 aberrant activity depends on the nuclear availability of FGFR2. Overall, our study identifies FGFR2 as a new and promising therapeutic target in t(4;11) leukemia.
Collapse
Affiliation(s)
- Tiziana Fioretti
- CEINGE Advanced Biotechnologies s.c. a r.l., via G. Salvatore, 486, 80145 Naples, Italy; (T.F.); (A.C.); (M.R.); (D.S.)
| | - Armando Cevenini
- CEINGE Advanced Biotechnologies s.c. a r.l., via G. Salvatore, 486, 80145 Naples, Italy; (T.F.); (A.C.); (M.R.); (D.S.)
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via S. Pansini, 5, 80131 Naples, Italy; (M.Z.); (F.C.); (R.A.)
| | - Mariateresa Zanobio
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via S. Pansini, 5, 80131 Naples, Italy; (M.Z.); (F.C.); (R.A.)
| | - Maddalena Raia
- CEINGE Advanced Biotechnologies s.c. a r.l., via G. Salvatore, 486, 80145 Naples, Italy; (T.F.); (A.C.); (M.R.); (D.S.)
| | - Daniela Sarnataro
- CEINGE Advanced Biotechnologies s.c. a r.l., via G. Salvatore, 486, 80145 Naples, Italy; (T.F.); (A.C.); (M.R.); (D.S.)
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via S. Pansini, 5, 80131 Naples, Italy; (M.Z.); (F.C.); (R.A.)
| | - Fabio Cattaneo
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via S. Pansini, 5, 80131 Naples, Italy; (M.Z.); (F.C.); (R.A.)
| | - Rosario Ammendola
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via S. Pansini, 5, 80131 Naples, Italy; (M.Z.); (F.C.); (R.A.)
| | - Gabriella Esposito
- CEINGE Advanced Biotechnologies s.c. a r.l., via G. Salvatore, 486, 80145 Naples, Italy; (T.F.); (A.C.); (M.R.); (D.S.)
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via S. Pansini, 5, 80131 Naples, Italy; (M.Z.); (F.C.); (R.A.)
- Correspondence: ; Tel.: +30-0817463146
| |
Collapse
|