1
|
Crone L, Sobek J, Müller N, Restin T, Bassler D, Paganini D, Zimmermann MB, Zarnovican P, Routier FH, Romero-Uruñuela T, Izquierdo L, Hennet T. Inter-individual and inter-regional variability of breast milk antibody reactivity to bacterial lipopolysaccharides. Front Immunol 2024; 15:1404192. [PMID: 39308863 PMCID: PMC11412857 DOI: 10.3389/fimmu.2024.1404192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 08/20/2024] [Indexed: 09/25/2024] Open
Abstract
Breast milk is a vital source of nutrients, prebiotics, probiotics, and protective factors, including antibodies, immune cells and antimicrobial proteins. Using bacterial lipopolysaccharide arrays, we investigated the reactivity and specificity of breast milk antibodies towards microbial antigens, comparing samples from rural Kenya and urban Switzerland. Results showed considerable variability in antibody reactivity both within and between these locations. Kenyan breast milk demonstrated broad reactivity to bacterial lipopolysaccharides, likely due to increased microbial exposure. Antibodies primarily recognized the O-antigens of lipopolysaccharides and showed strong binding to specific carbohydrate motifs. Notably, antibodies against specific Escherichia coli O-antigens showed cross-reactivity with parasitic pathogens like Leishmania major and Plasmodium falciparum, thus showing that antibodies reacting against lipopolysaccharide O-antigens can recognize a wide range of antigens beyond bacteria. The observed diversity in antigen recognition highlights the significance of breast milk in safeguarding infants from infections, particularly those prevalent in specific geographic regions. The findings also offer insights for potential immunobiotic strategies to augment natural antibody-mediated defense against diverse pathogens.
Collapse
Affiliation(s)
- Lisa Crone
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Jens Sobek
- Functional Genomics Center Zurich, Eidgenössische Technische Hochschule (ETH) Zurich and University of Zurich, Zurich, Switzerland
| | - Nicole Müller
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Tanja Restin
- Institute of Physiology, University of Zurich, Zurich, Switzerland
- Department of Neonatology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Dirk Bassler
- Department of Neonatology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Daniela Paganini
- Laboratory of Human Nutrition, Department of Health Sciences and Technology, Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
| | - Michael B. Zimmermann
- Medical Research Council (MRC) Translational Immune Discovery Unit, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Patricia Zarnovican
- Department of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | | | - Tais Romero-Uruñuela
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Luis Izquierdo
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain
| | - Thierry Hennet
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Campo JJ, Seppo AE, Randall AZ, Pablo J, Hung C, Teng A, Shandling AD, Truong J, Oberai A, Miller J, Iqbal NT, Peñataro Yori P, Kukkonen AK, Kuitunen M, Guterman LB, Morris SK, Pell LG, Al Mahmud A, Ramakrishan G, Heinz E, Kirkpatrick BD, Faruque AS, Haque R, Looney RJ, Kosek MN, Savilahti E, Omer SB, Roth DE, Petri WA, Järvinen KM. Human milk antibodies to global pathogens reveal geographic and interindividual variations in IgA and IgG. J Clin Invest 2024; 134:e168789. [PMID: 39087469 PMCID: PMC11290967 DOI: 10.1172/jci168789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 06/04/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUNDThe use of high-throughput technologies has enabled rapid advancement in the knowledge of host immune responses to pathogens. Our objective was to compare the repertoire, protection, and maternal factors associated with human milk antibodies to infectious pathogens in different economic and geographic locations.METHODSUsing multipathogen protein microarrays, 878 milk and 94 paired serum samples collected from 695 women in 5 high and low-to-middle income countries (Bangladesh, Finland, Peru, Pakistan, and the United States) were assessed for specific IgA and IgG antibodies to 1,607 proteins from 30 enteric, respiratory, and bloodborne pathogens.RESULTSThe antibody coverage across enteric and respiratory pathogens was highest in Bangladeshi and Pakistani cohorts and lowest in the U.S. and Finland. While some pathogens induced a dominant IgA response (Campylobacter, Klebsiella, Acinetobacter, Cryptosporidium, and pertussis), others elicited both IgA and IgG antibodies in milk and serum, possibly related to the invasiveness of the infection (Shigella, enteropathogenic E. coli "EPEC", Streptococcus pneumoniae, Staphylococcus aureus, and Group B Streptococcus). Besides the differences between economic regions and decreases in concentrations over time, human milk IgA and IgG antibody concentrations were lower in mothers with high BMI and higher parity, respectively. In Bangladeshi infants, a higher specific IgA concentration in human milk was associated with delayed time to rotavirus infection, implying protective properties of antirotavirus antibodies, whereas a higher IgA antibody concentration was associated with greater incidence of Campylobacter infection.CONCLUSIONThis comprehensive assessment of human milk antibody profiles may be used to guide the development of passive protection strategies against infant morbidity and mortality.FUNDINGBill and Melinda Gates Foundation grant OPP1172222 (to KMJ); Bill and Melinda Gates Foundation grant OPP1066764 funded the MDIG trial (to DER); University of Rochester CTSI and Environmental Health Sciences Center funded the Rochester Lifestyle study (to RJL); and R01 AI043596 funded PROVIDE (to WAP).
Collapse
Affiliation(s)
| | - Antti E. Seppo
- Department of Pediatrics, Division of Allergy and Immunology, University of Rochester School of Medicine, Rochester, New York, USA
| | | | - Jozelyn Pablo
- Antigen Discovery Incorporated, Irvine, California, USA
| | - Chris Hung
- Antigen Discovery Incorporated, Irvine, California, USA
| | - Andy Teng
- Antigen Discovery Incorporated, Irvine, California, USA
| | | | | | - Amit Oberai
- Antigen Discovery Incorporated, Irvine, California, USA
| | - James Miller
- Department of Pediatrics, Division of Allergy and Immunology, University of Rochester School of Medicine, Rochester, New York, USA
| | - Najeeha Talat Iqbal
- Department of Paediatrics and Child Health, Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| | - Pablo Peñataro Yori
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA
| | - Anna Kaarina Kukkonen
- New Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Mikael Kuitunen
- New Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - L. Beryl Guterman
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Shaun K. Morris
- Centre for Global Child Health, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Pediatrics, University of Toronto, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Lisa G. Pell
- Centre for Global Child Health, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Abdullah Al Mahmud
- Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Girija Ramakrishan
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA
| | - Eva Heinz
- Departments of Vector Biology and Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
- Wellcome Sanger Institute, Parasites and Microbes, Cambridge, UK
| | - Beth D. Kirkpatrick
- Vaccine Testing Center and Department of Microbiology and Molecular Genetics, The University of Vermont College of Medicine, Burlington, Vermont, USA
| | - Abu S.G. Faruque
- Emerging Infection and Parasitology Laboratory, Division of Infectious Diseases, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Rashidul Haque
- Emerging Infection and Parasitology Laboratory, Division of Infectious Diseases, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - R. John Looney
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, University of Rochester School of Medicine, Rochester, New York, USA
| | - Margaret N. Kosek
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA
| | - Erkki Savilahti
- New Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Saad B. Omer
- Peter O’Donnell Jr. School of Public Health, Dallas, Texas, USA
| | - Daniel E. Roth
- Centre for Global Child Health, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Pediatrics, University of Toronto, Hospital for Sick Children, Toronto, Ontario, Canada
| | - William A. Petri
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA
| | - Kirsi M. Järvinen
- Department of Pediatrics, Division of Allergy and Immunology, University of Rochester School of Medicine, Rochester, New York, USA
- Department of Microbiology and Immunology, University of Rochester School of Medicine, Rochester, New York, USA
| |
Collapse
|
3
|
Pullen KM, Atyeo C, Collier ARY, Gray KJ, Belfort MB, Lauffenburger DA, Edlow AG, Alter G. Selective functional antibody transfer into the breastmilk after SARS-CoV-2 infection. Cell Rep 2021; 37:109959. [PMID: 34739850 PMCID: PMC8531199 DOI: 10.1016/j.celrep.2021.109959] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/16/2021] [Accepted: 10/18/2021] [Indexed: 12/24/2022] Open
Abstract
Antibody transfer via breastmilk represents an evolutionary strategy to boost immunity in early life. Although severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific antibodies have been observed in the breastmilk, the functional quality of these antibodies remains unclear. Here, we apply systems serology to characterize SARS-CoV-2-specific antibodies in maternal serum and breastmilk to compare the functional characteristics of antibodies in these fluids. Distinct SARS-CoV-2-specific antibody responses are observed in the serum and breastmilk of lactating individuals previously infected with SARS-CoV-2, with a more dominant transfer of immunoglobulin A (IgA) and IgM into breastmilk. Although IgGs are present in breastmilk, they are functionally attenuated. We observe preferential transfer of antibodies capable of eliciting neutrophil phagocytosis and neutralization compared to other functions, pointing to selective transfer of certain functional antibodies to breastmilk. These data highlight the preferential transfer of SARS-CoV-2-specific IgA and IgM to breastmilk, accompanied by select IgG subpopulations, positioned to create a non-pathologic but protective barrier against coronavirus disease 2019 (COVID-19).
Collapse
Affiliation(s)
- Krista M Pullen
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Caroline Atyeo
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA; PhD Program in Virology, Division of Medical Sciences, Harvard University, Boston, MA 02115, USA
| | - Ai-Ris Y Collier
- Department of Obstetrics, Gynecology and Reproductive Biology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Kathryn J Gray
- Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Mandy B Belfort
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Douglas A Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Andrea G Edlow
- Department of Obstetrics, Gynecology and Reproductive Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA 02114, USA.
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA.
| |
Collapse
|
4
|
Del Mastro N. I, Tejada-Llacsa PJ, Reinders S, Pérez R, Solís Y, Alva I, Blas MM. Home birth preference, childbirth, and newborn care practices in rural Peruvian Amazon. PLoS One 2021; 16:e0250702. [PMID: 33945560 PMCID: PMC8096074 DOI: 10.1371/journal.pone.0250702] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 04/13/2021] [Indexed: 11/18/2022] Open
Abstract
Home birth is very common in the Peruvian Amazon. In rural areas of the Loreto region, home to indigenous populations such as the Kukama-Kukamiria, birth takes place at home constantly. This study aims to understand the preference for home births as well as childbirth and newborn care practices among Kukama-Kukamiria women in rural Loreto. Following a case study approach, sixty semi-structured, face-to-face interviews were conducted with recent mothers who experienced childbirth within one year prior to the interview, female relatives of recent mothers who had a role in childbirth, male relatives of recent mothers, community health workers, and traditional healers. We found that for women from these communities, home birth is a courageous act and an intimate (i.e. members of the community and relatives participate in it) and inexpensive practice in comparison with institutional birth. These preferences are also linked to experiences of mistreatment at health facilities, lack of cultural adaptation of birthing services, and access barriers to them. Preparations for home births included handwashing and cleaning delivery surfaces. After birth, waiting for the godparent to arrive to cut the cord can delay drying of the newborn. Discarding of colostrum, lack of skin-to-skin contact as well as a range of responses regarding immediate breastfeeding and immediate drying of the baby were also found. These findings were used to tailor the educational content of the Mamas del Rio program, where community health workers are trained to identify pregnancy early, perform home visits to pregnant women and newborns, and promote essential newborn care practices in case institutional birth is not desired or feasible. We make recommendations to improve Peru's cultural adaptation of birthing services.
Collapse
Affiliation(s)
- Irene Del Mastro N.
- Department of Sociology, University of California, Los Angeles, California, United States of America
| | - Paul J. Tejada-Llacsa
- Epidemiology, STD, HIV Research Unit, School of Public Health and Administration, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Stefan Reinders
- Epidemiology, STD, HIV Research Unit, School of Public Health and Administration, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Raquel Pérez
- Ages of Life and Education Research Group–EVE, Pontificia Universidad Católica del Perú, Lima, Peru
| | - Yliana Solís
- Epidemiology, STD, HIV Research Unit, School of Public Health and Administration, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Isaac Alva
- Intercultural Citizenship and Indigenous Health Unit, School of Public Health and Administration, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Magaly M. Blas
- Epidemiology, STD, HIV Research Unit, School of Public Health and Administration, Universidad Peruana Cayetano Heredia, Lima, Peru
| |
Collapse
|
5
|
Atyeo C, Alter G. The multifaceted roles of breast milk antibodies. Cell 2021; 184:1486-1499. [PMID: 33740451 DOI: 10.1016/j.cell.2021.02.031] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/07/2021] [Accepted: 02/12/2021] [Indexed: 12/20/2022]
Abstract
Neonates are born with an immature immune system and rely on the transfer of immunity from their mothers. Maternal antibodies are transferred via the placenta and breast milk. Although the role of placentally transferred immunoglobulin G (IgG) is established, less is known about the selection of antibodies transferred via breast milk and the mechanisms by which they provide protection against neonatal disease. Evidence suggests that breast milk antibodies play multifaceted roles, preventing infection and supporting the selection of commensals and tolerizing immunity during infancy. Here, we discuss emerging data related to the importance of breast milk antibodies in neonatal immunity and development.
Collapse
Affiliation(s)
- Caroline Atyeo
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; PhD Program in Virology, Division of Medical Sciences, Harvard University, Boston, MA, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA.
| |
Collapse
|
6
|
Hotinger JA, May AE. Antibodies Inhibiting the Type III Secretion System of Gram-Negative Pathogenic Bacteria. Antibodies (Basel) 2020; 9:antib9030035. [PMID: 32726928 PMCID: PMC7551047 DOI: 10.3390/antib9030035] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/16/2020] [Accepted: 07/22/2020] [Indexed: 12/11/2022] Open
Abstract
Pathogenic bacteria are a global health threat, with over 2 million infections caused by Gram-negative bacteria every year in the United States. This problem is exacerbated by the increase in resistance to common antibiotics that are routinely used to treat these infections, creating an urgent need for innovative ways to treat and prevent virulence caused by these pathogens. Many Gram-negative pathogenic bacteria use a type III secretion system (T3SS) to inject toxins and other effector proteins directly into host cells. The T3SS has become a popular anti-virulence target because it is required for pathogenesis and knockouts have attenuated virulence. It is also not required for survival, which should result in less selective pressure for resistance formation against T3SS inhibitors. In this review, we will highlight selected examples of direct antibody immunizations and the use of antibodies in immunotherapy treatments that target the bacterial T3SS. These examples include antibodies targeting the T3SS of Pseudomonas aeruginosa, Yersinia pestis, Escherichia coli, Salmonella enterica, Shigella spp., and Chlamydia trachomatis.
Collapse
|
7
|
Durand D, Alvarez D, Diaz D, Mercado E, Ruiz J, Ochoa TJ. Secretory immunoglobulin A (sIgA) in saliva versus virulence proteins of enteropathogenic Escherichia coli (EPEC) in ill and colonized children. Enferm Infecc Microbiol Clin 2019; 38:279-282. [PMID: 31668862 DOI: 10.1016/j.eimc.2019.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 08/19/2019] [Accepted: 08/22/2019] [Indexed: 10/25/2022]
Abstract
INTRODUCTION We evaluated the presence of sIgA in saliva, versus Escherichia coli secreted proteins (Esp) related to the type III secretion system (T3SS), and its semi-quantitative concentration in children under 2 years-old (no longer breastfed) who were previously colonized or infected with enteropathogenic E. coli (EPEC). METHODS We analyzed the presence of sIgA in 40 children, who previously had positive cultures for EPEC associated (n=17) or not associated (n=23) with diarrhea, using the Western Blot technique versus E. coli secreted proteins: EspABCD. A semi-quantitative measurement of the reaction for each protein was made by its density peaks (OD). RESULTS We found sIgA versus all or some EspABCD proteins in both groups. However, the ill patients had higher concentrations of these antibodies than colonized patients. DISCUSSION The presence of sIgA in saliva could reflect an intestinal immune response and their levels could be related to a greater exposure and/or bacterial load.
Collapse
Affiliation(s)
- David Durand
- Instituto de Medicina Tropical "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Daniela Alvarez
- Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - David Diaz
- Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Erik Mercado
- Instituto de Medicina Tropical "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Joaquim Ruiz
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Theresa J Ochoa
- Instituto de Medicina Tropical "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Peru; University of Texas Health Science Center at Houston, School of Public Health, Houston, USA.
| |
Collapse
|
8
|
Rojas-Lopez M, Monterio R, Pizza M, Desvaux M, Rosini R. Intestinal Pathogenic Escherichia coli: Insights for Vaccine Development. Front Microbiol 2018; 9:440. [PMID: 29615989 PMCID: PMC5869917 DOI: 10.3389/fmicb.2018.00440] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 02/26/2018] [Indexed: 12/13/2022] Open
Abstract
Diarrheal diseases are one of the major causes of mortality among children under five years old and intestinal pathogenic Escherichia coli (InPEC) plays a role as one of the large causative groups of these infections worldwide. InPECs contribute significantly to the burden of intestinal diseases, which are a critical issue in low- and middle-income countries (Asia, Africa and Latin America). Intestinal pathotypes such as enteropathogenic E. coli (EPEC) and enterotoxigenic E. coli (ETEC) are mainly endemic in developing countries, while ETEC strains are the major cause of diarrhea in travelers to these countries. On the other hand, enterohemorrhagic E. coli (EHEC) are the cause of large outbreaks around the world, mainly affecting developed countries and responsible for not only diarrheal disease but also severe clinical complications like hemorrhagic colitis and hemolytic uremic syndrome (HUS). Overall, the emergence of antibiotic resistant strains, the annual cost increase in the health care system, the high incidence of traveler diarrhea and the increased number of HUS episodes have raised the need for effective preventive treatments. Although the use of antibiotics is still important in treating such infections, non-antibiotic strategies are either a crucial option to limit the increase in antibiotic resistant strains or absolutely necessary for diseases such as those caused by EHEC infections, for which antibiotic therapies are not recommended. Among non-antibiotic therapies, vaccine development is a strategy of choice but, to date, there is no effective licensed vaccine against InPEC infections. For several years, there has been a sustained effort to identify efficacious vaccine candidates able to reduce the burden of diarrheal disease. The aim of this review is to summarize recent milestones and insights in vaccine development against InPECs.
Collapse
Affiliation(s)
- Maricarmen Rojas-Lopez
- GSK, Siena, Italy.,Institut National de la Recherche Agronomique, Université Clermont Auvergne, UMR454 MEDiS, Clermont-Ferrand, France
| | - Ricardo Monterio
- Institut National de la Recherche Agronomique, Université Clermont Auvergne, UMR454 MEDiS, Clermont-Ferrand, France
| | | | - Mickaël Desvaux
- Institut National de la Recherche Agronomique, Université Clermont Auvergne, UMR454 MEDiS, Clermont-Ferrand, France
| | | |
Collapse
|
9
|
Pierre JF, Busch RA, Kudsk KA. The gastrointestinal immune system: Implications for the surgical patient. Curr Probl Surg 2015; 53:11-47. [PMID: 26699624 DOI: 10.1067/j.cpsurg.2015.10.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 10/13/2015] [Indexed: 12/27/2022]
Affiliation(s)
- Joseph F Pierre
- Department of Medicine, Section of Gastroenterology, Hepatology, and Nutrition, University of Chicago, Chicago, IL
| | - Rebecca A Busch
- Department of Surgery, Division of General Surgery, University of Wisconsin-Madison, Madison, WI
| | - Kenneth A Kudsk
- Department of Surgery, Division of General Surgery, University of Wisconsin-Madison, Madison, WI; Veterans Administration Surgical Services, William S. Middleton Memorial Veterans Hospital, Madison, WI.
| |
Collapse
|
10
|
Hu J, Torres AG. Enteropathogenic Escherichia coli: foe or innocent bystander? Clin Microbiol Infect 2015; 21:729-34. [PMID: 25726041 DOI: 10.1016/j.cmi.2015.01.015] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Revised: 01/16/2015] [Accepted: 01/16/2015] [Indexed: 01/27/2023]
Abstract
Enteropathogenic Escherichia coli (EPEC) remain one the most important pathogens infecting children and they are one of the main causes of persistent diarrhoea worldwide. Historically, typical EPEC (tEPEC), defined as those isolates with the attaching and effacement (A/E) genotype (eae(+)), which possess bfpA(+) and lack the stx(-) genes are found strongly associated with diarrhoeal cases. However, occurrence of atypical EPEC (aEPEC; eae(+)bfpA(-)stx(-)) in diarrhoeal and asymptomatic hosts has made investigators question the role of these pathogens in human disease. Current epidemiological data are helping to answer the question of whether EPEC is mainly a foe or an innocent bystander during infection.
Collapse
Affiliation(s)
- J Hu
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - A G Torres
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA; Department of Pathology and Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
11
|
The Role of Maternal Breast Milk in Preventing Infantile Diarrhea in the Developing World. CURRENT TROPICAL MEDICINE REPORTS 2014; 1:97-105. [PMID: 24883263 DOI: 10.1007/s40475-014-0015-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Multiple interventions have been designed to decrease mortality and disability in children. Among these, breastfeeding is the most cost effective intervention for protecting children against diarrhea and all causes of mortality. Human milk is uniquely suited to the human infant, both in its nutritional composition and in the nonnutritive bioactive factors that promote survival and healthy development. Suboptimal breastfeeding has been linked with numerous adverse child health outcomes including increased incidence of diarrhea and pneumonia. This review provides an update regarding recent studies on the effect of breastfeeding on diarrhea morbidity and mortality in children in developing countries, describes major human milk components responsible for this protective effect (oligosaccharides, secretory immunoglobulins, lactoferrin, bacterial microbiota, etc.), and highlights areas for future research in this topic. Breastfeeding promotion remains an intervention of enormous public health potential to decrease global mortality and promote better growth and neurodevelopment in children.
Collapse
|