1
|
Romo-Aguas JC, de Guimarães TAC, Kalitzeos A, Aychoua N, Tsika C, Robson AG, Fujinami-Yokokawa Y, Fujinami K, Mahroo OA, Webster AR, Michaelides M. Detailed Clinical, Ophthalmic, and Genetic Characterization of MYO7A-Associated Usher Syndrome. Invest Ophthalmol Vis Sci 2025; 66:60. [PMID: 40257781 DOI: 10.1167/iovs.66.4.60] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025] Open
Abstract
Purpose To analyze the clinical spectrum and natural history of MYO7A-associated Usher syndrome type I (USH1). Methods Patients with molecularly confirmed MYO7A-associated USH1 in a single tertiary referral center. Data was extracted from physical and electronic case notes, including imaging and electrophysiology. Genetic results were reviewed, and the detected variants were assessed. Main outcome measures were clinical findings, qualitative and quantitative analysis of retinal imaging, and electrophysiology. Results Eighty patients were identified and evaluated longitudinally. The mean age (±SD) of onset of symptoms was 12.0 ± 5.8 years of age, and a mean follow-up time of 16.2 years. BCVA was 0.4 ± 0.5 LogMAR at baseline, and 0.7 ± 0.8 LogMAR at the last visit for both eyes. The change in BCVA over time was 0.02 LogMAR per year. A hyperautofluorescent (hyperAF) ring was present in 51% of the patients. The mean ellipsoid zone width (EZW) at baseline was 2568.2 ± 1528.9 µm OD and 2527.9 ± 1609.3 µm OS, which decreased to 2012.3 ± 1705.1 µm OD and 1806.3 ± 1647.1 µm OS at last visit. Electrophysiology revealed rod and cone dysfunction with relative or complete sparing of macular function. There were statistically significant changes in BCVA, EZW, and hyperAF ring between baseline and follow-up. Genetic analysis identified 83 variants in MYO7A, including 18 novel variants. Conclusions Longitudinal analysis shows that the majority of patients retain central visual function and structure until the fifth decade of life, which informs advice on prognosis and the window for therapeutic intervention.
Collapse
Affiliation(s)
- Juan C Romo-Aguas
- Moorfields Eye Hospital, London, United Kingdom
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - Thales A C de Guimarães
- Moorfields Eye Hospital, London, United Kingdom
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - Angelos Kalitzeos
- Moorfields Eye Hospital, London, United Kingdom
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - Nancy Aychoua
- Moorfields Eye Hospital, London, United Kingdom
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - Chrysanthi Tsika
- Moorfields Eye Hospital, London, United Kingdom
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - Anthony G Robson
- Moorfields Eye Hospital, London, United Kingdom
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - Yu Fujinami-Yokokawa
- Moorfields Eye Hospital, London, United Kingdom
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
- Laboratory of Visual Physiology, Division of Vision Research, National Institute of Sensory Organs, NHO Tokyo Medical Center, Meguro-ku, Tokyo, Japan
| | - Kaoru Fujinami
- Moorfields Eye Hospital, London, United Kingdom
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
- Laboratory of Visual Physiology, Division of Vision Research, National Institute of Sensory Organs, NHO Tokyo Medical Center, Meguro-ku, Tokyo, Japan
| | - Omar A Mahroo
- Moorfields Eye Hospital, London, United Kingdom
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - Andrew R Webster
- Moorfields Eye Hospital, London, United Kingdom
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - Michel Michaelides
- Moorfields Eye Hospital, London, United Kingdom
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
| |
Collapse
|
2
|
Cao W, Kuang L, Gan R, Huang T, Yan X. A novel compound heterozygous variant of MYO7A in Usher syndrome type 1. Exp Eye Res 2024; 247:110047. [PMID: 39151776 DOI: 10.1016/j.exer.2024.110047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Usher syndrome (USH) is a recessive genetic disorder manifested by congenital sensorineural hearing loss and progressive retinitis pigmentosa, which leads to audiovisual impairment. We report a patient with Usher syndrome type 1 with new compound heterozygous MYO7A variants. A total of four members from the USH family were included. Medical history and retinal examinations were taken and genomic DNA from peripheral blood was extracted in the proband and other members. 381 retinal disease-associated genes were screened using targeted sequence capture array technology and Sanger sequencing was used to confirm the screening results. Scanning laser ophthalmoscope showed bone spicule pigmentary deposits in the mid-peripheral retina and whitish and thin retinal blood vessels especially in the arterioles. Optical coherence tomography showed that the centrality of the macular ellipsoid band disappeared in both eyes, and only remained near the fovea. Visual field examination showed a progressive loss of the visual field in a concentric pattern in both eyes. The electroretinography showed a significant decrease in the amplitudes of a- and b-waves in the scotopic and photopic condition. DNA sequencing identified the compound heterozygous variants including c.1003+1G > A: p. (?) and c.5957_5958del: p.G1987Lfs*50 of MYO7A, with the latter being novel. In this study, we found a novel compound heterozygous variant in MYO7A, which enriched the mutation spectrum and expanded our understanding of the heterogeneity of phenotype and genotype of Usher syndrome type 1.
Collapse
Affiliation(s)
- Wenchao Cao
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, China
| | - Longhao Kuang
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, China
| | - Run Gan
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, China
| | - Tao Huang
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, China
| | - Xiaohe Yan
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, China.
| |
Collapse
|
3
|
Testa F, Carreño E, van den Born LI, Melillo P, Perea-Romero I, Di Iorio V, Risca G, Iodice CM, Pennings RJE, Karali M, Banfi S, Auricchio A, Galimberti S, Ayuso C, Simonelli F. Multicentric Longitudinal Prospective Study in a European Cohort of MYO7A Patients: Disease Course and Implications for Gene Therapy. Invest Ophthalmol Vis Sci 2024; 65:25. [PMID: 38884554 PMCID: PMC11185270 DOI: 10.1167/iovs.65.6.25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/18/2024] [Indexed: 06/18/2024] Open
Abstract
Purpose We investigated the natural history of retinal dystrophy owing to variants in the MYO7A gene. Methods Fifty-three patients (mean age, 33.6 ± 16.7 years) with Usher syndrome owing to biallelic, mostly pathogenic, variants in MYO7A underwent baseline and two annual follow-up visits. Best-corrected visual acuity (BCVA), semiautomatic kinetic visual field, full-field electroretinogram, color fundus imaging, microperimetry, spectral-domain optical coherence tomography, and fundus autofluorescence were assessed. Results At baseline, all patients presented with decreased BCVA (66.4 ± 17.9 Early Treatment Diabetic Retinopathy score and 59.5 ± 21.7 Early Treatment Diabetic Retinopathy score, in the better- and worse-seeing eyes, respectively), restricted semiautomatic kinetic visual field (III4e area, 3365.8 ± 4142.1°2; 4176.4 ± 4400.3°2) and decreased macular sensitivity (9.7 ± 9.9 dB; 9.0 ± 10.2 dB). Spectral-domain optical coherence tomography revealed reduced central macular thickness (259.6 ± 63.0 µm; 250.7 ± 63.3 µm) and narrowed ellipsoid zone band width (2807.5 ± 2374.6 µm; 2615.5 ± 2370.4 µm). Longitudinal analyses (50 patients) showed a significant decrease of BCVA in better-seeing eyes, whereas no changes were observed in worse-seeing eyes for any parameter. BCVA, semiautomatic kinetic visual field (III4e and V4e) and macular sensitivity were related significantly to age at baseline. Hyperautofluorescent foveal patch (16 eyes [31.4%]) and abnormal central hypoautofluorescence (9 eyes [17.6%]) were significantly associated with worse morphological and functional read-outs compared with the hyperautofluorescent ring pattern (22 eyes [43.1%]). Conclusions Our European multicentric study offers the first prospective longitudinal analysis in one of the largest cohorts of MYO7A patients described to date, confirming the slow disease progression. More important, this study emphasizes the key role of fundus autofluorescence patterns in retinal impairment staging and advocates its adoption as an objective biomarker in patient selection for future gene therapy clinical trials.
Collapse
Affiliation(s)
- Francesco Testa
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania “Luigi Vanvitelli,” Naples, Italy
| | - Ester Carreño
- Department of Ophthalmology, Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | | | - Paolo Melillo
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania “Luigi Vanvitelli,” Naples, Italy
| | - Irene Perea-Romero
- Department of Genetics, Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Valentina Di Iorio
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania “Luigi Vanvitelli,” Naples, Italy
| | - Giulia Risca
- Bicocca Bioinformatics, Biostatistics and Bioimaging Centre, Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Clemente Maria Iodice
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania “Luigi Vanvitelli,” Naples, Italy
| | - Ronald J. E. Pennings
- Department of Otorhinolaryngology, Hearing & Genes, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Marianthi Karali
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania “Luigi Vanvitelli,” Naples, Italy
- Medical Genetics, Department of Precision Medicine, University of Campania “Luigi Vanvitelli,” Naples, Italy
| | - Sandro Banfi
- Medical Genetics, Department of Precision Medicine, University of Campania “Luigi Vanvitelli,” Naples, Italy
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Alberto Auricchio
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
- Medical Genetics, Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
- AAVantgarde Bio, Milan, Italy
| | - Stefania Galimberti
- Bicocca Bioinformatics, Biostatistics and Bioimaging Centre, Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Carmen Ayuso
- Department of Genetics, Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Francesca Simonelli
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania “Luigi Vanvitelli,” Naples, Italy
| |
Collapse
|
4
|
Colombo L, Bonetti G, Maltese PE, Iarossi G, Ziccardi L, Fogagnolo P, De Ruvo V, Murro V, Giorgio D, Falsini B, Placidi G, Martella S, Galantin E, Bertelli M, Rossetti L. Genotypic and Phenotypic Characterization of a Cohort of Patients Affected by Rod Cyclic Nucleotide Channel-Associated Retinitis Pigmentosa. Ophthalmic Res 2024; 67:301-310. [PMID: 38705136 DOI: 10.1159/000538746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/12/2024] [Indexed: 05/07/2024]
Abstract
INTRODUCTION Retinitis pigmentosa (RP), a heterogeneous inherited retinal disorder causing gradual vision loss, affects over 1 million people worldwide. Pathogenic variants in CNGA1 and CNGB1 genes, respectively, accounting for 1% and 4% of cases, impact the cyclic nucleotide-gated channel in rod photoreceptor cells. The aim of this study was to describe and compare genotypic and clinical characteristics of a cohort of patients with CNGA1- or CNGB1-related RP and to explore potential genotype-phenotype correlations. METHODS The following data from patients with CNGA1- or CNGB1-related RP, followed in five Italian inherited retinal degenerations services, were retrospectively collected: genetic variants in CNGA1 and CNGB1, best-corrected visual acuity (BCVA), ellipsoid zone (EZ) width, fundus photographs, and short-wavelength fundus autofluorescence (SW-AF) images. Comparisons and correlation analyses were performed by first dividing the cohort in two groups according to the gene responsible for the disease (CNGA1 and CNGB1 groups). In parallel, the whole cohort of RP patients was divided into two other groups, according to the expected impact of the variants at protein level (low and high group). RESULTS In total, 29 patients were recruited, 11 with CNGA1- and 18 with CNGB1-related RP. In both CNGA1 and CNGB1, 5 novel variants in CNGA1 and 5 in CNGB1 were found. BCVA was comparable between CNGA1 and CNGB1 groups, as well as between low and high groups. CNGA1 group had a larger mean EZ width compared to CNGB1 group, albeit not statistically significant, while EZ width did not differ between low and high groups A statistically significant correlation between EZ width and BCVA as well as between EZ width and age were observed in the whole cohort of RP patients. Fundus photographs of all patients in the cohort showed classic RP pattern, and in SW-AF images an hyperautofluorescent ring was observed in 14/21 patients. CONCLUSION Rod CNG channel-associated RP was demonstrated to be a slowly progressive disease in both CNGA1- and CNGB1-related forms, making it an ideal candidate for gene augmentation therapies.
Collapse
Affiliation(s)
- Leonardo Colombo
- Department of Ophthalmology, ASST Santi Paolo e Carlo Hospital, University of Milan, Milan, Italy
| | - Gabriele Bonetti
- MAGI'S LAB S.R.L., Rovereto, Italy
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | | | - Giancarlo Iarossi
- Department of Ophthalmology, Bambino Gesù Children's Hospital, Rome, Italy
| | | | - Paolo Fogagnolo
- Department of Ophthalmology, ASST Santi Paolo e Carlo Hospital, University of Milan, Milan, Italy
| | - Valentino De Ruvo
- Department of Ophthalmology, ASST Santi Paolo e Carlo Hospital, University of Milan, Milan, Italy
| | - Vittoria Murro
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Dario Giorgio
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Benedetto Falsini
- Department of Ophthalmology, Bambino Gesù Children's Hospital, Rome, Italy
- Ophthalmology Unit, Fondazione Policlinico Universitario "A. Gemelli" IRCCS/Università Cattolica del S. Cuore, Rome, Italy
| | - Giorgio Placidi
- Ophthalmology Unit, Fondazione Policlinico Universitario "A. Gemelli" IRCCS/Università Cattolica del S. Cuore, Rome, Italy
| | - Salvatore Martella
- Department of Ophthalmology, ASST Santi Paolo e Carlo Hospital, University of Milan, Milan, Italy
| | - Eleonora Galantin
- Department of Ophthalmology, ASST Santi Paolo e Carlo Hospital, University of Milan, Milan, Italy
| | - Matteo Bertelli
- MAGI'S LAB S.R.L., Rovereto, Italy
- MAGI EUREGIO, Bolzano, Italy
- MAGISNAT, Atlanta Tech Park, Peachtree Corners, Georgia, USA
| | - Luca Rossetti
- Department of Ophthalmology, ASST Santi Paolo e Carlo Hospital, University of Milan, Milan, Italy
| |
Collapse
|
5
|
Daich Varela M, Wong SW, Kiray G, Schlottmann PG, Arno G, Shams ANA, Mahroo OA, Webster AR, AlTalbishi A, Michaelides M. Detailed Clinical, Ophthalmic, and Genetic Characterization of ADGRV1-Associated Usher Syndrome. Am J Ophthalmol 2023; 256:186-195. [PMID: 37422204 PMCID: PMC11139646 DOI: 10.1016/j.ajo.2023.06.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/10/2023]
Abstract
PURPOSE To present the clinical characteristics, retinal features, natural history, and genetics of ADGRV1-Usher syndrome (USH). DESIGN Multicenter international retrospective cohort study. METHODS Clinical notes, hearing loss history, multimodal retinal imaging, and molecular diagnosis were reviewed. Thirty patients (28 families) with USH type 2 and disease-causing variants in ADGRV1 were identified. Visual function, retinal imaging, and genetics were evaluated and correlated, with retinal features also compared with those of the commonest cause of USH type 2, USH2A-USH. RESULTS The mean age at the first visit was 38.6 ± 12.0 years (range: 19-74 years), and the mean follow-up time was 9.0 ± 7.7 years. Hearing loss was reported in the first decade of life by all patients, 3 (10%) described progressive loss, and 93% had moderate-severe impairment. Visual symptom onset was at 17.0 ± 7.7 years of age (range: 6-32 years), with 13 patients noticing problems before the age of 16. At baseline, 90% of patients had no or mild visual impairment. The most frequent retinal features were a hyperautofluorescent ring at the posterior pole (70%), perimacular patches of decreased autofluorescence (59%), and mild-moderate peripheral bone-spicule-like deposits (63%). Twenty-six (53%) variants were previously unreported, 19 families (68%) had double-null genotypes, and 9 were not-double-null. Longitudinal analysis showed significant differences between baseline and follow-up central macular thickness (-1.25 µm/y), outer nuclear layer thickness (-1.19 µm/y), and ellipsoid zone width (-40.9 µm/y). The rate of visual acuity decline was 0.02 LogMAR (1 letter)/y, and the rate of constriction of the hyperautofluorescent ring was 0.23 mm2/y. CONCLUSIONS ADGRV1-USH is characterized by early-onset, usually non-progressive, mild-to-severe hearing loss and generally good central vision until late adulthood. Perimacular atrophic patches and relatively retained ellipsoid zone and central macular thickness in later adulthood are more often seen in ADGRV1-USH than in USH2A-USH.
Collapse
Affiliation(s)
- Malena Daich Varela
- From the Moorfields Eye Hospital (M.D.V., S.W.W., G.K., G.A., O.A.M., A.R.W., M.M.), London, UK; UCL Institute of Ophthalmology, University College London (M.D.V., G.A., O.A.M., A.R.W., M.M.), London, UK
| | - Shiao Wei Wong
- From the Moorfields Eye Hospital (M.D.V., S.W.W., G.K., G.A., O.A.M., A.R.W., M.M.), London, UK
| | - Gulunay Kiray
- From the Moorfields Eye Hospital (M.D.V., S.W.W., G.K., G.A., O.A.M., A.R.W., M.M.), London, UK
| | | | - Gavin Arno
- From the Moorfields Eye Hospital (M.D.V., S.W.W., G.K., G.A., O.A.M., A.R.W., M.M.), London, UK; UCL Institute of Ophthalmology, University College London (M.D.V., G.A., O.A.M., A.R.W., M.M.), London, UK
| | - Amjaad N Abu Shams
- St John of Jerusalem Eye Hospital Group, Jerusalem, Palestine (A.N.A.S., A.A.T.)
| | - Omar A Mahroo
- From the Moorfields Eye Hospital (M.D.V., S.W.W., G.K., G.A., O.A.M., A.R.W., M.M.), London, UK; UCL Institute of Ophthalmology, University College London (M.D.V., G.A., O.A.M., A.R.W., M.M.), London, UK
| | - Andrew R Webster
- From the Moorfields Eye Hospital (M.D.V., S.W.W., G.K., G.A., O.A.M., A.R.W., M.M.), London, UK; UCL Institute of Ophthalmology, University College London (M.D.V., G.A., O.A.M., A.R.W., M.M.), London, UK
| | - Alaa AlTalbishi
- St John of Jerusalem Eye Hospital Group, Jerusalem, Palestine (A.N.A.S., A.A.T.)
| | - Michel Michaelides
- From the Moorfields Eye Hospital (M.D.V., S.W.W., G.K., G.A., O.A.M., A.R.W., M.M.), London, UK; UCL Institute of Ophthalmology, University College London (M.D.V., G.A., O.A.M., A.R.W., M.M.), London, UK.
| |
Collapse
|
6
|
Nassisi M, De Bartolo G, Mohand-Said S, Condroyer C, Antonio A, Lancelot ME, Bujakowska K, Smirnov V, Pugliese T, Neidhardt J, Sahel JA, Zeitz C, Audo I. Retrospective Natural History Study of RPGR-Related Cone- and Cone-Rod Dystrophies While Expanding the Mutation Spectrum of the Disease. Int J Mol Sci 2022; 23:7189. [PMID: 35806195 PMCID: PMC9266815 DOI: 10.3390/ijms23137189] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 06/24/2022] [Accepted: 06/24/2022] [Indexed: 01/06/2023] Open
Abstract
Variants in the X-linked retinitis pigmentosa GTPase regulator gene (RPGR) and, specifically, in its retinal opening reading frame-15 isoform (RPGRORF15) may cause rod-cone (RCD), cone, and cone-rod dystrophies (CDs and CRDs). While RPGR-related RCDs have been frequently evaluated, the characteristics and progression of RPGR-related CD/CRDs are largely unknown. Therefore, the goal of our work was to perform genotype-phenotype correlations specifically in RPGRORF15-related CD/CRDs. This retrospective longitudinal study included 34 index patients and two affected relatives with a molecular diagnosis of RPGR-related CD/CRDs. Patients were recruited at the "Quinze-Vingts" Hospital, Paris, France and screened for mutations in RPGRORF15 at the Institut de la Vision, Paris, France. We identified 29 distinct variants, of which 27 were truncating. All were located in the 3' half of the RPGRORF15 transcript. Twenty of them were novel. Fifteen subjects were affected by CD, the remaining had CRD. When analyzing the longitudinal data, a progressive decline in visual acuity (VA) was noted, with more than 60% of the patients reaching VA ≥ 1 LogMar in the best eye after the fifth decade of life. To our knowledge, this is the largest described study of a cohort of CD/CRD patients affected by RPGRORF15 variants. Longitudinal data showed a rapidly progressive disease, possibly locating an optimal window of intervention for future therapies in younger ages.
Collapse
Affiliation(s)
- Marco Nassisi
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France; (M.N.); (G.D.B.); (S.M.-S.); (C.C.); (A.A.); (M.-E.L.); (K.B.); (V.S.); (T.P.); (J.-A.S.)
- Centre Hospitalier National d’Ophtalmologie des Quinze-Vingts, National Rare Disease Center REFERET and INSERM-DGOS CIC 1423, 75012 Paris, France
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
- Ophthalmology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico di Milano, 20122 Milan, Italy
| | - Giuseppe De Bartolo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France; (M.N.); (G.D.B.); (S.M.-S.); (C.C.); (A.A.); (M.-E.L.); (K.B.); (V.S.); (T.P.); (J.-A.S.)
- Centre Hospitalier National d’Ophtalmologie des Quinze-Vingts, National Rare Disease Center REFERET and INSERM-DGOS CIC 1423, 75012 Paris, France
| | - Saddek Mohand-Said
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France; (M.N.); (G.D.B.); (S.M.-S.); (C.C.); (A.A.); (M.-E.L.); (K.B.); (V.S.); (T.P.); (J.-A.S.)
- Centre Hospitalier National d’Ophtalmologie des Quinze-Vingts, National Rare Disease Center REFERET and INSERM-DGOS CIC 1423, 75012 Paris, France
| | - Christel Condroyer
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France; (M.N.); (G.D.B.); (S.M.-S.); (C.C.); (A.A.); (M.-E.L.); (K.B.); (V.S.); (T.P.); (J.-A.S.)
| | - Aline Antonio
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France; (M.N.); (G.D.B.); (S.M.-S.); (C.C.); (A.A.); (M.-E.L.); (K.B.); (V.S.); (T.P.); (J.-A.S.)
- Centre Hospitalier National d’Ophtalmologie des Quinze-Vingts, National Rare Disease Center REFERET and INSERM-DGOS CIC 1423, 75012 Paris, France
| | - Marie-Elise Lancelot
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France; (M.N.); (G.D.B.); (S.M.-S.); (C.C.); (A.A.); (M.-E.L.); (K.B.); (V.S.); (T.P.); (J.-A.S.)
| | - Kinga Bujakowska
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France; (M.N.); (G.D.B.); (S.M.-S.); (C.C.); (A.A.); (M.-E.L.); (K.B.); (V.S.); (T.P.); (J.-A.S.)
- Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Vasily Smirnov
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France; (M.N.); (G.D.B.); (S.M.-S.); (C.C.); (A.A.); (M.-E.L.); (K.B.); (V.S.); (T.P.); (J.-A.S.)
- Exploration de la Vision et Neuro-Ophthalmologie, Centre Hospitalier Universitaire de Lille, 59000 Lille, France
- Faculté de Médecine, Université de Lille, 59000 Lille, France
| | - Thomas Pugliese
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France; (M.N.); (G.D.B.); (S.M.-S.); (C.C.); (A.A.); (M.-E.L.); (K.B.); (V.S.); (T.P.); (J.-A.S.)
- Centre Hospitalier National d’Ophtalmologie des Quinze-Vingts, National Rare Disease Center REFERET and INSERM-DGOS CIC 1423, 75012 Paris, France
| | - John Neidhardt
- Human Genetics, Faculty VI, School of Medicine and Health Sciences, University of Oldenburg, 26129 Oldenburg, Germany;
- Research Center Neurosensory Science, University Oldenburg, 26129 Oldenburg, Germany
| | - José-Alain Sahel
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France; (M.N.); (G.D.B.); (S.M.-S.); (C.C.); (A.A.); (M.-E.L.); (K.B.); (V.S.); (T.P.); (J.-A.S.)
- Centre Hospitalier National d’Ophtalmologie des Quinze-Vingts, National Rare Disease Center REFERET and INSERM-DGOS CIC 1423, 75012 Paris, France
- Department of Ophthalmology, University of Pittsburgh Medical School, Pittsburgh, PA 15213, USA
| | - Christina Zeitz
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France; (M.N.); (G.D.B.); (S.M.-S.); (C.C.); (A.A.); (M.-E.L.); (K.B.); (V.S.); (T.P.); (J.-A.S.)
| | - Isabelle Audo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France; (M.N.); (G.D.B.); (S.M.-S.); (C.C.); (A.A.); (M.-E.L.); (K.B.); (V.S.); (T.P.); (J.-A.S.)
- Centre Hospitalier National d’Ophtalmologie des Quinze-Vingts, National Rare Disease Center REFERET and INSERM-DGOS CIC 1423, 75012 Paris, France
| |
Collapse
|
7
|
The genetic and phenotypic landscapes of Usher syndrome: from disease mechanisms to a new classification. Hum Genet 2022; 141:709-735. [PMID: 35353227 PMCID: PMC9034986 DOI: 10.1007/s00439-022-02448-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 03/04/2022] [Indexed: 12/16/2022]
Abstract
Usher syndrome (USH) is the most common cause of deaf–blindness in humans, with a prevalence of about 1/10,000 (~ 400,000 people worldwide). Cochlear implants are currently used to reduce the burden of hearing loss in severe-to-profoundly deaf patients, but many promising treatments including gene, cell, and drug therapies to restore the native function of the inner ear and retinal sensory cells are under investigation. The traditional clinical classification of Usher syndrome defines three major subtypes—USH1, 2 and 3—according to hearing loss severity and onset, the presence or absence of vestibular dysfunction, and age at onset of retinitis pigmentosa. Pathogenic variants of nine USH genes have been initially reported: MYO7A, USH1C, PCDH15, CDH23, and USH1G for USH1, USH2A, ADGRV1, and WHRN for USH2, and CLRN1 for USH3. Based on the co-occurrence of hearing and vision deficits, the list of USH genes has been extended to few other genes, but with limited supporting information. A consensus on combined criteria for Usher syndrome is crucial for the development of accurate diagnosis and to improve patient management. In recent years, a wealth of information has been obtained concerning the properties of the Usher proteins, related molecular networks, potential genotype–phenotype correlations, and the pathogenic mechanisms underlying the impairment or loss of hearing, balance and vision. The advent of precision medicine calls for a clear and more precise diagnosis of Usher syndrome, exploiting all the existing data to develop a combined clinical/genetic/network/functional classification for Usher syndrome.
Collapse
|
8
|
Grotz S, Schäfer J, Wunderlich KA, Ellederova Z, Auch H, Bähr A, Runa-Vochozkova P, Fadl J, Arnold V, Ardan T, Veith M, Santamaria G, Dhom G, Hitzl W, Kessler B, Eckardt C, Klein J, Brymova A, Linnert J, Kurome M, Zakharchenko V, Fischer A, Blutke A, Döring A, Suchankova S, Popelar J, Rodríguez-Bocanegra E, Dlugaiczyk J, Straka H, May-Simera H, Wang W, Laugwitz KL, Vandenberghe LH, Wolf E, Nagel-Wolfrum K, Peters T, Motlik J, Fischer MD, Wolfrum U, Klymiuk N. Early disruption of photoreceptor cell architecture and loss of vision in a humanized pig model of usher syndromes. EMBO Mol Med 2022; 14:e14817. [PMID: 35254721 PMCID: PMC8988205 DOI: 10.15252/emmm.202114817] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 02/04/2022] [Accepted: 02/09/2022] [Indexed: 01/17/2023] Open
Abstract
Usher syndrome (USH) is the most common form of monogenic deaf-blindness. Loss of vision is untreatable and there are no suitable animal models for testing therapeutic strategies of the ocular constituent of USH, so far. By introducing a human mutation into the harmonin-encoding USH1C gene in pigs, we generated the first translational animal model for USH type 1 with characteristic hearing defect, vestibular dysfunction, and visual impairment. Changes in photoreceptor architecture, quantitative motion analysis, and electroretinography were characteristics of the reduced retinal virtue in USH1C pigs. Fibroblasts from USH1C pigs or USH1C patients showed significantly elongated primary cilia, confirming USH as a true and general ciliopathy. Primary cells also proved their capacity for assessing the therapeutic potential of CRISPR/Cas-mediated gene repair or gene therapy in vitro. AAV-based delivery of harmonin into the eye of USH1C pigs indicated therapeutic efficacy in vivo.
Collapse
Affiliation(s)
- Sophia Grotz
- Chair of Molecular Animal Breeding and Biotechnology, LMU Munich, Munich, Germany.,Center for Innovative Medical Models, LMU Munich, Munich, Germany
| | - Jessica Schäfer
- Institute of Molecular Physiology, Molecular Cell Biology, Johannes Gutenberg University (JGU), Mainz, Germany
| | - Kirsten A Wunderlich
- Institute of Molecular Physiology, Molecular Cell Biology, Johannes Gutenberg University (JGU), Mainz, Germany
| | - Zdenka Ellederova
- Institute of Animal Physiology and Genetics, Czech Academy of Science, Libechov, Czech Republic
| | - Hannah Auch
- Chair of Molecular Animal Breeding and Biotechnology, LMU Munich, Munich, Germany.,Center for Innovative Medical Models, LMU Munich, Munich, Germany
| | - Andrea Bähr
- Center for Innovative Medical Models, LMU Munich, Munich, Germany.,Large Animal Models in Cardiovascular Research, Internal Medical Department I, TU Munich, Munich, Germany
| | - Petra Runa-Vochozkova
- Large Animal Models in Cardiovascular Research, Internal Medical Department I, TU Munich, Munich, Germany
| | - Janet Fadl
- Chair of Molecular Animal Breeding and Biotechnology, LMU Munich, Munich, Germany.,Institute of Molecular Physiology, Molecular Cell Biology, Johannes Gutenberg University (JGU), Mainz, Germany
| | - Vanessa Arnold
- Institute of Molecular Physiology, Molecular Cell Biology, Johannes Gutenberg University (JGU), Mainz, Germany
| | - Taras Ardan
- Institute of Animal Physiology and Genetics, Czech Academy of Science, Libechov, Czech Republic
| | - Miroslav Veith
- Ophthalmology Clinic, University Hospital Kralovske Vinohrady, Praha, Czech Republic
| | - Gianluca Santamaria
- Large Animal Models in Cardiovascular Research, Internal Medical Department I, TU Munich, Munich, Germany
| | - Georg Dhom
- Chair of Molecular Animal Breeding and Biotechnology, LMU Munich, Munich, Germany.,Center for Innovative Medical Models, LMU Munich, Munich, Germany
| | - Wolfgang Hitzl
- Biostatistics and Data Science, Paracelsus Medical University, Salzburg, Austria
| | - Barbara Kessler
- Chair of Molecular Animal Breeding and Biotechnology, LMU Munich, Munich, Germany.,Center for Innovative Medical Models, LMU Munich, Munich, Germany
| | - Christian Eckardt
- Center for Innovative Medical Models, LMU Munich, Munich, Germany.,Large Animal Models in Cardiovascular Research, Internal Medical Department I, TU Munich, Munich, Germany
| | - Joshua Klein
- Institute of Molecular Physiology, Molecular Cell Biology, Johannes Gutenberg University (JGU), Mainz, Germany
| | - Anna Brymova
- Institute of Animal Physiology and Genetics, Czech Academy of Science, Libechov, Czech Republic
| | - Joshua Linnert
- Institute of Molecular Physiology, Molecular Cell Biology, Johannes Gutenberg University (JGU), Mainz, Germany
| | - Mayuko Kurome
- Chair of Molecular Animal Breeding and Biotechnology, LMU Munich, Munich, Germany.,Center for Innovative Medical Models, LMU Munich, Munich, Germany
| | - Valeri Zakharchenko
- Chair of Molecular Animal Breeding and Biotechnology, LMU Munich, Munich, Germany.,Center for Innovative Medical Models, LMU Munich, Munich, Germany
| | - Andrea Fischer
- Veterinary Faculty, Small Animal Clinics, LMU Munich, Munich, Germany
| | - Andreas Blutke
- Institute of Experimental Genetics, Helmholtz Center Munich, Neuherberg, Germany
| | - Anna Döring
- Veterinary Faculty, Small Animal Clinics, LMU Munich, Munich, Germany
| | - Stepanka Suchankova
- Institute of Experimental Medicine, Czech Academy of Science, Prague, Czech Republic
| | - Jiri Popelar
- Institute of Experimental Medicine, Czech Academy of Science, Prague, Czech Republic
| | - Eduardo Rodríguez-Bocanegra
- Centre for Ophthalmology, University Eye Hospital, University Hospital Tübingen, Tübingen, Germany.,Institute for Ophthalmic Research, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany
| | - Julia Dlugaiczyk
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Zurich (USZ), University of Zurich, Zurich, Switzerland
| | - Hans Straka
- Faculty of Biology, LMU Munich, Planegg, Germany
| | - Helen May-Simera
- Institute of Molecular Physiology, Cilia Biology, JGU Mainz, Mainz, Germany
| | - Weiwei Wang
- Grousbeck Gene Therapy Center, Mass Eye and Ear and Harvard Medical School, Boston, MA, USA
| | - Karl-Ludwig Laugwitz
- Large Animal Models in Cardiovascular Research, Internal Medical Department I, TU Munich, Munich, Germany
| | - Luk H Vandenberghe
- Grousbeck Gene Therapy Center, Mass Eye and Ear and Harvard Medical School, Boston, MA, USA
| | - Eckhard Wolf
- Chair of Molecular Animal Breeding and Biotechnology, LMU Munich, Munich, Germany.,Center for Innovative Medical Models, LMU Munich, Munich, Germany
| | - Kerstin Nagel-Wolfrum
- Institute of Molecular Physiology, Molecular Cell Biology, Johannes Gutenberg University (JGU), Mainz, Germany.,Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University (JGU), Mainz, Germany
| | - Tobias Peters
- Centre for Ophthalmology, University Eye Hospital, University Hospital Tübingen, Tübingen, Germany.,Institute for Ophthalmic Research, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany
| | - Jan Motlik
- Institute of Animal Physiology and Genetics, Czech Academy of Science, Libechov, Czech Republic
| | - M Dominik Fischer
- Oxford Eye Hospital, Oxford University NHS Foundation Trust, Oxford, UK.,Nuffield Laboratory of Ophthalmology, NDCN, University of Oxford, Oxford, UK
| | - Uwe Wolfrum
- Institute of Molecular Physiology, Molecular Cell Biology, Johannes Gutenberg University (JGU), Mainz, Germany
| | - Nikolai Klymiuk
- Center for Innovative Medical Models, LMU Munich, Munich, Germany.,Large Animal Models in Cardiovascular Research, Internal Medical Department I, TU Munich, Munich, Germany
| |
Collapse
|
9
|
Miles A, Blair C, Emili A, Tropepe V. Usher syndrome type 1-associated gene, pcdh15b, is required for photoreceptor structural integrity in zebrafish. Dis Model Mech 2021; 14:272551. [PMID: 34668518 PMCID: PMC8669488 DOI: 10.1242/dmm.048965] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 10/13/2021] [Indexed: 12/23/2022] Open
Abstract
Blindness associated with Usher syndrome type 1 (USH1) is typically characterized as rod photoreceptor degeneration, followed by secondary loss of cones. The mechanisms leading to blindness are unknown because most genetic mouse models only recapitulate auditory defects. We generated zebrafish mutants for one of the USH1 genes, protocadherin-15b (pcdh15b), a putative cell adhesion molecule. Zebrafish Pcdh15 is expressed exclusively in photoreceptors within calyceal processes (CPs), at the base of the outer segment (OS) and within the synapse. In our mutants, rod and cone photoreceptor integrity is compromised, with early and progressively worsening abnormal OS disc growth and detachment, in part due to weakening CP contacts. These effects were attenuated or exacerbated by growth in dark and bright-light conditions, respectively. We also describe novel evidence for structural defects in synapses of pcdh15b mutant photoreceptors. Cell death does not accompany these defects at early stages, suggesting that photoreceptor structural defects, rather than overt cell loss, may underlie vision deficits. Thus, we present the first genetic animal model of a PCDH15-associated retinopathy that can be used to understand the aetiology of blindness in USH1. This article has an associated First Person interview with the first author of the paper. Summary: We present one of the first genetic animal mutants for PCDH15 that displays a severe, early retinopathy and suggests that zebrafish could be a useful model for PCDH15-associated retinal phenotypes.
Collapse
Affiliation(s)
- Amanda Miles
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Clarke Blair
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Andrew Emili
- Center for Network Systems Biology, Boston University, Boston, MA 02118, USA
| | - Vincent Tropepe
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| |
Collapse
|
10
|
Assessing Photoreceptor Status in Retinal Dystrophies: From High-Resolution Imaging to Functional Vision. Am J Ophthalmol 2021; 230:12-47. [PMID: 34000280 PMCID: PMC8682761 DOI: 10.1016/j.ajo.2021.04.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/15/2021] [Accepted: 04/15/2021] [Indexed: 01/05/2023]
Abstract
Purpose To describe the value of integrating phenotype/genotype data, disease staging, and evaluation of functional vision in patient-centered management of retinal dystrophies. Methods (1) Cross-sectional structure-function and retrospective longitudinal studies to assess the correlations between standard fundus autofluorescence (FAF), optical coherence tomography, visual acuity (VA), and perimetry (visual field [VF]) examinations to evaluate photoreceptor functional loss in a cohort of patients with rod-cone dystrophy (RCD); (2) flood-illumination adaptive optics (FIAO) imaging focusing on photoreceptor misalignment and orientation of outer segments; and (3) evaluation of the impact of visual impairment in daily life activities, based on functional (visual and mobility) vision assessment in a naturalistic environment in visually impaired subjects with RCD and subjects treated with LuxturnaⓇ for RPE65-related Leber congenital amaurosis before and after therapy. Results The results of the cross-sectional transversal study showed that (1) VA and macular sensitivity were weakly correlated with the structural variables; and (2) functional impairment (VF) was correlated with reduction of anatomical markers of photoreceptor structure and increased width of autofluorescent ring. The dimensions of the ring of increased FAF evolved faster. Other criteria that differed among groups were the lengths of the ellipsoid zone, the external limiting membrane, and the foveal thickness. FIAO revealed a variety of phenotypes: paradoxical visibility of foveal cones; heterogeneous brightness of cones; dim, inner segment–like, and RPE-like mosaic. Directional illumination by varying orientation of incident light (Stiles-Crawford effect) and the amount of side illumination (gaze-dependent imaging) affected photoreceptor visibility. Mobility assessment under different lighting conditions showed correlation with VF, VA, contrast sensitivity (CS), and dark adaptation, with different predictive values depending on mobility study paradigms and illumination level. At high illumination level (235 lux), VF was a predictor for all mobility performance models. Under low illumination (1 and 2 lux), VF was the most significant predictor of mobility performance variables, while CS best explained the number of collisions and segments. In subjects treated with LuxturnaⓇ, a very favorable impact on travel speed and reduction in the number of collisions, especially at low luminance, was observable 6 months following injection, in both children and adults. Conclusions Our results suggest the benefit of development and implementation of quantitative and reproducible tools to evaluate the status of photoreceptors and the impact of both visual impairment and novel therapies in real-life conditions. NOTE: Publication of this article is sponsored by the American Ophthalmological Society.
Collapse
|
11
|
Mutated CCDC51 Coding for a Mitochondrial Protein, MITOK Is a Candidate Gene Defect for Autosomal Recessive Rod-Cone Dystrophy. Int J Mol Sci 2021; 22:ijms22157875. [PMID: 34360642 PMCID: PMC8346125 DOI: 10.3390/ijms22157875] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/05/2021] [Accepted: 07/15/2021] [Indexed: 11/17/2022] Open
Abstract
The purpose of this work was to identify the gene defect underlying a relatively mild rod-cone dystrophy (RCD), lacking disease-causing variants in known genes implicated in inherited retinal disorders (IRD), and provide transcriptomic and immunolocalization data to highlight the best candidate. The DNA of the female patient originating from a consanguineous family revealed no large duplication or deletion, but several large homozygous regions. In one of these, a homozygous frameshift variant, c.244_246delins17 p.(Trp82Valfs*4); predicted to lead to a nonfunctional protein, was identified in CCDC51. CCDC51 encodes the mitochondrial coiled-coil domain containing 51 protein, also called MITOK. MITOK ablation causes mitochondrial dysfunction. Here we show for the first time that CCDC51/MITOK localizes in the retina and more specifically in the inner segments of the photoreceptors, well known to contain mitochondria. Mitochondrial proteins have previously been implicated in IRD, although usually in association with syndromic disease, unlike our present case. Together, our findings add another ultra-rare mutation implicated in non-syndromic IRD, whose pathogenic mechanism in the retina needs to be further elucidated.
Collapse
|
12
|
Fuster-García C, García-Bohórquez B, Rodríguez-Muñoz A, Aller E, Jaijo T, Millán JM, García-García G. Usher Syndrome: Genetics of a Human Ciliopathy. Int J Mol Sci 2021; 22:6723. [PMID: 34201633 PMCID: PMC8268283 DOI: 10.3390/ijms22136723] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/21/2022] Open
Abstract
Usher syndrome (USH) is an autosomal recessive syndromic ciliopathy characterized by sensorineural hearing loss, retinitis pigmentosa and, sometimes, vestibular dysfunction. There are three clinical types depending on the severity and age of onset of the symptoms; in addition, ten genes are reported to be causative of USH, and six more related to the disease. These genes encode proteins of a diverse nature, which interact and form a dynamic protein network called the "Usher interactome". In the organ of Corti, the USH proteins are essential for the correct development and maintenance of the structure and cohesion of the stereocilia. In the retina, the USH protein network is principally located in the periciliary region of the photoreceptors, and plays an important role in the maintenance of the periciliary structure and the trafficking of molecules between the inner and the outer segments of photoreceptors. Even though some genes are clearly involved in the syndrome, others are controversial. Moreover, expression of some USH genes has been detected in other tissues, which could explain their involvement in additional mild comorbidities. In this paper, we review the genetics of Usher syndrome and the spectrum of mutations in USH genes. The aim is to identify possible mutation associations with the disease and provide an updated genotype-phenotype correlation.
Collapse
Affiliation(s)
- Carla Fuster-García
- Molecular, Cellular and Genomics Biomedicine Research Group, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (C.F.-G.); (B.G.-B.); (A.R.-M.); (E.A.); (T.J.); (G.G.-G.)
- Unidad Mixta de Enfermedades Raras IIS La Fe-Centro de Investigación Príncipe Felipe, 46026 Valencia, Spain
- Biomedical Research Network for Rare Diseases, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
| | - Belén García-Bohórquez
- Molecular, Cellular and Genomics Biomedicine Research Group, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (C.F.-G.); (B.G.-B.); (A.R.-M.); (E.A.); (T.J.); (G.G.-G.)
- Unidad Mixta de Enfermedades Raras IIS La Fe-Centro de Investigación Príncipe Felipe, 46026 Valencia, Spain
| | - Ana Rodríguez-Muñoz
- Molecular, Cellular and Genomics Biomedicine Research Group, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (C.F.-G.); (B.G.-B.); (A.R.-M.); (E.A.); (T.J.); (G.G.-G.)
- Unidad Mixta de Enfermedades Raras IIS La Fe-Centro de Investigación Príncipe Felipe, 46026 Valencia, Spain
| | - Elena Aller
- Molecular, Cellular and Genomics Biomedicine Research Group, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (C.F.-G.); (B.G.-B.); (A.R.-M.); (E.A.); (T.J.); (G.G.-G.)
- Unidad Mixta de Enfermedades Raras IIS La Fe-Centro de Investigación Príncipe Felipe, 46026 Valencia, Spain
- Biomedical Research Network for Rare Diseases, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
- Genetics Unit, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
| | - Teresa Jaijo
- Molecular, Cellular and Genomics Biomedicine Research Group, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (C.F.-G.); (B.G.-B.); (A.R.-M.); (E.A.); (T.J.); (G.G.-G.)
- Unidad Mixta de Enfermedades Raras IIS La Fe-Centro de Investigación Príncipe Felipe, 46026 Valencia, Spain
- Biomedical Research Network for Rare Diseases, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
- Genetics Unit, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
| | - José M. Millán
- Molecular, Cellular and Genomics Biomedicine Research Group, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (C.F.-G.); (B.G.-B.); (A.R.-M.); (E.A.); (T.J.); (G.G.-G.)
- Unidad Mixta de Enfermedades Raras IIS La Fe-Centro de Investigación Príncipe Felipe, 46026 Valencia, Spain
- Biomedical Research Network for Rare Diseases, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
| | - Gema García-García
- Molecular, Cellular and Genomics Biomedicine Research Group, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (C.F.-G.); (B.G.-B.); (A.R.-M.); (E.A.); (T.J.); (G.G.-G.)
- Unidad Mixta de Enfermedades Raras IIS La Fe-Centro de Investigación Príncipe Felipe, 46026 Valencia, Spain
- Biomedical Research Network for Rare Diseases, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
| |
Collapse
|
13
|
Nassisi M, Smirnov VM, Solis Hernandez C, Mohand‐Saïd S, Condroyer C, Antonio A, Kühlewein L, Kempf M, Kohl S, Wissinger B, Nasser F, Ragi SD, Wang N, Sparrow JR, Greenstein VC, Michalakis S, Mahroo OA, Ba‐Abbad R, Michaelides M, Webster AR, Degli Esposti S, Saffren B, Capasso J, Levin A, Hauswirth WW, Dhaenens C, Defoort‐Dhellemmes S, Tsang SH, Zrenner E, Sahel J, Petersen‐Jones SM, Zeitz C, Audo I. CNGB1-related rod-cone dystrophy: A mutation review and update. Hum Mutat 2021; 42:641-666. [PMID: 33847019 PMCID: PMC8218941 DOI: 10.1002/humu.24205] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/26/2021] [Accepted: 04/08/2021] [Indexed: 12/29/2022]
Abstract
Cyclic nucleotide-gated channel β1 (CNGB1) encodes the 240-kDa β subunit of the rod photoreceptor cyclic nucleotide-gated ion channel. Disease-causing sequence variants in CNGB1 lead to autosomal recessive rod-cone dystrophy/retinitis pigmentosa (RP). We herein present a comprehensive review and analysis of all previously reported CNGB1 sequence variants, and add 22 novel variants, thereby enlarging the spectrum to 84 variants in total, including 24 missense variants (two of which may also affect splicing), 21 nonsense, 19 splicing defects (7 at noncanonical positions), 10 small deletions, 1 small insertion, 1 small insertion-deletion, 7 small duplications, and 1 gross deletion. According to the American College of Medical Genetics and Genomics classification criteria, 59 variants were considered pathogenic or likely pathogenic and 25 were variants of uncertain significance. In addition, we provide further phenotypic data from 34 CNGB1-related RP cases, which, overall, are in line with previous findings suggesting that this form of RP has long-term retention of useful central vision despite the early onset of night blindness, which is valuable for patient counseling, but also has implications for it being considered a priority target for gene therapy trials.
Collapse
Affiliation(s)
- Marco Nassisi
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche ScientifiqueInstitut de la VisionParisFrance
- Centre Hospitalier National d'Ophtalmologie des Quinze‐Vingts, INSERM‐DGOS CIC1423ParisFrance
- Department of Clinical Sciences and Community HealthUniversity of MilanMilanItaly
- Ophthalmological Unit, Fondazione IRCCS Ca' GrandaOspedale Maggiore PoliclinicoMilanItaly
| | - Vasily M. Smirnov
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche ScientifiqueInstitut de la VisionParisFrance
- Exploration de la vision et Neuro‐Ophthalmologie, CHU de LilleLilleFrance
- Faculté de MédecineUniversité de LilleLilleFrance
| | - Cyntia Solis Hernandez
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche ScientifiqueInstitut de la VisionParisFrance
| | - Saddek Mohand‐Saïd
- Centre Hospitalier National d'Ophtalmologie des Quinze‐Vingts, INSERM‐DGOS CIC1423ParisFrance
| | - Christel Condroyer
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche ScientifiqueInstitut de la VisionParisFrance
| | - Aline Antonio
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche ScientifiqueInstitut de la VisionParisFrance
| | - Laura Kühlewein
- University Eye Hospital, Centre for OphthalmologyUniversity of TübingenTübingenGermany
- Institute for Ophthalmic Research, Centre for OphthalmologyUniversity of TübingenTübingenGermany
| | - Melanie Kempf
- University Eye Hospital, Centre for OphthalmologyUniversity of TübingenTübingenGermany
| | - Susanne Kohl
- Institute for Ophthalmic Research, Centre for OphthalmologyUniversity of TübingenTübingenGermany
| | - Bernd Wissinger
- Institute for Ophthalmic Research, Centre for OphthalmologyUniversity of TübingenTübingenGermany
| | - Fadi Nasser
- University Eye Hospital, Centre for OphthalmologyUniversity of TübingenTübingenGermany
| | - Sara D. Ragi
- Department of OphthalmologyColumbia University, New YorkNew YorkUSA
| | - Nan‐Kai Wang
- Department of OphthalmologyColumbia University, New YorkNew YorkUSA
- College of MedicineChang Gung UniversityTaoyuanTaiwan
- Department of Ophthalmology, Chang Gung Memorial HospitalLinkou Medical CenterTaoyuanTaiwan
| | - Janet R. Sparrow
- Department of OphthalmologyColumbia University, New YorkNew YorkUSA
| | | | | | - Omar A. Mahroo
- Moorfields Eye HospitalLondonUK
- UCL Institute of Ophthalmology, University College LondonLondonUK
| | - Rola Ba‐Abbad
- Moorfields Eye HospitalLondonUK
- UCL Institute of Ophthalmology, University College LondonLondonUK
| | - Michel Michaelides
- Moorfields Eye HospitalLondonUK
- UCL Institute of Ophthalmology, University College LondonLondonUK
| | - Andrew R. Webster
- Moorfields Eye HospitalLondonUK
- UCL Institute of Ophthalmology, University College LondonLondonUK
| | - Simona Degli Esposti
- Moorfields Eye HospitalLondonUK
- UCL Institute of Ophthalmology, University College LondonLondonUK
| | - Brooke Saffren
- Philadelphia College of Osteopathic MedicinePhiladelphiaPennsylvaniaUSA
| | | | - Alex Levin
- Pediatric Ophthalmology and Ocular Genetics, Flaum Eye Institute, Pediatric Genetics, Golisano Children's HospitalUniversity of RochesterRochesterNew YorkUSA
| | | | - Claire‐Marie Dhaenens
- Univ. Lille, Inserm, CHU Lille, U1172‐LilNCog‐Lille Neuroscience & CognitionLilleFrance
| | | | - Stephen H. Tsang
- Department of OphthalmologyColumbia University, New YorkNew YorkUSA
- Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma LaboratoryNew YorkNew YorkUSA
- Department of Pathology and Cell BiologyColumbia UniversityNew YorkNew YorkUSA
- Stem Cell Initiative (CSCI), Institute of Human Nutrition, Vagelos College of Physicians and SurgeonsNew YorkNew YorkUSA
| | - Eberhart Zrenner
- University Eye Hospital, Centre for OphthalmologyUniversity of TübingenTübingenGermany
| | - Jose‐Alain Sahel
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche ScientifiqueInstitut de la VisionParisFrance
- Department of OphthalmologyThe University of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
- Fondation Ophtalmologique Adolphe de RothschildParisFrance
| | - Simon M. Petersen‐Jones
- Department of Small Animal Clinical SciencesMichigan State UniversityEast LansingMichiganUSA
| | - Christina Zeitz
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche ScientifiqueInstitut de la VisionParisFrance
| | - Isabelle Audo
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche ScientifiqueInstitut de la VisionParisFrance
- Centre Hospitalier National d'Ophtalmologie des Quinze‐Vingts, INSERM‐DGOS CIC1423ParisFrance
- University College London Institute of OphthalmologyLondonUK
| |
Collapse
|
14
|
Nassisi M, Wohlschlegel J, Liu B, Letellier C, Michiels C, Aubois A, Mohand-Said S, Habas C, Sahel JA, Zeitz C, Audo I. DEEP PHENOTYPING AND FURTHER INSIGHTS INTO ITM2B-RELATED RETINAL DYSTROPHY. Retina 2021; 41:872-881. [PMID: 32826790 DOI: 10.1097/iae.0000000000002953] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
PURPOSE To reappraise the presentation and the course of ITM2B-related retinal dystrophy and give further insights into ITM2B expression in the retina. METHODS The clinical data of nine subjects with ITM2B-related retinal dystrophy were retrospectively reviewed. The genetic mutation was assessed for its influence on splicing in cultured fibroblasts. The cellular expression of ITM2B within the inner retina was investigated in wild-type mice through mRNA in situ hybridization. RESULTS All patients complained of decreased vision and mild photophobia around their twenties-thirties. The peculiar feature was the hyperreflective material on optical coherence tomography within the inner retina and the central outer nuclear layer with thinning of the retinal nerve fiber layer. Although retinal imaging revealed very mild or no changes over the years, the visual acuity slowly decreased with about one Early Treatment Diabetic Retinopathy Study letter per year. Finally, full-field electroretinography showed a mildly progressive inner retinal and cone dysfunction. ITM2B mRNA is expressed in all cellular types of the inner retina. Disease mechanism most likely involves mutant protein misfolding and/or modified protein interaction rather than misplicing. CONCLUSION ITM2B-related retinal dystrophy is a peculiar, rare, slowly progressive retinal degeneration. Functional examinations (full-field electroretinography and visual acuity) seem more accurate in monitoring the progression in these patients because imaging tends to be stable over the years.
Collapse
Affiliation(s)
- Marco Nassisi
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
- CHNO des Quinze-Vingts, DHU Sight Restore, INSERM-DGOS CIC1423, Paris, France
| | | | - Bingqian Liu
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Camille Letellier
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | | | - Anne Aubois
- CHNO des Quinze-Vingts, DHU Sight Restore, INSERM-DGOS CIC1423, Paris, France
| | - Saddek Mohand-Said
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
- CHNO des Quinze-Vingts, DHU Sight Restore, INSERM-DGOS CIC1423, Paris, France
| | | | - José-Alain Sahel
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
- CHNO des Quinze-Vingts, DHU Sight Restore, INSERM-DGOS CIC1423, Paris, France
- Fondation Ophtalmologique Adolphe de Rothschild, Paris, France
- Department of Ophthalmology, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania
- Académie des Sciences-Institut de France, Paris, France ; and
| | - Christina Zeitz
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Isabelle Audo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
- CHNO des Quinze-Vingts, DHU Sight Restore, INSERM-DGOS CIC1423, Paris, France
- Institute of Ophthalmology, University College of London, London, United Kingdom
| |
Collapse
|
15
|
Nassisi M, Lavia C, Mohand-Said S, Smirnov V, Antonio A, Condroyer C, Sancho S, Varin J, Gaudric A, Zeitz C, Sahel JA, Audo I. Near-infrared fundus autofluorescence alterations correlate with swept-source optical coherence tomography angiography findings in patients with retinitis pigmentosa. Sci Rep 2021; 11:3180. [PMID: 33542393 PMCID: PMC7862375 DOI: 10.1038/s41598-021-82757-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 12/21/2020] [Indexed: 11/09/2022] Open
Abstract
Thirty-eight patients from 37 families with retinitis pigmentosa (RP) underwent macular 6 × 6-mm swept-source optical coherence tomography angiography (SS-OCTA) and 30° near-infrared fundus autofluorescence (NIR-FAF) acquisitions in one eye. Superficial vascular complex (SVC), deep capillary complex (DCC) and choriocapillaris (CC) angiograms were registered with NIR-FAF acquisitions to comparatively assess subjects with and without central area of preserved NIR-FAF (APA). On the subset of patients showing an APA, the vessel densities for SVC and DCC and flow deficits for CC were assessed in three directions (superior, inferior and temporal) from the fovea and compared to healthy 1:1 age-matched controls. Nine patients with no APA had evidence of severe central OCTA alterations at all levels, especially in the DCC. In the other 29 subjects presenting APA, all OCTA parameters were similar to healthy eyes within the APA, where the retina preserves its structural integrity. Outside the APA, both the DCC and CC were significantly reduced in all directions. These alterations are probably related to the outer retinal atrophy outside the APA. Comparing OCTA to other imaging modalities is helpful to determine the potential interest of OCTA findings as an outcome measure for disease status and progression.
Collapse
Affiliation(s)
- Marco Nassisi
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012, Paris, France. .,CHNO des Quinze-Vingts, INSERM-DGOS CIC1423, 28 rue de Charenton, 75012, Paris, France. .,Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy. .,Ophthalmological Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy.
| | - Carlo Lavia
- Université de Paris, Ophthalmology Department, AP-HP, Hôpital Lariboisière, 75010, Paris, France.,Surgical Department, Ophthalmology Service, Azienda Sanitaria Locale TO 5, 10023, Chieri, Italy
| | - Saddek Mohand-Said
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012, Paris, France.,CHNO des Quinze-Vingts, INSERM-DGOS CIC1423, 28 rue de Charenton, 75012, Paris, France
| | - Vasily Smirnov
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012, Paris, France
| | - Aline Antonio
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012, Paris, France
| | - Christel Condroyer
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012, Paris, France
| | - Serge Sancho
- CHNO des Quinze-Vingts, INSERM-DGOS CIC1423, 28 rue de Charenton, 75012, Paris, France
| | - Juliette Varin
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012, Paris, France
| | - Alain Gaudric
- Université de Paris, Ophthalmology Department, AP-HP, Hôpital Lariboisière, 75010, Paris, France
| | - Christina Zeitz
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012, Paris, France
| | - José-Alain Sahel
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012, Paris, France.,CHNO des Quinze-Vingts, INSERM-DGOS CIC1423, 28 rue de Charenton, 75012, Paris, France.,Fondation Ophtalmologique Adolphe de Rothschild, 75019, Paris, France.,Department of Ophthalmology, University of Pittsburgh Medical School, Pittsburgh, PA, 15213, USA.,Académie des Sciences-Institut de France, 75006, Paris, France
| | - Isabelle Audo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012, Paris, France. .,CHNO des Quinze-Vingts, INSERM-DGOS CIC1423, 28 rue de Charenton, 75012, Paris, France. .,Institute of Ophthalmology, University College of London, London, EC1V 9EL, UK.
| |
Collapse
|
16
|
Georgiou M, Grewal PS, Narayan A, Alser M, Ali N, Fujinami K, Webster AR, Michaelides M. Sector Retinitis Pigmentosa: Extending the Molecular Genetics Basis and Elucidating the Natural History. Am J Ophthalmol 2021; 221:299-310. [PMID: 32795431 PMCID: PMC7772805 DOI: 10.1016/j.ajo.2020.08.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/29/2020] [Accepted: 08/03/2020] [Indexed: 01/21/2023]
Abstract
Purpose To determine the genetic background of sector retinitis pigmentosa (RP) natural history to better inform patient counseling. Design Retrospective case series. Methods Review of clinical notes, retinal imaging including color fundus photography (CFP), fundus autofluorescence (FAF), optical coherence tomography (OCT), electrophysiological assessment (ERG), and molecular genetic testing were performed in patients with sector RP from a single tertiary referral center. Main outcomes measured were demographic data, signs and symptoms, visual acuity, molecular genetics; and ERG, FAF, and OCT findings. Results Twenty-six molecularly confirmed patients from 23 different families were identified harboring likely disease-causing variants in 9 genes. The modes of inheritance were autosomal recessive (AR, n=6: USH1C, n=2; MYO7A, n=2; CDH3, n=1; EYS, n=1), X-linked (XL, n=4: PRPS1, n=1; RPGR, n=3), and autosomal dominant (AD, n=16: IMPDH1, n=3; RP1, n=3; RHO, n=10), with a mean age of disease onset of 38.5, 30.5, and 39.0 years old, respectively. Five of these genes have not previously been reported to cause sector RP (PRPS1, MYO7A, EYS, IMPDH1, and RP1). Inferior and nasal predilection was common across the different genotypes, and patients tended to maintain good central vision. Progression on serial FAF was observed in RPGR, MYO7A, CDH23, EYS, IMPDH1, RP1, and RHO-associated sector RP. Conclusions The genotypic spectrum of the disease is broader than previously reported. The longitudinal data provided will help to make accurate patient prognoses and counseling as well as inform patients' potential participation in the increasing numbers of trials of novel therapeutics and access to future treatments. This is the largest series and longitudinal study in sector retinitis pigmentosa. The genotypic spectrum of the disease is broader than previously reported. The longitudinal data provided more accurate patient prognosis and counseling. The study informed patients' potential participation in the increasing numbers of trials of novel therapeutics and access to future treatments.
Collapse
Affiliation(s)
- Michalis Georgiou
- Institute of Ophthalmology, University College London, London, United Kingdom; UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - Parampal S Grewal
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - Akshay Narayan
- Institute of Ophthalmology, University College London, London, United Kingdom
| | - Muath Alser
- Institute of Ophthalmology, University College London, London, United Kingdom
| | - Naser Ali
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - Kaoru Fujinami
- Institute of Ophthalmology, University College London, London, United Kingdom; UCL Institute of Ophthalmology, University College London, London, United Kingdom; Laboratory of Visual Physiology, Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan; Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Andrew R Webster
- Institute of Ophthalmology, University College London, London, United Kingdom; UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - Michel Michaelides
- Institute of Ophthalmology, University College London, London, United Kingdom; UCL Institute of Ophthalmology, University College London, London, United Kingdom.
| |
Collapse
|