1
|
Lechner S, Sha S, Sethiya JP, Szczupak P, Dolot R, Lomada S, Sakhteman A, Tushaus J, Prokofeva P, Krauss M, Breu F, Vögerl K, Morgenstern M, Hrabě de Angelis M, Haucke V, Wieland T, Wagner C, Médard G, Bracher F, Kuster B. Serendipitous and Systematic Chemoproteomic Discovery of MBLAC2, HINT1, and NME1-4 Inhibitors from Histone Deacetylase-Targeting Pharmacophores. ACS Chem Biol 2025. [PMID: 40340313 DOI: 10.1021/acschembio.5c00108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
Metalloenzyme inhibitors often incorporate a hydroxamic acid moiety to bind the bivalent metal ion cofactor within the enzyme's active site. Recently, inhibitors of Zn2+-dependent histone deacetylases (HDACs), including clinically advanced drugs, have been identified as potent inhibitors of the metalloenzyme MBLAC2. However, selective chemical probes for MBLAC2, which are essential for studying its inhibitory effects, have not yet been reported. To discover highly selective MBLAC2 inhibitors, we conducted chemoproteomic target deconvolution and selectivity profiling of a library of hydroxamic acid-type molecules and other metal-chelating compounds. This screen revealed MBLAC2 as a frequent off-target of supposedly selective HDAC inhibitors, including the HDAC6 inhibitor SW-100. Profiling a focused library of SW-100-related phenylhydroxamic acids led to identifying two compounds, KV-65 and KV-79, which exhibit nanomolar binding affinity for MBLAC2 and over 60-fold selectivity compared to HDACs. Interestingly, some phenylhydroxamic acids were found to bind additional off-targets. We identified KV-30 as the first drug-like inhibitor of the histidine triad nucleotide-binding protein HINT1 and confirmed its mode of inhibition through a cocrystal structure analysis. Furthermore, we report the discovery of the first inhibitors for the undrugged nucleoside diphosphate kinases NME1, NME2, NME3, and NME4. Overall, this study maps the target and off-target landscape of 53 metalloenzyme inhibitors, providing the first selective MBLAC2 inhibitors. Additionally, the discovery of pharmacophores for NME1-4 and HINT1 establishes a foundation for the future design of potent and selective inhibitors for these targets.
Collapse
Affiliation(s)
- Severin Lechner
- Chair of Proteomics and Bioanalytics, TUM School of Life Sciences, Technical University of Munich, Freising 85354, Germany
| | - Shuyao Sha
- Chair of Proteomics and Bioanalytics, TUM School of Life Sciences, Technical University of Munich, Freising 85354, Germany
| | - Jigar Paras Sethiya
- Department of Medicinal Chemistry, University of Minnesota College of Pharmacy, Minneapolis, Minnesota 55414, United States
| | - Patrycja Szczupak
- Division of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Łódź 90-363, Poland
| | - Rafal Dolot
- Division of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Łódź 90-363, Poland
| | - Santosh Lomada
- Experimental Pharmacology Mannheim, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Str. 13-17, Mannheim 68167, Germany
| | - Amirhossein Sakhteman
- Chair of Proteomics and Bioanalytics, TUM School of Life Sciences, Technical University of Munich, Freising 85354, Germany
| | - Johanna Tushaus
- Chair of Proteomics and Bioanalytics, TUM School of Life Sciences, Technical University of Munich, Freising 85354, Germany
| | - Polina Prokofeva
- Chair of Proteomics and Bioanalytics, TUM School of Life Sciences, Technical University of Munich, Freising 85354, Germany
| | - Michael Krauss
- Department of Biology, Chemistry, Pharmacy, Leibniz Institute fur Molecular Pharmacologie, Robert-Roessle-Strasse 10, Berlin 13125, Germany
| | - Ferdinand Breu
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians University Munich, Munich 81377, Germany
| | - Katharina Vögerl
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians University Munich, Munich 81377, Germany
| | - Martin Morgenstern
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians University Munich, Munich 81377, Germany
| | - Martin Hrabě de Angelis
- German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Experimental Genetics, Neuherberg 85764, Germany
- Chair of Experimental Genetics, TUM School of Life Sciences, Technische Universität München, Freising 85354, Germany
- German Center for Diabetes Research (DZD), Neuherberg 85764, Germany
| | - Volker Haucke
- Department of Biology, Chemistry, Pharmacy, Leibniz Institute fur Molecular Pharmacologie, Robert-Roessle-Strasse 10, Berlin 13125, Germany
| | - Thomas Wieland
- Experimental Pharmacology Mannheim, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Str. 13-17, Mannheim 68167, Germany
| | - Carston Wagner
- Department of Medicinal Chemistry, University of Minnesota College of Pharmacy, Minneapolis, Minnesota 55414, United States
| | - Guillaume Médard
- Chair of Proteomics and Bioanalytics, TUM School of Life Sciences, Technical University of Munich, Freising 85354, Germany
| | - Franz Bracher
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians University Munich, Munich 81377, Germany
| | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics, TUM School of Life Sciences, Technical University of Munich, Freising 85354, Germany
| |
Collapse
|
2
|
Li Y, Squillace S, Schafer R, Giancotti LA, Chen Z, Egan TM, Hoft SG, DiPaolo RJ, Salvemini D. Contribution of S1pr1 -featured astrocyte subpopulation to cisplatin-induced neuropathic pain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.03.642851. [PMID: 40236155 PMCID: PMC11996491 DOI: 10.1101/2025.04.03.642851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Chemotherapy-induced peripheral neuropathy accompanied by neuropathic pain (CIPN) is a major neurotoxicity of cisplatin, a platinum-based drug widely used for lung, ovarian, and testicular cancer treatment. CIPN causes drug discontinuation and severely impacts life quality with no FDA-approved interventions. We previously reported that platinum-based drugs increase levels of sphingosine 1-phosphate (S1P) in the spinal cord and drive CIPN through activating the S1P receptor subtype 1 (S1PR1). However, the mechanisms engaged downstream of S1PR1 remain poorly understood. Using single cell transcriptomics on male mouse spinal cord, our findings uncovered subpopulation-specific responses to cisplatin associated with CIPN. Particularly, cisplatin increased the proportion of astrocytes with high expression levels of S1pr1 ( S1pr1 high astrocytes), specific to which a Wnt signaling pathway was identified. To this end, several genes involved in Wnt signaling, such as the fibroblast growth factor receptor 3 gene ( Fgfr3 ), were highly expressed in S1pr1 high astrocytes. The functional S1PR1 antagonist, ozanimod, prevented cisplatin-induced neuropathic pain and astrocytic upregulation of the Wnt signaling pathway genes. FGFR3 belongs to the FGF/FGFR family which often signals to activate Wnt signaling. Intrathecal injection of the FGFR3 antagonist, PD173074, prevented the development of CIPN in male mice. These data not only highlight FGFR3 as one of the astrocytic targets of S1PR1 but raise the possibility that S1PR1-induced engagement of Wnt signaling in S1pr1 high astrocytes may contribute to CIPN. Overall, our results provide a comprehensive mapping of cellular and molecular changes engaged in cisplatin-induced neuropathic pain and decipher novel S1PR1-based mechanisms of action.
Collapse
|
3
|
Park SJ, Lee SM, Kang SM, Yang HM, Seo SK, Lee JH. Potential of histone deacetylase 6 inhibitors in alleviating chemotherapy-induced peripheral neuropathy. Korean J Pain 2025; 38:152-162. [PMID: 40159938 PMCID: PMC11965998 DOI: 10.3344/kjp.24358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/26/2025] [Accepted: 01/27/2025] [Indexed: 04/02/2025] Open
Abstract
Background Histone deacetylase 6 (HDAC6), belonging to class IIb of histone deacetylases, regulates the acetylation of the cytoplasmic protein α-tubulin. The overexpression of HDAC6 is linked to the development of tumors, and inhibiting HDAC6 is known to trigger apoptosis in multiple myeloma cells. In addition to its application in cancer treatment, bortezomib, a proteasome inhibitor, is widely used in managing multiple myeloma and has shown effectiveness in patients with both newly diagnosed and relapsed disease. However, the treatment regimen may be delayed or discontinued due to the risk of peripheral neuropathy, a significant non-hematologic side effect. Methods Animal models of peripheral neuropathy induced by various anti-cancer drugs were established, confirming the potential of HDAC6 inhibitors as a treatment for this condition. Six- to eight-week-old male Sprague Dawley rats were utilized to create these models. Mechanical allodynia and electron microscopy served as indicators of peripheral neuropathy. The HDAC6 inhibitor CKD-011 was administered at doses of 5, 10, 20, and 40 mg/kg. Results In an animal model of bortezomib-induced peripheral neuropathy, CKD-011, an HDAC6 inhibitor, effectively ameliorated peripheral neuropathy. Similarly, CKD-011 administration demonstrated recovery from peripheral neuropathy in models induced with oxaliplatin, paclitaxel, and cisplatin. Conclusions These findings suggest that HDAC6 inhibitors have the potential to mitigate peripheral neuropathy induced by chemotherapeutic agents.
Collapse
Affiliation(s)
- Su Jung Park
- Discovery Biology Group I, CKD Research Institute, CKD Pharmaceutical Co, Yongin, Korea
| | - Soung-Min Lee
- Department of Microbiology and Immunology, College of Medicine, Inje University, Busan, Korea
| | - Seong Mook Kang
- Discovery Biology Group I, CKD Research Institute, CKD Pharmaceutical Co, Yongin, Korea
| | - Hyun-Mo Yang
- Medicinal Chemistry Group, CKD Research Institute, CKD Pharmaceutical Co, Yongin, Korea
| | - Su-Kil Seo
- Department of Microbiology and Immunology, College of Medicine, Inje University, Busan, Korea
| | - Ju-Hee Lee
- Discovery Biology Group I, CKD Research Institute, CKD Pharmaceutical Co, Yongin, Korea
| |
Collapse
|
4
|
Giosan IM, Serafini RA, Ramakrishnan A, Tuffy MJ, Zimering J, Babes A, Shen L, Zachariou V. HDAC6 inhibition ameliorates sensory hypersensitivity and reduces immune cell signatures in the dorsal root ganglia in murine chronic pain models. Mol Pharmacol 2025; 107:100034. [PMID: 40311408 DOI: 10.1016/j.molpha.2025.100034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 03/21/2025] [Indexed: 05/03/2025] Open
Abstract
Histone deacetylase (HDAC)6 is a broadly expressed class IIb HDAC that regulates cytoskeletal dynamics and some nuclear processes. Previously research has shown that HDAC6 enzymatic inhibition has analgesic properties in models of chemotherapy-induced peripheral neuropathy. Here, we evaluated the effects of genetic and pharmacologic inhibition of HDAC6 on the development of sensory hypersensitivity in mouse models of peripheral nerve injury and peripheral inflammation. Daily administration of the peripherally restricted HDAC6 inhibitor, ACY1215 (Regenacy Pharmaceuticals, Inc), attenuated mechanical allodynia in the von Frey assay within 2 days of treatment initiation, with no signs of analgesic tolerance after 21 days of administration. We observed a similar antiallodynic effect across the implemented injury models after conditionally knocking down Hdac6 in the adult dorsal root ganglia (DRGs). Bioinformatic analysis of whole-transcriptome RNA-sequencing data predicted that ACY1215 treatment predominantly attenuated proinflammatory mechanisms, such as the suppression of immune cell infiltration into the DRG after injury. Accordingly, we demonstrated a reduction in the expression of various immune cell markers in the DRG after pharmacologic and genetic HDAC6 inhibition in both neuropathic and inflammatory pain models. We identified a direct relationship between Ccl5/Ccr5 and Hdac6 downregulation, as well as reduced hypersensitivity after hind paw CCL5 administration upon Hdac6 knockdown in the DRG. Our findings highlight that peripheral inhibition of HDAC6 ameliorates sensory hypersensitivity in models of postoperative inflammatory and neuropathic pain through mechanisms beyond reduction of tubulin deacetylation. SIGNIFICANCE STATEMENT: Recent studies highlight the role of histone deacetylase (HDAC)6 in chemotherapy-induced peripheral neuropathy, through mechanisms of action including tubulin acetylation and mitochondrial trafficking. In this study, various murine models of acute and chronic pain are applied to show that inhibition of HDAC6 activity in the periphery, using the clinically tested ACY1215 compound, and genetic inactivation of the Hdac6 gene in the dorsal root ganglia, alleviated mechanical hypersensitivity in male and in female mice through mechanisms that include targeting injury-induced inflammation.
Collapse
Affiliation(s)
- Ilinca M Giosan
- Department of Pharmacology, Physiology, & Biophysics, Chobanian and Avedisian School of Medicine at Boston University, Boston, Massachusetts; Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology and Interdisciplinary School of Doctoral Studies, University of Bucharest, Bucharest, Romania
| | - Randal A Serafini
- Department of Pharmacology, Physiology, & Biophysics, Chobanian and Avedisian School of Medicine at Boston University, Boston, Massachusetts; Nash Family Department of Neuroscience and Freidman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Aarthi Ramakrishnan
- Nash Family Department of Neuroscience and Freidman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Madden J Tuffy
- Department of Pharmacology, Physiology, & Biophysics, Chobanian and Avedisian School of Medicine at Boston University, Boston, Massachusetts
| | - Jeffrey Zimering
- Nash Family Department of Neuroscience and Freidman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Alexandru Babes
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology and Interdisciplinary School of Doctoral Studies, University of Bucharest, Bucharest, Romania
| | - Li Shen
- Nash Family Department of Neuroscience and Freidman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Venetia Zachariou
- Department of Pharmacology, Physiology, & Biophysics, Chobanian and Avedisian School of Medicine at Boston University, Boston, Massachusetts.
| |
Collapse
|
5
|
Asaad L, Pepperrell B, McErlean E, Furlong F. Regulation of HDAC6 Catalytic Activity in Cancer: The Role of Post-Translational Modifications and Protein-Protein Interactions. Int J Mol Sci 2025; 26:1274. [PMID: 39941046 PMCID: PMC11818932 DOI: 10.3390/ijms26031274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/20/2025] [Accepted: 01/26/2025] [Indexed: 02/16/2025] Open
Abstract
Histone deacetylase 6 (HDAC6) is a large multidomain protein that deacetylates lysine residues on cytoplasmic proteins, influencing numerous cellular processes. Both the catalytic and noncatalytic functions of HDAC6 have been implicated in cancer development and progression. Over a decade of research on catalytic domain inhibitors has shown that these drugs are well tolerated, exhibit anticancer activity, and can alleviate chemotherapy-induced peripheral neuropathies. However, their effectiveness in treating solid tumours remains uncertain. HDAC6 activity is regulated by protein-protein interactions and post-translational modifications, which may allosterically influence its catalytic domains. As a result, effective inhibition of HDAC6 in cancer using small molecule inhibitors requires a more sophisticated understanding of its role within tumour cells, including whether its expression correlates with deacetylase activity. A comprehensive understanding of cancer-specific HDAC6 expression, functional activity, and activation states will be critical for refining the use of HDAC6 inhibitors in cancer therapy.
Collapse
Affiliation(s)
- Leen Asaad
- School of Pharmacy, Queen’s University Belfast, Belfast BT7 1NN, UK
- Department of Pharmacology and Biomedical Sciences, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman 11196, Jordan
| | | | - Emma McErlean
- School of Pharmacy, Queen’s University Belfast, Belfast BT7 1NN, UK
| | - Fiona Furlong
- School of Pharmacy, Queen’s University Belfast, Belfast BT7 1NN, UK
| |
Collapse
|
6
|
Inyang KE, Sim J, Clark KB, Geron M, Monahan K, Evans C, O'Connell P, Laumet S, Peng B, Ma J, Heijnen CJ, Dantzer R, Scherrer G, Kavelaars A, Bernard M, Aldhamen YA, Folger JK, Bavencoffe A, Laumet G. Upregulation of delta opioid receptor by meningeal interleukin-10 prevents relapsing pain. Brain Behav Immun 2025; 123:399-410. [PMID: 39349285 PMCID: PMC11624093 DOI: 10.1016/j.bbi.2024.09.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/02/2024] Open
Abstract
Chronic pain often includes periods of transient amelioration and even remission that alternate with severe relapsing pain. While most research on chronic pain has focused on pain development and maintenance, there is a critical unmet need to better understand the mechanisms that underlie pain remission and relapse. We found that interleukin (IL)-10, a pain resolving cytokine, is produced by resident macrophages in the spinal meninges during remission from pain and signaled to IL-10 receptor-expressing sensory neurons. Using unbiased RNA-sequencing, we identified that IL-10 upregulated expression and antinociceptive activity of δ-opioid receptor (δOR) in the dorsal root ganglion. Genetic or pharmacological inhibition of either IL-10 signaling or δOR triggered relapsing pain. Overall, our findings, from electrophysiology, genetic manipulation, flow cytometry, pharmacology, and behavioral approaches, indicate that remission of pain is not simply a return to the naïve state. Instead, remission is an adapted homeostatic state associated with lasting pain vulnerability resulting from persisting neuroimmune interactions within the nociceptive system. Broadly, this sheds light on the elusive mechanisms underlying recurrence a common aspect across various chronic pain conditions.
Collapse
Affiliation(s)
| | - Jaewon Sim
- Department of Physiology, Michigan State University, East Lansing, MI, USA; Cell and Molecular Biology Graduate Program, Michigan State University, East Lansing, MI, USA
| | - Kimberly B Clark
- Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Matan Geron
- Department of Cell Biology and Physiology, Department of Pharmacology, UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC, USA
| | - Karli Monahan
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Christine Evans
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Patrick O'Connell
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Sophie Laumet
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Bo Peng
- Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jiacheng Ma
- Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cobi J Heijnen
- Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Robert Dantzer
- Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Grégory Scherrer
- Department of Cell Biology and Physiology, Department of Pharmacology, UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC, USA; New York Stem Cell Foundation - Robertson Investigator, University of North Carolina, Chapel Hill, NC, USA
| | - Annemieke Kavelaars
- Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Matthew Bernard
- Flow Cytometry Core, Michigan State University, East Lansing, MI, USA
| | - Yasser A Aldhamen
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Joseph K Folger
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Alexis Bavencoffe
- Department of Integrative Biology and Pharmacology, McGovern Medical School at UTHealth, Houston, TX, USA
| | - Geoffroy Laumet
- Department of Physiology, Michigan State University, East Lansing, MI, USA; Cell and Molecular Biology Graduate Program, Michigan State University, East Lansing, MI, USA; Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
7
|
Ferreira VR, Ventura A, Cândido M, Ferreira-Strixino J, Raniero L. Curcumin-coated iron oxide nanoparticles for photodynamic therapy of breast cancer. Photochem Photobiol Sci 2025; 24:181-190. [PMID: 39841372 DOI: 10.1007/s43630-025-00682-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 01/09/2025] [Indexed: 01/23/2025]
Abstract
Breast cancer is the deadliest cancer among women and its treatment using traditional methods leads the patient to experience adverse effects. However, photodynamic therapy (PDT) is a non-invasive therapy modality that works through a photosensitizing agent, which treating activated by a suitable light source, releases reactive oxygen species capable of treating cancer. Furthermore, recent research indicates that combining PDT and nanoparticles can enhance therapeutic effects. In this way, the synthesis of IONPs (iron oxide nanoparticles) was carried out, and their subsequent coating was done with curcumin (IONPs@curcumin) so that they could act as therapeutic agents against breast cancer. Curcumin solubility tests were carried out to achieve the best results, with ethanol as a solvent, in different concentrations of ethanolic curcumin solution, with the optimal outcome observed at a concentration of 1 mM. Subsequently, the stability analysis was conducted by adjusting the pH of the medium, revealing that at pH 10, the IONPs@curcumin exhibited the best stability and dispersion conditions. Then, cytotoxicity tests of IONPs@curcumin were carried out on the MDA-MB-468 triple-negative breast cancer cell line, under experimental conditions without irradiation and subjected to PDT. The results revealed a viability greater than 70%, as it did not exhibit cytotoxicity for cells in the dark. After 1 h of incubation, the PDT associated with IONPs@curcumin showed 32% of cell viability at a concentration of 30 mg/mL.
Collapse
Affiliation(s)
- Virginia Rezende Ferreira
- Nanosensors Laboratory, Research & Development Institute, University of Vale do Paraíba, Av. Shishima Hifumi, 2911, Urbanova, São José dos Campos, São Paulo, Brazil
| | - Aveline Ventura
- Nanosensors Laboratory, Research & Development Institute, University of Vale do Paraíba, Av. Shishima Hifumi, 2911, Urbanova, São José dos Campos, São Paulo, Brazil
| | - Marcela Cândido
- Nanosensors Laboratory, Research & Development Institute, University of Vale do Paraíba, Av. Shishima Hifumi, 2911, Urbanova, São José dos Campos, São Paulo, Brazil
| | - Juliana Ferreira-Strixino
- Photobiology Applied to Health (PhotoBioS Lab) - Research & Development Institute, University of Vale do Paraíba, Av. Shishima Hifumi, 2911, Urbanova, São José dos Campos, São Paulo, Brazil
| | - Leandro Raniero
- Nanosensors Laboratory, Research & Development Institute, University of Vale do Paraíba, Av. Shishima Hifumi, 2911, Urbanova, São José dos Campos, São Paulo, Brazil.
| |
Collapse
|
8
|
Wen ZH, Chen NF, Cheng HJ, Kuo HM, Chen PY, Feng CW, Yao ZK, Chen WF, Sung CS. Upregulated spinal histone deacetylases induce nociceptive sensitization by inhibiting the GABA system in chronic constriction injury-induced neuropathy in rats. Pain Rep 2024; 9:e1209. [PMID: 39512583 PMCID: PMC11543203 DOI: 10.1097/pr9.0000000000001209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 08/29/2024] [Indexed: 11/15/2024] Open
Abstract
Introduction Neuropathic pain (NP) affects countless people worldwide; however, few effective treatments are currently available. Histone deacetylases (HDACs) participate in epigenetic modifications in neuropathy-induced nociceptive sensitization. Gamma-aminobutyric acid (GABA) is a major inhibitory neurotransmitter that can inhibit NP. The present study aimed to examine the role of spinal HDAC and its isoforms in neuropathy. Methods Male Wistar Rat with chronic constriction injury (CCI)-induced peripheral neuropathy and HDAC inhibitor, panobinostat, was administrated intrathecally. We performed quantitative real-time polymerase chain reaction (RT-qPCR), western blot, and immunohistochemical analysis of lumbar spinal cord dorsal horn and nociceptive behaviors (thermal hyperalgesia and mechanical allodynia) measurements. Results Herein, RT-qPCR analysis revealed that spinal hdac3, hdac4, and hdac6 were upregulated in CCI rats. Western blotting and immunofluorescence staining further confirmed that HDAC3, HDAC4, and HDAC6 were significantly upregulated, whereas GABA and its synthesis key enzyme glutamic acid decarboxylase (GAD) 65 were dramatically downregulated. Intrathecal panobinostat attenuated nociceptive behavior and restored the downregulated spinal GAD65 and GABA expression in CCI rats. Conclusions HDAC upregulation might induce nociception through GAD65 and GABA inhibition in CCI-induced neuropathy. These findings strongly suggest that HDACs negatively regulate inhibitory neurotransmitters, constituting a potential therapeutic strategy for an epigenetic approach to manage NP.
Collapse
Affiliation(s)
- Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
- Institute of Biopharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Nan-Fu Chen
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan
- Division of Neurosurgery, Department of Surgery, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Hao-Jung Cheng
- Institute of Biopharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Hsiao-Mei Kuo
- Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Pei-Yu Chen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Chien-Wei Feng
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Zhi-Kang Yao
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
- Department of Orthopedics, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Wu-Fu Chen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
- Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chun-Sung Sung
- Division of Pain Management, Department of Anesthesiology, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
9
|
Avery TD, Li J, Turner DJL, Rasheed MSU, Cherry FR, Stachura DL, Rivera-Escalera F, Ruiz DM, Lacagnina MJ, Gaffney CM, Aguilar C, Yu J, Wang Y, Xie H, Liang D, Shepherd AJ, Abell AD, Grace PM. Site-specific drug release of monomethyl fumarate to treat oxidative stress disorders. Nat Biotechnol 2024:10.1038/s41587-024-02460-4. [PMID: 39496929 PMCID: PMC12049564 DOI: 10.1038/s41587-024-02460-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/02/2024] [Indexed: 11/06/2024]
Abstract
Treatment of diseases of oxidative stress through activation of the antioxidant nuclear factor E2-related factor 2 (NRF2) is limited by systemic side effects. We chemically functionalize the NRF2 activator monomethyl fumarate to require Baeyer-Villiger oxidation for release of the active drug at sites of oxidative stress. This prodrug reverses chronic pain in mice with reduced side effects and could be applied to other disorders of oxidative stress.
Collapse
Affiliation(s)
- Thomas D Avery
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), The University of Adelaide, Adelaide, South Australia, Australia
- Institute for Photonics and Advanced Sensing (IPAS), The University of Adelaide, Adelaide, South Australia, Australia
- Department of Chemistry, The University of Adelaide, Adelaide, South Australia, Australia
| | - Jiahe Li
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- MD Anderson Pain Research Consortium, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dion J L Turner
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), The University of Adelaide, Adelaide, South Australia, Australia
- Institute for Photonics and Advanced Sensing (IPAS), The University of Adelaide, Adelaide, South Australia, Australia
- Department of Chemistry, The University of Adelaide, Adelaide, South Australia, Australia
| | - Mohd S U Rasheed
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- MD Anderson Pain Research Consortium, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Fisher R Cherry
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- MD Anderson Pain Research Consortium, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Damian L Stachura
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), The University of Adelaide, Adelaide, South Australia, Australia
- Institute for Photonics and Advanced Sensing (IPAS), The University of Adelaide, Adelaide, South Australia, Australia
- Department of Chemistry, The University of Adelaide, Adelaide, South Australia, Australia
| | - Fátima Rivera-Escalera
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- MD Anderson Pain Research Consortium, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David M Ruiz
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- MD Anderson Pain Research Consortium, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael J Lacagnina
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- MD Anderson Pain Research Consortium, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Caitlyn M Gaffney
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- MD Anderson Pain Research Consortium, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Clarissa Aguilar
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- MD Anderson Pain Research Consortium, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jingxian Yu
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), The University of Adelaide, Adelaide, South Australia, Australia
- Institute for Photonics and Advanced Sensing (IPAS), The University of Adelaide, Adelaide, South Australia, Australia
- Department of Chemistry, The University of Adelaide, Adelaide, South Australia, Australia
| | - Yang Wang
- Department of Pharmaceutical Science, Texas Southern University, Houston, TX, USA
| | - Huan Xie
- Department of Pharmaceutical Science, Texas Southern University, Houston, TX, USA
| | - Dong Liang
- Department of Pharmaceutical Science, Texas Southern University, Houston, TX, USA
| | - Andrew J Shepherd
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- MD Anderson Pain Research Consortium, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Andrew D Abell
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), The University of Adelaide, Adelaide, South Australia, Australia.
- Institute for Photonics and Advanced Sensing (IPAS), The University of Adelaide, Adelaide, South Australia, Australia.
- Department of Chemistry, The University of Adelaide, Adelaide, South Australia, Australia.
| | - Peter M Grace
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- MD Anderson Pain Research Consortium, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
10
|
van Eyll J, Prior R, Celanire S, Van Den Bosch L, Rombouts F. Therapeutic indications for HDAC6 inhibitors in the peripheral and central nervous disorders. Expert Opin Ther Targets 2024; 28:719-737. [PMID: 39305025 DOI: 10.1080/14728222.2024.2404571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 09/06/2024] [Indexed: 09/26/2024]
Abstract
INTRODUCTION Inhibition of the enzymatic function of HDAC6 is currently being explored in clinical trials ranging from peripheral neuropathies to cancers. Advances in selective HDAC6 inhibitor discovery allowed studying highly efficacious brain penetrant and peripheral restrictive compounds for treating PNS and CNS indications. AREAS COVERED This review explores the multifactorial role of HDAC6 in cells, the common pathological hallmarks of PNS and CNS disorders, and how HDAC6 modulates these mechanisms. Pharmacological inhibition of HDAC6 and genetic knockout/knockdown studies as a therapeutic strategy in PNS and CNS indications were analyzed. Furthermore, we describe the recent developments in HDAC6 PET tracers and their utility in CNS indications. Finally, we explore the advancements and challenges with HDAC6 inhibitor compounds, such as hydroxamic acid, fluoromethyl oxadiazoles, HDAC6 degraders, and thiol-based inhibitors. EXPERT OPINION Based on extensive preclinical evidence, pharmacological inhibition of HDAC6 is a promising approach for treating both PNS and CNS disorders, given its involvement in neurodegeneration and aging-related cellular processes. Despite the progress in the development of selective HDAC6 inhibitors, safety concerns remain regarding their chronic administration in PNS and CNS indications, and the development of novel compound classes and modalities inhibiting HDAC6 function offer a way to mitigate some of these safety concerns.
Collapse
Affiliation(s)
| | | | - Sylvain Celanire
- Augustine Therapeutics, Research and Development, Leuven, Belgium
| | - Ludo Van Den Bosch
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven - University of Leuven, Leuven, Belgium
- VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | | |
Collapse
|
11
|
Zhang ZX, Tian Y, Li S, Jing HB, Cai J, Li M, Xing GG. Involvement of HDAC2-mediated kcnq2/kcnq3 genes transcription repression activated by EREG/EGFR-ERK-Runx1 signaling in bone cancer pain. Cell Commun Signal 2024; 22:416. [PMID: 39192337 PMCID: PMC11350972 DOI: 10.1186/s12964-024-01797-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/18/2024] [Indexed: 08/29/2024] Open
Abstract
Bone cancer pain (BCP) represents a prevalent symptom among cancer patients with bone metastases, yet its underlying mechanisms remain elusive. This study investigated the transcriptional regulation mechanism of Kv7(KCNQ)/M potassium channels in DRG neurons and its involvement in the development of BCP in rats. We show that HDAC2-mediated transcriptional repression of kcnq2/kcnq3 genes, which encode Kv7(KCNQ)/M potassium channels in dorsal root ganglion (DRG), contributes to the sensitization of DRG neurons and the pathogenesis of BCP in rats. Also, HDAC2 requires the formation of a corepressor complex with MeCP2 and Sin3A to execute transcriptional regulation of kcnq2/kcnq3 genes. Moreover, EREG is identified as an upstream signal molecule for HDAC2-mediated kcnq2/kcnq3 genes transcription repression. Activation of EREG/EGFR-ERK-Runx1 signaling, followed by the induction of HDAC2-mediated transcriptional repression of kcnq2/kcnq3 genes in DRG neurons, leads to neuronal hyperexcitability and pain hypersensitivity in tumor-bearing rats. Consequently, the activation of EREG/EGFR-ERK-Runx1 signaling, along with the subsequent transcriptional repression of kcnq2/kcnq3 genes by HDAC2 in DRG neurons, underlies the sensitization of DRG neurons and the pathogenesis of BCP in rats. These findings uncover a potentially targetable mechanism contributing to bone metastasis-associated pain in cancer patients.
Collapse
Affiliation(s)
- Zi-Xian Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center and Neuroscience Research Institute, Peking University, Beijing, China
| | - Yue Tian
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center and Neuroscience Research Institute, Peking University, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education of China & National Health Commission of China, Beijing, 100191, China
| | - Song Li
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center and Neuroscience Research Institute, Peking University, Beijing, China
| | - Hong-Bo Jing
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center and Neuroscience Research Institute, Peking University, Beijing, China
| | - Jie Cai
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center and Neuroscience Research Institute, Peking University, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education of China & National Health Commission of China, Beijing, 100191, China
| | - Min Li
- Department of Anesthesiology, Peking University Third Hospital, Beijing, 100191, China.
| | - Guo-Gang Xing
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center and Neuroscience Research Institute, Peking University, Beijing, China.
- Key Laboratory for Neuroscience, Ministry of Education of China & National Health Commission of China, Beijing, 100191, China.
| |
Collapse
|
12
|
Mattar M, Umutoni F, Hassan MA, Wamburu MW, Turner R, Patton JS, Chen X, Lei W. Chemotherapy-Induced Peripheral Neuropathy: A Recent Update on Pathophysiology and Treatment. Life (Basel) 2024; 14:991. [PMID: 39202733 PMCID: PMC11355765 DOI: 10.3390/life14080991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/29/2024] [Accepted: 08/07/2024] [Indexed: 09/03/2024] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a major long-lasting side effect of some chemotherapy drugs, which threatens cancer survival rate. CIPN mostly affects sensory neurons and occasionally motor neurons, causing numbness, tingling, discomfort, and burning pain in the upper and lower extremities. The pathophysiology of CIPN is not completely understood; however, it is believed that chemotherapies induce peripheral neuropathy via directly damaging mitochondria, impairing the function of ion channels, triggering immunological mechanisms, and disrupting microtubules. The treatment of CIPN is a medical challenge, and there are no approved pharmacological options. Currently, duloxetine and other antidepressants, antioxidant, anti-inflammatory, and ion-channel targeted therapies are commonly used in clinics to relieve the symptoms of CIPN. Several other types of drugs, such as cannabinoids, sigma-1 receptor antagonists, and nicotinamides ribose, are being evaluated in preclinical and clinical studies. This paper summarizes the information related to the physiology of CIPN and medicines that could be used for treating this condition.
Collapse
Affiliation(s)
- Marina Mattar
- Department of Pharmaceutical and Administrative Sciences, Presbyterian College School of Pharmacy, Clinton, SC 29325, USA; (M.M.); (M.A.H.)
| | - Florence Umutoni
- Department of Pharmaceutical and Graduate Life Sciences, College of Health Sciences, Nursing, and Pharmacy, Manchester University, Fort Wayne, IN 46845, USA; (F.U.); (J.S.P.)
| | - Marwa A. Hassan
- Department of Pharmaceutical and Administrative Sciences, Presbyterian College School of Pharmacy, Clinton, SC 29325, USA; (M.M.); (M.A.H.)
| | - M. Wambui Wamburu
- Department of Pharmacy Practice, College of Health Sciences, Nursing, and Pharmacy, Manchester University, Fort Wayne, IN 46845, USA;
| | - Reagan Turner
- Department of Biology, Presbyterian College, Clinton, SC 29325, USA;
| | - James S. Patton
- Department of Pharmaceutical and Graduate Life Sciences, College of Health Sciences, Nursing, and Pharmacy, Manchester University, Fort Wayne, IN 46845, USA; (F.U.); (J.S.P.)
| | - Xin Chen
- Department of Pharmaceutical and Clinical Sciences, College of Pharmacy and Health Sciences, Campbell University, Buies Creek, NC 27506, USA;
| | - Wei Lei
- Department of Pharmaceutical and Administrative Sciences, Presbyterian College School of Pharmacy, Clinton, SC 29325, USA; (M.M.); (M.A.H.)
- Department of Pharmaceutical and Graduate Life Sciences, College of Health Sciences, Nursing, and Pharmacy, Manchester University, Fort Wayne, IN 46845, USA; (F.U.); (J.S.P.)
| |
Collapse
|
13
|
Manengu C, Zhu CH, Zhang GD, Tian MM, Lan XB, Tao LJ, Ma L, Liu Y, Yu JQ, Liu N. HDAC inhibitors as a potential therapy for chemotherapy-induced neuropathic pain. Inflammopharmacology 2024; 32:2153-2175. [PMID: 38761314 DOI: 10.1007/s10787-024-01488-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 03/22/2024] [Indexed: 05/20/2024]
Abstract
Cancer, a chronic disease characterized by uncontrolled cell development, kills millions of people globally. The WHO reported over 10 million cancer deaths in 2020. Anticancer medications destroy healthy and malignant cells. Cancer treatment induces neuropathy. Anticancer drugs cause harm to spinal cord, brain, and peripheral nerve somatosensory neurons, causing chemotherapy-induced neuropathic pain. The chemotherapy-induced mechanisms underlying neuropathic pain are not fully understood. However, neuroinflammation has been identified as one of the various pathways associated with the onset of chemotherapy-induced neuropathic pain. The neuroinflammatory processes may exhibit varying characteristics based on the specific type of anticancer treatment delivered. Neuroinflammatory characteristics have been observed in the spinal cord, where microglia and astrocytes have a significant impact on the development of chemotherapy-induced peripheral neuropathy. The patient's quality of life might be affected by sensory deprivation, loss of consciousness, paralysis, and severe disability. High cancer rates and ineffective treatments are associated with this disease. Recently, histone deacetylases have become a novel treatment target for chemotherapy-induced neuropathic pain. Chemotherapy-induced neuropathic pain may be treated with histone deacetylase inhibitors. Histone deacetylase inhibitors may be a promising therapeutic treatment for chemotherapy-induced neuropathic pain. Common chemotherapeutic drugs, mechanisms, therapeutic treatments for neuropathic pain, and histone deacetylase and its inhibitors in chemotherapy-induced neuropathic pain are covered in this paper. We propose that histone deacetylase inhibitors may treat several aspects of chemotherapy-induced neuropathic pain, and identifying these inhibitors as potentially unique treatments is crucial to the development of various chemotherapeutic combination treatments.
Collapse
Affiliation(s)
- Chalton Manengu
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
- School of International Education, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| | - Chun-Hao Zhu
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| | - Guo-Dong Zhang
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| | - Miao-Miao Tian
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| | - Xiao-Bing Lan
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| | - Li-Jun Tao
- Department of Pharmacy, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, 750004, China
| | - Lin Ma
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| | - Yue Liu
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| | - Jian-Qiang Yu
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, China.
| | - Ning Liu
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, China.
| |
Collapse
|
14
|
Krug A, Mhaidly R, Tosolini M, Mondragon L, Tari G, Turtos AM, Paul-Bellon R, Asnafi V, Marchetti S, Di Mascio L, Travert M, Bost F, Bachy E, Argüello RJ, Fournié JJ, Gaulard P, Lemonnier F, Ricci JE, Verhoeyen E. Dependence on mitochondrial respiration of malignant T cells reveals a new therapeutic target for angioimmunoblastic T-cell lymphoma. Cell Death Discov 2024; 10:292. [PMID: 38897995 PMCID: PMC11187159 DOI: 10.1038/s41420-024-02061-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/01/2024] [Accepted: 06/05/2024] [Indexed: 06/21/2024] Open
Abstract
Cancer metabolic reprogramming has been recognized as one of the cancer hallmarks that promote cell proliferation, survival, as well as therapeutic resistance. Up-to-date regulation of metabolism in T-cell lymphoma is poorly understood. In particular, for human angioimmunoblastic T-cell lymphoma (AITL) the metabolic profile is not known. Metabolic intervention could help identify new treatment options for this cancer with very poor outcomes and no effective medication. Transcriptomic analysis of AITL tumor cells, identified that these cells use preferentially mitochondrial metabolism. By using our preclinical AITL mouse model, mimicking closely human AITL features, we confirmed that T follicular helper (Tfh) tumor cells exhibit a strong enrichment of mitochondrial metabolic signatures. Consistent with these results, disruption of mitochondrial metabolism using metformin or a mitochondrial complex I inhibitor such as IACS improved the survival of AITL lymphoma-bearing mice. Additionally, we confirmed a selective elimination of the malignant human AITL T cells in patient biopsies upon mitochondrial respiration inhibition. Moreover, we confirmed that diabetic patients suffering from T-cell lymphoma, treated with metformin survived longer as compared to patients receiving alternative treatments. Taking together, our findings suggest that targeting the mitochondrial metabolic pathway could be a clinically efficient approach to inhibit aggressive cancers such as peripheral T-cell lymphoma.
Collapse
Affiliation(s)
- Adrien Krug
- Université Côte d'Azur, INSERM, C3M, 06204, Nice, France
- Equipe labellisée Ligue Contre le Cancer, 06204, Nice, France
| | - Rana Mhaidly
- Université Côte d'Azur, INSERM, C3M, 06204, Nice, France
- Equipe labellisée Ligue Contre le Cancer, 06204, Nice, France
| | - Marie Tosolini
- CRCT, Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Laura Mondragon
- T cell lymphoma group, Josep Carreras Leukaemia Research Institute (IJC), Josep Carreras Building, Ctra de Can Ruti, Camí de les Escoles, s/n, 08916, Badalona, Spain
| | - Gamze Tari
- Université Paris-Est Créteil; Institut Mondor de Recherche Biomédicale, INSERMU955; Unité hémopathies lymphoïdes, Hôpitaux Universitaires Henri Mondor, Assistance publique des Hôpitaux de Paris, Créteil, France
| | - Adriana Martinez Turtos
- Université Côte d'Azur, INSERM, C3M, 06204, Nice, France
- Equipe labellisée Ligue Contre le Cancer, 06204, Nice, France
| | - Rachel Paul-Bellon
- Université Côte d'Azur, INSERM, C3M, 06204, Nice, France
- Equipe labellisée Ligue Contre le Cancer, 06204, Nice, France
| | - Vahid Asnafi
- Laboratory of Onco-Hematology, Institut Necker Enfants-Malades, Université Paris-Cité and INSERM U1151, Paris, France
| | - Sandrine Marchetti
- Université Côte d'Azur, INSERM, C3M, 06204, Nice, France
- Equipe labellisée Ligue Contre le Cancer, 06204, Nice, France
| | - Léa Di Mascio
- Université Côte d'Azur, INSERM, C3M, 06204, Nice, France
- Equipe labellisée Ligue Contre le Cancer, 06204, Nice, France
| | - Marion Travert
- Université Paris-Est Créteil; Institut Mondor de Recherche Biomédicale, INSERMU955; Unité hémopathies lymphoïdes, Hôpitaux Universitaires Henri Mondor, Assistance publique des Hôpitaux de Paris, Créteil, France
| | - Frédéric Bost
- Université Côte d'Azur, INSERM, C3M, 06204, Nice, France
| | - Emmanuel Bachy
- Hospices Civils de Lyon and Claude Bernard Lyon 1 University, Lyon, France
| | - Rafael J Argüello
- Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
- Labex TOUCAN, Toulouse, France
| | - Jean-Jacques Fournié
- CRCT, Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Labex TOUCAN, Toulouse, France
| | - Philippe Gaulard
- Université Paris-Est Créteil; Institut Mondor de Recherche Biomédicale, INSERMU955; Unité hémopathies lymphoïdes, Hôpitaux Universitaires Henri Mondor, Assistance publique des Hôpitaux de Paris, Créteil, France
- AP-HP, Groupe hospitalo-universitaire Chenevier Mondor, département de pathologie, F-94010, Créteil, France
| | - François Lemonnier
- Université Paris-Est Créteil; Institut Mondor de Recherche Biomédicale, INSERMU955; Unité hémopathies lymphoïdes, Hôpitaux Universitaires Henri Mondor, Assistance publique des Hôpitaux de Paris, Créteil, France
- AP-HP, Groupe hospitalo-universitaire Chenevier Mondor, Service Unité Hémopathies Lymphoides, F-94010, Créteil, France
| | - Jean-Ehrland Ricci
- Université Côte d'Azur, INSERM, C3M, 06204, Nice, France
- Equipe labellisée Ligue Contre le Cancer, 06204, Nice, France
| | - Els Verhoeyen
- Université Côte d'Azur, INSERM, C3M, 06204, Nice, France.
- Equipe labellisée Ligue Contre le Cancer, 06204, Nice, France.
- CIRI, Université de Lyon; INSERM U1111; ENS de Lyon; University Lyon1; CNRS, UMR5308, 69007, Lyon, France.
| |
Collapse
|
15
|
Li X, Saiyin H, Chen X, Yu Q, Ma L, Liang W. Ketamine impairs growth cone and synaptogenesis in human GABAergic projection neurons via GSK-3β and HDAC6 signaling. Mol Psychiatry 2024; 29:1647-1659. [PMID: 36414713 PMCID: PMC11371642 DOI: 10.1038/s41380-022-01864-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/23/2022]
Abstract
The growth cone guides the axon or dendrite of striatal GABAergic projection neurons that protrude into the midbrain and cortex and form complex neuronal circuits and synaptic networks in a developing brain, aberrant projections and synaptic connections in the striatum related to multiple brain disorders. Previously, we showed that ketamine, an anesthetic, reduced dendritic growth, dendritic branches, and spine density in human striatal GABAergic neurons. However, whether ketamine affects the growth cone, the synaptic connection of growing striatal GABAergic neurons has not been tested. Using human GABAergic projection neurons derived from human inducible pluripotent stem cells (hiPSCs) and embryonic stem cells (ES) in vitro, we tested ketamine effects on the growth cones and synapses in developing GABAergic neurons by assessing the morphometry and the glycogen synthase kinase-3 (GSK-3) and histone deacetylase 6 (HDAC6) pathway. Ketamine exposure impairs growth cone formation, synaptogenesis, dendritic development, and maturation via ketamine-mediated activation of GSK-3 pathways and inhibiting HDAC6, an essential stabilizing protein for dendritic morphogenesis and synapse maturation. Our findings identified a novel ketamine neurotoxic pathway that depends on GSK-3β and HDAC6 signaling, suggesting that microtubule acetylation is a potential target for reducing ketamine's toxic effect on GABAergic projection neuronal development.
Collapse
Affiliation(s)
- Xuan Li
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China
- Department of Anesthesiology, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong, China
| | - Hexige Saiyin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Xinyu Chen
- Department of Anatomy and Histology & Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Qiong Yu
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China.
| | - Lixiang Ma
- Department of Anatomy and Histology & Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| | - Weimin Liang
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
16
|
Cellupica E, Gaiassi A, Rocchio I, Rovelli G, Pomarico R, Sandrone G, Caprini G, Cordella P, Cukier C, Fossati G, Marchini M, Bebel A, Airoldi C, Palmioli A, Stevenazzi A, Steinkühler C, Vergani B. Mechanistic and Structural Insights on Difluoromethyl-1,3,4-oxadiazole Inhibitors of HDAC6. Int J Mol Sci 2024; 25:5885. [PMID: 38892072 PMCID: PMC11172862 DOI: 10.3390/ijms25115885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Histone deacetylase 6 (HDAC6) is increasingly recognized for its potential in targeted disease therapy. This study delves into the mechanistic and structural nuances of HDAC6 inhibition by difluoromethyl-1,3,4-oxadiazole (DFMO) derivatives, a class of non-hydroxamic inhibitors with remarkable selectivity and potency. Employing a combination of nuclear magnetic resonance (NMR) spectroscopy and liquid chromatography-mass spectrometry (LC-MS) kinetic experiments, comprehensive enzymatic characterizations, and X-ray crystallography, we dissect the intricate details of the DFMO-HDAC6 interaction dynamics. More specifically, we find that the chemical structure of a DMFO and the binding mode of its difluoroacetylhydrazide derivative are crucial in determining the predominant hydrolysis mechanism. Our findings provide additional insights into two different mechanisms of DFMO hydrolysis, thus contributing to a better understanding of the HDAC6 inhibition by oxadiazoles in disease modulation and therapeutic intervention.
Collapse
Affiliation(s)
- Edoardo Cellupica
- Research and Development, Italfarmaco Group, 20092 Milan, Italy; (E.C.); (A.G.); (I.R.); (G.R.); (R.P.); (G.S.); (G.C.); (P.C.); (G.F.); (M.M.); (A.S.); (C.S.)
| | - Aureliano Gaiassi
- Research and Development, Italfarmaco Group, 20092 Milan, Italy; (E.C.); (A.G.); (I.R.); (G.R.); (R.P.); (G.S.); (G.C.); (P.C.); (G.F.); (M.M.); (A.S.); (C.S.)
| | - Ilaria Rocchio
- Research and Development, Italfarmaco Group, 20092 Milan, Italy; (E.C.); (A.G.); (I.R.); (G.R.); (R.P.); (G.S.); (G.C.); (P.C.); (G.F.); (M.M.); (A.S.); (C.S.)
| | - Grazia Rovelli
- Research and Development, Italfarmaco Group, 20092 Milan, Italy; (E.C.); (A.G.); (I.R.); (G.R.); (R.P.); (G.S.); (G.C.); (P.C.); (G.F.); (M.M.); (A.S.); (C.S.)
| | - Roberta Pomarico
- Research and Development, Italfarmaco Group, 20092 Milan, Italy; (E.C.); (A.G.); (I.R.); (G.R.); (R.P.); (G.S.); (G.C.); (P.C.); (G.F.); (M.M.); (A.S.); (C.S.)
| | - Giovanni Sandrone
- Research and Development, Italfarmaco Group, 20092 Milan, Italy; (E.C.); (A.G.); (I.R.); (G.R.); (R.P.); (G.S.); (G.C.); (P.C.); (G.F.); (M.M.); (A.S.); (C.S.)
| | - Gianluca Caprini
- Research and Development, Italfarmaco Group, 20092 Milan, Italy; (E.C.); (A.G.); (I.R.); (G.R.); (R.P.); (G.S.); (G.C.); (P.C.); (G.F.); (M.M.); (A.S.); (C.S.)
| | - Paola Cordella
- Research and Development, Italfarmaco Group, 20092 Milan, Italy; (E.C.); (A.G.); (I.R.); (G.R.); (R.P.); (G.S.); (G.C.); (P.C.); (G.F.); (M.M.); (A.S.); (C.S.)
| | - Cyprian Cukier
- Department of Biochemistry, Selvita S.A., 30-394 Kraków, Poland; (C.C.); (A.B.)
| | - Gianluca Fossati
- Research and Development, Italfarmaco Group, 20092 Milan, Italy; (E.C.); (A.G.); (I.R.); (G.R.); (R.P.); (G.S.); (G.C.); (P.C.); (G.F.); (M.M.); (A.S.); (C.S.)
| | - Mattia Marchini
- Research and Development, Italfarmaco Group, 20092 Milan, Italy; (E.C.); (A.G.); (I.R.); (G.R.); (R.P.); (G.S.); (G.C.); (P.C.); (G.F.); (M.M.); (A.S.); (C.S.)
| | - Aleksandra Bebel
- Department of Biochemistry, Selvita S.A., 30-394 Kraków, Poland; (C.C.); (A.B.)
| | - Cristina Airoldi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy; (C.A.); (A.P.)
| | - Alessandro Palmioli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy; (C.A.); (A.P.)
| | - Andrea Stevenazzi
- Research and Development, Italfarmaco Group, 20092 Milan, Italy; (E.C.); (A.G.); (I.R.); (G.R.); (R.P.); (G.S.); (G.C.); (P.C.); (G.F.); (M.M.); (A.S.); (C.S.)
| | - Christian Steinkühler
- Research and Development, Italfarmaco Group, 20092 Milan, Italy; (E.C.); (A.G.); (I.R.); (G.R.); (R.P.); (G.S.); (G.C.); (P.C.); (G.F.); (M.M.); (A.S.); (C.S.)
| | - Barbara Vergani
- Research and Development, Italfarmaco Group, 20092 Milan, Italy; (E.C.); (A.G.); (I.R.); (G.R.); (R.P.); (G.S.); (G.C.); (P.C.); (G.F.); (M.M.); (A.S.); (C.S.)
| |
Collapse
|
17
|
Zhang W, Jiao B, Yu S, Zhang C, Zhang K, Liu B, Zhang X. Histone deacetylase as emerging pharmacological therapeutic target for neuropathic pain: From epigenetic to selective drugs. CNS Neurosci Ther 2024; 30:e14745. [PMID: 38715326 PMCID: PMC11077000 DOI: 10.1111/cns.14745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/02/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Neuropathic pain remains a formidable challenge for modern medicine. The first-line pharmacological therapies exhibit limited efficacy and unfavorable side effect profiles, highlighting an unmet need for effective therapeutic medications. The past decades have witnessed an explosion in efforts to translate epigenetic concepts into pain therapy and shed light on epigenetics as a promising avenue for pain research. Recently, the aberrant activity of histone deacetylase (HDAC) has emerged as a key mechanism contributing to the development and maintenance of neuropathic pain. AIMS In this review, we highlight the distinctive role of specific HDAC subtypes in a cell-specific manner in pain nociception, and outline the recent experimental evidence supporting the therapeutic potential of HDACi in neuropathic pain. METHODS We have summarized studies of HDAC in neuropathic pain in Pubmed. RESULTS HDACs, widely distributed in the neuronal and non-neuronal cells of the dorsal root ganglion and spinal cord, regulate gene expression by deacetylation of histone or non-histone proteins and involving in increased neuronal excitability and neuroinflammation, thus promoting peripheral and central sensitization. Importantly, pharmacological manipulation of aberrant acetylation using HDAC-targeted inhibitors (HDACi) has shown promising pain-relieving properties in various preclinical models of neuropathic pain. Yet, many of which exhibit low-specificity that may induce off-target toxicities, underscoring the necessity for the development of isoform-selective HDACi in pain management. CONCLUSIONS Abnormally elevated HDACs promote neuronal excitability and neuroinflammation by epigenetically modulating pivotal gene expression in neuronal and immune cells, contributing to peripheral and central sensitization in the progression of neuropathic pain, and HDACi showed significant efficacy and great potential for alleviating neuropathic pain.
Collapse
Affiliation(s)
- Wencui Zhang
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric AnesthesiaTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Bo Jiao
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric AnesthesiaTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Shangchen Yu
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric AnesthesiaTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Caixia Zhang
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric AnesthesiaTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Kaiwen Zhang
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric AnesthesiaTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Baowen Liu
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric AnesthesiaTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Xianwei Zhang
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric AnesthesiaTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
18
|
Han B, Gu X, Wang M, Wang H, Sun N, Yang X, Zhang Q. Design, synthesis and neuroprotective biological evaluation of novel HDAC6 inhibitors incorporating benzothiadiazinyl systems as cap groups. Chem Biol Drug Des 2024; 103:e14556. [PMID: 38772881 DOI: 10.1111/cbdd.14556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/17/2024] [Accepted: 05/07/2024] [Indexed: 05/23/2024]
Abstract
Histone deacetylase 6 (HDAC6), as the key regulatory enzyme, plays an important role in the development of the nervous system. More and more studies indicate that HDAC6 has become a promising therapeutic target for CNS diseases. Herein we designed and synthesized a series of novel HDAC6 inhibitors with benzothiadiazinyl systems as cap groups and evaluated their activity in vitro and in vivo. Among them, compound 3 exhibited superior selective inhibitory activity against HDAC6 (IC50 = 5.1 nM, about 30-fold selectivity over HDAC1). The results of docking showed that compound 3 can interact well with the key amino acid residues of HDAC6. Compound 3 showed lower cytotoxicity (20 μM to SH-SY5Y cells, inhibition rate = 25.75%) and better neuroprotective activity against L-glutamate-induced SH-SY5Y cell injury model in vitro. Meanwhile, compound 3 exhibited weak cardiotoxicity (10 μM hERG inhibition rate = 17.35%) and possess good druggability properties. Especially, compound 3 could significantly reduce cerebral infarction from 49.87% to 32.18%, and similar with butylphthalide in MCAO model, indicating potential clinical application prospects for alleviating ischemic stroke-induced brain infarction.
Collapse
Affiliation(s)
- Bo Han
- Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai, China
- National Key Laboratory of Lead Druggability Research, Shanghai Institute of Pharmaceutical Industry Co. Ltd., Shanghai, China
| | - Xiu Gu
- Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai, China
- National Key Laboratory of Lead Druggability Research, Shanghai Institute of Pharmaceutical Industry Co. Ltd., Shanghai, China
| | - Mengfei Wang
- Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai, China
- National Key Laboratory of Lead Druggability Research, Shanghai Institute of Pharmaceutical Industry Co. Ltd., Shanghai, China
| | - Huihao Wang
- Center for Pharmacological Evaluation and Research, China State Institute of Pharmaceutical Industry, Shanghai, China
| | - Niubing Sun
- Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai, China
- National Key Laboratory of Lead Druggability Research, Shanghai Institute of Pharmaceutical Industry Co. Ltd., Shanghai, China
| | - Xuezhi Yang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qingwei Zhang
- Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai, China
- National Key Laboratory of Lead Druggability Research, Shanghai Institute of Pharmaceutical Industry Co. Ltd., Shanghai, China
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
19
|
Christianson DW. Chemical Versatility in Catalysis and Inhibition of the Class IIb Histone Deacetylases. Acc Chem Res 2024; 57:1135-1148. [PMID: 38530703 PMCID: PMC11021156 DOI: 10.1021/acs.accounts.3c00801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
The zinc-dependent histone deacetylases (HDACs 1-11) belong to the arginase-deacetylase superfamily of proteins, members of which share a common α/β fold and catalytic metal binding site. While several HDACs play a role in epigenetic regulation by catalyzing acetyllysine hydrolysis in histone proteins, the biological activities of HDACs extend far beyond histones. HDACs also deacetylate nonhistone proteins in the nucleus as well as the cytosol to regulate myriad cellular processes. The substrate pool is even more diverse in that certain HDACs can hydrolyze other covalent modifications. For example, HDAC6 is also a lysine decrotonylase, and HDAC11 is a lysine-fatty acid deacylase. Surprisingly, HDAC10 is not a lysine deacetylase but instead is a polyamine deacetylase. Thus, the HDACs are biologically and chemically versatile catalysts as they regulate the function of diverse protein and nonprotein substrates throughout the cell.Owing to their critical regulatory functions, HDACs serve as prominent targets for drug design. At present, four HDAC inhibitors are FDA-approved for cancer chemotherapy. However, these inhibitors are active against multiple HDAC isozymes, and a lack of selectivity is thought to contribute to undesirable side effects. Current medicinal chemistry campaigns focus on the development of isozyme-selective inhibitors, and many such studies largely focus on HDAC6 and HDAC10. HDAC6 is a target for therapeutic intervention due to its cellular role as a tubulin deacetylase and tau deacetylase, and selective inhibitors are being studied in cancer chemotherapy and the treatment of peripheral neuropathy. Crystal structures of enzyme-inhibitor complexes reveal how various features of inhibitor design, such as zinc-coordinating groups, bifurcated capping groups, and aromatic fluorination patterns, contribute to affinity and isozyme selectivity. The polyamine deacetylase HDAC10 is also an emerging target for cancer chemotherapy. Crystal structures of intact substrates trapped in the HDAC10 active site reveal the molecular basis of strikingly narrow substrate specificity for N8-acetylspermidine hydrolysis. Active site features responsible for substrate specificity have been successfully exploited in the design of potent and selective inhibitors.In this Account, I review the structural chemistry and inhibition of HDACs, highlighting recent X-ray crystallographic and functional studies of HDAC6 and HDAC10 in my laboratory. These studies have yielded fascinating snapshots of catalysis as well as novel chemical transformations involving bound inhibitors. The zinc-bound water molecule in the HDAC active site is the catalytic nucleophile in the deacetylation reaction, but this activated water molecule can also react with inhibitor C═O or C═N groups to yield unanticipated reaction products that bind exceptionally tightly. Versatile active site chemistry unleashes the full inhibitory potential of such compounds, and X-ray crystallography allows us to view this chemistry in action.
Collapse
Affiliation(s)
- David W. Christianson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, 19104-6323, USA
| |
Collapse
|
20
|
Chen Y, Sun J, Hua T, Wang J, Cao R, Xu H, Chen L, Morisseau C, Zhang M, Shi Y, Han C, Zhuang J, Jing Y, Liu Z, Hammock BD, Chen G. Design and Synthesis of Dual-Targeting Inhibitors of sEH and HDAC6 for the Treatment of Neuropathic Pain and Lipopolysaccharide-Induced Mortality. J Med Chem 2024; 67:2095-2117. [PMID: 38236416 PMCID: PMC11308793 DOI: 10.1021/acs.jmedchem.3c02006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Epoxyeicosatrienoic acids with anti-inflammatory effects are inactivated by soluble epoxide hydrolase (sEH). Both sEH and histone deacetylase 6 (HDAC6) inhibitors are being developed as neuropathic pain relieving agents. Based on the structural similarity, we designed a new group of compounds with inhibition of both HDAC6 and sEH and obtained compound M9. M9 exhibits selective inhibition of HDAC6 over class I HDACs in cells. M9 shows good microsomal stability, moderate plasma protein binding rate, and oral bioavailability. M9 exhibited a strong analgesic effect in vivo, and its analgesic tolerance was better than gabapentin. M9 improved the survival time of mice treated with lipopolysaccharide (LPS) and reversed the levels of inflammatory factors induced by LPS in mouse plasma. M9 represents the first sEH/HDAC6 dual inhibitors with in vivo antineuropathic pain and anti-inflammation.
Collapse
Affiliation(s)
- Yuanguang Chen
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education,School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jianwen Sun
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education,School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Tong Hua
- Liaoning Key Laboratory of Targeting Drugs for Hematological Malignancies, Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jieru Wang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education,School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ruolin Cao
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education,School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Huashen Xu
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education,School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lu Chen
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education,School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Christophe Morisseau
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA 95616, USA
| | - Maoying Zhang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education,School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yajie Shi
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education,School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Chao Han
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education,School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Junning Zhuang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education,School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yongkui Jing
- Liaoning Key Laboratory of Targeting Drugs for Hematological Malignancies, Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhongbo Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Bruce D. Hammock
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA 95616, USA
| | - Guoliang Chen
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education,School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
21
|
Westlund KN, Montera M, Goins AE, Shilling MW, Afaghpour-Becklund M, Alles SR, Hui SE. Epigenetic HDAC5 Inhibitor Reverses Craniofacial Neuropathic Pain in Mice. THE JOURNAL OF PAIN 2024; 25:428-450. [PMID: 37777035 PMCID: PMC10842645 DOI: 10.1016/j.jpain.2023.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 09/13/2023] [Accepted: 09/21/2023] [Indexed: 10/02/2023]
Abstract
Identifying and resolving molecular complexities underlying chronic neuropathic pain is a significant challenge. Among the numerous classes of histone deacetylases, Class I (HDAC 1-3) and Class III (sirtuins) have been best studied in experimental pain models where inhibitor pre-treatments but not post-treatments abrogate the development of pain-related behaviors. Post-treatment here in week 3 with less well-studied Class IIa HDAC4/5 selective inhibitor LMK235 diminishes the trigeminal ganglia increases of HDAC5 RNA and protein in two chronic orofacial neuropathic pain models to levels measured in naïve mice at week 10 post-model induction. HDAC4 RNA reported in lower limb inflammatory pain models is not evident in the trigeminal models. Many other gene alterations persisting at week 10 in the trigeminal ganglia (TG) are restored to naïve levels in mice treated with LMK235. Important pain-related upregulated genes Hoxc8,b9,d8; P2rx4, Cckbr, growth hormone (Gh), and schlafen (Slfn4) are greatly reduced in LMK235-treated mice. Fold increase in axon regeneration/repair genes Sostdc1, TTr, and Folr1 after injury are doubled by LMK235 treatment. LMK235 reduces the excitability of trigeminal ganglia neurons in culture isolated from nerve injured mice compared to vehicle-treated controls, with no effect on neurons from naïve mice. Electrophysiological characterization profile includes a shift where ∼20% of the small neurons recorded under LMK235-treated conditions are high threshold, whereas none of the neurons under control conditions have high thresholds. LMK235 reverses long-standing mechanical and cold hypersensitivity in chronic trigeminal neuropathic pain models in males and females (5,10 mg/kg), preventing development of anxiety- and depression-like behaviors. PERSPECTIVE: Data here support HDAC5 as key epigenetic factor in chronic trigeminal neuropathic pain persistence, validated with the study of RNA alterations, TG neuronal excitability, and pain-related behaviors. HDAC5 inhibitor given in week 3 restores RNA balance at 10 weeks, while upregulation remains for response to wound healing and chronic inflammation RNAs.
Collapse
Affiliation(s)
- Karin N. Westlund
- Department of Anesthesiology & Critical Care Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131
| | - Marena Montera
- Department of Anesthesiology & Critical Care Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131
| | - Aleyah E. Goins
- Department of Anesthesiology & Critical Care Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131
| | - Mark W. Shilling
- Department of Anesthesiology & Critical Care Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131
| | - Mitra Afaghpour-Becklund
- Department of Anesthesiology & Critical Care Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131
| | - Sascha R.A. Alles
- Department of Anesthesiology & Critical Care Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131
| | - S. Elise Hui
- Department of Anesthesiology & Critical Care Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131
| |
Collapse
|
22
|
Xie S, Gao Z, Zhang J, Xing C, Dong Y, Wang L, Wang Z, Li Y, Li G, Han G, Gong T. Monoclonal Antibody Targeting CGRP Relieves Cisplatin-Induced Neuropathic Pain by Attenuating Neuroinflammation. Neurotox Res 2024; 42:8. [PMID: 38194189 DOI: 10.1007/s12640-023-00685-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/09/2023] [Accepted: 12/12/2023] [Indexed: 01/10/2024]
Abstract
Chemotherapy-induced neuropathic pain (CIPN) is a common side effect of antitumor chemotherapeutic agents. It describes a pathological state of pain related to the cumulative dosage of the drug, significantly limiting the efficacy of antitumor treatment. Sofas strategies alleviating CIPN still lack. Calcitonin gene-related peptide (CGRP) is a neuropeptide involved in many pathologic pains. In this study, we explored the effects of CGRP blocking on CIPN and potential mechanisms. Total dose of 20.7 mg/kg cisplatin was used to establish a CIPN mouse model. Mechanical and thermal hypersensitivity was measured using von Frey hairs and tail flick test. Western blot and immunofluorescence were utilized to evaluate the levels of CGRP and activated astrocytes in mouse spinal cord, respectively. In addition, real-time quantitative PCR (RT-qPCR) was used to detect the level of inflammatory cytokines such as IL-6, IL-1β, and NLRP3 in vitro and in vivo. There are markedly increased CGRP expression and astrocyte activation in the spinal cord of mice following cisplatin treatment. Pretreatment with a monoclonal antibody targeting CGRP (ZR8 mAb) effectively reduced cisplatin-induced mechanical hypersensitivity and thermal nociceptive sensitization and attenuated neuroinflammation as marked by downregulated expression of IL-6, IL-1β, and NLRP3 in the mice spinal cord and spleen. Lastly, ZR8 mAb does not interfere with the antitumor effects of cisplatin in tumor-bearing mice. Our findings indicate that neutralizing CGRP with monoclonal antibody could effectively alleviate CIPN by attenuating neuroinflammation. CGRP is a promising therapeutic target for CIPN.
Collapse
Affiliation(s)
- Shun Xie
- Navy Clinical College, The Fifth School of Clinical Medicine, Anhui Medical University, Hefei, Anhui Province, 230032, China
- Department of Thoracic Surgery, The Sixth Medical Center of Chinese, PLA General Hospital, Beijing, 100048, China
- Department of Neuroimmune and Antibody Engineering, Beijing Institute of Basic Medical Sciences, Beijing, 100048, China
| | - Zhenfang Gao
- Department of Neuroimmune and Antibody Engineering, Beijing Institute of Basic Medical Sciences, Beijing, 100048, China
| | - Jiale Zhang
- Department of Thoracic Surgery, The Sixth Medical Center of Chinese, PLA General Hospital, Beijing, 100048, China
| | - Cong Xing
- Department of Neuroimmune and Antibody Engineering, Beijing Institute of Basic Medical Sciences, Beijing, 100048, China
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, School of Medicine, Henan University, Kaifeng, 475004, China
| | - Yanxin Dong
- Department of Thoracic Surgery, The Sixth Medical Center of Chinese, PLA General Hospital, Beijing, 100048, China
| | - Lanyin Wang
- Department of Neuroimmune and Antibody Engineering, Beijing Institute of Basic Medical Sciences, Beijing, 100048, China
| | - Zhiding Wang
- Department of Neuroimmune and Antibody Engineering, Beijing Institute of Basic Medical Sciences, Beijing, 100048, China
| | - Yuxiang Li
- Department of Neuroimmune and Antibody Engineering, Beijing Institute of Basic Medical Sciences, Beijing, 100048, China
| | - Ge Li
- Department of Neuroimmune and Antibody Engineering, Beijing Institute of Basic Medical Sciences, Beijing, 100048, China
| | - Gencheng Han
- Department of Neuroimmune and Antibody Engineering, Beijing Institute of Basic Medical Sciences, Beijing, 100048, China.
| | - Taiqian Gong
- Navy Clinical College, The Fifth School of Clinical Medicine, Anhui Medical University, Hefei, Anhui Province, 230032, China.
- Department of Thoracic Surgery, The Sixth Medical Center of Chinese, PLA General Hospital, Beijing, 100048, China.
| |
Collapse
|
23
|
Arthur P, Kalvala AK, Surapaneni SK, Singh MS. Applications of Cannabinoids in Neuropathic Pain: An Updated Review. Crit Rev Ther Drug Carrier Syst 2024; 41:1-33. [PMID: 37824417 PMCID: PMC11228808 DOI: 10.1615/critrevtherdrugcarriersyst.2022038592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Neuropathic pain is experienced due to injury to the nerves, underlying disease conditions or toxicity induced by chemotherapeutics. Multiple factors can contribute to neuropathic pain such as central nervous system (CNS)-related autoimmune and metabolic disorders, nerve injury, multiple sclerosis and diabetes. Hence, development of pharmacological interventions to reduce the drawbacks of existing chemotherapeutics and counter neuropathic pain is an urgent unmet clinical need. Cannabinoid treatment has been reported to be beneficial for several disease conditions including neuropathic pain. Cannabinoids act by inhibiting the release of neurotransmitters from presynaptic nerve endings, modulating the excitation of postsynaptic neurons, activating descending inhibitory pain pathways, reducing neural inflammation and oxidative stress and also correcting autophagy defects. This review provides insights on the various preclinical and clinical therapeutic applications of cannabidiol (CBD), cannabigerol (CBG), and cannabinol (CBN) in various diseases and the ongoing clinical trials for the treatment of chronic and acute pain with cannabinoids. Pharmacological and genetic experimental strategies have well demonstrated the potential neuroprotective effects of cannabinoids and also elaborated their mechanism of action for the therapy of neuropathic pain.
Collapse
Affiliation(s)
- Peggy Arthur
- College of Pharmacy and Pharmaceutical Sciences, Florida Agricultural and Mechanical University, Tallahassee, FL 32307, USA
| | - Anil Kumar Kalvala
- College of Pharmacy and Pharmaceutical Sciences, Florida Agricultural and Mechanical University, Tallahassee, FL 32307, USA
| | - Sunil Kumar Surapaneni
- College of Pharmacy and Pharmaceutical Sciences, Florida Agricultural and Mechanical University, Tallahassee, FL 32307, USA
| | - Mandip Sachdeva Singh
- College of Pharmacy and Pharmaceutical Sciences, Florida Agricultural and Mechanical University, Tallahassee, FL 32307, USA
| |
Collapse
|
24
|
Cheng DW, Xu Y, Chen T, Zhen SQ, Meng W, Zhu HL, Liu L, Xie M, Zhen F. Emodin inhibits HDAC6 mediated NLRP3 signaling and relieves chronic inflammatory pain in mice. Exp Ther Med 2024; 27:44. [PMID: 38144917 PMCID: PMC10739165 DOI: 10.3892/etm.2023.12332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/28/2023] [Indexed: 12/26/2023] Open
Abstract
Chronic pain reduces the quality of life and ability to function of individuals suffering from it, making it a common public health problem. Neuroinflammation which is mediated by the Nod-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome activation in the spinal cord participates and modulates chronic pain. A chronic inflammatory pain mouse model was created in the current study by intraplantar injection of complete Freund's adjuvant (CFA) into C57BL/6J left foot of mice. Following CFA injection, the mice had enhanced pain sensitivities, decreased motor function, increased spinal inflammation and activated spinal astrocytes. Emodin (10 mg/kg) was administered intraperitoneally into the mice for 3 days. As a result, there were fewer spontaneous flinches, higher mechanical threshold values and greater latency to fall. Additionally, in the spinal cord, emodin administration reduced leukocyte infiltration level, downregulated protein level of IL-1β, lowered histone deacetylase (HDAC)6 and NLRP3 inflammasome activity and suppressed astrocytic activation. Emodin also binds to HDAC6 via four electrovalent bonds. In summary, emodin treatment blocked the HDAC6/NLRP3 inflammasome signaling, suppresses spinal inflammation and alleviates chronic inflammatory pain.
Collapse
Affiliation(s)
- Ding-Wen Cheng
- School of Pharmacy, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Yiwen Xu
- Department of Pharmacy, Xianning Central Hospital, First Affiliated Hospital of Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Tao Chen
- Department of Pharmacy, Xianning Central Hospital, First Affiliated Hospital of Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Shu-Qing Zhen
- Department of Pharmacy, Matang Hospital of Traditional Chinese Medicine, Xianning, Hubei 437100, P.R. China
| | - Wei Meng
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Hai-Li Zhu
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Ling Liu
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Min Xie
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Fangshou Zhen
- Department of Pharmacy, Matang Hospital of Traditional Chinese Medicine, Xianning, Hubei 437100, P.R. China
| |
Collapse
|
25
|
Boyken J, Lohrke J, Treu A, Neddens J, Jost G, Ulbrich HF, Balzer T, Frenzel T, Prokesch M, Thuss U, Pietsch H. Gadolinium Presence in Rat Skin: Assessment of Histopathologic Changes Associated with Small Fiber Neuropathy. Radiology 2024; 310:e231984. [PMID: 38226877 DOI: 10.1148/radiol.231984] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Background The presence of gadolinium traces in the skin after administration of gadolinium-based contrast agents (GBCAs) raised safety concerns regarding a potential association with small fiber neuropathy (SFN). Purpose To investigate signs of SFN in rat foot pads by quantification of the intraepidermal nerve fiber density (IENFD) after multiple GBCA administrations and to evaluate gadolinium concentration, chemical species, and clearance. Materials and Methods Fifty rats received eight intravenous injections of either gadodiamide, gadobutrol, gadoterate, gadoteridol (8 × 0.6 mmol per kilogram of body weight), or saline (1.2 mL per kilogram of body weight), within 2 weeks and were sacrificed 5 days or 5 weeks after the last injection. IENFD was determined with protein gene product (PGP) 9.5 immunofluorescent staining and blinded and automated image analysis. The gadolinium and GBCA concentrations were measured with inductively coupled plasma mass spectrometry (ICP-MS), laser ablation ICP-MS, and matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI). P values were calculated using linear contrasts of model analysis. Results The IENFD (measured as geometric mean [SD] and in number of nerve fibers per millimeter of epidermis) was not significantly altered after 5 days (saline, 8.4 [1.1]; gadobutrol, 9.7 [1.2]; gadoterate, 9.2 [1.2]; gadoteridol, 9.9 [1.3]; gadodiamide, 10.5 [1.2]) or 5 weeks (saline, 19.7 [1.4]; gadobutrol, 16.4 [1.6]; gadoterate, 14.3 [1.6]; gadoteridol, 22.2 [1.8]; gadodiamide, 17.9 [1.4]). Gadolinium skin concentrations were highest for gadodiamide after 5 days (16.0 nmol/g [1.1]) and 5 weeks (10.6 nmol/g [1.2], -33%). Macrocyclic agents were lower at 5 days (gadoteridol, 2.6 nmol/g [1.2]; gadobutrol, 2.7 nmol/g [1.1]; and gadoterate, 2.3 nmol/g [1.2]) and efficiently cleared after 5 weeks (gadoteridol, -95%; gadobutrol and gadoterate, -96%). The distribution of gadolinium and IENF did not visually overlap. For macrocyclic agents, gadolinium was found in sweat glands and confirmed to be intact chelate. Conclusion There were no signs of SFN in rat foot pads using multiple dosing regimens at two time points after administration of GBCAs. Macrocyclic GBCAs exhibited lower levels of gadolinium in the skin and were effectively eliminated within 5 weeks compared with linear gadodiamide, and intact macrocyclic GBCA was detected in sweat glands. © RSNA, 2024 Supplemental material is available for this article. See also the editorial by Clement in this issue.
Collapse
Affiliation(s)
- Janina Boyken
- From the Department of MR and CT Contrast Media Research (J.B., J.L., G.J., T.F., H.P.) and Research and Pre-Clinical Statistics Group (H.F.U.), Bayer, Müllerstraße 178, 13353 Berlin, Germany; Department of In Vivo/Radioanalytics (A.T.) and Department of Bioanalytics LC-MS 3 & MALDI (U.T.), Bayer, Wuppertal, Germany; Department of Neuropharmacology, QPS Austria, Grambach, Austria (J.N., M.P.); and External Corporate Employment Resources, Bayer U.S., Whippany, NJ (T.B.)
| | - Jessica Lohrke
- From the Department of MR and CT Contrast Media Research (J.B., J.L., G.J., T.F., H.P.) and Research and Pre-Clinical Statistics Group (H.F.U.), Bayer, Müllerstraße 178, 13353 Berlin, Germany; Department of In Vivo/Radioanalytics (A.T.) and Department of Bioanalytics LC-MS 3 & MALDI (U.T.), Bayer, Wuppertal, Germany; Department of Neuropharmacology, QPS Austria, Grambach, Austria (J.N., M.P.); and External Corporate Employment Resources, Bayer U.S., Whippany, NJ (T.B.)
| | - Axel Treu
- From the Department of MR and CT Contrast Media Research (J.B., J.L., G.J., T.F., H.P.) and Research and Pre-Clinical Statistics Group (H.F.U.), Bayer, Müllerstraße 178, 13353 Berlin, Germany; Department of In Vivo/Radioanalytics (A.T.) and Department of Bioanalytics LC-MS 3 & MALDI (U.T.), Bayer, Wuppertal, Germany; Department of Neuropharmacology, QPS Austria, Grambach, Austria (J.N., M.P.); and External Corporate Employment Resources, Bayer U.S., Whippany, NJ (T.B.)
| | - Joerg Neddens
- From the Department of MR and CT Contrast Media Research (J.B., J.L., G.J., T.F., H.P.) and Research and Pre-Clinical Statistics Group (H.F.U.), Bayer, Müllerstraße 178, 13353 Berlin, Germany; Department of In Vivo/Radioanalytics (A.T.) and Department of Bioanalytics LC-MS 3 & MALDI (U.T.), Bayer, Wuppertal, Germany; Department of Neuropharmacology, QPS Austria, Grambach, Austria (J.N., M.P.); and External Corporate Employment Resources, Bayer U.S., Whippany, NJ (T.B.)
| | - Gregor Jost
- From the Department of MR and CT Contrast Media Research (J.B., J.L., G.J., T.F., H.P.) and Research and Pre-Clinical Statistics Group (H.F.U.), Bayer, Müllerstraße 178, 13353 Berlin, Germany; Department of In Vivo/Radioanalytics (A.T.) and Department of Bioanalytics LC-MS 3 & MALDI (U.T.), Bayer, Wuppertal, Germany; Department of Neuropharmacology, QPS Austria, Grambach, Austria (J.N., M.P.); and External Corporate Employment Resources, Bayer U.S., Whippany, NJ (T.B.)
| | - Hannes-Friedrich Ulbrich
- From the Department of MR and CT Contrast Media Research (J.B., J.L., G.J., T.F., H.P.) and Research and Pre-Clinical Statistics Group (H.F.U.), Bayer, Müllerstraße 178, 13353 Berlin, Germany; Department of In Vivo/Radioanalytics (A.T.) and Department of Bioanalytics LC-MS 3 & MALDI (U.T.), Bayer, Wuppertal, Germany; Department of Neuropharmacology, QPS Austria, Grambach, Austria (J.N., M.P.); and External Corporate Employment Resources, Bayer U.S., Whippany, NJ (T.B.)
| | - Thomas Balzer
- From the Department of MR and CT Contrast Media Research (J.B., J.L., G.J., T.F., H.P.) and Research and Pre-Clinical Statistics Group (H.F.U.), Bayer, Müllerstraße 178, 13353 Berlin, Germany; Department of In Vivo/Radioanalytics (A.T.) and Department of Bioanalytics LC-MS 3 & MALDI (U.T.), Bayer, Wuppertal, Germany; Department of Neuropharmacology, QPS Austria, Grambach, Austria (J.N., M.P.); and External Corporate Employment Resources, Bayer U.S., Whippany, NJ (T.B.)
| | - Thomas Frenzel
- From the Department of MR and CT Contrast Media Research (J.B., J.L., G.J., T.F., H.P.) and Research and Pre-Clinical Statistics Group (H.F.U.), Bayer, Müllerstraße 178, 13353 Berlin, Germany; Department of In Vivo/Radioanalytics (A.T.) and Department of Bioanalytics LC-MS 3 & MALDI (U.T.), Bayer, Wuppertal, Germany; Department of Neuropharmacology, QPS Austria, Grambach, Austria (J.N., M.P.); and External Corporate Employment Resources, Bayer U.S., Whippany, NJ (T.B.)
| | - Manuela Prokesch
- From the Department of MR and CT Contrast Media Research (J.B., J.L., G.J., T.F., H.P.) and Research and Pre-Clinical Statistics Group (H.F.U.), Bayer, Müllerstraße 178, 13353 Berlin, Germany; Department of In Vivo/Radioanalytics (A.T.) and Department of Bioanalytics LC-MS 3 & MALDI (U.T.), Bayer, Wuppertal, Germany; Department of Neuropharmacology, QPS Austria, Grambach, Austria (J.N., M.P.); and External Corporate Employment Resources, Bayer U.S., Whippany, NJ (T.B.)
| | - Uwe Thuss
- From the Department of MR and CT Contrast Media Research (J.B., J.L., G.J., T.F., H.P.) and Research and Pre-Clinical Statistics Group (H.F.U.), Bayer, Müllerstraße 178, 13353 Berlin, Germany; Department of In Vivo/Radioanalytics (A.T.) and Department of Bioanalytics LC-MS 3 & MALDI (U.T.), Bayer, Wuppertal, Germany; Department of Neuropharmacology, QPS Austria, Grambach, Austria (J.N., M.P.); and External Corporate Employment Resources, Bayer U.S., Whippany, NJ (T.B.)
| | - Hubertus Pietsch
- From the Department of MR and CT Contrast Media Research (J.B., J.L., G.J., T.F., H.P.) and Research and Pre-Clinical Statistics Group (H.F.U.), Bayer, Müllerstraße 178, 13353 Berlin, Germany; Department of In Vivo/Radioanalytics (A.T.) and Department of Bioanalytics LC-MS 3 & MALDI (U.T.), Bayer, Wuppertal, Germany; Department of Neuropharmacology, QPS Austria, Grambach, Austria (J.N., M.P.); and External Corporate Employment Resources, Bayer U.S., Whippany, NJ (T.B.)
| |
Collapse
|
26
|
Hu YD, Wang ZD, Yue YF, Li D, Zhen SQ, Ding JQ, Meng W, Zhu HL, Xie M, Liu L. Inhibition of HDAC6 alleviates cancer‑induced bone pain by reducing the activation of NLRP3 inflammasome. Int J Mol Med 2024; 53:4. [PMID: 37997785 PMCID: PMC10688768 DOI: 10.3892/ijmm.2023.5328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/30/2023] [Indexed: 11/25/2023] Open
Abstract
Cancer‑induced bone pain (CIBP) is characterized as moderate to severe pain that negatively affects the daily functional status and quality of life of patients. When cancer cells metastasize and grow in bone marrow, this activates neuroinflammation in the spinal cord, which plays a vital role in the generation and persistence of chronic pain. In the present study, a model of CIBP was constructed by inoculating of MRMT‑1 rat breast carcinoma cells into the medullary cavity of the tibia in male Sprague‑Dawley rats. Following two weeks of surgery, CIBP rats exhibited damaged bone structure, increased pain sensitivity and impaired motor coordination. Neuroinflammation was activated in the spinal cords of CIBP rats, presenting with extensive leukocyte filtration, upregulated cytokine levels and activated astrocytes. Histone deacetylase 6 (HDAC6) works as a therapeutic target for chronic pain. The intrathecal injection of the HDAC6 inhibitor tubastatin A (TSA) in the lumbar spinal cord resulted in decreased spinal inflammatory cytokine production, suppressed spinal astrocytes activation and reduced NOD‑like receptor pyrin domain containing 3 (NLRP3) inflammasome activity. Consequently, this effect alleviated spontaneous pain and mechanical hyperalgesia and recovered motor coordination in CIBP rats. It was demonstrated by immunoprecipitation assay that TSA treatment reduced the interaction between HDAC6 and NLRP3. Cell research on C6 rat glioma cells served to verify that TSA treatment reduced HDAC6 and NLRP3 expression. In summary, the findings of present study indicated that TSA treatment alleviated cancer‑induced bone pain through the inhibition of HDAC6/NLRP3 inflammasome signaling in the spinal cord.
Collapse
Affiliation(s)
- Yin-Di Hu
- School of Pharmacy, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Zhao-Di Wang
- School of Pharmacy, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Yuan-Fen Yue
- Xianning Central Hospital, First Affiliated Hospital of Hubei University of Science and Technology, Xianning, Hubei 437199, P.R. China
| | - Dai Li
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Shu-Qing Zhen
- Matang Hospital of Traditional Chinese Medicine, Xianning, Hubei 437000, P.R. China
| | - Jie-Qiong Ding
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Wei Meng
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Hai-Li Zhu
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Min Xie
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Ling Liu
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| |
Collapse
|
27
|
Michelson D, Chin WW, Dworkin RH, Freeman R, Herrmann DN, Mazitschek R, Pop-Busui R, Shaibani A, Vornov J, Jones M, Jarpe M, Hader B, Viera T, Hylan M, Kachmar T, Jones S. A randomized, double-blind, placebo-controlled study of histone deacetylase type 6 inhibition for the treatment of painful diabetic peripheral neuropathy. Pain Rep 2023; 8:e1114. [PMID: 37899940 PMCID: PMC10611336 DOI: 10.1097/pr9.0000000000001114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/28/2023] [Accepted: 09/01/2023] [Indexed: 10/31/2023] Open
Abstract
Introduction Current treatments for painful diabetic peripheral neuropathy (DPN) are insufficiently effective for many individuals and do not treat nonpain signs and symptoms. The enzyme histone deacetylase type 6 (HDAC6) may play a role in the pathophysiology of painful DPN, and inhibition of HDAC6 has been proposed as a potential treatment. Objectives To assess the efficacy and safety of the novel HDAC6 inhibitor ricolinostat for the treatment of painful diabetic peripheral neuropathy. Methods We conducted a 12-week randomized, double-blind, placebo-controlled phase 2 study of the efficacy of ricolinostat, a novel selective HDAC6 inhibitor, in 282 individuals with painful DPN. The primary outcome was the change in the patient-reported pain using a daily diary, and a key secondary outcome was severity of nonpain neuropathic signs using the Utah Early Neuropathy Scale (UENS) score. Results At the 12-week assessment, changes in average daily pain and UENS scores were not different between the ricolinostat and placebo groups. Conclusion These results do not support the use of the HDAC6 inhibitor ricolinostat as a treatment for neuropathic pain in DPN for periods up to 12 weeks.
Collapse
Affiliation(s)
| | | | | | - Roy Freeman
- Beth Israel Deaconess Medical Center, Harvard University, Boston, MA, USA
| | | | - Ralph Mazitschek
- Massachusetts General Hospital, Harvard University, Boston, MA, USA
| | - Rodica Pop-Busui
- Department of Internal Medicine, Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI, USA
| | | | - James Vornov
- Medpace, Inc. and Johns Hopkins School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | | - Tim Kachmar
- Regenacy Pharmaceuticals, Inc, Waltham, MA, USA
| | - Simon Jones
- Regenacy Pharmaceuticals, Inc, Waltham, MA, USA
| |
Collapse
|
28
|
Martínez-Martel I, Pol O. A Novel Therapy for Cisplatin-Induced Allodynia and Dysfunctional and Emotional Impairments in Male and Female Mice. Antioxidants (Basel) 2023; 12:2063. [PMID: 38136183 PMCID: PMC10741113 DOI: 10.3390/antiox12122063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Patients undergoing chemotherapy with cisplatin (CIS) develop neuropathy in addition to other symptoms such as, anxiety, depression, muscle wasting and body weight loss. This symptomatology greatly weakens patients and may even lead to adjournment of chemotherapy. The protecting actions of molecular hydrogen in many neurological illnesses have been described, but its effect on the functional and emotional deficiencies caused by CIS has not been assessed. In C57BL/6J male and female mice injected with CIS, we examined the impact of the prophylactic treatment with hydrogen-rich water (HRW) on: (i) the tactile and cold allodynia, (ii) the deficits of grip strength and weight loss, (iii) the anxiodepressive-like behaviors and (iv) the inflammatory and oxidative reactions incited by CIS in the dorsal root ganglia (DRG) and prefrontal cortex (PFC). The results demonstrate that the mechanical allodynia and the anxiodepressive-like comportment provoked by CIS were similarly manifested in both sexes, whereas the cold allodynia, grip strength deficits and body weight loss produced by this chemotherapeutic agent were greater in female mice. Nonetheless, the prophylactic treatment with HRW prevented the allodynia and the functional and emotional impairments resulting from CIS in both sexes. This treatment also inhibited the inflammatory and oxidative responses activated by CIS in the DRG and PFC in both sexes, which might explain the therapeutic actions of HRW in male and female mice. In conclusion, this study revealed the plausible use of HRW as a new therapy for the allodynia and physical and mental impairments linked with CIS and its possible mechanism of action.
Collapse
Affiliation(s)
- Ignacio Martínez-Martel
- Grup de Neurofarmacologia Molecular, Institut de Recerca Sant Pau, Sant Quintí 77-79, 08041 Barcelona, Spain
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Olga Pol
- Grup de Neurofarmacologia Molecular, Institut de Recerca Sant Pau, Sant Quintí 77-79, 08041 Barcelona, Spain
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| |
Collapse
|
29
|
Willemen HLDM, Santos Ribeiro PS, Broeks M, Meijer N, Versteeg S, Tiggeler A, de Boer TP, Małecki JM, Falnes PØ, Jans J, Eijkelkamp N. Inflammation-induced mitochondrial and metabolic disturbances in sensory neurons control the switch from acute to chronic pain. Cell Rep Med 2023; 4:101265. [PMID: 37944527 PMCID: PMC10694662 DOI: 10.1016/j.xcrm.2023.101265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 07/24/2023] [Accepted: 10/10/2023] [Indexed: 11/12/2023]
Abstract
Pain often persists in patients with an inflammatory disease, even when inflammation has subsided. The molecular mechanisms leading to this failure in pain resolution and the transition to chronic pain are poorly understood. Mitochondrial dysfunction in sensory neurons links to chronic pain, but its role in resolution of inflammatory pain is unclear. Transient inflammation causes neuronal plasticity, called hyperalgesic priming, which impairs resolution of pain induced by a subsequent inflammatory stimulus. We identify that hyperalgesic priming in mice increases the expression of a mitochondrial protein (ATPSc-KMT) and causes mitochondrial and metabolic disturbances in sensory neurons. Inhibition of mitochondrial respiration, knockdown of ATPSCKMT expression, or supplementation of the affected metabolite is sufficient to restore resolution of inflammatory pain and prevents chronic pain development. Thus, inflammation-induced mitochondrial-dependent disturbances in sensory neurons predispose to a failure in resolution of inflammatory pain and development of chronic pain.
Collapse
Affiliation(s)
- Hanneke L D M Willemen
- Center for Translational Immunology, Department of Immunology, University Medical Center Utrecht, Utrecht University, 3508 Utrecht, the Netherlands
| | - Patrícia Silva Santos Ribeiro
- Center for Translational Immunology, Department of Immunology, University Medical Center Utrecht, Utrecht University, 3508 Utrecht, the Netherlands
| | - Melissa Broeks
- Section Metabolic Diagnostics, Department of Genetics, University Medical Center Utrecht, Utrecht University, 3508 Utrecht, the Netherlands
| | - Nils Meijer
- Section Metabolic Diagnostics, Department of Genetics, University Medical Center Utrecht, Utrecht University, 3508 Utrecht, the Netherlands
| | - Sabine Versteeg
- Center for Translational Immunology, Department of Immunology, University Medical Center Utrecht, Utrecht University, 3508 Utrecht, the Netherlands
| | - Annefien Tiggeler
- Center for Translational Immunology, Department of Immunology, University Medical Center Utrecht, Utrecht University, 3508 Utrecht, the Netherlands
| | - Teun P de Boer
- Department of Medical Physiology, Division of Heart & Lungs, University Medical Center Utrecht, Yalelaan 50, 3584 Utrecht, the Netherlands
| | - Jędrzej M Małecki
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway; CRES-O - Centre for Embryology and Healthy Development, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Pål Ø Falnes
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway; CRES-O - Centre for Embryology and Healthy Development, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Judith Jans
- Section Metabolic Diagnostics, Department of Genetics, University Medical Center Utrecht, Utrecht University, 3508 Utrecht, the Netherlands
| | - Niels Eijkelkamp
- Center for Translational Immunology, Department of Immunology, University Medical Center Utrecht, Utrecht University, 3508 Utrecht, the Netherlands.
| |
Collapse
|
30
|
An X, Zhong C, Han B, Chen E, Zhu Q, Yang Y, Li R, Yang R, Zha D, Han Y. Lysophosphatidic acid exerts protective effects on HEI-OC1 cells against cytotoxicity of cisplatin by decreasing apoptosis, excessive autophagy, and accumulation of ROS. Cell Death Discov 2023; 9:415. [PMID: 37968255 PMCID: PMC10651903 DOI: 10.1038/s41420-023-01706-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 10/22/2023] [Accepted: 11/01/2023] [Indexed: 11/17/2023] Open
Abstract
Lysophosphatidic acid (LPA) is an active phospholipid signaling molecule that binds to six specific G protein-coupled receptors (LPA1-6) on the cell surface and exerts a variety of biological functions, including cell migration and proliferation, morphological changes, and anti-apoptosis. The earliest study from our group demonstrated that LPA treatment could restore cochlear F-actin depolymerization induced by noise exposure, reduce hair cell death, and thus protect hearing. However, whether LPA could protect against cisplatin-induced ototoxicity and which receptors play the major role remain unclear. To this end, we integrated the HEI-OC1 mouse cochlear hair cell line and zebrafish model, and found that cisplatin exposure induced a large amount of reactive oxygen species accumulation in HEI-OC1 cells, accompanied by mitochondrial damage, leading to apoptosis and autophagy. LPA treatment significantly attenuated autophagy and apoptosis in HEI-OC1 cells after cisplatin exposure. Further investigation revealed that all LPA receptors except LPA3 were expressed in HEI-OC1 cells, and the mRNA expression level of LPA1 receptor was significantly higher than that of other receptors. When LPA1 receptor was silenced, the protective effect of LPA was reduced and the proportion of apoptosis cells was increased, indicating that LPA-LPA1 plays an important role in protecting HEI-OC1 cells from cisplatin-induced apoptosis. In addition, the behavioral trajectory and in vivo fluorescence imaging results showed that cisplatin exposure caused zebrafish to move more actively, and the movement speed and distance were higher than those of the control and LPA groups, while LPA treatment reduced the movement behavior. Cisplatin caused hair cell death and loss in zebrafish lateral line, and LPA treatment significantly protected against hair cell death and loss. LPA has a protective effect on hair cells in vitro and in vivo against the cytotoxicity of cisplatin, and its mechanism may be related to reducing apoptosis, excessive autophagy and ROS accumulation.
Collapse
Affiliation(s)
- Xiaogang An
- Department of Otolaryngology, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi Province, China
- National Clinical Research Center for Otolaryngologic Diseases of Shaanxi sub center, Xi'an, 710032, Shaanxi Province, China
| | - Cuiping Zhong
- The 940th Hospital of Joint Logistics Support Force of People's Liberation Army, Lanzhou, 730050, Gansu Province, China
| | - Bang Han
- Department of Otolaryngology, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi Province, China
- National Clinical Research Center for Otolaryngologic Diseases of Shaanxi sub center, Xi'an, 710032, Shaanxi Province, China
| | - Erfang Chen
- Department of Otolaryngology, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi Province, China
- National Clinical Research Center for Otolaryngologic Diseases of Shaanxi sub center, Xi'an, 710032, Shaanxi Province, China
| | - Qingwen Zhu
- Department of Otolaryngology, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi Province, China
- National Clinical Research Center for Otolaryngologic Diseases of Shaanxi sub center, Xi'an, 710032, Shaanxi Province, China
| | - Yang Yang
- Department of Otolaryngology, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi Province, China
- National Clinical Research Center for Otolaryngologic Diseases of Shaanxi sub center, Xi'an, 710032, Shaanxi Province, China
| | - Rui Li
- Department of Otolaryngology, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi Province, China
- National Clinical Research Center for Otolaryngologic Diseases of Shaanxi sub center, Xi'an, 710032, Shaanxi Province, China
| | - Runqin Yang
- Department of Otolaryngology, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi Province, China
- National Clinical Research Center for Otolaryngologic Diseases of Shaanxi sub center, Xi'an, 710032, Shaanxi Province, China
| | - Dingjun Zha
- Department of Otolaryngology, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi Province, China.
- National Clinical Research Center for Otolaryngologic Diseases of Shaanxi sub center, Xi'an, 710032, Shaanxi Province, China.
| | - Yu Han
- Department of Otolaryngology, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi Province, China.
- National Clinical Research Center for Otolaryngologic Diseases of Shaanxi sub center, Xi'an, 710032, Shaanxi Province, China.
| |
Collapse
|
31
|
Sim J, O'Guin E, Monahan K, Sugimoto C, McLean SA, Albertorio-Sáez L, Zhao Y, Laumet S, Dagenais A, Bernard MP, Folger JK, Robison AJ, Linnstaedt SD, Laumet G. Interleukin-10-producing monocytes contribute to sex differences in pain resolution in mice and humans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.03.565129. [PMID: 37961295 PMCID: PMC10635095 DOI: 10.1101/2023.11.03.565129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Pain is closely associated with the immune system, which exhibits sexual dimorphism. For these reasons, neuro-immune interactions are suggested to drive sex differences in pain pathophysiology. However, our understanding of peripheral neuro-immune interactions on sex differences in pain resolution remains limited. Here, we have shown, in both a mouse model of inflammatory pain and in humans following traumatic pain, that males had higher levels of interleukin (IL)-10 than females, which were correlated with faster pain resolution. Following injury, we identified monocytes (CD11b+ Ly6C+ Ly6G-F4/80 mid ) as the primary source of IL-10, with IL-10-producing monocytes being more abundant in males than females. In a mouse model, neutralizing IL-10 signaling through antibodies, genetically ablating IL-10R1 in sensory neurons, or depleting monocytes with clodronate all impaired the resolution of pain hypersensitivity in both sexes. Furthermore, manipulating androgen levels in mice reversed the sexual dimorphism of pain resolution and the levels of IL-10-producing monocytes. These results highlight a novel role for androgen-driven peripheral IL-10-producing monocytes in the sexual dimorphism of pain resolution. These findings add to the growing concept that immune cells play a critical role in resolving pain and preventing the transition into chronic pain. Graphical abstract
Collapse
|
32
|
Badran MM, Abbas SH, Fujita M, Abdel-Aziz M. Harnessing pyrimidine as a building block for histone deacetylase inhibitors. Arch Pharm (Weinheim) 2023; 356:e2300208. [PMID: 37462396 DOI: 10.1002/ardp.202300208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/08/2023] [Accepted: 06/20/2023] [Indexed: 10/06/2023]
Abstract
Histone deacetylase (HDAC) inhibitors are well-established multifaceted bioactive agents against tumors and neurodegenerative disorders. Pyrimidine and its fused and substituted derivatives were employed as a surface recognition moiety of HDAC inhibitors. De facto, the literature was loaded with different success stories of pyrimidine-based HDAC inhibitors that garnered much interest. Provoked by our continuous interest in HDAC inhibitors, we summarized and elaborated on the successful harnessing of the pyrimidine scaffold in this regard. Furthermore, we dissect our perspective that may guide medicinal chemists for an effective future design of more active chemotherapeutic agents with potential clinical applications.
Collapse
Affiliation(s)
- Mostafa M Badran
- Department of Medicinal Chemistry, Faculty of Pharmacy, South Valley University, Qena, Egypt
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, Egypt
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Samar H Abbas
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Mikako Fujita
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Mohamed Abdel-Aziz
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, Egypt
| |
Collapse
|
33
|
Calogero AM, Basellini MJ, Isilgan HB, Longhena F, Bellucci A, Mazzetti S, Rolando C, Pezzoli G, Cappelletti G. Acetylated α-Tubulin and α-Synuclein: Physiological Interplay and Contribution to α-Synuclein Oligomerization. Int J Mol Sci 2023; 24:12287. [PMID: 37569662 PMCID: PMC10418364 DOI: 10.3390/ijms241512287] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Emerging evidence supports that altered α-tubulin acetylation occurs in Parkinson's disease (PD), a neurodegenerative disorder characterized by the deposition of α-synuclein fibrillary aggregates within Lewy bodies and nigrostriatal neuron degeneration. Nevertheless, studies addressing the interplay between α-tubulin acetylation and α-synuclein are lacking. Here, we investigated the relationship between α-synuclein and microtubules in primary midbrain murine neurons and the substantia nigra of post-mortem human brains. Taking advantage of immunofluorescence and Proximity Ligation Assay (PLA), a method allowing us to visualize protein-protein interactions in situ, combined with confocal and super-resolution microscopy, we found that α-synuclein and acetylated α-tubulin colocalized and were in close proximity. Next, we employed an α-synuclein overexpressing cellular model and tested the role of α-tubulin acetylation in α-synuclein oligomer formation. We used the α-tubulin deacetylase HDAC6 inhibitor Tubacin to modulate α-tubulin acetylation, and we evaluated the presence of α-synuclein oligomers by PLA. We found that the increase in acetylated α-tubulin significantly induced α-synuclein oligomerization. In conclusion, we unraveled the link between acetylated α-tubulin and α-synuclein and demonstrated that α-tubulin acetylation could trigger the early step of α-synuclein aggregation. These data suggest that the proper regulation of α-tubulin acetylation might be considered a therapeutic strategy to take on PD.
Collapse
Affiliation(s)
- Alessandra Maria Calogero
- Department of Biosciences, Università degli Studi di Milano, 20133 Milan, Italy; (M.J.B.); (H.B.I.); (S.M.); (C.R.)
- Fondazione Grigioni per il Morbo di Parkinson, 20125 Milan, Italy;
| | - Milo Jarno Basellini
- Department of Biosciences, Università degli Studi di Milano, 20133 Milan, Italy; (M.J.B.); (H.B.I.); (S.M.); (C.R.)
| | - Huseyin Berkcan Isilgan
- Department of Biosciences, Università degli Studi di Milano, 20133 Milan, Italy; (M.J.B.); (H.B.I.); (S.M.); (C.R.)
| | - Francesca Longhena
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (F.L.); (A.B.)
| | - Arianna Bellucci
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (F.L.); (A.B.)
| | - Samanta Mazzetti
- Department of Biosciences, Università degli Studi di Milano, 20133 Milan, Italy; (M.J.B.); (H.B.I.); (S.M.); (C.R.)
- Fondazione Grigioni per il Morbo di Parkinson, 20125 Milan, Italy;
| | - Chiara Rolando
- Department of Biosciences, Università degli Studi di Milano, 20133 Milan, Italy; (M.J.B.); (H.B.I.); (S.M.); (C.R.)
| | - Gianni Pezzoli
- Fondazione Grigioni per il Morbo di Parkinson, 20125 Milan, Italy;
- Parkinson Institute, ASST-Pini-CTO, 20126 Milan, Italy
| | - Graziella Cappelletti
- Department of Biosciences, Università degli Studi di Milano, 20133 Milan, Italy; (M.J.B.); (H.B.I.); (S.M.); (C.R.)
- Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, 20133 Milan, Italy
| |
Collapse
|
34
|
El-Botty R, Morriset L, Montaudon E, Tariq Z, Schnitzler A, Bacci M, Lorito N, Sourd L, Huguet L, Dahmani A, Painsec P, Derrien H, Vacher S, Masliah-Planchon J, Raynal V, Baulande S, Larcher T, Vincent-Salomon A, Dutertre G, Cottu P, Gentric G, Mechta-Grigoriou F, Hutton S, Driouch K, Bièche I, Morandi A, Marangoni E. Oxidative phosphorylation is a metabolic vulnerability of endocrine therapy and palbociclib resistant metastatic breast cancers. Nat Commun 2023; 14:4221. [PMID: 37452026 PMCID: PMC10349040 DOI: 10.1038/s41467-023-40022-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 07/06/2023] [Indexed: 07/18/2023] Open
Abstract
Resistance to endocrine treatments and CDK4/6 inhibitors is considered a near-inevitability in most patients with estrogen receptor positive breast cancers (ER + BC). By genomic and metabolomics analyses of patients' tumours, metastasis-derived patient-derived xenografts (PDX) and isogenic cell lines we demonstrate that a fraction of metastatic ER + BC is highly reliant on oxidative phosphorylation (OXPHOS). Treatment by the OXPHOS inhibitor IACS-010759 strongly inhibits tumour growth in multiple endocrine and palbociclib resistant PDX. Mutations in the PIK3CA/AKT1 genes are significantly associated with response to IACS-010759. At the metabolic level, in vivo response to IACS-010759 is associated with decreased levels of metabolites of the glutathione, glycogen and pentose phosphate pathways in treated tumours. In vitro, endocrine and palbociclib resistant cells show increased OXPHOS dependency and increased ROS levels upon IACS-010759 treatment. Finally, in ER + BC patients, high expression of OXPHOS associated genes predict poor prognosis. In conclusion, these results identify OXPHOS as a promising target for treatment resistant ER + BC patients.
Collapse
Affiliation(s)
- Rania El-Botty
- Laboratory of Preclinical Investigation, Translational Research Department, Institut Curie, PSL University, 26 rue d'Ulm, 75005, Paris, France
| | - Ludivine Morriset
- Laboratory of Preclinical Investigation, Translational Research Department, Institut Curie, PSL University, 26 rue d'Ulm, 75005, Paris, France
| | - Elodie Montaudon
- Laboratory of Preclinical Investigation, Translational Research Department, Institut Curie, PSL University, 26 rue d'Ulm, 75005, Paris, France
| | - Zakia Tariq
- Department of Genetics, Institut Curie, PSL University, 26 rue d'Ulm, 75005, Paris, France
| | - Anne Schnitzler
- Department of Genetics, Institut Curie, PSL University, 26 rue d'Ulm, 75005, Paris, France
| | - Marina Bacci
- Dept. of Experimental and Clinical Biomedical Sciences, Viale Morgagni, 50 - 50134, Florence, Italy
| | - Nicla Lorito
- Dept. of Experimental and Clinical Biomedical Sciences, Viale Morgagni, 50 - 50134, Florence, Italy
| | - Laura Sourd
- Laboratory of Preclinical Investigation, Translational Research Department, Institut Curie, PSL University, 26 rue d'Ulm, 75005, Paris, France
| | - Léa Huguet
- Laboratory of Preclinical Investigation, Translational Research Department, Institut Curie, PSL University, 26 rue d'Ulm, 75005, Paris, France
| | - Ahmed Dahmani
- Laboratory of Preclinical Investigation, Translational Research Department, Institut Curie, PSL University, 26 rue d'Ulm, 75005, Paris, France
| | - Pierre Painsec
- Laboratory of Preclinical Investigation, Translational Research Department, Institut Curie, PSL University, 26 rue d'Ulm, 75005, Paris, France
| | - Heloise Derrien
- Laboratory of Preclinical Investigation, Translational Research Department, Institut Curie, PSL University, 26 rue d'Ulm, 75005, Paris, France
| | - Sophie Vacher
- Department of Genetics, Institut Curie, PSL University, 26 rue d'Ulm, 75005, Paris, France
| | | | - Virginie Raynal
- ICGex - NGS platform, Institut Curie, PSL University, 26 rue d'Ulm, 75005, Paris, France
| | - Sylvain Baulande
- ICGex - NGS platform, Institut Curie, PSL University, 26 rue d'Ulm, 75005, Paris, France
| | - Thibaut Larcher
- INRA, APEX-PAnTher, Oniris, 44322, Rue de la Géraudière, Nantes, France
| | - Anne Vincent-Salomon
- Department of Pathology, Institut Curie, PSL University, 26 rue d'Ulm, 75005, Paris, France
| | - Guillaume Dutertre
- Department of Surgery, Institut Curie, PSL University, 26 rue d'Ulm, 75005, Paris, France
| | - Paul Cottu
- Department of Medical Oncology, Institut Curie, PSL University, 26 rue d'Ulm, 75005, Paris, France
| | - Géraldine Gentric
- "Stress and Cancer" Laboratory, Institut Curie - Inserm U830, PSL University, 26 rue d'Ulm, 75005, Paris, France
| | - Fatima Mechta-Grigoriou
- "Stress and Cancer" Laboratory, Institut Curie - Inserm U830, PSL University, 26 rue d'Ulm, 75005, Paris, France
| | - Scott Hutton
- Metabolon Inc., 617 Davis Drive, Suite 100, Morrisville, NC, 27560, USA
| | - Keltouma Driouch
- Department of Genetics, Institut Curie, PSL University, 26 rue d'Ulm, 75005, Paris, France
| | - Ivan Bièche
- Department of Genetics, Institut Curie, PSL University, 26 rue d'Ulm, 75005, Paris, France
- Paris City University, Inserm U1016, Faculty of Pharmaceutical and Biological Sciences, 75005, Paris, France
| | - Andrea Morandi
- Dept. of Experimental and Clinical Biomedical Sciences, Viale Morgagni, 50 - 50134, Florence, Italy
| | - Elisabetta Marangoni
- Laboratory of Preclinical Investigation, Translational Research Department, Institut Curie, PSL University, 26 rue d'Ulm, 75005, Paris, France.
| |
Collapse
|
35
|
Le K, Soth MJ, Cross JB, Liu G, Ray WJ, Ma J, Goodwani SG, Acton PJ, Buggia-Prevot V, Akkermans O, Barker J, Conner ML, Jiang Y, Liu Z, McEwan P, Warner-Schmidt J, Xu A, Zebisch M, Heijnen CJ, Abrahams B, Jones P. Discovery of IACS-52825, a Potent and Selective DLK Inhibitor for Treatment of Chemotherapy-Induced Peripheral Neuropathy. J Med Chem 2023. [PMID: 37436942 DOI: 10.1021/acs.jmedchem.3c00788] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a major unmet medical need with limited treatment options. Despite different mechanisms of action, diverse chemotherapeutics can cause CIPN through a converged pathway─an active axon degeneration program that engages the dual leucine zipper kinase (DLK). DLK is a neuronally enriched kinase upstream in the MAPK-JNK cascade, and while it is dormant under physiological conditions, DLK mediates a core mechanism for neuronal injury response under stress conditions, making it an attractive target for treatment of neuronal injury and neurodegenerative diseases. We have developed potent, selective, brain penetrant DLK inhibitors with excellent PK and activity in mouse models of CIPN. Lead compound IACS-52825 (22) showed strongly effective reversal of mechanical allodynia in a mouse model of CIPN and was advanced into preclinical development.
Collapse
Affiliation(s)
- Kang Le
- Institute for Applied Cancer Science (IACS), The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| | - Michael J Soth
- Institute for Applied Cancer Science (IACS), The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| | - Jason B Cross
- Institute for Applied Cancer Science (IACS), The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| | - Gang Liu
- Institute for Applied Cancer Science (IACS), The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| | - William J Ray
- Neurodegenerative Consortium (NDC), The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| | - Jiacheng Ma
- Neurodegenerative Consortium (NDC), The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| | - Sunil G Goodwani
- Neurodegenerative Consortium (NDC), The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| | - Paul J Acton
- Neurodegenerative Consortium (NDC), The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| | - Virginie Buggia-Prevot
- Neurodegenerative Consortium (NDC), The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| | | | | | - Michael L Conner
- Institute for Applied Cancer Science (IACS), The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| | - Yongying Jiang
- Institute for Applied Cancer Science (IACS), The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| | - Zhen Liu
- Institute for Applied Cancer Science (IACS), The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| | | | - Jennifer Warner-Schmidt
- Alexandria Center for Life Science, Magnolia Neurosciences Corporation, New York, New York 10016, United States
| | - Alan Xu
- Institute for Applied Cancer Science (IACS), The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| | | | - Cobi J Heijnen
- Laboratories of Neuroimmunology, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
- Department of Psychological Sciences, Rice University, Houston, Texas 77005, United States
| | - Brett Abrahams
- Alexandria Center for Life Science, Magnolia Neurosciences Corporation, New York, New York 10016, United States
| | - Philip Jones
- Institute for Applied Cancer Science (IACS), The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| |
Collapse
|
36
|
Becker G, Fialho MFP, Brum ES, Oliveira SM. Kinin B 2 Receptor Mediates Cisplatin-Induced Painful Peripheral Neuropathy by Intracellular Kinase Pathways and TRPA1 Channel Sensitisation. Pharmaceuticals (Basel) 2023; 16:959. [PMID: 37513871 PMCID: PMC10386204 DOI: 10.3390/ph16070959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/29/2023] [Accepted: 07/01/2023] [Indexed: 07/30/2023] Open
Abstract
Chemotherapy-induced peripheral neuropathy is a severe clinical problem frequently associated with cisplatin use. Although its pathophysiology is poorly understood, it is known that kinin receptors and the transient receptor potential ankyrin 1 (TRPA1) channel play a significant role in the peripheral neuropathy induced by cisplatin in rodents. However, the role of signalling pathways downstream from B2 kinin receptors activation and sensitisation of the TRPA1 channel remains unknown in this model. The cisplatin-induced neuropathy model caused mechanical and cold allodynia in male Swiss mice. Antagonists for kinin B2 and B1 receptors and the TRPA1 channel attenuated the painful parameters. Local sub-nociceptive doses of kinin B2 receptor (bradykinin) and TRPA1 channel (allyl isothiocyanate; AITC) agonists enhanced the painful parameters in cisplatin-treated mice, which their respective antagonists attenuated. Furthermore, we demonstrated the interaction between the kinin B2 receptor and the TRPA1 channel in cisplatin-induced peripheral neuropathy since phospholipase C (PLC) and protein kinase C epsilon (PKCε) inhibitors attenuated the increase in mechanical and cold allodynia evoked by bradykinin and AITC in cisplatin-treated mice. Therefore, regulating the activation of signalling pathways downstream from the kinin B2 receptors activation and TRPA1 channel sensitisation can mitigate the painful peripheral neuropathy decurrent of the oncology treatment with cisplatin.
Collapse
Affiliation(s)
- Gabriela Becker
- Laboratory of Neurotoxicity and Psychopharmacology, Federal University of Santa Maria, Santa Maria 97105-900, RS, Brazil
- Graduate Program in Biological Sciences, Toxicological Biochemistry, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria 97105-900, RS, Brazil
| | - Maria Fernanda Pessano Fialho
- Laboratory of Neurotoxicity and Psychopharmacology, Federal University of Santa Maria, Santa Maria 97105-900, RS, Brazil
- Graduate Program in Biological Sciences, Toxicological Biochemistry, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria 97105-900, RS, Brazil
| | - Evelyne Silva Brum
- Laboratory of Neurotoxicity and Psychopharmacology, Federal University of Santa Maria, Santa Maria 97105-900, RS, Brazil
- Graduate Program in Biological Sciences, Toxicological Biochemistry, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria 97105-900, RS, Brazil
| | - Sara Marchesan Oliveira
- Laboratory of Neurotoxicity and Psychopharmacology, Federal University of Santa Maria, Santa Maria 97105-900, RS, Brazil
- Graduate Program in Biological Sciences, Toxicological Biochemistry, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria 97105-900, RS, Brazil
| |
Collapse
|
37
|
Medicinal chemistry insights into non-hydroxamate HDAC6 selective inhibitors. Med Chem Res 2023. [DOI: 10.1007/s00044-022-02987-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
38
|
Sun K, Zhang H, Zhang T, Sun N, Hao J, Wang Z, Gao C. Spinal HDAC6 mediates nociceptive behaviors induced by chronic constriction injury via neuronal activation and neuroinflammation. Mol Pain 2023; 19:17448069231218352. [PMID: 37982151 PMCID: PMC10734332 DOI: 10.1177/17448069231218352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/23/2023] [Accepted: 11/10/2023] [Indexed: 11/21/2023] Open
Abstract
Neuropathic pain (NP) is often accompanied by psychiatric comorbidities and currently lacks effective treatment. Prior research has shown that HDAC6 plays a crucial role in pain sensitization, but the specific mechanisms remain unclear. HDAC6 inhibitors have been found to alleviate mechanical allodynia caused by inflammation and peripheral nerve damage. In this study, we investigated the cellular mechanisms of HDAC6 in the development and maintenance of neuropathic pain. Our findings indicate that HDAC6 expression in the spinal cord (SC) is upregulated in a time-dependent manner following chronic constriction injury (CCI). HDAC6 is primarily expressed in neurons and microglia in the spinal cord. CCI-induced HDAC6 production was abolished by intrathecal injection of a microglia inhibitor. ACY-1215, a specific HDAC6 inhibitor, significantly reduced CCI-induced mechanical allodynia, but not thermal hyperalgesia. ACY-1215 also inhibited neuron activation and suppressed CCI-induced pyroptosis and neuroinflammatory responses. In summary, our results suggest that HDAC6 contributes to the development and maintenance of NP through neuronal activation and neuroinflammation. HDAC6 may be a promising target for treating NP.
Collapse
Affiliation(s)
- Kai Sun
- Nanjing Medical University, Nanjing, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, China
- Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Hao Zhang
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, China
| | - Ting Zhang
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, China
- Department of Pain Management, Xuzhou Central Hospital, Xuzhou, China
| | - Nan Sun
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, China
| | - Jingru Hao
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, China
| | - Zhiping Wang
- Nanjing Medical University, Nanjing, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, China
- Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Can Gao
- Nanjing Medical University, Nanjing, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, China
- School of Life Sciences, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
39
|
Yap TA, Daver N, Mahendra M, Zhang J, Kamiya-Matsuoka C, Meric-Bernstam F, Kantarjian HM, Ravandi F, Collins ME, Francesco MED, Dumbrava EE, Fu S, Gao S, Gay JP, Gera S, Han J, Hong DS, Jabbour EJ, Ju Z, Karp DD, Lodi A, Molina JR, Baran N, Naing A, Ohanian M, Pant S, Pemmaraju N, Bose P, Piha-Paul SA, Rodon J, Salguero C, Sasaki K, Singh AK, Subbiah V, Tsimberidou AM, Xu QA, Yilmaz M, Zhang Q, Li Y, Bristow CA, Bhattacharjee MB, Tiziani S, Heffernan TP, Vellano CP, Jones P, Heijnen CJ, Kavelaars A, Marszalek JR, Konopleva M. Complex I inhibitor of oxidative phosphorylation in advanced solid tumors and acute myeloid leukemia: phase I trials. Nat Med 2023; 29:115-126. [PMID: 36658425 PMCID: PMC11975418 DOI: 10.1038/s41591-022-02103-8] [Citation(s) in RCA: 146] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 10/21/2022] [Indexed: 01/21/2023]
Abstract
Although targeting oxidative phosphorylation (OXPHOS) is a rational anticancer strategy, clinical benefit with OXPHOS inhibitors has yet to be achieved. Here we advanced IACS-010759, a highly potent and selective small-molecule complex I inhibitor, into two dose-escalation phase I trials in patients with relapsed/refractory acute myeloid leukemia (NCT02882321, n = 17) and advanced solid tumors (NCT03291938, n = 23). The primary endpoints were safety, tolerability, maximum tolerated dose and recommended phase 2 dose (RP2D) of IACS-010759. The PK, PD, and preliminary antitumor activities of IACS-010759 in patients were also evaluated as secondary endpoints in both clinical trials. IACS-010759 had a narrow therapeutic index with emergent dose-limiting toxicities, including elevated blood lactate and neurotoxicity, which obstructed efforts to maintain target exposure. Consequently no RP2D was established, only modest target inhibition and limited antitumor activity were observed at tolerated doses, and both trials were discontinued. Reverse translational studies in mice demonstrated that IACS-010759 induced behavioral and physiological changes indicative of peripheral neuropathy, which were minimized with the coadministration of a histone deacetylase 6 inhibitor. Additional studies are needed to elucidate the association between OXPHOS inhibition and neurotoxicity, and caution is warranted in the continued development of complex I inhibitors as antitumor agents.
Collapse
Affiliation(s)
- Timothy A Yap
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Investigational Cancer Therapeutics (Phase I Program), The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Naval Daver
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mikhila Mahendra
- Translational Research to AdvanCe Therapeutics and Innovation in ONcology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jixiang Zhang
- Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Carlos Kamiya-Matsuoka
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Funda Meric-Bernstam
- Department of Investigational Cancer Therapeutics (Phase I Program), The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hagop M Kantarjian
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Farhad Ravandi
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Meghan E Collins
- Department of Nutritional Sciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX, USA
- Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Maria Emilia Di Francesco
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ecaterina E Dumbrava
- Department of Investigational Cancer Therapeutics (Phase I Program), The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Siqing Fu
- Department of Investigational Cancer Therapeutics (Phase I Program), The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sisi Gao
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Translational Research to AdvanCe Therapeutics and Innovation in ONcology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jason P Gay
- Translational Research to AdvanCe Therapeutics and Innovation in ONcology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sonal Gera
- Translational Research to AdvanCe Therapeutics and Innovation in ONcology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jing Han
- Translational Research to AdvanCe Therapeutics and Innovation in ONcology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David S Hong
- Department of Investigational Cancer Therapeutics (Phase I Program), The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Elias J Jabbour
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zhenlin Ju
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Daniel D Karp
- Department of Investigational Cancer Therapeutics (Phase I Program), The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alessia Lodi
- Department of Nutritional Sciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX, USA
- Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Jennifer R Molina
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Natalia Baran
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Aung Naing
- Department of Investigational Cancer Therapeutics (Phase I Program), The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Maro Ohanian
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shubham Pant
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Naveen Pemmaraju
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Prithviraj Bose
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sarina A Piha-Paul
- Department of Investigational Cancer Therapeutics (Phase I Program), The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jordi Rodon
- Department of Investigational Cancer Therapeutics (Phase I Program), The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Carolina Salguero
- Department of Investigational Cancer Therapeutics (Phase I Program), The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Koji Sasaki
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anand K Singh
- Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vivek Subbiah
- Department of Investigational Cancer Therapeutics (Phase I Program), The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Apostolia M Tsimberidou
- Department of Investigational Cancer Therapeutics (Phase I Program), The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Quanyun A Xu
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Musa Yilmaz
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Qi Zhang
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yuan Li
- Department of Biostatistics and Data Science, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Christopher A Bristow
- Translational Research to AdvanCe Therapeutics and Innovation in ONcology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Meenakshi B Bhattacharjee
- Department of Pathology and Laboratory Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Stefano Tiziani
- Department of Nutritional Sciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX, USA
- Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
- Department of Oncology, Dell Medical School, Livestrong Cancer Institutes, The University of Texas at Austin, Austin, TX, USA
| | - Timothy P Heffernan
- Translational Research to AdvanCe Therapeutics and Innovation in ONcology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Christopher P Vellano
- Translational Research to AdvanCe Therapeutics and Innovation in ONcology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Philip Jones
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Cobi J Heijnen
- Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Psychological Sciences, Rice University, Houston, TX, USA
| | - Annemieke Kavelaars
- Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Joseph R Marszalek
- Translational Research to AdvanCe Therapeutics and Innovation in ONcology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Marina Konopleva
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
40
|
Meregalli C, Monza L, Jongen JLM. A mechanistic understanding of the relationship between skin innervation and chemotherapy-induced neuropathic pain. FRONTIERS IN PAIN RESEARCH (LAUSANNE, SWITZERLAND) 2022; 3:1066069. [PMID: 36582196 PMCID: PMC9792502 DOI: 10.3389/fpain.2022.1066069] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/24/2022] [Indexed: 12/14/2022]
Abstract
Neuropathic pain is a frequent complication of chemotherapy-induced peripheral neurotoxicity (CIPN). Chemotherapy-induced peripheral neuropathies may serve as a model to study mechanisms of neuropathic pain, since several other common causes of peripheral neuropathy like painful diabetic neuropathy may be due to both neuropathic and non-neuropathic pain mechanisms like ischemia and inflammation. Experimental studies are ideally suited to study changes in morphology, phenotype and electrophysiologic characteristics of primary afferent neurons that are affected by chemotherapy and to correlate these changes to behaviors reflective of evoked pain, mainly hyperalgesia and allodynia. However, hyperalgesia and allodynia may only represent one aspect of human pain, i.e., the sensory-discriminative component, while patients with CIPN often describe their pain using words like annoying, tiring and dreadful, which are affective-emotional descriptors that cannot be tested in experimental animals. To understand why some patients with CIPN develop neuropathic pain and others not, and which are the components of neuropathic pain that they are experiencing, experimental and clinical pain research should be combined. Emerging evidence suggests that changes in subsets of primary afferent nerve fibers may contribute to specific aspects of neuropathic pain in both preclinical models and in patients with CIPN. In addition, the role of cutaneous neuroimmune interactions is considered. Since obtaining dorsal root ganglia and peripheral nerves in patients is problematic, analyses performed on skin biopsies from preclinical models as well as patients provide an opportunity to study changes in primary afferent nerve fibers and to associate these changes to human pain. In addition, other biomarkers of small fiber damage in CIPN, like corneal confocal microscope and quantitative sensory testing, may be considered.
Collapse
Affiliation(s)
- Cristina Meregalli
- School of Medicine and Surgery, Experimental Neurology Unit and Milan Center for Neuroscience, University of Milano-Bicocca, Monza, Italy,Correspondence: Cristina Meregalli
| | - Laura Monza
- School of Medicine and Surgery, Experimental Neurology Unit and Milan Center for Neuroscience, University of Milano-Bicocca, Monza, Italy
| | - Joost L. M. Jongen
- Department of Neurology, Brain Tumor Center, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| |
Collapse
|
41
|
Cisplatin-induced changes in calcitonin gene-related peptide or TNF-α release in rat dorsal root ganglia in vitro model of neurotoxicity are not reverted by rosiglitazone. Neurotoxicology 2022; 93:211-221. [DOI: 10.1016/j.neuro.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 09/24/2022] [Accepted: 10/05/2022] [Indexed: 11/05/2022]
|
42
|
Virgen CG, Kelkar N, Tran A, Rosa CM, Cruz-Topete D, Amatya S, Cornett EM, Urits I, Viswanath O, Kaye AD. Pharmacological management of cancer pain: Novel therapeutics. Biomed Pharmacother 2022; 156:113871. [DOI: 10.1016/j.biopha.2022.113871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 12/24/2022] Open
|
43
|
Ruzic D, Ellinger B, Djokovic N, Santibanez JF, Gul S, Beljkas M, Djuric A, Ganesan A, Pavic A, Srdic-Rajic T, Petkovic M, Nikolic K. Discovery of 1-Benzhydryl-Piperazine-Based HDAC Inhibitors with Anti-Breast Cancer Activity: Synthesis, Molecular Modeling, In Vitro and In Vivo Biological Evaluation. Pharmaceutics 2022; 14:pharmaceutics14122600. [PMID: 36559094 PMCID: PMC9785542 DOI: 10.3390/pharmaceutics14122600] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Isoform-selective histone deacetylase (HDAC) inhibition is promoted as a rational strategy to develop safer anti-cancer drugs compared to non-selective HDAC inhibitors. Despite this presumed benefit, considerably more non-selective HDAC inhibitors have undergone clinical trials. In this report, we detail the design and discovery of potent HDAC inhibitors, with 1-benzhydryl piperazine as a surface recognition group, that differ in hydrocarbon linker. In vitro HDAC screening identified two selective HDAC6 inhibitors with nanomolar IC50 values, as well as two non-selective nanomolar HDAC inhibitors. Structure-based molecular modeling was employed to study the influence of linker chemistry of synthesized inhibitors on HDAC6 potency. The breast cancer cell lines (MDA-MB-231 and MCF-7) were used to evaluate compound-mediated in vitro anti-cancer, anti-migratory, and anti-invasive activities. Experiments on the zebrafish MDA-MB-231 xenograft model revealed that a novel non-selective HDAC inhibitor with a seven-carbon-atom linker exhibits potent anti-tumor, anti-metastatic, and anti-angiogenic effects when tested at low micromolar concentrations.
Collapse
Affiliation(s)
- Dusan Ruzic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Bernhard Ellinger
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), 22525 Hamburg, Germany
- Fraunhofer Cluster of Excellence for Immune-Mediated Diseases (CIMD), 22525 Hamburg, Germany
| | - Nemanja Djokovic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Juan F. Santibanez
- Group for Molecular Oncology, Institute for Medical Research, University of Belgrade, Dr. Subotića 4, 11129 Belgrade, Serbia
- Centro Integrativo de Biología y Química Aplicada, Universidad Bernardo O’Higgins, Santiago 8370993, Chile
| | - Sheraz Gul
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), 22525 Hamburg, Germany
- Fraunhofer Cluster of Excellence for Immune-Mediated Diseases (CIMD), 22525 Hamburg, Germany
| | - Milan Beljkas
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Ana Djuric
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia
| | - Arasu Ganesan
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Aleksandar Pavic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11000 Belgrade, Serbia
| | - Tatjana Srdic-Rajic
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia
| | - Milos Petkovic
- Department of Organic Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia
- Correspondence: (M.P.); (K.N.)
| | - Katarina Nikolic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia
- Correspondence: (M.P.); (K.N.)
| |
Collapse
|
44
|
Dewaeles E, Carvalho K, Fellah S, Sim J, Boukrout N, Caillierez R, Ramakrishnan H, Van der Hauwaert C, Vijaya Shankara J, Martin N, Massri N, Launay A, Folger JK, de Schutter C, Larrue R, Loison I, Goujon M, Jung M, Le Gras S, Gomez-Murcia V, Faivre E, Lemaire J, Garat A, Beauval N, Maboudou P, Gnemmi V, Gibier JB, Buée L, Abbadie C, Glowacki F, Pottier N, Perrais M, Cunha RA, Annicotte JS, Laumet G, Blum D, Cauffiez C. Istradefylline protects from cisplatin-induced nephrotoxicity and peripheral neuropathy while preserving cisplatin antitumor effects. J Clin Invest 2022; 132:152924. [PMID: 36377661 PMCID: PMC9663157 DOI: 10.1172/jci152924] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Cisplatin is a potent chemotherapeutic drug that is widely used in the treatment of various solid cancers. However, its clinical effectiveness is strongly limited by frequent severe adverse effects, in particular nephrotoxicity and chemotherapy-induced peripheral neuropathy. Thus, there is an urgent medical need to identify novel strategies that limit cisplatin-induced toxicity. In the present study, we show that the FDA-approved adenosine A2A receptor antagonist istradefylline (KW6002) protected from cisplatin-induced nephrotoxicity and neuropathic pain in mice with or without tumors. Moreover, we also demonstrate that the antitumoral properties of cisplatin were not altered by istradefylline in tumor-bearing mice and could even be potentiated. Altogether, our results support the use of istradefylline as a valuable preventive approach for the clinical management of patients undergoing cisplatin treatment.
Collapse
Affiliation(s)
- Edmone Dewaeles
- University of Lille, INSERM, CNRS, CHU Lille, UMR9020-U1277, CANTHER, Cancer Heterogeneity, Plasticity and Resistance to Therapies, Lille, France.,University of Lille, INSERM, CHU Lille, UMR-S1172 LilNCog, Lille Neuroscience and Cognition, Lille, France
| | - Kévin Carvalho
- University of Lille, INSERM, CHU Lille, UMR-S1172 LilNCog, Lille Neuroscience and Cognition, Lille, France.,Alzheimer and Tauopathies, LabEx DISTALZ, Lille, France
| | - Sandy Fellah
- University of Lille, INSERM, CNRS, CHU Lille, UMR9020-U1277, CANTHER, Cancer Heterogeneity, Plasticity and Resistance to Therapies, Lille, France
| | - Jaewon Sim
- Department of Physiology, Michigan State University, East Lansing, Michigan, USA.,Cell and Molecular Biology Graduate program, Michigan State University, East Lansing, Michigan, USA
| | - Nihad Boukrout
- University of Lille, INSERM, CNRS, CHU Lille, UMR9020-U1277, CANTHER, Cancer Heterogeneity, Plasticity and Resistance to Therapies, Lille, France
| | - Raphaelle Caillierez
- University of Lille, INSERM, CHU Lille, UMR-S1172 LilNCog, Lille Neuroscience and Cognition, Lille, France.,Alzheimer and Tauopathies, LabEx DISTALZ, Lille, France
| | | | - Cynthia Van der Hauwaert
- University of Lille, INSERM, CNRS, CHU Lille, UMR9020-U1277, CANTHER, Cancer Heterogeneity, Plasticity and Resistance to Therapies, Lille, France.,CHU Lille, Département de la Recherche en Santé, Lille, France
| | - Jhenkruthi Vijaya Shankara
- University of Lille, INSERM, CHU Lille, UMR-S1172 LilNCog, Lille Neuroscience and Cognition, Lille, France.,Alzheimer and Tauopathies, LabEx DISTALZ, Lille, France
| | - Nathalie Martin
- University of Lille, INSERM, CNRS, CHU Lille, UMR9020-U1277, CANTHER, Cancer Heterogeneity, Plasticity and Resistance to Therapies, Lille, France
| | - Noura Massri
- Department of Physiology, Michigan State University, East Lansing, Michigan, USA.,Cell and Molecular Biology Graduate program, Michigan State University, East Lansing, Michigan, USA
| | - Agathe Launay
- University of Lille, INSERM, CHU Lille, UMR-S1172 LilNCog, Lille Neuroscience and Cognition, Lille, France.,Alzheimer and Tauopathies, LabEx DISTALZ, Lille, France
| | - Joseph K. Folger
- Department of Physiology, Michigan State University, East Lansing, Michigan, USA
| | - Clémentine de Schutter
- University of Lille, INSERM, CNRS, CHU Lille, UMR9020-U1277, CANTHER, Cancer Heterogeneity, Plasticity and Resistance to Therapies, Lille, France
| | - Romain Larrue
- University of Lille, INSERM, CNRS, CHU Lille, UMR9020-U1277, CANTHER, Cancer Heterogeneity, Plasticity and Resistance to Therapies, Lille, France.,CHU Lille, Service de Toxicologie et Génopathies, Lille, France
| | - Ingrid Loison
- University of Lille, INSERM, CNRS, CHU Lille, UMR9020-U1277, CANTHER, Cancer Heterogeneity, Plasticity and Resistance to Therapies, Lille, France
| | - Marine Goujon
- University of Lille, INSERM, CNRS, CHU Lille, UMR9020-U1277, CANTHER, Cancer Heterogeneity, Plasticity and Resistance to Therapies, Lille, France
| | - Matthieu Jung
- University of Strasbourg, CNRS UMR 7104, INSERM U1258 – GenomEast Platform – IGBMC – Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
| | - Stéphanie Le Gras
- University of Strasbourg, CNRS UMR 7104, INSERM U1258 – GenomEast Platform – IGBMC – Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
| | - Victoria Gomez-Murcia
- University of Lille, INSERM, CHU Lille, UMR-S1172 LilNCog, Lille Neuroscience and Cognition, Lille, France.,Alzheimer and Tauopathies, LabEx DISTALZ, Lille, France
| | - Emilie Faivre
- University of Lille, INSERM, CHU Lille, UMR-S1172 LilNCog, Lille Neuroscience and Cognition, Lille, France.,Alzheimer and Tauopathies, LabEx DISTALZ, Lille, France
| | - Julie Lemaire
- University of Lille, INSERM, CNRS, CHU Lille, UMR9020-U1277, CANTHER, Cancer Heterogeneity, Plasticity and Resistance to Therapies, Lille, France
| | - Anne Garat
- CHU Lille, Service de Toxicologie et Génopathies, Lille, France.,University of Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483, IMPact de l’Environnement Chimique sur la Santé Humaine (IMPECS), Lille, France
| | - Nicolas Beauval
- CHU Lille, Service de Toxicologie et Génopathies, Lille, France.,University of Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483, IMPact de l’Environnement Chimique sur la Santé Humaine (IMPECS), Lille, France
| | - Patrice Maboudou
- CHU Lille, Service de Biochimie Automatisée, Protéines et Biologie Prédictive, Lille, France
| | - Viviane Gnemmi
- University of Lille, INSERM, CNRS, CHU Lille, UMR9020-U1277, CANTHER, Cancer Heterogeneity, Plasticity and Resistance to Therapies, Lille, France.,CHU Lille, Service d’Anatomopathologie, Lille, France
| | - Jean-Baptiste Gibier
- University of Lille, INSERM, CNRS, CHU Lille, UMR9020-U1277, CANTHER, Cancer Heterogeneity, Plasticity and Resistance to Therapies, Lille, France.,CHU Lille, Service d’Anatomopathologie, Lille, France
| | - Luc Buée
- University of Lille, INSERM, CHU Lille, UMR-S1172 LilNCog, Lille Neuroscience and Cognition, Lille, France.,Alzheimer and Tauopathies, LabEx DISTALZ, Lille, France
| | - Corinne Abbadie
- University of Lille, INSERM, CNRS, CHU Lille, UMR9020-U1277, CANTHER, Cancer Heterogeneity, Plasticity and Resistance to Therapies, Lille, France
| | - Francois Glowacki
- University of Lille, INSERM, CNRS, CHU Lille, UMR9020-U1277, CANTHER, Cancer Heterogeneity, Plasticity and Resistance to Therapies, Lille, France.,CHU Lille, Service de Néphrologie, Lille, France
| | - Nicolas Pottier
- University of Lille, INSERM, CNRS, CHU Lille, UMR9020-U1277, CANTHER, Cancer Heterogeneity, Plasticity and Resistance to Therapies, Lille, France.,CHU Lille, Service de Toxicologie et Génopathies, Lille, France
| | - Michael Perrais
- University of Lille, INSERM, CNRS, CHU Lille, UMR9020-U1277, CANTHER, Cancer Heterogeneity, Plasticity and Resistance to Therapies, Lille, France
| | - Rodrigo A. Cunha
- CNC, Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, Faculty of Medicine Building-Polo 1, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Jean-Sébastien Annicotte
- University of Lille, INSERM, CNRS, CHU Lille, Institut Pasteur de Lille, INSERM U1283-UMR8199 – EGID, Lille, France.,University of Lille, INSERM, CHU Lille, Institut Pasteur de Lille, RID-AGE-Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Lille, France
| | - Geoffroy Laumet
- Department of Physiology, Michigan State University, East Lansing, Michigan, USA
| | - David Blum
- University of Lille, INSERM, CHU Lille, UMR-S1172 LilNCog, Lille Neuroscience and Cognition, Lille, France.,Alzheimer and Tauopathies, LabEx DISTALZ, Lille, France
| | - Christelle Cauffiez
- University of Lille, INSERM, CNRS, CHU Lille, UMR9020-U1277, CANTHER, Cancer Heterogeneity, Plasticity and Resistance to Therapies, Lille, France
| |
Collapse
|
45
|
Zhang J, Junigan JM, Trinh R, Kavelaars A, Heijnen CJ, Grace PM. HDAC6 Inhibition Reverses Cisplatin-Induced Mechanical Hypersensitivity via Tonic Delta Opioid Receptor Signaling. J Neurosci 2022; 42:7862-7874. [PMID: 36096670 PMCID: PMC9617617 DOI: 10.1523/jneurosci.1182-22.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/20/2022] [Accepted: 09/01/2022] [Indexed: 11/30/2022] Open
Abstract
Peripheral neuropathic pain induced by the chemotherapeutic cisplatin can persist for months to years after treatment. Histone deacetylase 6 (HDAC6) inhibitors have therapeutic potential for cisplatin-induced neuropathic pain since they persistently reverse mechanical hypersensitivity and spontaneous pain in rodent models. Here, we investigated the mechanisms underlying reversal of mechanical hypersensitivity in male and female mice by a 2 week treatment with an HDAC6 inhibitor, administered 3 d after the last dose of cisplatin. Mechanical hypersensitivity in animals of both sexes treated with the HDAC6 inhibitor was temporarily reinstated by a single injection of the neutral opioid receptor antagonist 6β-naltrexol or the peripherally restricted opioid receptor antagonist naloxone methiodide. These results suggest that tonic peripheral opioid ligand-receptor signaling mediates reversal of cisplatin-induced mechanical hypersensitivity after treatment with an HDAC6 inhibitor. Pointing to a specific role for δ opioid receptors (DORs), Oprd1 expression was decreased in DRG neurons following cisplatin administration, but normalized after treatment with an HDAC6 inhibitor. Mechanical hypersensitivity was temporarily reinstated in both sexes by a single injection of the DOR antagonist naltrindole. Consistently, HDAC6 inhibition failed to reverse cisplatin-induced hypersensitivity when DORs were genetically deleted from advillin+ neurons. Mechanical hypersensitivity was also temporarily reinstated in both sexes by a single injection of a neutralizing antibody against the DOR ligand met-enkephalin. In conclusion, we reveal that treatment with an HDAC6 inhibitor induces tonic enkephalin-DOR signaling in peripheral sensory neurons to suppress mechanical hypersensitivity.SIGNIFICANCE STATEMENT Over one-fourth of cancer survivors suffer from intractable painful chemotherapy-induced peripheral neuropathy (CIPN), which can last for months to years after treatment ends. HDAC6 inhibition is a novel strategy to reverse CIPN without negatively interfering with tumor growth, but the mechanisms responsible for persistent reversal are not well understood. We built on evidence that the endogenous opioid system contributes to the spontaneous, apparent resolution of pain caused by nerve damage or inflammation, referred to as latent sensitization. We show that blocking the δ opioid receptor or its ligand enkephalin unmasks CIPN in mice treated with an HDAC6 inhibitor (latent sensitization). Our work provides insight into the mechanisms by which treatment with an HDAC6 inhibitor apparently reverses CIPN.
Collapse
Affiliation(s)
- Jixiang Zhang
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Jazzmine M Junigan
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Ronnie Trinh
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Annemieke Kavelaars
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Cobi J Heijnen
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Peter M Grace
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| |
Collapse
|
46
|
Silva Santos Ribeiro P, Willemen HLDM, Eijkelkamp N. Mitochondria and sensory processing in inflammatory and neuropathic pain. FRONTIERS IN PAIN RESEARCH 2022; 3:1013577. [PMID: 36324872 PMCID: PMC9619239 DOI: 10.3389/fpain.2022.1013577] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 09/26/2022] [Indexed: 01/24/2023] Open
Abstract
Rheumatic diseases, such as osteoarthritis and rheumatoid arthritis, affect over 750 million people worldwide and contribute to approximately 40% of chronic pain cases. Inflammation and tissue damage contribute to pain in rheumatic diseases, but pain often persists even when inflammation/damage is resolved. Mechanisms that cause this persistent pain are still unclear. Mitochondria are essential for a myriad of cellular processes and regulate neuronal functions. Mitochondrial dysfunction has been implicated in multiple neurological disorders, but its role in sensory processing and pain in rheumatic diseases is relatively unexplored. This review provides a comprehensive understanding of how mitochondrial dysfunction connects inflammation and damage-associated pathways to neuronal sensitization and persistent pain. To provide an overall framework on how mitochondria control pain, we explored recent evidence in inflammatory and neuropathic pain conditions. Mitochondria have intrinsic quality control mechanisms to prevent functional deficits and cellular damage. We will discuss the link between neuronal activity, mitochondrial dysfunction and chronic pain. Lastly, pharmacological strategies aimed at reestablishing mitochondrial functions or boosting mitochondrial dynamics as therapeutic interventions for chronic pain are discussed. The evidence presented in this review shows that mitochondria dysfunction may play a role in rheumatic pain. The dysfunction is not restricted to neuronal cells in the peripheral and central nervous system, but also includes blood cells and cells at the joint level that may affect pain pathways indirectly. Pre-clinical and clinical data suggest that modulation of mitochondrial functions can be used to attenuate or eliminate pain, which could be beneficial for multiple rheumatic diseases.
Collapse
Affiliation(s)
| | | | - Niels Eijkelkamp
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
47
|
Horndahl J, Svärd R, Berntsson P, Wingren C, Li J, Abdillahi SM, Ghosh B, Capodanno E, Chan J, Ripa L, Åstrand A, Sidhaye VK, Collins M. HDAC6 inhibitor ACY-1083 shows lung epithelial protective features in COPD. PLoS One 2022; 17:e0266310. [PMID: 36223404 PMCID: PMC9555642 DOI: 10.1371/journal.pone.0266310] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 09/26/2022] [Indexed: 11/07/2022] Open
Abstract
Airway epithelial damage is a common feature in respiratory diseases such as COPD and has been suggested to drive inflammation and progression of disease. These features manifest as remodeling and destruction of lung epithelial characteristics including loss of small airways which contributes to chronic airway inflammation. Histone deacetylase 6 (HDAC6) has been shown to play a role in epithelial function and dysregulation, such as in cilia disassembly, epithelial to mesenchymal transition (EMT) and oxidative stress responses, and has been implicated in several diseases. We thus used ACY-1083, an inhibitor with high selectivity for HDAC6, and characterized its effects on epithelial function including epithelial disruption, cytokine production, remodeling, mucociliary clearance and cell characteristics. Primary lung epithelial air-liquid interface cultures from COPD patients were used and the impacts of TNF, TGF-β, cigarette smoke and bacterial challenges on epithelial function in the presence and absence of ACY-1083 were tested. Each challenge increased the permeability of the epithelial barrier whilst ACY-1083 blocked this effect and even decreased permeability in the absence of challenge. TNF was also shown to increase production of cytokines and mucins, with ACY-1083 reducing the effect. We observed that COPD-relevant stimulations created damage to the epithelium as seen on immunohistochemistry sections and that treatment with ACY-1083 maintained an intact cell layer and preserved mucociliary function. Interestingly, there was no direct effect on ciliary beat frequency or tight junction proteins indicating other mechanisms for the protected epithelium. In summary, ACY-1083 shows protection of the respiratory epithelium during COPD-relevant challenges which indicates a future potential to restore epithelial structure and function to halt disease progression in clinical practice.
Collapse
Affiliation(s)
- Jenny Horndahl
- Bioscience COPD/IPF, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Rebecka Svärd
- Bioscience COPD/IPF, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Pia Berntsson
- Bioscience COPD/IPF, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Cecilia Wingren
- Bioscience COPD/IPF, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Jingjing Li
- Bioscience Asthma, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Suado M. Abdillahi
- Bioscience COPD/IPF, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Baishakhi Ghosh
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Erin Capodanno
- Department of Biology, Krieger School of Arts & Sciences, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Justin Chan
- Department of Public Health Studies, Krieger School of Arts & Sciences, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Lena Ripa
- Medicinal Chemistry, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Annika Åstrand
- Project Leader Department, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Venkataramana K. Sidhaye
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Mia Collins
- Bioscience COPD/IPF, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
- * E-mail:
| |
Collapse
|
48
|
Balogh M, Zhang J, Gaffney CM, Kalakuntla N, Nguyen NT, Trinh RT, Aguilar C, Pham HV, Milutinovic B, Nichols JM, Mahalingam R, Shepherd AJ. Sensory neuron dysfunction in orthotopic mouse models of colon cancer. J Neuroinflammation 2022; 19:204. [PMID: 35962398 PMCID: PMC9375288 DOI: 10.1186/s12974-022-02566-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/07/2022] [Indexed: 11/10/2022] Open
Abstract
Reports of neurological sequelae related to colon cancer are largely restricted to rare instances of paraneoplastic syndromes, due to autoimmune reactions. Systemic inflammation associated with tumor development influences sensory neuron function in other disease models, though the extent to which this occurs in colorectal cancer is unknown. We induced orthotopic colorectal cancer via orthotopic injection of two colorectal cancer cell lines (MC38 and CT26) in two different mouse strains (C57BL/6 and Balb/c, respectively). Behavioral tests of pain sensitivity and activity did not detect significant alterations in sensory sensitivity or diminished well-being throughout tumor development. However, immunohistochemistry revealed widespread reductions in intraepidermal nerve fiber density in the skin of tumor-bearing mice. Though loss of nerve fiber density was not associated with increased expression of cell injury markers in dorsal root ganglia, lumbar dorsal root ganglia neurons of tumor-bearing animals showed deficits in mitochondrial function. These neurons also had reduced cytosolic calcium levels in live-cell imaging and reduced spontaneous activity in multi-electrode array analysis. Bulk RNA sequencing of DRGs from tumor-bearing mice detected activation of gene expression pathways associated with elevated cytokine and chemokine signaling, including CXCL10. This is consistent with the detection of CXCL10 (and numerous other cytokines, chemokines and growth factors) in MC38 and CT26 cell-conditioned media, and the serum of tumor-bearing mice. Our study demonstrates in a pre-clinical setting that colon cancer is associated with latent sensory neuron dysfunction and implicates cytokine/chemokine signaling in this process. These findings may have implications for determining risk factors and treatment responsiveness related to neuropathy in colorectal cancer.
Collapse
Affiliation(s)
- Mihály Balogh
- The MD Anderson Pain Research Consortium and the Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Pharmaceutical Analysis, Groningen Research Institute of Pharmacy, University of Groningen, 9700 AD, Groningen, The Netherlands
| | - Jixiang Zhang
- The MD Anderson Pain Research Consortium and the Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Caitlyn M Gaffney
- The MD Anderson Pain Research Consortium and the Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Neha Kalakuntla
- The MD Anderson Pain Research Consortium and the Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nicholas T Nguyen
- The MD Anderson Pain Research Consortium and the Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Graduate School of Biomedical Sciences, UT Southwestern Medical Center, Dallas, TX, USA
| | - Ronnie T Trinh
- The MD Anderson Pain Research Consortium and the Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Clarissa Aguilar
- The MD Anderson Pain Research Consortium and the Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Neuroscience and Behavior Graduate Program, University of Massachusetts Amherst, Amherst, MA, USA
| | - Hoang Vu Pham
- The MD Anderson Pain Research Consortium and the Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bojana Milutinovic
- The MD Anderson Pain Research Consortium and the Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Neurosurgery, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - James M Nichols
- The MD Anderson Pain Research Consortium and the Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rajasekaran Mahalingam
- The MD Anderson Pain Research Consortium and the Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Andrew J Shepherd
- The MD Anderson Pain Research Consortium and the Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
49
|
Li J, Yu M, Fu S, Liu D, Tan Y. Role of Selective Histone Deacetylase 6 Inhibitor ACY-1215 in Cancer and Other Human Diseases. Front Pharmacol 2022; 13:907981. [PMID: 35652048 PMCID: PMC9149003 DOI: 10.3389/fphar.2022.907981] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/02/2022] [Indexed: 01/03/2023] Open
Abstract
The deacetylation process regulated by histone deacetylases (HDACs) plays an important role in human health and diseases. HDAC6 belongs to the Class IIb of HDACs family, which mainly modifies non-histone proteins located in the cytoplasm. HDAC6 plays a key role in tumors, neurological diseases, and inflammatory diseases. Therefore, targeting HDAC6 has become a promising treatment strategy in recent years. ACY-1215 is the first orally available highly selective HDAC6 inhibitor, and its efficacy and therapeutic effects are being continuously verified. This review summarizes the research progress of ACY-1215 in cancer and other human diseases, as well as the underlying mechanism, in order to guide the future clinical trials of ACY-1215 and more in-depth mechanism researches.
Collapse
Affiliation(s)
- Jianglei Li
- Department of Gastroenterology, The Second Xiangya Hospital of Central South University, Changsha, China
- Research Center of Digestive Disease, Central South University, Changsha, China
| | - Meihong Yu
- Department of Gastroenterology, The Second Xiangya Hospital of Central South University, Changsha, China
- Research Center of Digestive Disease, Central South University, Changsha, China
| | - Shifeng Fu
- Department of Gastroenterology, The Second Xiangya Hospital of Central South University, Changsha, China
- Research Center of Digestive Disease, Central South University, Changsha, China
| | - Deliang Liu
- Department of Gastroenterology, The Second Xiangya Hospital of Central South University, Changsha, China
- Research Center of Digestive Disease, Central South University, Changsha, China
| | - Yuyong Tan
- Department of Gastroenterology, The Second Xiangya Hospital of Central South University, Changsha, China
- Research Center of Digestive Disease, Central South University, Changsha, China
| |
Collapse
|
50
|
Xu T, Liu CC, Xin WJ. The Epigenetic Mechanisms Involved in Chronic Pain in Rodents: A Mini- Review. Curr Neuropharmacol 2022; 20:1011-1021. [PMID: 34561983 PMCID: PMC9886825 DOI: 10.2174/1570159x19666210924104757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/20/2021] [Accepted: 09/17/2021] [Indexed: 11/22/2022] Open
Abstract
Chronic pain is a common distressing neurological disorder and about 30% of the global population suffers from it. In addition to being highly prevalent, chronic pain causes a heavy economic and social burden. Although substantial progress has been achieved to dissect the underlying mechanism of chronic pain in the past few decades, the incidence and treatment of this neurological illness is yet not properly managed in clinical practice. While nerve injury-, chemotherapy- or inflammation-induced functional regulation of gene expression in the dorsal root ganglion and spinal cord are extensively reported to be involved in the pathogenic process of chronic pain, the specific mechanism of these altered transcriptional profile still remains unclear. Recent studies have shown that epigenetic mechanisms, including DNA/RNA methylation, histone modification and circular RNAs regulation, are involved in the occurrence and development of chronic pain. In this review, we provide a description of research on the role of epigenetic mechanism in chronic pain, summarize the latest clinical and preclinical advance in this field, and propose the potential directions for further research to elucidate the molecular mechanism underlying the pathogenesis of chronic pain.
Collapse
Affiliation(s)
- Ting Xu
- Guangdong Province Key Laboratory of Brain Function and Disease, Department of Physiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China; ,These authors contributed equally.
| | - Cui-Cui Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Rehabilitation Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China,These authors contributed equally.
| | - Wen-Jun Xin
- Guangdong Province Key Laboratory of Brain Function and Disease, Department of Physiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China; ,Address correspondence to this author at the Guangdong Province Key Laboratory of Brain Function and Disease, Department of Physiology, Zhongshan School of Medicine, Sun Yat-Sen University, 74 Zhongshan Rd. 2, Guangzhou, China; E-mail:
| |
Collapse
|