1
|
Goscicki BK, Yan SQ, Mathew S, Mauguen A, Cohen N. A Retrospective Analysis of Micafungin Prophylaxis in Children Under 12 Years Undergoing Chemotherapy or Hematopoietic Stem Cell Transplantation. J Pediatr Pharmacol Ther 2024; 29:379-384. [PMID: 39144392 PMCID: PMC11321804 DOI: 10.5863/1551-6776-29.4.379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/03/2024] [Indexed: 08/16/2024]
Abstract
OBJECTIVES Literature is limited regarding ideal micafungin dosing in pediatric patients with hematologic malignancies receiving chemotherapy or hematopoietic stem cell transplantation. Micafungin is an intravenous echinocandin with activity against Candida and Aspergillus species and has a favorable safety profile compared with other antifungal classes. Our objective was to evaluate the breakthrough invasive fungal infection (IFI) rate in pediatric patients who received a prophylactic micafungin course at our institution. METHODS A single-center, retrospective study was conducted between January 1, 2011, and July 31, 2017, to determine the IFI rate in patients receiving micafungin prophylaxis. Patients with suspected IFI were evaluated for probable or proven infection based on European Organization for Research and Treatment of Cancer/Invasive Fungal Infections Cooperative Group and the National Institute of Allergy and Infectious Diseases Mycoses Study Group Consensus Group invasive fungal disease definitions. Statistical analyses were descriptive. RESULTS A total of 170 prophylactic micafungin courses from 129 unique patients ages <12 years at a median dose of 3 mg/kg daily were identified. The rate of probable or proven breakthrough IFIs was 2.4% as determined by clinical, radiologic, microbiologic, and histopathologic criteria. CONCLUSIONS A low rate of breakthrough IFI was seen with micafungin prophylaxis that is consistent with prior published adult hematopoietic stem cell transplantation studies. Micafungin was well tolerated, with liver function test elevations being transient in most cases and thought to be related to alternative factors.
Collapse
Affiliation(s)
- Breana K. Goscicki
- Department of Pharmacy (BKG), UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA
| | - Shirley Q. Yan
- Department of Pharmacy (SQY, NC), Memorial Sloan Kettering Cancer Center, New York, NY
| | | | - Audrey Mauguen
- Department of Epidemiology and Biostatistics (AM), Memorial Sloan Kettering Cancer Center, New York, NY
| | - Nina Cohen
- Department of Pharmacy (SQY, NC), Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
2
|
Joerger T, Hayes M, Stinson C, Mikhail I, Downes KJ. Incidence of Antimicrobial-Associated Acute Kidney Injury in Children: A Structured Review. Paediatr Drugs 2024; 26:59-70. [PMID: 38093147 PMCID: PMC10983053 DOI: 10.1007/s40272-023-00607-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/08/2023] [Indexed: 01/06/2024]
Abstract
Acute kidney injury (AKI) is a commonly reported adverse effect of administration of antimicrobials. While AKI can be associated with poorer outcomes, there is little information available to understand rates of AKI in children exposed to various antimicrobials. We performed a structured review using the PubMed and Embase databases. Articles were included if they provided an AKI definition in patients who were < 19 years of age receiving an antimicrobial and reported the frequency of AKI. Author-defined AKI rates were calculated for each study and mean pooled estimates for each antimicrobial were derived from among all study participants. Pooled estimates were also derived for those studies that reported AKI according to pRIFLE (pediatric risk, injury, failure, loss, end stage criteria), AKIN (acute kidney injury network), or KDIGO (kidney disease improving global outcomes) creatinine criteria. A total of 122 studies evaluating 28 antimicrobials met the inclusion criteria. Vancomycin was the most commonly studied drug: 11,514 courses across 44 included studies. Among the 27,285 antimicrobial exposures, the overall AKI rate was 13.2% (range 0-42.1% by drug), but the rate of AKI varied widely across studies (range 0-68.8%). Cidofovir (42.1%) and conventional amphotericin B (37.0%) had the highest pooled rates of author-defined AKI. Eighty-one studies used pRIFLE, AKIN, or KDIGO AKI criteria and the pooled rates of AKI were similar to author-defined AKI rates. In conclusion, antimicrobial-associated AKI is reported to occur frequently in children, but the rates of AKI varies widely across studies and drugs. Most published studies examined hospitalized patients and heterogeneity in study populations and in author definitions of AKI are barriers to a comparison of nephrotoxicity risk among antimicrobials in children.
Collapse
Affiliation(s)
- Torsten Joerger
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Division of Infectious Diseases, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA, 19104, USA.
| | - Molly Hayes
- Center for Healthcare Quality and Analytics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Connor Stinson
- Philadelphia College of Osteopathic Medicine, Philadelphia, PA, USA
| | - Ibram Mikhail
- Division of Infectious Diseases, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Kevin J Downes
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Infectious Diseases, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA, 19104, USA
| |
Collapse
|
3
|
Molecular Mechanisms of Antifungal Resistance in Mucormycosis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6722245. [PMID: 36277891 PMCID: PMC9584669 DOI: 10.1155/2022/6722245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/25/2022] [Accepted: 09/24/2022] [Indexed: 11/24/2022]
Abstract
Mucormycosis is one among the life-threatening fungal infections with high morbidity and mortality. It is an uncommon and rare infection targeting people with altered immunity. This lethal infection induced by fungi belonging to the Mucorales family is very progressive in nature. The incidence has increased in recent decades owing to the rise in immunocompromised patients. Disease management involves a multimodal strategy including early administration of drugs and surgical removal of infected tissues. Among the antifungals, azoles and amphotericin B remain the gold standard drugs of choice for initial treatment. The order Mucorales are developing a high level of resistance to the available systemic antifungal drugs, and the efficacy still remains below par. Deciphering the molecular mechanisms behind the antifungal resistance in Mucormycosis would add vital information to our available antifungal armamentarium and design novel therapies. Therefore, in this review, we have discussed the mechanisms behind Mucormycosis antifungal resistance. Moreover, this review also highlights the basic mechanisms of action of antifungal drugs and the resistance landscape which is expected to augment future treatment strategies.
Collapse
|
4
|
Kim BK, Choi JY, Hong KT, An HY, Shin HY, Kang HJ. Prospective Study on Prophylactic Micafungin Sodium against Invasive Fungal Disease during Neutropenia in Pediatric & Adolescent Patients Undergoing Autologous Hematopoietic Stem Cell Transplantation. CHILDREN 2022; 9:children9030372. [PMID: 35327744 PMCID: PMC8947337 DOI: 10.3390/children9030372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/18/2022] [Accepted: 02/28/2022] [Indexed: 11/20/2022]
Abstract
Background: Invasive fungal diseases (IFDs) increase the mortality rate of patients with neutropenia who receive chemotherapy or have previously undergone hematopoietic stem cell transplantation (HSCT). Micafungin is a broad-spectrum echinocandin with minimal toxicity and low drug interactions. We therefore investigated the efficacy and safety of prophylactic micafungin in pediatric and adolescent patients who underwent autologous HSCT. Methods: This was a phase II, prospective, single-center, open-label, and single-arm study. From November 2011 to February 2017, 125 patients were screened from Seoul National University Children’s Hospital, Korea, and 112 were enrolled. Micafungin was administered intravenously at a dose of 1 mg/kg/day (maximum 50 mg/day) from day 8 of autologous HSCT until neutrophil engraftment. Treatment success was defined as the absence of proven, probable, or possible IFD up to 4 weeks after therapy. Results: The study protocol was achieved without premature interruption in 110 patients (98.2%). The reasons interrupting micafungin treatment included early death (n = 1) and patient refusal (n = 1). Treatment success was achieved in 109 patients (99.1%). Only one patient was diagnosed with probable IFD. No patients were diagnosed with possible or proven IFD. In the full analysis set, 21 patients (18.8%) experienced 22 adverse events (AEs); however, all AEs were classified as “unlikely” related to micafungin. No patient experienced grade IV AEs nor discontinued treatment, and none of the deaths were related to micafungin. Conclusions: Our study demonstrated that micafungin is a safe and effective option for antifungal prophylaxis in pediatric patients who underwent autologous HSCT, with promising efficacy without significant AEs.
Collapse
Affiliation(s)
- Bo-Kyung Kim
- Department of Pediatrics, College of Medicine, Seoul National University, Seoul 03080, Korea; (B.-K.K.); (J.-Y.C.); (K.-T.H.); (H.-Y.A.); (H.-Y.S.)
- Cancer Research Institute, Seoul National University, Seoul 03080, Korea
- Wide River Institute of Immunology, Hongcheon 25159, Korea
| | - Jung-Yoon Choi
- Department of Pediatrics, College of Medicine, Seoul National University, Seoul 03080, Korea; (B.-K.K.); (J.-Y.C.); (K.-T.H.); (H.-Y.A.); (H.-Y.S.)
- Cancer Research Institute, Seoul National University, Seoul 03080, Korea
- Wide River Institute of Immunology, Hongcheon 25159, Korea
| | - Kyung-Taek Hong
- Department of Pediatrics, College of Medicine, Seoul National University, Seoul 03080, Korea; (B.-K.K.); (J.-Y.C.); (K.-T.H.); (H.-Y.A.); (H.-Y.S.)
- Cancer Research Institute, Seoul National University, Seoul 03080, Korea
- Wide River Institute of Immunology, Hongcheon 25159, Korea
| | - Hong-Yul An
- Department of Pediatrics, College of Medicine, Seoul National University, Seoul 03080, Korea; (B.-K.K.); (J.-Y.C.); (K.-T.H.); (H.-Y.A.); (H.-Y.S.)
- Cancer Research Institute, Seoul National University, Seoul 03080, Korea
- Wide River Institute of Immunology, Hongcheon 25159, Korea
| | - Hee-Young Shin
- Department of Pediatrics, College of Medicine, Seoul National University, Seoul 03080, Korea; (B.-K.K.); (J.-Y.C.); (K.-T.H.); (H.-Y.A.); (H.-Y.S.)
- Cancer Research Institute, Seoul National University, Seoul 03080, Korea
- Wide River Institute of Immunology, Hongcheon 25159, Korea
| | - Hyoung-Jin Kang
- Department of Pediatrics, College of Medicine, Seoul National University, Seoul 03080, Korea; (B.-K.K.); (J.-Y.C.); (K.-T.H.); (H.-Y.A.); (H.-Y.S.)
- Cancer Research Institute, Seoul National University, Seoul 03080, Korea
- Wide River Institute of Immunology, Hongcheon 25159, Korea
- Correspondence:
| |
Collapse
|
5
|
Douglas AP, Smibert OC, Bajel A, Halliday CL, Lavee O, McMullan B, Yong MK, Hal SJ, Chen SC. Consensus guidelines for the diagnosis and management of invasive aspergillosis, 2021. Intern Med J 2021; 51 Suppl 7:143-176. [DOI: 10.1111/imj.15591] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Abby P. Douglas
- Department of Infectious Diseases Peter MacCallum Cancer Centre Melbourne Victoria Australia
- Sir Peter MacCallum Department of Oncology University of Melbourne Melbourne Victoria Australia
- National Centre for Infections in Cancer Peter MacCallum Cancer Centre Melbourne Victoria Australia
- Department of Infectious Diseases Austin Health Melbourne Victoria Australia
| | - Olivia. C. Smibert
- Department of Infectious Diseases Peter MacCallum Cancer Centre Melbourne Victoria Australia
- Sir Peter MacCallum Department of Oncology University of Melbourne Melbourne Victoria Australia
- National Centre for Infections in Cancer Peter MacCallum Cancer Centre Melbourne Victoria Australia
- Department of Infectious Diseases Austin Health Melbourne Victoria Australia
| | - Ashish Bajel
- Sir Peter MacCallum Department of Oncology University of Melbourne Melbourne Victoria Australia
- Department of Clinical Haematology Peter MacCallum Cancer Centre and The Royal Melbourne Hospital Melbourne Victoria Australia
| | - Catriona L. Halliday
- Centre for Infectious Diseases and Microbiology Laboratory Services Institute of Clinical Pathology and Medical Research, New South Wales Health Pathology, Westmead Hospital Sydney New South Wales Australia
- Marie Bashir Institute for Infectious Diseases and Biosecurity The University of Sydney Sydney New South Wales Australia
| | - Orly Lavee
- Department of Haematology St Vincent's Hospital Sydney New South Wales Australia
| | - Brendan McMullan
- National Centre for Infections in Cancer Peter MacCallum Cancer Centre Melbourne Victoria Australia
- Department of Immunology and Infectious Diseases Sydney Children's Hospital Sydney New South Wales Australia
- School of Women's and Children's Health University of New South Wales Sydney New South Wales Australia
| | - Michelle K. Yong
- Department of Infectious Diseases Peter MacCallum Cancer Centre Melbourne Victoria Australia
- Sir Peter MacCallum Department of Oncology University of Melbourne Melbourne Victoria Australia
- National Centre for Infections in Cancer Peter MacCallum Cancer Centre Melbourne Victoria Australia
- Victorian Infectious Diseases Service Royal Melbourne Hospital Melbourne Victoria Australia
| | - Sebastiaan J. Hal
- Sydney Medical School University of Sydney Sydney New South Wales Australia
- Department of Microbiology and Infectious Diseases Royal Prince Alfred Hospital Sydney New South Wales Australia
| | - Sharon C.‐A. Chen
- Centre for Infectious Diseases and Microbiology Laboratory Services Institute of Clinical Pathology and Medical Research, New South Wales Health Pathology, Westmead Hospital Sydney New South Wales Australia
- Marie Bashir Institute for Infectious Diseases and Biosecurity The University of Sydney Sydney New South Wales Australia
- Sydney Medical School University of Sydney Sydney New South Wales Australia
| | | |
Collapse
|
6
|
Andes D. Regulatory Level of Evidence and Practicality in Antifungal Use Decisions for Less Common Fungal Diseases. Clin Infect Dis 2021; 73:2341-2343. [PMID: 34459896 DOI: 10.1093/cid/ciab015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 01/11/2021] [Indexed: 12/20/2022] Open
Affiliation(s)
- David Andes
- Departments of Medicine and Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
7
|
Broyles AD, Banerji A, Barmettler S, Biggs CM, Blumenthal K, Brennan PJ, Breslow RG, Brockow K, Buchheit KM, Cahill KN, Cernadas J, Chiriac AM, Crestani E, Demoly P, Dewachter P, Dilley M, Farmer JR, Foer D, Fried AJ, Garon SL, Giannetti MP, Hepner DL, Hong DI, Hsu JT, Kothari PH, Kyin T, Lax T, Lee MJ, Lee-Sarwar K, Liu A, Logsdon S, Louisias M, MacGinnitie A, Maciag M, Minnicozzi S, Norton AE, Otani IM, Park M, Patil S, Phillips EJ, Picard M, Platt CD, Rachid R, Rodriguez T, Romano A, Stone CA, Torres MJ, Verdú M, Wang AL, Wickner P, Wolfson AR, Wong JT, Yee C, Zhou J, Castells M. Practical Guidance for the Evaluation and Management of Drug Hypersensitivity: Specific Drugs. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2021; 8:S16-S116. [PMID: 33039007 DOI: 10.1016/j.jaip.2020.08.006] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 08/10/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Ana Dioun Broyles
- Division of Allergy/Immunology, Boston Children's Hospital, Boston, Mass
| | - Aleena Banerji
- Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Boston, Mass
| | - Sara Barmettler
- Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Boston, Mass
| | - Catherine M Biggs
- Department of Pediatrics, British Columbia Children's Hospital, University of British Columbia, Vancouver, Canada
| | - Kimberly Blumenthal
- Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Boston, Mass
| | - Patrick J Brennan
- Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass
| | - Rebecca G Breslow
- Division of Sports Medicine, Brigham and Women's Hospital, Boston, Mass
| | - Knut Brockow
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University of Munich, Munich, Germany
| | - Kathleen M Buchheit
- Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass
| | - Katherine N Cahill
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tenn
| | - Josefina Cernadas
- Allergology and Immunology Service, Centro Hospitalar Universitário de S.João Hospital, Porto, Portugal
| | - Anca Mirela Chiriac
- Division of Allergy, Department of Pulmonology, Hôpital Arnaud de Villeneuve, University Hospital of Montpellier, Montpellier, France
| | - Elena Crestani
- Division of Allergy/Immunology, Boston Children's Hospital, Boston, Mass
| | - Pascal Demoly
- Division of Allergy, Department of Pulmonology, Hôpital Arnaud de Villeneuve, University Hospital of Montpellier, Montpellier, France
| | - Pascale Dewachter
- Department of Anesthesiology and Intensive Care Medicine, Groupe Hospitalier Paris-Seine-Saint-Denis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Meredith Dilley
- Division of Allergy/Immunology, Boston Children's Hospital, Boston, Mass
| | - Jocelyn R Farmer
- Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Boston, Mass
| | - Dinah Foer
- Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass
| | - Ari J Fried
- Division of Allergy/Immunology, Boston Children's Hospital, Boston, Mass
| | - Sarah L Garon
- Associated Allergists and Asthma Specialists, Chicago, Ill
| | - Matthew P Giannetti
- Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass
| | - David L Hepner
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, Mass
| | - David I Hong
- Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass
| | - Joyce T Hsu
- Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass
| | - Parul H Kothari
- Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass
| | - Timothy Kyin
- Division of Asthma, Allergy & Immunology, University of Virginia, Charlottesville, Va
| | - Timothy Lax
- Division of Allergy and Inflammation, Beth Israel Deaconess Medical Center, Boston, Mass
| | - Min Jung Lee
- Allergy and Immunology at Hoag Medical Group, Newport Beach, Calif
| | - Kathleen Lee-Sarwar
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Mass
| | - Anne Liu
- Division of Allergy / Immunology, Stanford University School of Medicine, Palo Alto, Calif
| | - Stephanie Logsdon
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Margee Louisias
- Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass
| | - Andrew MacGinnitie
- Division of Allergy/Immunology, Boston Children's Hospital, Boston, Mass
| | - Michelle Maciag
- Division of Allergy/Immunology, Boston Children's Hospital, Boston, Mass
| | - Samantha Minnicozzi
- Division of Allergy and Clinical Immunology, Respiratory Medicine, Department of Pediatrics, University of Virginia, Charlottesville, Va
| | - Allison E Norton
- Division of Allergy, Immunology and Pulmonology, Monroe Carell Jr. Children's Hospital at Vanderbilt, Nashville, Tenn
| | - Iris M Otani
- Division of Pulmonary, Critical Care, Allergy, and Sleep, Department of Medicine, University of California, San Francisco Medical Center, San Francisco, Calif
| | - Miguel Park
- Division of Allergic Diseases, Mayo Clinic, Rochester, Minn
| | - Sarita Patil
- Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Boston, Mass
| | - Elizabeth J Phillips
- Department of Medicine & Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tenn
| | - Matthieu Picard
- Division of Allergy and Clinical Immunology, Department of Medicine, Hôpital Maisonneuve-Rosemont, Université de Montréal, Montréal, Québec, Canada
| | - Craig D Platt
- Division of Immunology, Boston Children's Hospital, Boston, Mass
| | - Rima Rachid
- Division of Immunology, Boston Children's Hospital, Boston, Mass
| | - Tito Rodriguez
- Drug Allergy Department, Al-Rashed Allergy Center, Sulaibikhat, Al-Kuwait, Kuwait
| | - Antonino Romano
- IRCCS Oasi Maria S.S., Troina, Italy & Fondazione Mediterranea G.B. Morgagni, Catania, Italy
| | - Cosby A Stone
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, Tenn
| | - Maria Jose Torres
- Allergy Unit and Research Group, Hospital Regional Universitario de Málaga, UMA-IBIMA-BIONAND, ARADyAL, Málaga, Spain
| | - Miriam Verdú
- Allergy Unit, Hospital Universitario de Ceuta, Ceuta, Spain
| | - Alberta L Wang
- Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass
| | - Paige Wickner
- Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass
| | - Anna R Wolfson
- Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Boston, Mass
| | - Johnson T Wong
- Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Boston, Mass
| | - Christina Yee
- Division of Immunology, Boston Children's Hospital, Boston, Mass
| | - Joseph Zhou
- Division of Allergy/Immunology, Boston Children's Hospital, Boston, Mass
| | - Mariana Castells
- Drug hypersensitivity and Desensitization Center, Brigham and Women's Hospital, Boston, Mass
| |
Collapse
|
8
|
Ward SL, Maciag MC, Jones S, Lee J, Lee J, Broyles AD. Successful Rapid Desensitization to Micafungin in a Pediatric Patient. PEDIATRIC ALLERGY IMMUNOLOGY AND PULMONOLOGY 2020; 34:106-108. [DOI: 10.1089/ped.2020.1204] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Stephanie L. Ward
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- The University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Michelle C. Maciag
- Division of Allergy and Immunology, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Sarah Jones
- Department of Pharmacy, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Joyce Lee
- Department of Pharmacy, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - John Lee
- Division of Allergy and Immunology, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Ana Dioun Broyles
- Division of Allergy and Immunology, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
9
|
Warris A, Lehrnbecher T, Roilides E, Castagnola E, Brüggemann RJM, Groll AH. ESCMID-ECMM guideline: diagnosis and management of invasive aspergillosis in neonates and children. Clin Microbiol Infect 2019; 25:1096-1113. [PMID: 31158517 DOI: 10.1016/j.cmi.2019.05.019] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 05/19/2019] [Accepted: 05/23/2019] [Indexed: 01/01/2023]
Abstract
SCOPE Presenting symptoms, distributions and patterns of diseases and vulnerability to invasive aspergillosis (IA) are similar between children and adults. However, differences exist in the epidemiology and underlying conditions, the usefulness of newer diagnostic tools, the pharmacology of antifungal agents and in the evidence from interventional phase 3 clinical trials. Therefore, the European Society for Clinical Microbiology and Infectious Diseases (ESCMID) and the European Confederation of Medical Mycology (ECMM) have developed a paediatric-specific guideline for the diagnosis and management of IA in neonates and children. METHODS Review and discussion of the scientific literature and grading of the available quality of evidence was performed by the paediatric subgroup of the ESCMID-ECMM-European Respiratory Society (ERS) Aspergillus disease guideline working group, which was assigned the mandate for the development of neonatal- and paediatric-specific recommendations. QUESTIONS Questions addressed by the guideline included the epidemiology of IA in neonates and children; which paediatric patients may benefit from antifungal prophylaxis; how to diagnose IA in neonates and children; which antifungal agents are available for use in neonates and children; which antifungal agents are suitable for prophylaxis and treatment of IA in neonates and children; what is the role of therapeutic drug monitoring of azole antifungals; and which management strategies are suitable to be used in paediatric patients. This guideline provides recommendations for the diagnosis, prevention and treatment of IA in the paediatric population, including neonates. The aim of this guideline is to facilitate optimal management of neonates and children at risk for or diagnosed with IA.
Collapse
Affiliation(s)
- A Warris
- MRC Centre for Medical Mycology, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom; European Society of Clinical Microbiology and Infectious Diseases Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology, the Netherlands.
| | - T Lehrnbecher
- Division of Paediatric Haematology and Oncology, Hospital for Children and Adolescents, Johann Wolfgang Goethe-University, Frankfurt, Germany; European Society of Clinical Microbiology and Infectious Diseases Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology, the Netherlands
| | - E Roilides
- Infectious Diseases Unit, 3rd Department of Paediatrics, Faculty of Medicine, Aristotle University 96 School of Health Sciences, Thessaloniki, Greece; European Society of Clinical Microbiology and Infectious Diseases Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology, the Netherlands
| | - E Castagnola
- Infectious Diseases Unit, IRCCS Istituto Giannina Gaslini Children's Hospital, Genoa, Italy; European Society of Clinical Microbiology and Infectious Diseases Fungal Infection Study Group (EFISG)
| | - R J M Brüggemann
- Radboud Center for Infectious Diseases, Radboud University Medical Centre, Center of Expertise in Mycology Radboudumc/CWZ, European Confederation of Medical Mycology (ECMM) Excellence Center of Medical Mycology, Nijmegen, the Netherlands; European Society of Clinical Microbiology and Infectious Diseases Fungal Infection Study Group (EFISG)
| | - A H Groll
- Infectious Disease Research Program, Center for Bone Marrow Transplantation and Department of Paediatric Hematology/Oncology, University Children's Hospital Münster, Münster, Germany; European Society of Clinical Microbiology and Infectious Diseases Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology, the Netherlands
| |
Collapse
|
10
|
Invasive Candidiasis in Infants and Children: Recent Advances in Epidemiology, Diagnosis, and Treatment. J Fungi (Basel) 2019; 5:jof5010011. [PMID: 30678324 PMCID: PMC6463055 DOI: 10.3390/jof5010011] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/10/2019] [Accepted: 01/17/2019] [Indexed: 02/07/2023] Open
Abstract
This paper reviews recent advances in three selected areas of pediatric invasive candidiasis: epidemiology, diagnosis, and treatment. Although the epidemiological trends of pediatric invasive candidiasis illustrate a declining incidence, this infection still carries a heavy burden of mortality and morbidity that warrants a high index of clinical suspicion, the need for rapid diagnostic systems, and the early initiation of antifungal therapy. The development of non-culture-based technologies, such as the T2Candida system and (1→3)-β-d-glucan detection assay, offers the potential for early laboratory detection of candidemia and CNS candidiasis, respectively. Among the complications of disseminated candidiasis in infants and children, hematogenous disseminated Candida meningoencephalitis (HCME) is an important cause of neurological morbidity. Detection of (1→3)-β-d-glucan in cerebrospinal fluid serves as an early diagnostic indicator and an important biomarker of therapeutic response. The recently reported pharmacokinetic data of liposomal amphotericin B in children demonstrate dose–exposure relationships similar to those in adults. The recently completed randomized clinical trial of micafungin versus deoxycholate amphotericin B in the treatment of neonatal candidemia provides further safety data for an echinocandin in this clinical setting.
Collapse
|
11
|
Efficacy and Safety of Echinocandins for the Treatment of Invasive Candidiasis in Children: A Meta-analysis. Pediatr Infect Dis J 2019; 38:42-49. [PMID: 29596219 DOI: 10.1097/inf.0000000000002032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Echinocandins are recommended for the treatment of suspected or confirmed invasive candidiasis (IC) in adults. Less is known about the use of echinocandins for the management of IC in children. The aim of this study was to investigate the overall efficacy and safety of echinocandin class in neonatal and pediatric patients with IC. METHODS PubMed, Cochrane Central, Scopus and Clinical trial registries were searched up to July 27, 2017. Eligible studies were randomized controlled trials that evaluated the efficacy and safety of any echinocandin versus agents of other antifungal classes for the treatment of IC in pediatric patients. The primary outcome was treatment success with resolution of symptoms and signs, and absence of IC. In the meta-analysis a random effects model was used, and the odds ratio (OR) and 95% confidence intervals (CIs) were calculated. RESULTS Four randomized clinical trials (324 patients), 2 confirmed IC (micafungin vs. liposomal amphotericin B (L-AmB) and caspofungin vs. L-AmB) and 2 empirical therapy trials (caspofungin vs. deoxycholate amphotericin B and caspofungin vs. L-AmB) were included. There was no significant difference between echinocandins and comparator in terms of treatment success (OR = 1.61, 95% CI: 0.74-3.50) and incidence of treatment-related adverse events (OR = 0.70, 95% CI: 0.39-1.26). However, fewer children treated with echinocandins discontinued treatment because of adverse events than amphotericin B formulations (OR = 0.26, 95% CI: 0.08-0.82, P = 0.02). CONCLUSIONS In the treatment of IC in children, echinocandins show non-inferior efficacy compared with amphotericin B formulations with fewer discontinuations than in comparator arm.
Collapse
|
12
|
Invasive Aspergillosis in Children: Update on Current Guidelines. Mediterr J Hematol Infect Dis 2018; 10:e2018048. [PMID: 30210741 PMCID: PMC6131109 DOI: 10.4084/mjhid.2018.048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 07/15/2018] [Indexed: 01/01/2023] Open
Abstract
Invasive aspergillosis (IA) is an important cause of infectious morbidity and mortality in immunocompromised paediatric patients. Despite improvements in diagnosis, prevention, and treatment, IA is still associated with high mortality rates. To address this issue, several international societies and organisations have proposed guidelines for the management of IA in the paediatric population. In this article, we review current recommendations of the Infectious Diseases Society of America, the European Conference on Infection in Leukaemia and the European Society of Clinical Microbiology and Infectious Diseases for the management and prevention of IA in children.
Collapse
|
13
|
Kovanda LL, Walsh TJ, Benjamin DK, Arrieta A, Kaufman DA, Smith PB, Manzoni P, Desai AV, Kaibara A, Bonate PL, Hope WW. Exposure-Response Analysis of Micafungin in Neonatal Candidiasis: Pooled Analysis of Two Clinical Trials. Pediatr Infect Dis J 2018; 37:580-585. [PMID: 29762386 PMCID: PMC6110378 DOI: 10.1097/inf.0000000000001957] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/21/2017] [Indexed: 01/08/2023]
Abstract
BACKGROUND Neonatal candidiasis causes significant morbidity and mortality in high risk infants. The micafungin dosage regimen of 10 mg/kg established for the treatment of neonatal candidiasis is based on a laboratory animal model of neonatal hematogenous Candida meningoencephalitis and pharmacokinetic (PK)-pharmacodynamic (PD) bridging studies. However, little is known about the how these PK-PD data translate clinically. METHODS Micafungin plasma concentrations from infants were used to construct a population PK model using Pmetrics software. Bayesian posterior estimates for infants with invasive candidiasis were used to evaluate the relationship between drug exposure and mycologic response using logistic regression. RESULTS Sixty-four infants 3-119 days of age were included, of which 29 (45%) infants had invasive candidiasis. A 2-compartment PK model fits the data well. Allometric scaling was applied to clearance and volume normalized to the mean population weight (kg). The mean (standard deviation) estimates for clearance and volume in the central compartment were 0.07 (0.05) L/h/1.8 kg and 0.61 (0.53) L/1.8 kg, respectively. No relationship between average daily area under concentration-time curve or average daily area under concentration-time curve:minimum inhibitory concentration ratio and mycologic response was demonstrated (P > 0.05). Although not statistically significant, mycologic response was numerically higher when area under concentration-time curves were at or above the PD target. CONCLUSIONS While a significant exposure-response relationship was not found, PK-PD experiments support higher exposures of micafungin in infants with invasive candidiasis. More patients would clarify this relationship; however, low incidence deters the feasibility of these studies.
Collapse
Affiliation(s)
- Laura L. Kovanda
- From the Global Development, Antimicrobial Pharmacodynamics and Therapeutics, Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
- Clinical Pharmacology and Exploratory Development, Astellas Pharma Global Development, Inc., Northbrook, Illinois
| | - Thomas J. Walsh
- Weill department of medicine, Weill Cornell Medicine of Cornell University, New York, New York
| | - Daniel K. Benjamin
- Duke Department of Pediatrics, Duke University Medical Center, Durham, North Carolina
| | - Antonio Arrieta
- Division of Infectious Disease Children’s Hospital of Orange County, Orange County, California
| | - David A. Kaufman
- Department of Pediatrics, University of Virginia Health System, Charlottesville, Virginia
| | - P. Brian Smith
- Duke Department of Pediatrics, Duke University Medical Center, Durham, North Carolina
| | - Paolo Manzoni
- Neonatology and NICU, Azienda Ospedaliera OIRM–Sant’Anna Hospital, Torino, Italy
| | - Amit V. Desai
- Clinical Pharmacology and Exploratory Development, Astellas Pharma Global Development, Inc., Northbrook, Illinois
| | - Atsunori Kaibara
- Clinical Pharmacology and Exploratory Development, Astellas Pharma Global Development, Inc., Northbrook, Illinois
| | - Peter L. Bonate
- Clinical Pharmacology and Exploratory Development, Astellas Pharma Global Development, Inc., Northbrook, Illinois
| | - William W. Hope
- From the Global Development, Antimicrobial Pharmacodynamics and Therapeutics, Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
14
|
Ullmann AJ, Aguado JM, Arikan-Akdagli S, Denning DW, Groll AH, Lagrou K, Lass-Flörl C, Lewis RE, Munoz P, Verweij PE, Warris A, Ader F, Akova M, Arendrup MC, Barnes RA, Beigelman-Aubry C, Blot S, Bouza E, Brüggemann RJM, Buchheidt D, Cadranel J, Castagnola E, Chakrabarti A, Cuenca-Estrella M, Dimopoulos G, Fortun J, Gangneux JP, Garbino J, Heinz WJ, Herbrecht R, Heussel CP, Kibbler CC, Klimko N, Kullberg BJ, Lange C, Lehrnbecher T, Löffler J, Lortholary O, Maertens J, Marchetti O, Meis JF, Pagano L, Ribaud P, Richardson M, Roilides E, Ruhnke M, Sanguinetti M, Sheppard DC, Sinkó J, Skiada A, Vehreschild MJGT, Viscoli C, Cornely OA. Diagnosis and management of Aspergillus diseases: executive summary of the 2017 ESCMID-ECMM-ERS guideline. Clin Microbiol Infect 2018; 24 Suppl 1:e1-e38. [PMID: 29544767 DOI: 10.1016/j.cmi.2018.01.002] [Citation(s) in RCA: 947] [Impact Index Per Article: 135.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 01/02/2018] [Accepted: 01/03/2018] [Indexed: 02/06/2023]
Abstract
The European Society for Clinical Microbiology and Infectious Diseases, the European Confederation of Medical Mycology and the European Respiratory Society Joint Clinical Guidelines focus on diagnosis and management of aspergillosis. Of the numerous recommendations, a few are summarized here. Chest computed tomography as well as bronchoscopy with bronchoalveolar lavage (BAL) in patients with suspicion of pulmonary invasive aspergillosis (IA) are strongly recommended. For diagnosis, direct microscopy, preferably using optical brighteners, histopathology and culture are strongly recommended. Serum and BAL galactomannan measures are recommended as markers for the diagnosis of IA. PCR should be considered in conjunction with other diagnostic tests. Pathogen identification to species complex level is strongly recommended for all clinically relevant Aspergillus isolates; antifungal susceptibility testing should be performed in patients with invasive disease in regions with resistance found in contemporary surveillance programmes. Isavuconazole and voriconazole are the preferred agents for first-line treatment of pulmonary IA, whereas liposomal amphotericin B is moderately supported. Combinations of antifungals as primary treatment options are not recommended. Therapeutic drug monitoring is strongly recommended for patients receiving posaconazole suspension or any form of voriconazole for IA treatment, and in refractory disease, where a personalized approach considering reversal of predisposing factors, switching drug class and surgical intervention is also strongly recommended. Primary prophylaxis with posaconazole is strongly recommended in patients with acute myelogenous leukaemia or myelodysplastic syndrome receiving induction chemotherapy. Secondary prophylaxis is strongly recommended in high-risk patients. We strongly recommend treatment duration based on clinical improvement, degree of immunosuppression and response on imaging.
Collapse
Affiliation(s)
- A J Ullmann
- Department of Infectious Diseases, Haematology and Oncology, University Hospital Würzburg, Würzburg, Germany; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - J M Aguado
- Infectious Diseases Unit, University Hospital Madrid, Madrid, Spain; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - S Arikan-Akdagli
- Department of Medical Microbiology, Hacettepe University Medical School, Ankara, Turkey; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - D W Denning
- The National Aspergillosis Centre, Wythenshawe Hospital, Mycology Reference Centre Manchester, Manchester University NHS Foundation Trust, ECMM Excellence Centre of Medical Mycology, Manchester, UK; The University of Manchester, Manchester, UK; Manchester Academic Health Science Centre, Manchester, UK; European Confederation of Medical Mycology (ECMM)
| | - A H Groll
- Department of Paediatric Haematology/Oncology, Centre for Bone Marrow Transplantation, University Children's Hospital Münster, Münster, Germany; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - K Lagrou
- Department of Microbiology and Immunology, ECMM Excellence Centre of Medical Mycology, University Hospital Leuven, Leuven, Belgium; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - C Lass-Flörl
- Institute of Hygiene, Microbiology and Social Medicine, ECMM Excellence Centre of Medical Mycology, Medical University Innsbruck, Innsbruck, Austria; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - R E Lewis
- Infectious Diseases Clinic, Sant'Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy; ESCMID Fungal Infection Study Group (EFISG)
| | - P Munoz
- Department of Medical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain; CIBER Enfermedades Respiratorias - CIBERES (CB06/06/0058), Madrid, Spain; Medicine Department, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - P E Verweij
- Department of Medical Microbiology, Radboud University Medical Centre, Centre of Expertise in Mycology Radboudumc/CWZ, ECMM Excellence Centre of Medical Mycology, Nijmegen, Netherlands; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - A Warris
- MRC Centre for Medical Mycology, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - F Ader
- Department of Infectious Diseases, Hospices Civils de Lyon, Lyon, France; Inserm 1111, French International Centre for Infectious Diseases Research (CIRI), Université Claude Bernard Lyon 1, Lyon, France; European Respiratory Society (ERS)
| | - M Akova
- Department of Medicine, Section of Infectious Diseases, Hacettepe University Medical School, Ankara, Turkey; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - M C Arendrup
- Department Microbiological Surveillance and Research, Statens Serum Institute, Copenhagen, Denmark; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - R A Barnes
- Department of Medical Microbiology and Infectious Diseases, Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK; European Confederation of Medical Mycology (ECMM)
| | - C Beigelman-Aubry
- Department of Diagnostic and Interventional Radiology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland; European Respiratory Society (ERS)
| | - S Blot
- Department of Internal Medicine, Ghent University, Ghent, Belgium; Burns, Trauma and Critical Care Research Centre, University of Queensland, Brisbane, Australia; European Respiratory Society (ERS)
| | - E Bouza
- Department of Medical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain; CIBER Enfermedades Respiratorias - CIBERES (CB06/06/0058), Madrid, Spain; Medicine Department, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - R J M Brüggemann
- Radboud Centre for Infectious Diseases, Radboud University Medical Centre, Centre of Expertise in Mycology Radboudumc/CWZ, ECMM Excellence Centre of Medical Mycology, Nijmegen, Netherlands; ESCMID Fungal Infection Study Group (EFISG)
| | - D Buchheidt
- Medical Clinic III, University Hospital Mannheim, Mannheim, Germany; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - J Cadranel
- Department of Pneumology, University Hospital of Tenon and Sorbonne, University of Paris, Paris, France; European Respiratory Society (ERS)
| | - E Castagnola
- Infectious Diseases Unit, Istituto Giannina Gaslini Children's Hospital, Genoa, Italy; ESCMID Fungal Infection Study Group (EFISG)
| | - A Chakrabarti
- Department of Medical Microbiology, Postgraduate Institute of Medical Education & Research, Chandigarh, India; European Confederation of Medical Mycology (ECMM)
| | - M Cuenca-Estrella
- Instituto de Salud Carlos III, Madrid, Spain; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - G Dimopoulos
- Department of Critical Care Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, Medical School, Athens, Greece; European Respiratory Society (ERS)
| | - J Fortun
- Infectious Diseases Service, Ramón y Cajal Hospital, Madrid, Spain; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - J-P Gangneux
- Univ Rennes, CHU Rennes, Inserm, Irset (Institut de Recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - J Garbino
- Division of Infectious Diseases, University Hospital of Geneva, Geneva, Switzerland; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - W J Heinz
- Department of Infectious Diseases, Haematology and Oncology, University Hospital Würzburg, Würzburg, Germany; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - R Herbrecht
- Department of Haematology and Oncology, University Hospital of Strasbourg, Strasbourg, France; ESCMID Fungal Infection Study Group (EFISG)
| | - C P Heussel
- Diagnostic and Interventional Radiology, Thoracic Clinic, University Hospital Heidelberg, Heidelberg, Germany; European Confederation of Medical Mycology (ECMM)
| | - C C Kibbler
- Centre for Medical Microbiology, University College London, London, UK; European Confederation of Medical Mycology (ECMM)
| | - N Klimko
- Department of Clinical Mycology, Allergy and Immunology, North Western State Medical University, St Petersburg, Russia; European Confederation of Medical Mycology (ECMM)
| | - B J Kullberg
- Radboud Centre for Infectious Diseases, Radboud University Medical Centre, Centre of Expertise in Mycology Radboudumc/CWZ, ECMM Excellence Centre of Medical Mycology, Nijmegen, Netherlands; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - C Lange
- International Health and Infectious Diseases, University of Lübeck, Lübeck, Germany; Clinical Infectious Diseases, Research Centre Borstel, Leibniz Center for Medicine & Biosciences, Borstel, Germany; German Centre for Infection Research (DZIF), Tuberculosis Unit, Hamburg-Lübeck-Borstel-Riems Site, Lübeck, Germany; European Respiratory Society (ERS)
| | - T Lehrnbecher
- Division of Paediatric Haematology and Oncology, Hospital for Children and Adolescents, Johann Wolfgang Goethe-University, Frankfurt, Germany; European Confederation of Medical Mycology (ECMM)
| | - J Löffler
- Department of Infectious Diseases, Haematology and Oncology, University Hospital Würzburg, Würzburg, Germany; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - O Lortholary
- Department of Infectious and Tropical Diseases, Children's Hospital, University of Paris, Paris, France; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - J Maertens
- Department of Haematology, ECMM Excellence Centre of Medical Mycology, University Hospital Leuven, Leuven, Belgium; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - O Marchetti
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital, Lausanne, Switzerland; Department of Medicine, Ensemble Hospitalier de la Côte, Morges, Switzerland; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - J F Meis
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, Centre of Expertise in Mycology Radboudumc/CWZ, ECMM Excellence Centre of Medical Mycology, Nijmegen, Netherlands; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - L Pagano
- Department of Haematology, Universita Cattolica del Sacro Cuore, Roma, Italy; European Confederation of Medical Mycology (ECMM)
| | - P Ribaud
- Quality Unit, Pôle Prébloc, Saint-Louis and Lariboisière Hospital Group, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - M Richardson
- The National Aspergillosis Centre, Wythenshawe Hospital, Mycology Reference Centre Manchester, Manchester University NHS Foundation Trust, ECMM Excellence Centre of Medical Mycology, Manchester, UK; The University of Manchester, Manchester, UK; Manchester Academic Health Science Centre, Manchester, UK; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - E Roilides
- Infectious Diseases Unit, 3rd Department of Paediatrics, Faculty of Medicine, Aristotle University School of Health Sciences, Thessaloniki, Greece; Hippokration General Hospital, Thessaloniki, Greece; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - M Ruhnke
- Department of Haematology and Oncology, Paracelsus Hospital, Osnabrück, Germany; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - M Sanguinetti
- Institute of Microbiology, Fondazione Policlinico Universitario A. Gemelli - Università Cattolica del Sacro Cuore, Rome, Italy; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - D C Sheppard
- Division of Infectious Diseases, Department of Medicine, Microbiology and Immunology, McGill University, Montreal, Canada; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - J Sinkó
- Department of Haematology and Stem Cell Transplantation, Szent István and Szent László Hospital, Budapest, Hungary; ESCMID Fungal Infection Study Group (EFISG)
| | - A Skiada
- First Department of Medicine, Laiko Hospital, National and Kapodistrian University of Athens, Athens, Greece; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - M J G T Vehreschild
- Department I of Internal Medicine, ECMM Excellence Centre of Medical Mycology, University Hospital of Cologne, Cologne, Germany; Centre for Integrated Oncology, Cologne-Bonn, University of Cologne, Cologne, Germany; German Centre for Infection Research (DZIF) partner site Bonn-Cologne, Cologne, Germany; European Confederation of Medical Mycology (ECMM)
| | - C Viscoli
- Ospedale Policlinico San Martino and University of Genova (DISSAL), Genova, Italy; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - O A Cornely
- First Department of Medicine, Laiko Hospital, National and Kapodistrian University of Athens, Athens, Greece; German Centre for Infection Research (DZIF) partner site Bonn-Cologne, Cologne, Germany; CECAD Cluster of Excellence, University of Cologne, Cologne, Germany; Clinical Trials Center Cologne, University Hospital of Cologne, Cologne, Germany; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM); ESCMID European Study Group for Infections in Compromised Hosts (ESGICH).
| |
Collapse
|
15
|
Abstract
Invasive fungal infections are a significant cause of morbidity and mortality in infants and children. Early diagnosis is critical, and treatment with the appropriate drug and dose should be initiated promptly. Although an increasing number of studies have examined dosing of antifungals in this population, pediatric safety and efficacy data are lacking.
Collapse
Affiliation(s)
- Mihai Puia-Dumitrescu
- Department of Pediatrics, Division of Neonatal Medicine, Duke University Medical Center, 2424 Erwin Road, Suite 504, Durham, NC 27705, USA; Department of Pediatrics, Duke Clinical Research Institute, P.O. Box 17969, Durham, NC 27715, USA
| | - P Brian Smith
- Department of Pediatrics, Division of Neonatal Medicine, Duke University Medical Center, 2424 Erwin Road, Suite 504, Durham, NC 27705, USA; Department of Pediatrics, Duke Clinical Research Institute, P.O. Box 17969, Durham, NC 27715, USA.
| |
Collapse
|
16
|
Patil A, Majumdar S. Echinocandins in antifungal pharmacotherapy. J Pharm Pharmacol 2017; 69:1635-1660. [DOI: 10.1111/jphp.12780] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 06/05/2017] [Indexed: 12/12/2022]
Abstract
Abstract
Objectives
Echinocandins are the newest addition of the last decade to the antifungal armamentarium, which, owing to their unique mechanism of action, selectively target the fungal cells without affecting mammalian cells. Since the time of their introduction, they have come to occupy an important niche in the antifungal pharmacotherapy, due to their efficacy, safety, tolerability and favourable pharmacokinetic profiles. This review deals with the varying facets of echinocandins such as their chemistry, in-vitro and in-vivo evaluations, clinical utility and indications, pharmacokinetic and pharmacodynamic profiles, and pharmacoeconomic considerations.
Key findings
Clinical studies have demonstrated that the echinocandins – caspofungin, micafungin and anidulafungin – are equivalent, if not superior, to the mainstay antifungal therapies involving amphotericin B and fluconazole. Moreover, echinocandin regimen has been shown to be more cost-effective and economical. Hence, the echinocandins have found favour in the management of invasive systemic fungal infections.
Conclusions
The subtle differences in echinocandins with respect to their pharmacology, clinical therapy and the mechanisms of resistance are emerging at a rapid pace from the current pool of research which could potentially aid in extending their utility in the fungal infections of the eye, heart and nervous system.
Collapse
Affiliation(s)
- Akash Patil
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, Oxford, MS, USA
| | - Soumyajit Majumdar
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, Oxford, MS, USA
| |
Collapse
|
17
|
Scott LJ. Micafungin: A Review in the Prophylaxis and Treatment of Invasive Candida Infections in Paediatric Patients. Paediatr Drugs 2017; 19:81-90. [PMID: 28083856 DOI: 10.1007/s40272-016-0211-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Intravenous micafungin (Mycamine®; Funguard®), an echinocandin, is approved in the EU for the treatment of invasive candidiasis in children (including neonates) and adolescents (<16 years of age) and as prophylaxis against Candida infections in patients undergoing haematopoietic stem cell transplantation (HSCT) or who are expected to have neutropenia for ≥10 days. This narrative review focuses on the use of micafungin in paediatric indications approved in the EU, which may vary from those approved elsewhere in the world. Micafungin has a broad spectrum of in vitro activity against clinically relevant isolates of Candida spp. (including fluconazole-resistant Candida glabrata isolates), a low propensity for emergence of resistant isolates and a convenient once-daily regimen. In paediatric substudies and a small multinational, phase 3 trial in neonates with proven invasive candidiasis, intravenous micafungin was effective and generally well tolerated in the treatment of candidaemia and other types of invasive candidiasis and as prophylaxis against fungal infections in patients undergoing HSCT. Hence, micafungin remains an important option for the prophylaxis and treatment of invasive Candida infections in paediatric and adult patients.
Collapse
Affiliation(s)
- Lesley J Scott
- Springer, Private Bag 65901, Mairangi Bay, Auckland, 0754, New Zealand.
| |
Collapse
|
18
|
High-Dose Micafungin for Preterm Neonates and Infants with Invasive and Central Nervous System Candidiasis. Antimicrob Agents Chemother 2016; 60:7333-7339. [PMID: 27697761 DOI: 10.1128/aac.01172-16] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 09/23/2016] [Indexed: 11/20/2022] Open
Abstract
High doses of micafungin are advocated in neonates with systemic candidiasis, but limited pharmacokinetic (PK) and safety data are available to support their use. Eighteen preterm neonates and infants with systemic candidiasis, three of whom had meningitis, were treated for at least 14 days with 8 to 15 mg/kg of body weight/day of intravenous micafungin. Plasma micafungin concentrations (four measurements for each patient) were determined after the third dose, and the cerebrospinal fluid (CSF) micafungin concentrations in three patients were also obtained. Population PK analyses were used to identify the optimal model, and the model was further validated using external data (n = 5). The safety of micafungin was assessed by measurement of the levels of liver and kidney function biomarkers. The mean age and weight at the initiation of treatment were 2.33 months (standard deviation [SD], 1.98 months) and 3.24 kg (SD, 1.61 kg), respectively. The optimal PK model was one that scaled plasma clearance to weight and the transaminase concentration ratio. The CSF of three patients was sampled, and the observed concentrations were between 0.80 and 1.80 mg/liter. The model-predicted mean micafungin area under the concentration-time curve over 24 h was 336 mg · h/liter (SD, 165 mg · h/liter) with the 10-mg/kg/day dosage. Eighteen of the 23 subjects (78.2%) had clinical resolution of their infection, but 5 had neurologic impairments. Among the transaminases, alkaline phosphatase measurements were significantly higher posttreatment, with a geometric mean ratio of 1.17 (90% confidence interval, 1.01, 1.37). Furthermore, marked elevations in the gamma-glutamyltransferase (GGT) level were observed in three patients treated with 10- to 15-mg/kg/day doses, and improvement of the GGT level was noted after a dose reduction. Higher weight-based doses of micafungin were generally well tolerated in neonates and infants and achieved pharmacokinetic profiles predictive of an effect.
Collapse
|
19
|
Wattier RL, Ramirez-Avila L. Pediatric Invasive Aspergillosis. J Fungi (Basel) 2016; 2:jof2020019. [PMID: 29376936 PMCID: PMC5753081 DOI: 10.3390/jof2020019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 06/06/2016] [Accepted: 06/08/2016] [Indexed: 02/06/2023] Open
Abstract
Invasive aspergillosis (IA) is a disease of increasing importance in pediatrics due to growth of the immunocompromised populations at risk and improvements in long-term survival for many of these groups. While general principles of diagnosis and therapy apply similarly across the age spectrum, there are unique considerations for clinicians who care for children and adolescents with IA. This review will highlight important differences in the epidemiology, clinical manifestations, diagnosis, and therapy of pediatric IA.
Collapse
Affiliation(s)
- Rachel L Wattier
- Department of Pediatrics, Division of Infectious Diseases and Global Health, University of California-San Francisco, 550 16th St, 4th Floor, Box 0434, San Francisco, CA 94143, USA.
| | - Lynn Ramirez-Avila
- Department of Pediatrics, Division of Infectious Diseases and Global Health, University of California-San Francisco, 550 16th St, 4th Floor, Box 0434, San Francisco, CA 94143, USA.
| |
Collapse
|
20
|
Kobayashi C, Hanadate T, Niwa T, Yoshiyasu T, So M, Matsui K. Safety and Effectiveness of Micafungin in Japanese Pediatric Patients: Results of a Postmarketing Surveillance Study. J Pediatr Hematol Oncol 2015; 37:e285-91. [PMID: 25929612 PMCID: PMC4482457 DOI: 10.1097/mph.0000000000000343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Limited data are available about the safety and efficacy of micafungin in children. A postmarketing surveillance study was conducted to assess the safety and effectiveness of micafungin, an echinocandin antifungal, in pediatric patients. A prospective multicenter postmarketing observational study was carried out between October 2006 and September 2008 in Japan. Pediatric patients under 16 years received an intravenous infusion of micafungin at a dose of 1 mg/kg for candidiasis and 1 to 3 mg/kg for aspergillosis, with the option of increasing the dose if required to 6 mg/kg once daily. All adverse events were recorded. A total of 201 pediatric patients were enrolled. There were 55 adverse drug reactions reported among 42 of 190 patients evaluated for safety (22.1%); the most frequently reported adverse drug reaction was hepatobiliary disorders. No adverse drug reactions were reported in 18 neonates (aged below 4 wk). The overall clinical response rate in 91 patients evaluated for efficacy was 86.8%. The response rate in neonates was 90.0%, and there were no differences in the response rate by age. Micafungin was found to have sufficient safety and effectiveness for the treatment of fungal infections in pediatric patients with various backgrounds.
Collapse
Affiliation(s)
| | - Tomoko Hanadate
- Department of Pharmacovigilance, Astellas Pharma Inc., Tokyo, Japan
| | - Toshiro Niwa
- School of Pharmacy, Shujitsu University, Okayama
| | | | | | | |
Collapse
|
21
|
Botero-Calderon L, Benjamin DK, Cohen-Wolkowiez M. Advances in the treatment of invasive neonatal candidiasis. Expert Opin Pharmacother 2015; 16:1035-48. [PMID: 25842986 PMCID: PMC4402277 DOI: 10.1517/14656566.2015.1031108] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Invasive candidiasis is responsible for ∼ 10% of nosocomial sepsis in very-low-birth-weight infants and is associated with substantial morbidity and mortality. Over the last two decades, the antifungal armamentarium against Candida spp. has increased; however, efficacy and safety studies in this population are lacking. AREAS COVERED We reviewed the medical literature and extracted information on clinical and observational studies evaluating the use of antifungal agents in neonates with invasive candidiasis. EXPERT OPINION Efficacy and safety data for antifungals in neonates are lacking, and the majority of studies conducted to date have concentrated on pharmacokinetic/pharmacodynamic evaluations. Unlike other anti-infective agents, efficacy data in the setting of neonatal candidiasis cannot be extrapolated from adult studies due to differences in the pathophysiology of the disease in this population relative to older children and adults. Data for amphotericin B deoxycholate, fluconazole, and micafungin suggest that these are the current agents of choice for this disease in neonates until data for newer antifungal agents become available. For prophylaxis, data from fluconazole randomized controlled trials will be submitted to the regulatory agencies for labeling. Ultimately, the field of therapeutics for neonatal candidiasis will require multidisciplinary collaboration given the numerous challenges associated with conducting clinical trials in neonates.
Collapse
|
22
|
Micafungin twice weekly as antifungal prophylaxis in paediatric patients at high risk for invasive fungal disease. J Antimicrob Chemother 2015; 70:1527-30. [DOI: 10.1093/jac/dku544] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 12/06/2014] [Indexed: 11/14/2022] Open
|
23
|
Pharmacokinetic and safety profiles of repeated-dose prophylactic micafungin in children and adolescents undergoing hematopoietic stem cell transplantation. J Pediatr Hematol Oncol 2015; 37:e45-50. [PMID: 25072363 DOI: 10.1097/mph.0000000000000218] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Micafungin is a potent echinocandin antifungal that can be used for both prophylaxis and treatment of Candida infections. This open-label study assessed the pharmacokinetics and safety profile of prophylactic micafungin in children and adolescents (aged 4 mo to 16 y) undergoing hematopoietic stem cell transplantation. Patients received once-daily doses of either 1 or 1.5 mg/kg micafungin, based on their body weight, for 10 to 14 days. In total, 40 patients received micafungin. Area under the plasma micafungin concentration-time curve was highest in patients aged 6 to 11 years in the 1.5 mg/kg treatment group. Peak plasma micafungin concentration displayed no age-related differences, but was higher in the 1.5 mg/kg versus the 1 mg/kg group. Clearance at steady state by weight and volume of distribution by weight were considerably higher in patients aged 4 months to 5 years. Results from this study show that age and body weight affect micafungin pharmacokinetics in pediatric patients undergoing hematopoietic stem cell transplantation.
Collapse
|
24
|
Abstract
BACKGROUND Invasive fungal infections cause excessive morbidity and mortality in premature neonates and severely ill infants. METHODS Safety and efficacy outcomes of micafungin were compared between prematurely and non-prematurely born infants <2 years of age. Data were obtained from all completed phase I-III clinical trials with micafungin that had enrolled infants (<2 years of age) that were listed in the Astellas Clinical Study Database. Demographics, adverse events, hepatic function tests and treatment success data were extracted and validated by the Astellas biostatistical group for all micafungin-treated patients, <2 years of age, using the unique patient identifier. RESULTS One-hundred and sixteen patients included in 9 clinical trials, 48% premature [birth weight (BW) <2500 g and/or gestational age <37 weeks], 52% non-premature, received ≥ 1 dose of micafungin. Among premature patients, 14.5% were low BW (1500-2499 g), 36.4% very low BW (1000-1499 g) and 49.1% extremely low BW (<1000 g). Ninety patients (78%) completed the studies; 13 [11% (4 premature)] died. Significantly more non-premature than premature patients discontinued treatment (P = 0.003). Treatment-related adverse events were recorded in 23% of patients with no difference between groups. More extremely low BW (n = 4, 15%) and very low BW (n = 8, 40%) infants experienced treatment-related adverse events than low BW (n = 0) and there was no relation to micafungin dose or duration. For a subgroup of 30 patients with invasive candidiasis, treatment success was achieved in 73% in both premature and non-premature groups. Prophylaxis was successful in 4/5 non-premature hematopoietic stem cell transplant patients. CONCLUSION Micafungin has a safe profile in premature and non-premature infants with substantial efficacy.
Collapse
|
25
|
Enoch D, Idris S, Aliyu S, Micallef C, Sule O, Karas J. Micafungin for the treatment of invasive aspergillosis. J Infect 2014; 68:507-26. [DOI: 10.1016/j.jinf.2014.01.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 01/06/2014] [Accepted: 01/15/2014] [Indexed: 10/25/2022]
|
26
|
Autmizguine J, Guptill JT, Cohen-Wolkowiez M, Benjamin DK, Capparelli EV. Pharmacokinetics and pharmacodynamics of antifungals in children: clinical implications. Drugs 2014; 74:891-909. [PMID: 24872147 PMCID: PMC4073603 DOI: 10.1007/s40265-014-0227-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Invasive fungal disease (IFD) remains life threatening in premature infants and immunocompromised children despite the recent development of new antifungal agents. Optimal dosing of antifungals is one of the few factors clinicians can control to improve outcomes of IFD. However, dosing in children cannot be extrapolated from adult data because IFD pathophysiology, immune response, and drug disposition differ from adults. We critically examined the literature on pharmacokinetics (PK) and pharmacodynamics (PD) of antifungal agents and highlight recent developments in treating pediatric IFD. To match adult exposure in pediatric patients, dosing adjustment is necessary for almost all antifungals. In young infants, the maturation of renal and metabolic functions occurs rapidly and can significantly influence drug exposure. Fluconazole clearance doubles from birth to 28 days of life and, beyond the neonatal period, agents such as fluconazole, voriconazole, and micafungin require higher dosing than in adults because of faster clearance in children. As a result, dosing recommendations are specific to bracketed ranges of age. PD principles of antifungals mostly rely on in vitro and in vivo models but very few PD studies specifically address IFD in children. The exposure-response relationship may differ in younger children compared with adults, especially in infants with invasive candidiasis who are at higher risk of disseminated disease and meningoencephalitis, and by extension severe neurodevelopmental impairment. Micafungin is the only antifungal agent for which a specific target of exposure was proposed based on a neonatal hematogenous Candida meningoencephalitis animal model. In this review, we found that pediatric data on drug disposition of newer triazoles and echinocandins are lacking, dosing of older antifungals such as fluconazole and amphotericin B products still need optimization in young infants, and that target PK/PD indices need to be clinically validated for almost all antifungals in children. A better understanding of age-specific PK and PD of new antifungals in infants and children will help improve clinical outcomes of IFD by informing dosing and identifying future research areas.
Collapse
Affiliation(s)
- Julie Autmizguine
- Duke Clinical Research Institute, 2400 Pratt St, Durham, NC 27705, USA
| | | | | | | | - Edmund V. Capparelli
- Department of Pediatric Pharmacology, University of California, 9500 Gilman Drive, La Jolla, CA 92093-0831, USA
| |
Collapse
|
27
|
de la Torre P, Reboli AC. Micafungin: an evidence-based review of its place in therapy. CORE EVIDENCE 2014; 9:27-39. [PMID: 24596542 PMCID: PMC3940642 DOI: 10.2147/ce.s36304] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Invasive fungal infections have increased throughout the world. Many of these infections occur in patients with multiple comorbidities who are receiving medications with the potential for interactions with antifungal therapy that could lead to renal and hepatic dysfunction. The second marketed echinocandin, micafungin, was approved in 2005 for the treatment of esophageal candidiasis and prophylaxis of invasive Candida infections in patients undergoing hematopoietic stem cell transplantation. The indication for use was later expanded to include candidemia, acute disseminated candidiasis, Candida abscesses, and peritonitis. Like other echinocandins it is fungicidal against Candida species, including those that are polyene- and azole-resistant and fungistatic against Aspergillus species. Its formulation is by the intravenous route only and it is dosed once daily without a loading dose as 85% of the steady state concentration is achieved after three daily doses. It has a favorable tolerability profile with no significant drug interactions and does not need adjustment for renal or hepatic insufficiency.
Collapse
|
28
|
Vogiatzi L, Katragkou A, Roilides E. Antifungal Prophylaxis in the Pediatric Intensive Care Unit. CURRENT FUNGAL INFECTION REPORTS 2013. [DOI: 10.1007/s12281-013-0154-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
Benjamin DK, Deville JG, Azie N, Kovanda L, Roy M, Wu C, Arrieta A. Safety and pharmacokinetic profiles of repeated-dose micafungin in children and adolescents treated for invasive candidiasis. Pediatr Infect Dis J 2013; 32:e419-25. [PMID: 23958810 PMCID: PMC3818701 DOI: 10.1097/inf.0b013e31829efd14] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Micafungin is an echinocandin with proven efficacy against a broad range of fungal infections, including those caused by Candida spp. OBJECTIVE To evaluate the safety and pharmacokinetics of once-daily 3 mg/kg and 4.5 mg/kg micafungin in children with proven, probable or suspected invasive candidiasis. METHODS Micafungin safety and pharmacokinetics were assessed in 2 phase I, open-label, repeat-dose trials. In Study 2101, children aged 2-16 years were grouped by weight to receive 3 mg/kg (≥25 kg) or 4.5 mg/kg (<25 kg) intravenous micafungin for 10-14 days. In Study 2102, children aged 4 months to <2 years received 4.5 mg/kg micafungin. Study protocols were otherwise identical. RESULTS Safety was analyzed in 78 and 9 children in Studies 2101 and 2102, respectively. Although adverse events (AEs) were experienced by most children (2101: n=62; 2102: n=9), micafungin-related AEs were less common (2101: n=28; 2102: n=1), and the number of patients discontinuing due to AEs was low (2101: n=4; 2102: n=1). The most common micafungin-related AEs were infusion-associated symptoms, pyrexia and hypomagnesemia (Study 2101), and liver function abnormalities (Study 2102). The micafungin pharmacokinetic profile was similar to that seen in other studies conducted in children, but different than that observed in adults. CONCLUSIONS In this small cohort of children, once-daily doses of 3 mg/kg and 4.5 mg/kg micafungin were well tolerated. Pharmacokinetic data will be combined in a population pharmacokinetic analysis to support US dosing recommendations in children.
Collapse
Affiliation(s)
| | | | - Nkechi Azie
- Astellas Scientific and Medical Affairs, Inc., Northbrook, IL
| | - Laura Kovanda
- Astellas Pharma Global Development, Inc., Northbrook, IL
| | - Mike Roy
- Astellas Pharma Global Development, Inc., Northbrook, IL
| | - Chunzhang Wu
- Astellas Pharma Global Development, Inc., Northbrook, IL
| | | |
Collapse
|
30
|
Santolaya ME, Alvarado Matute T, de Queiroz Telles F, Colombo AL, Zurita J, Tiraboschi IN, Cortes JA, Thompson-Moya L, Guzman-Blanco M, Sifuentes J, Echevarría J, Nucci M. Recommendations for the management of candidemia in neonates in Latin America. Latin America Invasive Mycosis Network. Rev Iberoam Micol 2013; 30:158-70. [PMID: 23756219 DOI: 10.1016/j.riam.2013.05.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 05/30/2013] [Accepted: 05/31/2013] [Indexed: 11/28/2022] Open
Abstract
Candidemia is one of the most frequent opportunistic mycoses worldwide. Limited epidemiological studies in Latin America indicate that incidence rates are higher in this region than in the Northern Hemisphere. Diagnosis is often made late in the infection, affecting the initiation of antifungal therapy. A more scientific approach, based on specific parameters, for diagnosis and management of candidemia in Latin America is warranted. 'Recommendations for the diagnosis and management of candidemia' are a series of manuscripts that have been developed by members of the Latin America Invasive Mycosis Network. They aim to provide a set of best-evidence recommendations for the diagnosis and management of candidemia. This publication, 'Recommendations for the management of candidemia in neonates in Latin America', was written to provide guidance to healthcare professionals on the management of neonates who have, or who are at risk of, candidemia. Computerized searches of existing literature were performed by PubMed. The data were extensively reviewed and analyzed by members of the group. The group also met on two occasions to pose questions, discuss conflicting views, and deliberate on a series of management recommendations. 'Recommendations for the management of candidemia in neonates in Latin America' includes prophylaxis, empirical therapy, therapy for proven candidemia, patient work-up following diagnosis of candidemia, central venous catheter management, and management of complications. This manuscript is the fourth of this series that deals with diagnosis and treatment of invasive candidiasis. Other publications in this series include: 'Recommendations for the diagnosis of candidemia in Latin America', 'Recommendations for the management of candidemia in adults in Latin America', and 'Recommendations for the management of candidemia in children in Latin America'.
Collapse
Affiliation(s)
- María E Santolaya
- Hospital Luis Calvo Mackenna, Universidad de Chile, Santiago, Chile; Latin America Invasive Mycosis Network.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Santolaya ME, Alvarado Matute T, de Queiroz Telles F, Colombo AL, Zurita J, Tiraboschi IN, Cortes JA, Thompson-Moya L, Guzman-Blanco M, Sifuentes J, Echevarría J, Nucci M. [Recommendations for the management of candidemia in neonates in Latin America. Grupo Proyecto Épico]. Rev Iberoam Micol 2013; 30:158-70. [PMID: 23764559 DOI: 10.1016/j.riam.2013.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 05/31/2013] [Indexed: 10/26/2022] Open
Abstract
Candidemia is one of the most frequent opportunistic mycoses worldwide. Limited epidemiological studies in Latin America indicate that incidence rates are higher in this region than in the Northern Hemisphere. Diagnosis is often made late in the infection, affecting the initiation of antifungal therapy. A more scientific approach, based on specific parameters, for diagnosis and management of candidemia in Latin America is warranted. 'Recommendations for the diagnosis and management of candidemia' are a series of manuscripts that have been developed by members of the Latin America Invasive Mycosis Network. They aim to provide a set of best-evidence recommendations for the diagnosis and management of candidemia. This publication, 'Recommendations for the management of candidemia in neonates in Latin America', was written to provide guidance to healthcare professionals on the management of neonates who have, or who are at risk of, candidemia. Computerized searches of existing literature were performed by PubMed. The data were extensively reviewed and analyzed by members of the group. The group also met on two occasions to pose questions, discuss conflicting views, and deliberate on a series of management recommendations. 'Recommendations for the management of candidemia in neonates in Latin America' includes prophylaxis, empirical therapy, therapy for proven candidemia, patient work-up following diagnosis of candidemia, central venous catheter management, and management of complications. This manuscript is the fourth of this series that deals with diagnosis and treatment of invasive candidiasis. Other publications in this series include: 'Recommendations for the diagnosis of candidemia in Latin America', 'Recommendations for the management of candidemia in adults in Latin America', and 'Recommendations for the management of candidemia in children in Latin America'.
Collapse
Affiliation(s)
- María E Santolaya
- Hospital Luis Calvo Mackenna, Universidad de Chile, Santiago, Chile; Latin America Invasive Mycosis Network.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
PURPOSE OF REVIEW In recent years there has been an evolution of a better understanding of the pharmacology and clinical indications of existing antifungal agents and also the development of new broad-spectrum triazoles and a newer class of antifungal agents, the echinocandins. The availability of these agents has broadened the therapeutic options of invasive fungal disease among children and consequently antifungal therapy has become increasingly complex. RECENT FINDINGS Adoption of adult guidelines' recommendations has been used to guide pediatric treatment as specific pediatric data were often lacking. This approach has not always selected the most appropriate therapy for newborns or young infants, as the under-dosage of voriconazole based on adult data revealed. Therefore, a detailed understanding of the available antifungal agents in children is crucial for the successful treatment of these serious infections. SUMMARY In this review we summarize the main findings regarding antifungal treatment among children that have been recently published, focusing on the pharmacology and pediatric use of newer antifungal agents.
Collapse
|
33
|
Abstract
Invasive candidiasis (IC) is a leading cause of morbidity and mortality in preterm infants. Even if successfully treated, IC can cause significant neurodevelopmental impairment. Preterm infants are at increased risk for hematogenous Candida meningoencephalitis owing to increased permeability of the blood-brain barrier, so antifungal treatment should have adequate central nervous system penetration. Amphotericin B deoxycholate, lipid preparations of amphotericin B, fluconazole, and micafungin are first-line treatments of IC. Fluconazole prophylaxis reduces the incidence of IC in extremely premature infants, but its safety has not been established for this indication, and as yet, the product has not been shown to reduce mortality in neonates. Targeted prophylaxis may have a role in reducing the burden of disease in this vulnerable population.
Collapse
MESH Headings
- Antibiotic Prophylaxis/methods
- Antibiotic Prophylaxis/statistics & numerical data
- Antifungal Agents/classification
- Antifungal Agents/therapeutic use
- Blood-Brain Barrier/drug effects
- Blood-Brain Barrier/physiopathology
- Candida/drug effects
- Candida/isolation & purification
- Candida/pathogenicity
- Candidiasis, Invasive/drug therapy
- Candidiasis, Invasive/microbiology
- Candidiasis, Invasive/mortality
- Candidiasis, Invasive/physiopathology
- Catheter-Related Infections/drug therapy
- Catheter-Related Infections/microbiology
- Catheter-Related Infections/mortality
- Catheter-Related Infections/physiopathology
- Central Nervous System/growth & development
- Child Development
- Cross Infection/drug therapy
- Cross Infection/microbiology
- Cross Infection/mortality
- Cross Infection/physiopathology
- Humans
- Incidence
- Infant, Newborn
- Infant, Premature
- Infant, Premature, Diseases/drug therapy
- Infant, Premature, Diseases/microbiology
- Infant, Premature, Diseases/mortality
- Infant, Premature, Diseases/physiopathology
- Meningoencephalitis/drug therapy
- Meningoencephalitis/microbiology
- Meningoencephalitis/mortality
- Meningoencephalitis/physiopathology
- Randomized Controlled Trials as Topic
Collapse
Affiliation(s)
- Nidhi Tripathi
- Duke University School of Medicine, Durham, NC
- Duke Clinical Research Institute, Duke University Medical Center, Durham, NC
| | - Kevin Watt
- Duke Clinical Research Institute, Duke University Medical Center, Durham, NC
- Department of Pediatrics, Duke University Medical Center, Duke University, Durham, NC
| | - Daniel K. Benjamin
- Duke Clinical Research Institute, Duke University Medical Center, Durham, NC
- Department of Pediatrics, Duke University Medical Center, Duke University, Durham, NC
| |
Collapse
|
34
|
Hope W, Castagnola E, Groll A, Roilides E, Akova M, Arendrup M, Arikan-Akdagli S, Bassetti M, Bille J, Cornely O, Cuenca-Estrella M, Donnelly J, Garbino J, Herbrecht R, Jensen H, Kullberg B, Lass-Flörl C, Lortholary O, Meersseman W, Petrikkos G, Richardson M, Verweij P, Viscoli C, Ullmann A. ESCMID* *This guideline was presented in part at ECCMID 2011. European Society for Clinical Microbiology and Infectious Diseases. guideline for the diagnosis and management of Candida diseases 2012: prevention and management of invasive infections in neonates and children caused by Candida spp. Clin Microbiol Infect 2012; 18 Suppl 7:38-52. [DOI: 10.1111/1469-0691.12040] [Citation(s) in RCA: 216] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
35
|
|
36
|
Butler CD. Infectious disease emergence and global change: thinking systemically in a shrinking world. Infect Dis Poverty 2012; 1:5. [PMID: 23849217 PMCID: PMC3710192 DOI: 10.1186/2049-9957-1-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Accepted: 09/23/2012] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Concern intensifying that emerging infectious diseases and global environmental changes that could generate major future human pandemics. METHOD A focused literature review was undertaken, partly informed by a forthcoming report on environment, agriculture and infectious diseases of poverty, facilitated by the Special Programme for Tropical Diseases. RESULTS More than ten categories of infectious disease emergence exist, but none formally analyse past, current or future burden of disease. Other evidence suggests that the dominant public health concern focuses on two informal groupings. Most important is the perceived threat of newly recognised infections, especially viruses that arise or are newly discovered in developing countries that originate in species exotic to developed countries, such as non-human primates, bats and rodents. These pathogens may be transmitted by insects or bats, or via direct human contact with bushmeat. The second group is new strains of influenza arising from intensively farmed chickens or pigs, or emerging from Asian "wet markets" where several bird species have close contact. Both forms appear justified because of two great pandemics: HIV/AIDS (which appears to have originated from bushmeat hunting in Africa before emerging globally) and Spanish influenza, which killed up to 2.5% of the human population around the end of World War I. Insufficiently appreciated is the contribution of the milieu which appeared to facilitate the high disease burden in these pandemics. Additionally, excess anxiety over emerging infectious diseases diverts attention from issues of greater public health importance, especially: (i) existing (including neglected) infectious diseases and (ii) the changing milieu that is eroding the determinants of immunity and public health, caused by adverse global environmental changes, including climate change and other components of stressed life and civilisation-supporting systems. CONCLUSIONS The focus on novel pathogens and minor forms of anti-microbial resistance in emerging disease literature is unjustified by their burden of disease, actual and potential, and diverts attention from far more important health problems and determinants. There is insufficient understanding of systemic factors that promote pandemics. Adverse global change could generate circumstances conducive to future pandemics with a high burden of disease, arising via anti-microbial and insecticidal resistance, under-nutrition, conflict, and public health breakdown.
Collapse
Affiliation(s)
- Colin D Butler
- National Centre for Epidemiology and Population Health College of Medicine Biology and Environment, Australian National University, Canberra, Australia.
| |
Collapse
|
37
|
|
38
|
Tragiannidis A, Dokos C, Lehrnbecher T, Groll AH. Antifungal Chemoprophylaxis in Children and Adolescents with Haematological Malignancies and Following Allogeneic Haematopoietic Stem Cell Transplantation. Drugs 2012; 72:685-704. [DOI: 10.2165/11599810-000000000-00000] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|