1
|
Stech K, Habibi B. Pain Related Quality of Life in Neurofibromatosis Type 1: A Narrative Review. Curr Pain Headache Rep 2024; 28:1177-1183. [PMID: 38935244 DOI: 10.1007/s11916-024-01283-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2024] [Indexed: 06/28/2024]
Abstract
PURPOSE OF REVIEW The purpose of this narrative review is to summarize pain symptomatology and mechanisms in neurofibromatosis type 1 (NF1), discuss the pain related quality of life impacts of NF1, and discuss the literature exploring interventions to improve quality of life. RECENT FINDINGS Chronic pain in NF1 is described as headache and non-headache pain. The literature describes mechanisms contributing to neuronal hyperexcitability in the setting of reduced neurofibromin as key contributors to pain in NF1. Pain in NF1 negatively impacts quality of life with pain interference, depression, anxiety, and cognitive functioning acting as important mediators. Mitogen-activated protein kinase (MEK) inhibitors are pharmacologic agents that interfere with pain mechanisms. Mind-body interventions improve coping skills to improve quality of life. Chronic pain in NF1 is heterogeneous with negative impacts on quality of life. New developments in pharmacological and non-pharmacological interventions offer promising approaches to pain management and quality of life improvement. Additional research is necessary to validate the use of MEK inhibitors and mind-body interventions in the treatment of NF1.
Collapse
Affiliation(s)
- Karina Stech
- Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA.
| | - Behnum Habibi
- Department of Physical Medicine & Rehabilitation, Temple University Hospital, Philadelphia, PA, USA
| |
Collapse
|
2
|
do Nascimento AM, Marques RB, Roldão AP, Rodrigues AM, Eslava RM, Dale CS, Reis EM, Schechtman D. Exploring protein-protein interactions for the development of new analgesics. Sci Signal 2024; 17:eadn4694. [PMID: 39378285 DOI: 10.1126/scisignal.adn4694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 06/13/2024] [Accepted: 09/16/2024] [Indexed: 10/10/2024]
Abstract
The development of new analgesics has been challenging. Candidate drugs often have limited clinical utility due to side effects that arise because many drug targets are involved in signaling pathways other than pain transduction. Here, we explored the potential of targeting protein-protein interactions (PPIs) that mediate pain signaling as an approach to developing drugs to treat chronic pain. We reviewed the approaches used to identify small molecules and peptide modulators of PPIs and their ability to decrease pain-like behaviors in rodent animal models. We analyzed data from rodent and human sensory nerve tissues to build associated signaling networks and assessed both validated and potential interactions and the structures of the interacting domains that could inform the design of synthetic peptides and small molecules. This resource identifies PPIs that could be explored for the development of new analgesics, particularly between scaffolding proteins and receptors for various growth factors and neurotransmitters, as well as ion channels and other enzymes. Targeting the adaptor function of CBL by blocking interactions between its proline-rich carboxyl-terminal domain and its SH3-domain-containing protein partners, such as GRB2, could disrupt endosomal signaling induced by pain-associated growth factors. This approach would leave intact its E3-ligase functions, which are mediated by other domains and are critical for other cellular functions. This potential of PPI modulators to be more selective may mitigate side effects and improve the clinical management of pain.
Collapse
Affiliation(s)
- Alexandre Martins do Nascimento
- Department of Biochemistry, Chemistry Institute, University of São Paulo, SP 05508-000, Brazil
- Laboratory of Neuromodulation of Experimental Pain (LaNed), Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, SP 05508-000, Brazil
| | - Rauni Borges Marques
- Department of Biochemistry, Chemistry Institute, University of São Paulo, SP 05508-000, Brazil
- Interunit Graduate Program in Bioinformatics, University of São Paulo, SP 05508-000, Brazil
| | - Allan Pradelli Roldão
- Department of Biochemistry, Chemistry Institute, University of São Paulo, SP 05508-000, Brazil
| | - Ana Maria Rodrigues
- Department of Biochemistry, Chemistry Institute, University of São Paulo, SP 05508-000, Brazil
| | - Rodrigo Mendes Eslava
- Department of Biochemistry, Chemistry Institute, University of São Paulo, SP 05508-000, Brazil
| | - Camila Squarzoni Dale
- Laboratory of Neuromodulation of Experimental Pain (LaNed), Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, SP 05508-000, Brazil
| | - Eduardo Moraes Reis
- Department of Biochemistry, Chemistry Institute, University of São Paulo, SP 05508-000, Brazil
| | - Deborah Schechtman
- Department of Biochemistry, Chemistry Institute, University of São Paulo, SP 05508-000, Brazil
| |
Collapse
|
3
|
Wang D, Sun L, Shen WT, Haggard A, Yu Y, Zhang JA, Fang RH, Gao W, Zhang L. Neuronal Membrane-Derived Nanodiscs for Broad-Spectrum Neurotoxin Detoxification. ACS NANO 2024; 18:25069-25080. [PMID: 39190873 DOI: 10.1021/acsnano.4c06708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Neurotoxins pose significant challenges in defense and healthcare due to their disruptive effects on nervous tissues. Their extreme potency and enormous structural diversity have hindered the development of effective antidotes. Motivated by the properties of cell membrane-derived nanodiscs, such as their ultrasmall size, disc shape, and inherent cell membrane functions, here, we develop neuronal membrane-derived nanodiscs (denoted "Neuron-NDs") as a countermeasure nanomedicine for broad-spectrum neurotoxin detoxification. We fabricate Neuron-NDs using the plasma membrane of human SH-SY5Y neurons and demonstrate their effectiveness in detoxifying tetrodotoxin (TTX) and botulinum toxin (BoNT), two model toxins with distinct mechanisms of action. Cell-based assays confirm the ability of Neuron-NDs to inhibit TTX-induced ion channel blockage and BoNT-mediated inhibition of synaptic vesicle recycling. In mouse models of TTX and BoNT intoxication, treatment with Neuron-NDs effectively improves survival rates in both therapeutic and preventative settings. Importantly, high-dose administration of Neuron-NDs shows no observable acute toxicity in mice, indicating its safety profile. Overall, our study highlights the facile fabrication of Neuron-NDs and their broad-spectrum detoxification capabilities, offering promising solutions for neurotoxin-related challenges in biodefense and therapeutic applications.
Collapse
Affiliation(s)
- Dan Wang
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, California 92093, United States
| | - Lei Sun
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, California 92093, United States
| | - Wei-Ting Shen
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, California 92093, United States
| | - Austin Haggard
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, California 92093, United States
| | - Yiyan Yu
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, California 92093, United States
| | - Jiayuan Alex Zhang
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, California 92093, United States
| | - Ronnie H Fang
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, California 92093, United States
| | - Weiwei Gao
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, California 92093, United States
| | - Liangfang Zhang
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
4
|
Church C, Fay CX, Kriukov E, Liu H, Cannon A, Baldwin LA, Crossman DK, Korf B, Wallace MR, Gross AM, Widemann BC, Kesterson RA, Baranov P, Wallis D. snRNA-seq of human cutaneous neurofibromas before and after selumetinib treatment implicates role of altered Schwann cell states, inter-cellular signaling, and extracellular matrix in treatment response. Acta Neuropathol Commun 2024; 12:102. [PMID: 38907342 PMCID: PMC11191180 DOI: 10.1186/s40478-024-01821-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/09/2024] [Indexed: 06/23/2024] Open
Abstract
Neurofibromatosis Type 1 (NF1) is caused by loss of function variants in the NF1 gene. Most patients with NF1 develop skin lesions called cutaneous neurofibromas (cNFs). Currently the only approved therapeutic for NF1 is selumetinib, a mitogen -activated protein kinase (MEK) inhibitor. The purpose of this study was to analyze the transcriptome of cNF tumors before and on selumetinib treatment to understand both tumor composition and response. We obtained biopsy sets of tumors both pre- and on- selumetinib treatment from the same individuals and were able to collect sets from four separate individuals. We sequenced mRNA from 5844 nuclei and identified 30,442 genes in the untreated group and sequenced 5701 nuclei and identified 30,127 genes in the selumetinib treated group. We identified and quantified distinct populations of cells (Schwann cells, fibroblasts, pericytes, myeloid cells, melanocytes, keratinocytes, and two populations of endothelial cells). While we anticipated that cell proportions might change with treatment, we did not identify any one cell population that changed significantly, likely due to an inherent level of variability between tumors. We also evaluated differential gene expression based on drug treatment in each cell type. Ingenuity pathway analysis (IPA) was also used to identify pathways that differ on treatment. As anticipated, we identified a significant decrease in ERK/MAPK signaling in cells including Schwann cells but most specifically in myeloid cells. Interestingly, there is a significant decrease in opioid signaling in myeloid and endothelial cells; this downward trend is also observed in Schwann cells and fibroblasts. Cell communication was assessed by RNA velocity, Scriabin, and CellChat analyses which indicated that Schwann cells and fibroblasts have dramatically altered cell states defined by specific gene expression signatures following treatment (RNA velocity). There are dramatic changes in receptor-ligand pairs following treatment (Scriabin), and robust intercellular signaling between virtually all cell types associated with extracellular matrix (ECM) pathways (Collagen, Laminin, Fibronectin, and Nectin) is downregulated after treatment. These response specific gene signatures and interaction pathways could provide clues for understanding treatment outcomes or inform future therapies.
Collapse
Affiliation(s)
- Cameron Church
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Christian X Fay
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Emil Kriukov
- Department of Ophthalmology, Harvard Medical School, Boston, MA, 02114, USA
- The Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, 02114, USA
| | - Hui Liu
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Ashley Cannon
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Lauren Ashley Baldwin
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - David K Crossman
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Bruce Korf
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Margaret R Wallace
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, USA
- University of Florida Health Cancer Center, Gainesville, FL, USA
- University of Florida Genetics Institute, Gainesville, FL, USA
| | - Andrea M Gross
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Brigitte C Widemann
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Robert A Kesterson
- Department of Cancer Precision Medicine, Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | - Petr Baranov
- Department of Ophthalmology, Harvard Medical School, Boston, MA, 02114, USA
- The Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, 02114, USA
| | - Deeann Wallis
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
5
|
Gomez K, Allen HN, Duran P, Loya-Lopez S, Calderon-Rivera A, Moutal A, Tang C, Nelson TS, Perez-Miller S, Khanna R. Targeted transcriptional upregulation of SENP1 by CRISPR activation enhances deSUMOylation pathways to elicit antinociception in the spinal nerve ligation model of neuropathic pain. Pain 2024; 165:866-883. [PMID: 37862053 PMCID: PMC11389604 DOI: 10.1097/j.pain.0000000000003080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/04/2023] [Indexed: 10/21/2023]
Abstract
ABSTRACT The voltage-gated sodium channel Na V 1.7 is an essential component of human pain signaling. Changes in Na V 1.7 trafficking are considered critical in the development of neuropathic pain. SUMOylation of collapsin response mediator protein 2 (CRMP2) regulates the membrane trafficking and function of Na V 1.7. Enhanced CRMP2 SUMOylation in neuropathic pain correlates with increased Na V 1.7 activity. Pharmacological and genetic interventions that interfere with CRMP2 SUMOylation in rodents with neuropathic pain have been shown to reverse mechanical allodynia. Sentrin or SUMO-specific proteases (SENPs) are vital for balancing SUMOylation and deSUMOylation of substrates. Overexpression of SENP1 and/or SENP2 in CRMP2-expressing cells results in increased deSUMOylation and decreased membrane expression and currents of Na V 1.7. Although SENP1 is present in the spinal cord and dorsal root ganglia, its role in regulating Na V 1.7 function and pain is not known. We hypothesized that favoring SENP1 expression can enhance CRMP2 deSUMOylation to modulate Na V 1.7 channels. In this study, we used a clustered regularly interspaced short palindromic repeats activation (CRISPRa) SENP1 lentivirus to overexpress SENP1 in dorsal root ganglia neurons. We found that SENP1 lentivirus reduced CRMP2 SUMOylation, Na V 1.7-CRMP2 interaction, and Na V 1.7 membrane expression. SENP1 overexpression decreased Na V 1.7 currents through clathrin-mediated endocytosis, directly linked to CRMP2 deSUMOylation. Moreover, enhancing SENP1 expression did not affect the activity of TRPV1 channels or voltage-gated calcium and potassium channels. Intrathecal injection of CRISPRa SENP1 lentivirus reversed mechanical allodynia in male and female rats with spinal nerve injury. These results provide evidence that the pain-regulating effects of SENP1 overexpression involve, in part, the modulation of Na V 1.7 channels through the indirect mechanism of CRMP2 deSUMOylation.
Collapse
Affiliation(s)
- Kimberly Gomez
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, United States
- NYU Pain Research Center, New York, NY, United States
| | - Heather N Allen
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, United States
- NYU Pain Research Center, New York, NY, United States
| | - Paz Duran
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, United States
- NYU Pain Research Center, New York, NY, United States
| | - Santiago Loya-Lopez
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, United States
- NYU Pain Research Center, New York, NY, United States
| | - Aida Calderon-Rivera
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, United States
- NYU Pain Research Center, New York, NY, United States
| | - Aubin Moutal
- School of Medicine, Department of Pharmacology and Physiology, Saint Louis University, Saint Louis, MO, United States
| | - Cheng Tang
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, United States
- NYU Pain Research Center, New York, NY, United States
| | - Tyler S Nelson
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, United States
- NYU Pain Research Center, New York, NY, United States
| | - Samantha Perez-Miller
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, United States
- NYU Pain Research Center, New York, NY, United States
| | - Rajesh Khanna
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, United States
- NYU Pain Research Center, New York, NY, United States
- Department of Neuroscience and Physiology and Neuroscience Institute, School of Medicine, New York University, New York, NY, United States
| |
Collapse
|
6
|
Loya-Lopez SI, Allen HN, Duran P, Calderon-Rivera A, Gomez K, Kumar U, Shields R, Zeng R, Dwivedi A, Saurabh S, Korczeniewska OA, Khanna R. Intranasal CRMP2-Ubc9 inhibitor regulates Na V 1.7 to alleviate trigeminal neuropathic pain. Pain 2024; 165:573-588. [PMID: 37751532 PMCID: PMC10922202 DOI: 10.1097/j.pain.0000000000003053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 07/25/2023] [Indexed: 09/28/2023]
Abstract
ABSTRACT Dysregulation of voltage-gated sodium Na V 1.7 channels in sensory neurons contributes to chronic pain conditions, including trigeminal neuropathic pain. We previously reported that chronic pain results in part from increased SUMOylation of collapsin response mediator protein 2 (CRMP2), leading to an increased CRMP2/Na V 1.7 interaction and increased functional activity of Na V 1.7. Targeting this feed-forward regulation, we developed compound 194 , which inhibits CRMP2 SUMOylation mediated by the SUMO-conjugating enzyme Ubc9. We further demonstrated that 194 effectively reduces the functional activity of Na V 1.7 channels in dorsal root ganglia neurons and alleviated inflammatory and neuropathic pain. Here, we used a comprehensive array of approaches, encompassing biochemical, pharmacological, genetic, electrophysiological, and behavioral analyses, to assess the functional implications of Na V 1.7 regulation by CRMP2 in trigeminal ganglia (TG) neurons. We confirmed the expression of Scn9a , Dpysl2 , and UBE2I within TG neurons. Furthermore, we found an interaction between CRMP2 and Na V 1.7, with CRMP2 being SUMOylated in these sensory ganglia. Disrupting CRMP2 SUMOylation with compound 194 uncoupled the CRMP2/Na V 1.7 interaction, impeded Na V 1.7 diffusion on the plasma membrane, and subsequently diminished Na V 1.7 activity. Compound 194 also led to a reduction in TG neuron excitability. Finally, when intranasally administered to rats with chronic constriction injury of the infraorbital nerve, 194 significantly decreased nociceptive behaviors. Collectively, our findings underscore the critical role of CRMP2 in regulating Na V 1.7 within TG neurons, emphasizing the importance of this indirect modulation in trigeminal neuropathic pain.
Collapse
Affiliation(s)
- Santiago I. Loya-Lopez
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, New York, United States of America
- NYU Pain Research Center, 433 First Avenue, New York, NY 10010, United States of America
| | - Heather N. Allen
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, New York, United States of America
- NYU Pain Research Center, 433 First Avenue, New York, NY 10010, United States of America
| | - Paz Duran
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, New York, United States of America
- NYU Pain Research Center, 433 First Avenue, New York, NY 10010, United States of America
| | - Aida Calderon-Rivera
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, New York, United States of America
- NYU Pain Research Center, 433 First Avenue, New York, NY 10010, United States of America
| | - Kimberly Gomez
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, New York, United States of America
- NYU Pain Research Center, 433 First Avenue, New York, NY 10010, United States of America
| | - Upasana Kumar
- Center for Orofacial Pain and Temporomandibular Disorders, Department of Diagnostic Sciences, Rutgers School of Dental Medicine, Newark, NJ 07101, United States of America
| | - Rory Shields
- Rutgers School of Graduate Studies, Newark Health Science Campus, Newark, NJ 07101, United States of America
| | - Rui Zeng
- Department of Chemistry, College of Arts and Sciences, New York University, 100 Washington Square East, New York, NY 10003, United States of America
| | - Akshat Dwivedi
- Department of Chemistry, College of Arts and Sciences, New York University, 100 Washington Square East, New York, NY 10003, United States of America
| | - Saumya Saurabh
- Department of Chemistry, College of Arts and Sciences, New York University, 100 Washington Square East, New York, NY 10003, United States of America
| | - Olga A. Korczeniewska
- Center for Orofacial Pain and Temporomandibular Disorders, Department of Diagnostic Sciences, Rutgers School of Dental Medicine, Newark, NJ 07101, United States of America
- Rutgers School of Graduate Studies, Newark Health Science Campus, Newark, NJ 07101, United States of America
| | - Rajesh Khanna
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, New York, United States of America
- NYU Pain Research Center, 433 First Avenue, New York, NY 10010, United States of America
- Department of Neuroscience and Physiology and Neuroscience Institute, School of Medicine, New York University, New York, NY, 10010, USA
| |
Collapse
|
7
|
Loya-Lopez SI, Allen HN, Duran P, Calderon-Rivera A, Gomez K, Kumar U, Shields R, Zeng R, Dwivedi A, Saurabh S, Korczeniewska OA, Khanna R. Intranasal CRMP2-Ubc9 Inhibitor Regulates Na V 1.7 to Alleviate Trigeminal Neuropathic Pain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.16.549195. [PMID: 37502910 PMCID: PMC10370107 DOI: 10.1101/2023.07.16.549195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Dysregulation of voltage-gated sodium Na V 1.7 channels in sensory neurons contributes to chronic pain conditions, including trigeminal neuropathic pain. We previously reported that chronic pain results in part from increased SUMOylation of collapsin response mediator protein 2 (CRMP2), leading to an increased CRMP2/Na V 1.7 interaction and increased functional activity of Na V 1.7. Targeting this feed-forward regulation, we developed compound 194 , which inhibits CRMP2 SUMOylation mediated by the SUMO-conjugating enzyme Ubc9. We further demonstrated that 194 effectively reduces the functional activity of Na V 1.7 channels in dorsal root ganglia neurons and alleviated inflammatory and neuropathic pain. Here, we employed a comprehensive array of investigative approaches, encompassing biochemical, pharmacological, genetic, electrophysiological, and behavioral analyses, to assess the functional implications of Na V 1.7 regulation by CRMP2 in trigeminal ganglia (TG) neurons. We confirmed the expression of Scn9a , Dpysl2 , and UBE2I within TG neurons. Furthermore, we found an interaction between CRMP2 and Na V 1.7, with CRMP2 being SUMOylated in these sensory ganglia. Disrupting CRMP2 SUMOylation with compound 194 uncoupled the CRMP2/Na V 1.7 interaction, impeded Na V 1.7 diffusion on the plasma membrane, and subsequently diminished Na V 1.7 activity. Compound 194 also led to a reduction in TG neuron excitability. Finally, when intranasally administered to rats with chronic constriction injury of the infraorbital nerve (CCI-ION), 194 significantly decreased nociceptive behaviors. Collectively, our findings underscore the critical role of CRMP2 in regulating Na V 1.7 within TG neurons, emphasizing the importance of this indirect modulation in trigeminal neuropathic pain.
Collapse
|
8
|
Báez-Flores J, Rodríguez-Martín M, Lacal J. The therapeutic potential of neurofibromin signaling pathways and binding partners. Commun Biol 2023; 6:436. [PMID: 37081086 PMCID: PMC10119308 DOI: 10.1038/s42003-023-04815-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 04/05/2023] [Indexed: 04/22/2023] Open
Abstract
Neurofibromin controls many cell processes, such as growth, learning, and memory. If neurofibromin is not working properly, it can lead to health problems, including issues with the nervous, skeletal, and cardiovascular systems and cancer. This review examines neurofibromin's binding partners, signaling pathways and potential therapeutic targets. In addition, it summarizes the different post-translational modifications that can affect neurofibromin's interactions with other molecules. It is essential to investigate the molecular mechanisms that underlie neurofibromin variants in order to provide with functional connections between neurofibromin and its associated proteins for possible therapeutic targets based on its biological function.
Collapse
Affiliation(s)
- Juan Báez-Flores
- Laboratory of Functional Genetics of Rare Diseases, Department of Microbiology and Genetics, University of Salamanca (USAL), 37007, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007, Salamanca, Spain
| | - Mario Rodríguez-Martín
- Laboratory of Functional Genetics of Rare Diseases, Department of Microbiology and Genetics, University of Salamanca (USAL), 37007, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007, Salamanca, Spain
| | - Jesus Lacal
- Laboratory of Functional Genetics of Rare Diseases, Department of Microbiology and Genetics, University of Salamanca (USAL), 37007, Salamanca, Spain.
- Institute of Biomedical Research of Salamanca (IBSAL), 37007, Salamanca, Spain.
| |
Collapse
|
9
|
Desprez F, Ung DC, Vourc’h P, Jeanne M, Laumonnier F. Contribution of the dihydropyrimidinase-like proteins family in synaptic physiology and in neurodevelopmental disorders. Front Neurosci 2023; 17:1154446. [PMID: 37144098 PMCID: PMC10153444 DOI: 10.3389/fnins.2023.1154446] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/15/2023] [Indexed: 05/06/2023] Open
Abstract
The dihydropyrimidinase-like (DPYSL) proteins, also designated as the collapsin response mediators (CRMP) proteins, constitute a family of five cytosolic phosphoproteins abundantly expressed in the developing nervous system but down-regulated in the adult mouse brain. The DPYSL proteins were initially identified as effectors of semaphorin 3A (Sema3A) signaling and consequently involved in regulation of growth cone collapse in young developing neurons. To date, it has been established that DPYSL proteins mediate signals for numerous intracellular/extracellular pathways and play major roles in variety of cellular process including cell migration, neurite extension, axonal guidance, dendritic spine development and synaptic plasticity through their phosphorylation status. The roles of DPYSL proteins at early stages of brain development have been described in the past years, particularly for DPYSL2 and DPYSL5 proteins. The recent characterization of pathogenic genetic variants in DPYSL2 and in DPYSL5 human genes associated with intellectual disability and brain malformations, such as agenesis of the corpus callosum and cerebellar dysplasia, highlighted the pivotal role of these actors in the fundamental processes of brain formation and organization. In this review, we sought to establish a detailed update on the knowledge regarding the functions of DPYSL genes and proteins in brain and to highlight their involvement in synaptic processing in later stages of neurodevelopment, as well as their particular contribution in human neurodevelopmental disorders (NDDs), such as autism spectrum disorders (ASD) and intellectual disability (ID).
Collapse
Affiliation(s)
| | - Dévina C. Ung
- UMR1253, iBrain, Inserm, University of Tours, Tours, France
| | - Patrick Vourc’h
- UMR1253, iBrain, Inserm, University of Tours, Tours, France
- Service de Génétique, Centre Hospitalier Régional Universitaire, Tours, France
- Laboratoire de Biochimie et de Biologie Moléculaire, Centre Hospitalier Régional Universitaire, Tours, France
| | - Médéric Jeanne
- UMR1253, iBrain, Inserm, University of Tours, Tours, France
- Service de Génétique, Centre Hospitalier Régional Universitaire, Tours, France
| | - Frédéric Laumonnier
- UMR1253, iBrain, Inserm, University of Tours, Tours, France
- Service de Génétique, Centre Hospitalier Régional Universitaire, Tours, France
- *Correspondence: Frédéric Laumonnier,
| |
Collapse
|
10
|
Loya-López SI, Duran P, Ran D, Calderon-Rivera A, Gomez K, Moutal A, Khanna R. Cell specific regulation of NaV1.7 activity and trafficking in rat nodose ganglia neurons. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2022; 12:100109. [PMID: 36531612 PMCID: PMC9755031 DOI: 10.1016/j.ynpai.2022.100109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 06/17/2023]
Abstract
The voltage-gated sodium NaV1.7 channel sets the threshold for electrogenesis. Mutations in the gene encoding human NaV1.7 (SCN9A) cause painful neuropathies or pain insensitivity. In dorsal root ganglion (DRG) neurons, activity and trafficking of NaV1.7 are regulated by the auxiliary collapsin response mediator protein 2 (CRMP2). Specifically, preventing addition of a small ubiquitin-like modifier (SUMO), by the E2 SUMO-conjugating enzyme Ubc9, at lysine-374 (K374) of CRMP2 reduces NaV1.7 channel trafficking and activity. We previously identified a small molecule, designated 194, that prevented CRMP2 SUMOylation by Ubc9 to reduce NaV1.7 surface expression and currents, leading to a reduction in spinal nociceptive transmission, and culminating in normalization of mechanical allodynia in models of neuropathic pain. In this study, we investigated whether NaV1.7 control via CRMP2-SUMOylation is conserved in nodose ganglion (NG) neurons. This study was motivated by our desire to develop 194 as a safe, non-opioid substitute for persistent pain, which led us to wonder how 194 would impact NaV1.7 in NG neurons, which are responsible for driving the cough reflex. We found functioning NaV1.7 channels in NG neurons; however, they were resistant to downregulation via either CRMP2 knockdown or pharmacological inhibition of CRMP2 SUMOylation by 194. CRMP2 SUMOylation and interaction with NaV1.7 was consered in NG neurons but the endocytic machinery was deficient in the endocytic adaptor protein Numb. Overexpression of Numb rescued CRMP2-dependent regulation on NaV1.7, rendering NG neurons sensitive to 194. Altogether, these data point at the existence of cell-specific mechanisms regulating NaV1.7 trafficking.
Collapse
Affiliation(s)
- Santiago I. Loya-López
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, USA
- NYU Pain Research Center, 433 First Avenue, New York, NY 10010, USA
| | - Paz Duran
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, USA
- NYU Pain Research Center, 433 First Avenue, New York, NY 10010, USA
| | - Dongzhi Ran
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ 85724, USA
| | - Aida Calderon-Rivera
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, USA
- NYU Pain Research Center, 433 First Avenue, New York, NY 10010, USA
| | - Kimberly Gomez
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, USA
- NYU Pain Research Center, 433 First Avenue, New York, NY 10010, USA
| | - Aubin Moutal
- School of Medicine, Department of Pharmacology and Physiology, Saint Louis University, Saint Louis, MO 63104, USA
| | - Rajesh Khanna
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, USA
- NYU Pain Research Center, 433 First Avenue, New York, NY 10010, USA
| |
Collapse
|
11
|
Managing Headache Disorders Associated with Tuberous Sclerosis and Neurofibromatosis. Curr Pain Headache Rep 2022; 26:281-288. [PMID: 35179724 DOI: 10.1007/s11916-022-01032-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2022] [Indexed: 01/31/2023]
Abstract
PURPOSE OF REVIEW Tuberous sclerosis complex (TSC) and neurofibromatosis (NF) are neurocutaneous disorders often encountered by neurologists in clinical practice. This article aims to familiarize adult and pediatric neurologists with common features of these disorders and headache specific evaluation and management. RECENT FINDINGS Non-malignant intracranial tumors in TSC include cortical tubers (glioneuronal hamartomas), subependymal nodules or subependymal giant-cell astrocytomas (SEGA). Headache disorders in TSC are largely secondary and can cause headaches due to increased intracranial pressure, mass effect, obstructive hydrocephalus, or hemorrhage. Neurosurgical intervention is typically required for management of large SEGAs; however, in patients with increased surgical risk, newer treatment modalities may be offered such as neoadjuvant therapy with an mTOR inhibitor (mTORi). Newer studies indicate headache disorders are more prevalent in neurofibromatosis type 1 (NF1). Primary headache disorders can include migraine and tension-type headache, while secondary headache disorders can be due to associated neoplasms such as optic pathway gliomas or brainstem gliomas, or less commonly vasculopathies such as moyamoya syndrome. Selumetinib is an oral, small molecule mitogen-activated protein kinase (MEK) agent with antineoplastic activity which is in ongoing trials for treatment of NF1-associated pediatric low-grade gliomas. NF1 stands out as having a higher association with primary headache disorders such as migraine. This association may be related to effects of mutation of the neurofibromin gene on pathways involved in pain and migraine genesis, however, warrants future study. Care should be taken when formulating a headache treatment plan to address comorbidities and avoid medications that may be contraindicated.
Collapse
|
12
|
Mo J, Moye SL, McKay RM, Le LQ. Neurofibromin and suppression of tumorigenesis: beyond the GAP. Oncogene 2022; 41:1235-1251. [PMID: 35066574 PMCID: PMC9063229 DOI: 10.1038/s41388-021-02156-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/01/2021] [Accepted: 12/13/2021] [Indexed: 12/15/2022]
Abstract
Neurofibromatosis type 1 (NF1) is an autosomal dominant genetic disease and one of the most common inherited tumor predisposition syndromes, affecting 1 in 3000 individuals worldwide. The NF1 gene encodes neurofibromin, a large protein with RAS GTP-ase activating (RAS-GAP) activity, and loss of NF1 results in increased RAS signaling. Neurofibromin contains many other domains, and there is considerable evidence that these domains play a role in some manifestations of NF1. Investigating the role of these domains as well as the various signaling pathways that neurofibromin regulates and interacts with will provide a better understanding of how neurofibromin acts to suppress tumor development and potentially open new therapeutic avenues. In this review, we discuss what is known about the structure of neurofibromin, its interactions with other proteins and signaling pathways, its role in development and differentiation, and its function as a tumor suppressor. Finally, we discuss the latest research on potential therapeutics for neurofibromin-deficient neoplasms.
Collapse
Affiliation(s)
- Juan Mo
- Department of Dermatology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9069, USA
| | - Stefanie L Moye
- Department of Dermatology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9069, USA
| | - Renee M McKay
- Department of Dermatology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9069, USA
| | - Lu Q Le
- Department of Dermatology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9069, USA.
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9069, USA.
- UTSW Comprehensive Neurofibromatosis Clinic, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9069, USA.
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9069, USA.
- O'Donnell Brain Institute, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9069, USA.
| |
Collapse
|
13
|
Boinon L, Yu J, Madura CL, Chefdeville A, Feinstein DL, Moutal A, Khanna R. Conditional knockout of CRMP2 in neurons, but not astrocytes, disrupts spinal nociceptive neurotransmission to control the initiation and maintenance of chronic neuropathic pain. Pain 2022; 163:e368-e381. [PMID: 35029600 PMCID: PMC8760468 DOI: 10.1097/j.pain.0000000000002344] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/13/2021] [Indexed: 02/03/2023]
Abstract
ABSTRACT Mechanistic studies principally focusing on primary afferent nociceptive neurons uncovered the upregulation of collapsin response mediator protein 2 (CRMP2)-a dual trafficking regulator of N-type voltage-gated calcium (Cav2.2) as well as Nav1.7 voltage-gated sodium channels-as a potential determinant of neuropathic pain. Whether CRMP2 contributes to aberrant excitatory synaptic transmission underlying neuropathic pain processing after peripheral nerve injury is unknown. Here, we interrogated CRMP2's role in synaptic transmission and in the initiation or maintenance of chronic pain. In rats, short-interfering RNA-mediated knockdown of CRMP2 in the spinal cord reduced the frequency and amplitude of spontaneous excitatory postsynaptic currents, but not spontaneous inhibitory postsynaptic currents, recorded from superficial dorsal horn neurons in acute spinal cord slices. No effect was observed on miniature excitatory postsynaptic currents and inhibitory postsynaptic currents. In a complementary targeted approach, conditional knockout of CRMP2 from mouse neurons using a calcium/calmodulin-dependent protein kinase II alpha promoter to drive Cre recombinase expression reduced the frequency and amplitude of spontaneous excitatory postsynaptic currents, but not miniature excitatory SCss. Conditional knockout of CRMP2 from mouse astrocytes using a glial fibrillary acidic protein promoter had no effect on synaptic transmission. Conditional knockout of CRMP2 in neurons reversed established mechanical allodynia induced by a spared nerve injury in both male and female mice. In addition, the development of spared nerve injury-induced allodynia was also prevented in these mice. Our data strongly suggest that CRMP2 is a key regulator of glutamatergic neurotransmission driving pain signaling and that it contributes to the transition of physiological pain into pathological pain.
Collapse
Affiliation(s)
- Lisa Boinon
- Department of Pharmacology, College of Medicine, the University of Arizona, Tucson, Arizona 85724 United States of America
| | - Jie Yu
- Department of Pharmacology, College of Medicine, the University of Arizona, Tucson, Arizona 85724 United States of America
| | - Cynthia L. Madura
- Department of Pharmacology, College of Medicine, the University of Arizona, Tucson, Arizona 85724 United States of America
| | - Aude Chefdeville
- Department of Pharmacology, College of Medicine, the University of Arizona, Tucson, Arizona 85724 United States of America
| | - Douglas L. Feinstein
- Department of Anesthesiology, University of Illinois, Chicago, Chicago, Illinois 60612, United States of America
- Jesse Brown VA Medical Center, Chicago, Illinois, 60612, United States of America
| | - Aubin Moutal
- Department of Pharmacology, College of Medicine, the University of Arizona, Tucson, Arizona 85724 United States of America
| | - Rajesh Khanna
- Department of Pharmacology, College of Medicine, the University of Arizona, Tucson, Arizona 85724 United States of America
- Comprehensive Pain and Addiction Center, The University of Arizona, Tucson, Arizona, 85724, United States of America
| |
Collapse
|
14
|
Identification of Constituents and Exploring the Mechanism for Toutongning Capsule in the Treatment of Migraine. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5528845. [PMID: 35075364 PMCID: PMC8783712 DOI: 10.1155/2022/5528845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 11/04/2021] [Accepted: 11/23/2021] [Indexed: 11/23/2022]
Abstract
Toutongning capsule (TTNC) is an effective and safe traditional Chinese medicine used in the treatment of migraine. In this present study, a multiscale strategy was used to systematically investigate the mechanism of TTNC in treating migraine, which contained UPLC-UESI-Q Exactive Focus network pharmacology and experimental verification. First, 88 compounds were identified by the UPLC-UESI-Q Exactive Focus method for TTNC. Then, the target fishing for these compounds was performed by means of an efficient drug similarity search tool. Third, a series of network pharmacology experiments were performed to predict the key compounds, targets, and pathways. They were protein-protein interaction (PPI), KEGG pathway enrichment analysis, and herbs-compounds-targets-pathways (H-C-T-P) network construction. As a result, 18 potential key compounds, 20 potential key targets, and 6 potential signaling pathways were obtained for TTNC in treatment with migraine. Finally, molecular docking and experimental were carried out to verify the key targets. In short, the results showed that TTNC is able to treat migraine through multiple components, multiple targets, and multiple pathways. This work may provide a theoretical basis for further research on the molecular mechanism of TTNC in the treatment of migraine.
Collapse
|
15
|
Li J, Stratton HJ, Lorca SA, Grace PM, Khanna R. Small molecule targeting NaV1.7 via inhibition of the CRMP2-Ubc9 interaction reduces pain in chronic constriction injury (CCI) rats. Channels (Austin) 2022; 16:1-8. [PMID: 34983286 PMCID: PMC8741281 DOI: 10.1080/19336950.2021.2023383] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The voltage-gated sodium channel isoform NaV1.7 is a critical player in the transmission of nociceptive information. This channel has been heavily implicated in human genetic pain disorders and is a validated pain target. However, targeting this channel directly has failed, and an indirect approach – disruption of interactions with accessory protein partners – has emerged as a viable alternative strategy. We recently reported that a small-molecule inhibitor of CRMP2 SUMOylation, compound 194, selectively reduces NaV1.7 currents in DRG neurons across species from mouse to human. This compound also reversed mechanical allodynia in a spared nerve injury and chemotherapy-induced model of neuropathic pain. Here, we show that oral administration of 194 reverses mechanical allodynia in a chronic constriction injury (CCI) model of neuropathic pain. Furthermore, we show that orally administered 194 reverses the increased latency to cross an aversive barrier in a mechanical conflict-avoidance task following CCI. These two findings, in the context of our previous report, support the conclusion that 194 is a robust inhibitor of NaV1.7 function with the ultimate effect of profoundly ameliorating mechanical allodynia associated with nerve injury. The fact that this was observed using both traditional, evoked measures of pain behavior as well as the more recently developed operator-independent mechanical conflict-avoidance assay increases confidence in the efficacy of 194-induced anti-nociception.
Collapse
Affiliation(s)
- Jiahe Li
- Laboratories of Neuroimmunology, Department of Symptom Research, The University of Texas, Houston, Texas, USA
| | - Harrison J Stratton
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, Arizona, USA
| | - Sabina A Lorca
- Laboratories of Neuroimmunology, Department of Symptom Research, The University of Texas, Houston, Texas, USA
| | - Peter M Grace
- Laboratories of Neuroimmunology, Department of Symptom Research, The University of Texas, Houston, Texas, USA
| | - Rajesh Khanna
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, Arizona, USA.,Comprehensive Pain and Addiction Center, The University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
16
|
Abstract
The chronification of pain can be attributed to changes in membrane receptors and channels underlying neuronal plasticity and signal transduction largely within nociceptive neurons that initiate and maintain pathological pain states. These proteins are subject to dynamic modification by posttranslational modifications, creating a code that controls protein function in time and space. Phosphorylation is an important posttranslational modification that affects ∼30% of proteins in vivo. Increased phosphorylation of various nociceptive ion channels and of their modulators underlies sensitization of different pain states. Cyclin-dependent kinases are proline-directed serine/threonine kinases that impact various biological and cellular systems. Cyclin-dependent kinase 5 (Cdk5), one member of this kinase family, and its activators p35 and p39 are expressed in spinal nerves, dorsal root ganglia, and the dorsal horn of the spinal cord. In neuropathic pain conditions, expression and/or activity of Cdk5 is increased, implicating Cdk5 in nociception. Experimental evidence suggests that Cdk5 is regulated through its own phosphorylation, through increasing p35's interaction with Cdk5, and through cleavage of p35 into p25. This narrative review discusses the molecular mechanisms of Cdk5-mediated regulation of target proteins involved in neuropathic pain. We focus on Cdk5 substrates that have been linked to nociceptive pathways, including channels (eg, transient receptor potential cation channel and voltage-gated calcium channel), proteins involved in neurotransmitter release (eg, synaptophysin and collapsin response mediator protein 2), and receptors (eg, glutamate, purinergic, and opioid). By altering the phosphoregulatory "set point" of proteins involved in pain signaling, Cdk5 thus appears to be an attractive target for treating neuropathic pain conditions.
Collapse
|
17
|
A modulator of the low-voltage-activated T-type calcium channel that reverses HIV glycoprotein 120-, paclitaxel-, and spinal nerve ligation-induced peripheral neuropathies. Pain 2021; 161:2551-2570. [PMID: 32541387 DOI: 10.1097/j.pain.0000000000001955] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The voltage-gated calcium channels CaV3.1-3.3 constitute the T-type subfamily, whose dysfunctions are associated with epilepsy, psychiatric disorders, and chronic pain. The unique properties of low-voltage-activation, faster inactivation, and slower deactivation of these channels support their role in modulation of cellular excitability and low-threshold firing. Thus, selective T-type calcium channel antagonists are highly sought after. Here, we explored Ugi-azide multicomponent reaction products to identify compounds targeting T-type calcium channel. Of the 46 compounds tested, an analog of benzimidazolonepiperidine-5bk (1-{1-[(R)-{1-[(1S)-1-phenylethyl]-1H-1,2,3,4-tetrazol-5-yl}(thiophen-3-yl)methyl]piperidin-4-yl}-2,3-dihydro-1H-1,3-benzodiazol-2-one) modulated depolarization-induced calcium influx in rat sensory neurons. Modulation of T-type calcium channels by 5bk was further confirmed in whole-cell patch clamp assays in dorsal root ganglion (DRG) neurons, where pharmacological isolation of T-type currents led to a time- and concentration-dependent regulation with a low micromolar IC50. Lack of an acute effect of 5bk argues against a direct action on T-type channels. Genetic knockdown revealed CaV3.2 to be the isoform preferentially modulated by 5bk. High voltage-gated calcium, as well as tetrodotoxin-sensitive and -resistant sodium, channels were unaffected by 5bk. 5bk inhibited spontaneous excitatory postsynaptic currents and depolarization-evoked release of calcitonin gene-related peptide from lumbar spinal cord slices. Notably, 5bk did not bind human mu, delta, or kappa opioid receptors. 5bk reversed mechanical allodynia in rat models of HIV-associated neuropathy, chemotherapy-induced peripheral neuropathy, and spinal nerve ligation-induced neuropathy, without effects on locomotion or anxiety. Thus, 5bk represents a novel T-type modulator that could be used to develop nonaddictive pain therapeutics.
Collapse
|
18
|
Studies on CRMP2 SUMOylation-deficient transgenic mice identify sex-specific Nav1.7 regulation in the pathogenesis of chronic neuropathic pain. Pain 2021; 161:2629-2651. [PMID: 32569093 DOI: 10.1097/j.pain.0000000000001951] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The sodium channel Nav1.7 is a master regulator of nociceptive input into the central nervous system. Mutations in this channel can result in painful conditions and produce insensitivity to pain. Despite being recognized as a "poster child" for nociceptive signaling and human pain, targeting Nav1.7 has not yet produced a clinical drug. Recent work has illuminated the Nav1.7 interactome, offering insights into the regulation of these channels and identifying potentially new druggable targets. Among the regulators of Nav1.7 is the cytosolic collapsin response mediator protein 2 (CRMP2). CRMP2, modified at lysine 374 (K374) by addition of a small ubiquitin-like modifier (SUMO), bound Nav1.7 to regulate its membrane localization and function. Corollary to this, preventing CRMP2 SUMOylation was sufficient to reverse mechanical allodynia in rats with neuropathic pain. Notably, loss of CRMP2 SUMOylation did not compromise other innate functions of CRMP2. To further elucidate the in vivo role of CRMP2 SUMOylation in pain, we generated CRMP2 K374A knock-in (CRMP2) mice in which Lys374 was replaced with Ala. CRMP2 mice had reduced Nav1.7 membrane localization and function in female, but not male, sensory neurons. Behavioral appraisal of CRMP2 mice demonstrated no changes in depressive or repetitive, compulsive-like behaviors and a decrease in noxious thermal sensitivity. No changes were observed in CRMP2 mice to inflammatory, acute, or visceral pain. By contrast, in a neuropathic model, CRMP2 mice failed to develop persistent mechanical allodynia. Our study suggests that CRMP2 SUMOylation-dependent control of peripheral Nav1.7 is a hallmark of chronic, but not physiological, neuropathic pain.
Collapse
|
19
|
Gomez K, Ran D, Madura CL, Moutal A, Khanna R. Non-SUMOylated CRMP2 decreases Na V1.7 currents via the endocytic proteins Numb, Nedd4-2 and Eps15. Mol Brain 2021; 14:20. [PMID: 33478555 PMCID: PMC7819318 DOI: 10.1186/s13041-020-00714-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/07/2020] [Indexed: 01/06/2023] Open
Abstract
Voltage-gated sodium channels are key players in neuronal excitability and pain signaling. Functional expression of the voltage-gated sodium channel NaV1.7 is under the control of SUMOylated collapsin response mediator protein 2 (CRMP2). When not SUMOylated, CRMP2 forms a complex with the endocytic proteins Numb, the epidermal growth factor receptor pathway substrate 15 (Eps15), and the E3 ubiquitin ligase Nedd4-2 to promote clathrin-mediated endocytosis of NaV1.7. We recently reported that CRMP2 SUMO-null knock-in (CRMP2K374A/K374A) female mice have reduced NaV1.7 membrane localization and currents in their sensory neurons. Preventing CRMP2 SUMOylation was sufficient to reverse mechanical allodynia in CRMP2K374A/K374A female mice with neuropathic pain. Here we report that inhibiting clathrin assembly in nerve-injured male CRMP2K374A/K374A mice precipitated mechanical allodynia in mice otherwise resistant to developing persistent pain. Furthermore, Numb, Nedd4-2 and Eps15 expression was not modified in basal conditions in the dorsal root ganglia (DRG) of male and female CRMP2K374A/K374A mice. Finally, silencing these proteins in DRG neurons from female CRMP2K374A/K374A mice, restored the loss of sodium currents. Our study shows that the endocytic complex composed of Numb, Nedd4-2 and Eps15, is necessary for non-SUMOylated CRMP2-mediated internalization of sodium channels in vivo.
Collapse
Affiliation(s)
- Kimberly Gomez
- Department of Pharmacology, College of Medicine, University of Arizona, 1501 North Campbell Drive, P.O. Box 245050, Tucson, AZ, 85724, USA
| | - Dongzhi Ran
- Department of Pharmacology, College of Medicine, University of Arizona, 1501 North Campbell Drive, P.O. Box 245050, Tucson, AZ, 85724, USA
| | - Cynthia L Madura
- Department of Pharmacology, College of Medicine, University of Arizona, 1501 North Campbell Drive, P.O. Box 245050, Tucson, AZ, 85724, USA
| | - Aubin Moutal
- Department of Pharmacology, College of Medicine, University of Arizona, 1501 North Campbell Drive, P.O. Box 245050, Tucson, AZ, 85724, USA
| | - Rajesh Khanna
- Department of Pharmacology, College of Medicine, University of Arizona, 1501 North Campbell Drive, P.O. Box 245050, Tucson, AZ, 85724, USA. .,Comprehensive Pain and Addiction Center, The University of Arizona, Tucson, AZ, 85724, USA.
| |
Collapse
|
20
|
Moutal A, Martin LF, Boinon L, Gomez K, Ran D, Zhou Y, Stratton HJ, Cai S, Luo S, Gonzalez KB, Perez-Miller S, Patwardhan A, Ibrahim MM, Khanna R. SARS-CoV-2 spike protein co-opts VEGF-A/neuropilin-1 receptor signaling to induce analgesia. Pain 2021; 162:243-252. [PMID: 33009246 PMCID: PMC7737878 DOI: 10.1097/j.pain.0000000000002097] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/02/2020] [Accepted: 09/02/2020] [Indexed: 12/19/2022]
Abstract
Global spread of severe acute respiratory syndrome coronavirus 2 continues unabated. Binding of severe acute respiratory syndrome coronavirus 2's spike protein to host angiotensin-converting enzyme 2 triggers viral entry, but other proteins may participate, including the neuropilin-1 receptor (NRP-1). Because both spike protein and vascular endothelial growth factor-A (VEGF-A)-a pronociceptive and angiogenic factor, bind NRP-1, we tested whether spike could block VEGF-A/NRP-1 signaling. VEGF-A-triggered sensory neuron firing was blocked by spike protein and NRP-1 inhibitor EG00229. Pronociceptive behaviors of VEGF-A were similarly blocked through suppression of spontaneous spinal synaptic activity and reduction of electrogenic currents in sensory neurons. Remarkably, preventing VEGF-A/NRP-1 signaling was antiallodynic in a neuropathic pain model. A "silencing" of pain through subversion of VEGF-A/NRP-1 signaling may underlie increased disease transmission in asymptomatic individuals.
Collapse
Affiliation(s)
| | - Laurent F. Martin
- Anesthesiology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | | | | | | | | | | | - Song Cai
- Departments of Pharmacology, and
| | | | | | - Samantha Perez-Miller
- Departments of Pharmacology, and
- Anesthesiology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Amol Patwardhan
- Departments of Pharmacology, and
- Anesthesiology, College of Medicine, The University of Arizona, Tucson, AZ, United States
- Comprehensive Pain and Addiction Center, The University of Arizona, Tucson, AZ, United States
| | - Mohab M. Ibrahim
- Departments of Pharmacology, and
- Anesthesiology, College of Medicine, The University of Arizona, Tucson, AZ, United States
- Comprehensive Pain and Addiction Center, The University of Arizona, Tucson, AZ, United States
| | - Rajesh Khanna
- Departments of Pharmacology, and
- Anesthesiology, College of Medicine, The University of Arizona, Tucson, AZ, United States
- Comprehensive Pain and Addiction Center, The University of Arizona, Tucson, AZ, United States
- Center for Innovation in Brain Sciences, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
21
|
Marty MT. Nanodiscs and Mass Spectrometry: Making Membranes Fly. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2020; 458:116436. [PMID: 33100891 PMCID: PMC7584149 DOI: 10.1016/j.ijms.2020.116436] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Cells are surrounded by a protective lipid bilayer membrane, and membrane proteins in the bilayer control the flow of chemicals, information, and energy across this barrier. Many therapeutics target membrane proteins, and some directly target the lipid membrane itself. However, interactions within biological membranes are challenging to study due to their heterogeneity and insolubility. Mass spectrometry (MS) has become a powerful technique for studying membrane proteins, especially how membrane proteins interact with their surrounding lipid environment. Although detergent micelles are the most common membrane mimetic, nanodiscs are emerging as a promising platform for MS. Nanodiscs, nanoscale lipid bilayers encircled by two scaffold proteins, provide a controllable lipid bilayer for solubilizing membrane proteins. This Young Scientist Perspective focuses on native MS of intact nanodiscs and highlights the unique experiments enabled by making membranes fly, including studying membrane protein-lipid interactions and exploring the specificity of fragile transmembrane peptide complexes. It will also explore current challenges and future perspectives for interfacing nanodiscs with MS.
Collapse
Affiliation(s)
- Michael T Marty
- Department of Chemistry and Biochemistry and Bio5 Institute, University of Arizona, Tucson, AZ 85721
| |
Collapse
|
22
|
Moutal A, Martin LF, Boinon L, Gomez K, Ran D, Zhou Y, Stratton HJ, Cai S, Luo S, Gonzalez KB, Perez-Miller S, Patwardhan A, Ibrahim MM, Khanna R. SARS-CoV-2 Spike protein co-opts VEGF-A/Neuropilin-1 receptor signaling to induce analgesia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.07.17.209288. [PMID: 32869019 PMCID: PMC7457601 DOI: 10.1101/2020.07.17.209288] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Global spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues unabated. Binding of SARS-CoV-2's Spike protein to host angiotensin converting enzyme 2 triggers viral entry, but other proteins may participate, including neuropilin-1 receptor (NRP-1). As both Spike protein and vascular endothelial growth factor-A (VEGF-A) - a pro-nociceptive and angiogenic factor, bind NRP-1, we tested if Spike could block VEGF-A/NRP-1 signaling. VEGF-A-triggered sensory neuronal firing was blocked by Spike protein and NRP-1 inhibitor EG00229. Pro-nociceptive behaviors of VEGF-A were similarly blocked via suppression of spontaneous spinal synaptic activity and reduction of electrogenic currents in sensory neurons. Remarkably, preventing VEGF-A/NRP-1 signaling was antiallodynic in a neuropathic pain model. A 'silencing' of pain via subversion of VEGF-A/NRP-1 signaling may underlie increased disease transmission in asymptomatic individuals.
Collapse
Affiliation(s)
- Aubin Moutal
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, Arizona, 85724 United States of America
| | - Laurent F. Martin
- Department of Anesthesiology, College of Medicine, The University of Arizona, Tucson, Arizona, 85724 United States of America
| | - Lisa Boinon
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, Arizona, 85724 United States of America
| | - Kimberly Gomez
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, Arizona, 85724 United States of America
| | - Dongzhi Ran
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, Arizona, 85724 United States of America
| | - Yuan Zhou
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, Arizona, 85724 United States of America
| | - Harrison J. Stratton
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, Arizona, 85724 United States of America
| | - Song Cai
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, Arizona, 85724 United States of America
| | - Shizhen Luo
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, Arizona, 85724 United States of America
| | - Kerry Beth Gonzalez
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, Arizona, 85724 United States of America
| | - Samantha Perez-Miller
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, Arizona, 85724 United States of America
- Department of Anesthesiology, College of Medicine, The University of Arizona, Tucson, Arizona, 85724 United States of America
| | - Amol Patwardhan
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, Arizona, 85724 United States of America
- Department of Anesthesiology, College of Medicine, The University of Arizona, Tucson, Arizona, 85724 United States of America
- Comprehensive Pain and Addiction Center, The University of Arizona, Tucson, Arizona, 85724 United States of America
| | - Mohab M. Ibrahim
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, Arizona, 85724 United States of America
- Department of Anesthesiology, College of Medicine, The University of Arizona, Tucson, Arizona, 85724 United States of America
- Comprehensive Pain and Addiction Center, The University of Arizona, Tucson, Arizona, 85724 United States of America
| | - Rajesh Khanna
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, Arizona, 85724 United States of America
- Department of Anesthesiology, College of Medicine, The University of Arizona, Tucson, Arizona, 85724 United States of America
- Center for Innovation in Brain Sciences, University of Arizona, Tucson, Arizona 85721, United States of America
- Comprehensive Pain and Addiction Center, The University of Arizona, Tucson, Arizona, 85724 United States of America
| |
Collapse
|
23
|
Khanna R, Moutal A, Perez-Miller S, Chefdeville A, Boinon L, Patek M. Druggability of CRMP2 for Neurodegenerative Diseases. ACS Chem Neurosci 2020; 11:2492-2505. [PMID: 32693579 DOI: 10.1021/acschemneuro.0c00307] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Collapsin response mediator proteins (CRMPs) are ubiquitously expressed phosphoproteins that coordinate cytoskeletal formation and regulate cellular division, migration, polarity, and synaptic connection. CRMP2, the most studied of the five family members, is best known for its affinity for tubulin heterodimers and function in regulating the microtubule network. Accumulating evidence has also demonstrated a key role for CRMP2 in trafficking of voltage- and ligand-gated ion channels. These functions are tightly regulated by post-translational modifications including phosphorylation and SUMOylation (addition of a small ubiquitin like modifier). Over the past decade, it has become increasingly clear that dysregulated post-translational modifications of CRMP2 contribute to the pathomechanisms of diverse diseases, including cancer, neurodegenerative diseases, chronic pain, and bipolar disorder. Here, we review the discovery, functions, and current putative preclinical and clinical therapeutics targeting CRMP2. These potential therapeutics include CRMP2-based peptides that inhibit protein-protein interactions and small-molecule compounds. Capitalizing on the availability of structural information, we identify druggable pockets on CRMP2 and predict binding modes for five known CRMP2-targeting compounds, setting the stage for optimization and de novo drug discovery targeting this multifunctional protein.
Collapse
Affiliation(s)
- Rajesh Khanna
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85724, United States
- Graduate Interdisciplinary Program in Neuroscience, College of Medicine, University of Arizona, Tucson, Arizona 85724, United States
- The Center for Innovation in Brain Sciences, The University of Arizona Health Sciences, Tucson, Arizona 85724, United States
- Regulonix LLC, Tucson, Arizona 85718, United States
| | - Aubin Moutal
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85724, United States
| | - Samantha Perez-Miller
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85724, United States
| | - Aude Chefdeville
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85724, United States
| | - Lisa Boinon
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85724, United States
| | - Marcel Patek
- BrightRock Path, LLC, Tucson, Arizona 85704, United States
| |
Collapse
|
24
|
Moutal A, Shan Z, Miranda VG, François-Moutal L, Madura CL, Khanna M, Khanna R. Evaluation of edonerpic maleate as a CRMP2 inhibitor for pain relief. Channels (Austin) 2020; 13:498-504. [PMID: 31680630 PMCID: PMC6833970 DOI: 10.1080/19336950.2019.1684608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have previously reported that the microtubule-associated collapsin response mediator protein 2 (CRMP2) is necessary for the expression of chronic pain. CRMP2 achieves this control of nociceptive signaling by virtue of its ability to regulate voltage-gated calcium and sodium channels. To date, however, no drugs exist that target CRMP2. Recently, the small molecule edonerpic maleate (1 -{3-[2-(1-benzothiophen-5-yl)ethoxy]propyl}azetidin-3-ol maleate), a candidate therapeutic for Alzheimer’s disease was reported to be a novel CRMP2 binding compound with the potential to decrease its phosphorylation level in cortical tissues in vivo. Here we sought to determine the mechanism of action of edonerpic maleate and test its possible effect in a rodent model of chronic pain. We observed: (i) no binding between human CRMP2 and edonerpic maleate; (ii) edonerpic maleate had no effect on CRMP2 expression and phosphorylation in dorsal root ganglion (DRG) neurons; (iii) edonerpic maleate-decreased calcium but increased sodium current density in DRG neurons; and (iv) edonerpic maleate was ineffective in reversing post-surgical allodynia in male and female mice. Thus, while CRMP2 inhibiting compounds remain a viable strategy for developing new mechanism-based pain inhibitors, edonerpic maleate is an unlikely candidate.
Collapse
Affiliation(s)
- Aubin Moutal
- Department of Pharmacology, College of Medicine, The University of Arizona Health Sciences, Tucson, AZ, USA
| | - Zhiming Shan
- Department of Pharmacology, College of Medicine, The University of Arizona Health Sciences, Tucson, AZ, USA.,Department of Anesthesiology, Shenzhen People's Hospital & Second Clinical Medical College of Jinan University, Shenzhen, P.R. China.,Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Victor G Miranda
- Department of Pharmacology, College of Medicine, The University of Arizona Health Sciences, Tucson, AZ, USA.,Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, United States
| | - Liberty François-Moutal
- Department of Pharmacology, College of Medicine, The University of Arizona Health Sciences, Tucson, AZ, USA.,Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, United States
| | - Cynthia L Madura
- Department of Pharmacology, College of Medicine, The University of Arizona Health Sciences, Tucson, AZ, USA
| | - May Khanna
- Department of Pharmacology, College of Medicine, The University of Arizona Health Sciences, Tucson, AZ, USA.,Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, United States
| | - Rajesh Khanna
- Department of Pharmacology, College of Medicine, The University of Arizona Health Sciences, Tucson, AZ, USA.,Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
25
|
Schulien AJ, Yeh CY, Orange BN, Pav OJ, Hopkins MP, Moutal A, Khanna R, Sun D, Justice JA, Aizenman E. Targeted disruption of Kv2.1-VAPA association provides neuroprotection against ischemic stroke in mice by declustering Kv2.1 channels. SCIENCE ADVANCES 2020; 6:eaaz8110. [PMID: 32937450 PMCID: PMC7458461 DOI: 10.1126/sciadv.aaz8110] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 05/15/2020] [Indexed: 05/07/2023]
Abstract
Kv2.1 channels mediate cell death-enabling loss of cytosolic potassium in neurons following plasma membrane insertion at somatodendritic clusters. Overexpression of the carboxyl terminus (CT) of the cognate channel Kv2.2 is neuroprotective by disrupting Kv2.1 surface clusters. Here, we define a seven-amino acid declustering domain within Kv2.2 CT (DP-2) and demonstrate its neuroprotective efficacy in a murine ischemia-reperfusion model. TAT-DP-2, a membrane-permeable derivative, induces Kv2.1 surface cluster dispersal, prevents post-injurious pro-apoptotic potassium current enhancement, and is neuroprotective in vitro by disrupting the association of Kv2.1 with VAPA. TAT-DP-2 also induces Kv2.1 cluster dispersal in vivo in mice, reducing infarct size and improving long-term neurological function following stroke. We suggest that TAT-DP-2 induces Kv2.1 declustering by disrupting Kv2.1-VAPA association and scaffolding sites required for the membrane insertion of Kv2.1 channels following injury. We present the first evidence of targeted disruption of Kv2.1-VAPA association as a neuroprotective strategy following brain ischemia.
Collapse
Affiliation(s)
- Anthony J Schulien
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Chung-Yang Yeh
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Bailey N Orange
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Olivia J Pav
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Madelynn P Hopkins
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Aubin Moutal
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Rajesh Khanna
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Dandan Sun
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Jason A Justice
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Elias Aizenman
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
26
|
Moutal A, Ji Y, Bellampalli SS, Khanna R. Differential expression of Cdk5-phosphorylated CRMP2 following a spared nerve injury. Mol Brain 2020; 13:97. [PMID: 32571373 PMCID: PMC7310452 DOI: 10.1186/s13041-020-00633-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/03/2020] [Indexed: 11/10/2022] Open
Abstract
Effective treatment of high-impact pain patients is one of the major stated goals of the National Pain Strategy in the United States. Identification of new targets and mechanisms underlying neuropathic pain will be critical in developing new target-specific medications for better neuropathic pain management. We recently discovered that peripheral nerve injury-induced upregulation of an axonal guidance phosphoprotein collapsin response mediator protein 2 (CRMP2) and the N-type voltage-gated calcium (CaV2.2) as well as the NaV1.7 voltage-gated sodium channel, correlates with the development of neuropathic pain. In our previous studies, we found that interfering with the phosphorylation status of CRMP2 is sufficient to confer protection from chronic pain. Here we examined the expression of CRMP2 and CRMP2 phosphorylated by cyclin-dependent kinase 5 (Cdk5, on serine residue 522 (S522)) in sciatic nerve, nerve terminals of the glabrous skin, and in select subpopulations of DRG neurons in the SNI model of neuropathic pain. By enhancing our understanding of the phosphoregulatory status of CRMP2 within DRG subpopulations, we may be in a better position to design novel pharmacological interventions for chronic pain.
Collapse
Affiliation(s)
- Aubin Moutal
- Departments of Pharmacology, University of Arizona, Tucson, AZ, 85724, USA
| | - Yingshi Ji
- Departments of Pharmacology, University of Arizona, Tucson, AZ, 85724, USA.,Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Shreya Sai Bellampalli
- Departments of Pharmacology, University of Arizona, Tucson, AZ, 85724, USA.,Mayo Clinic School of Medicine, 26 Mayo Park Dr SE, Rochester, MN, 55904, USA
| | - Rajesh Khanna
- Departments of Pharmacology, University of Arizona, Tucson, AZ, 85724, USA. .,Departments of Anesthesiology, University of Arizona, Tucson, AZ, 85724, USA. .,Neuroscience Graduate Interdisciplinary Program, College of Medicine, University of Arizona, Tucson, AZ, 85724, USA. .,BIO5 Institute, 657 East Helen Street, P.O. Box 210240, Tucson, AZ, 85724, USA. .,The Center for Innovation in Brain Sciences, The University of Arizona Health Sciences, Tucson, AZ, 85724, USA.
| |
Collapse
|
27
|
Targeting the CaVα-CaVβ interaction yields an antagonist of the N-type CaV2.2 channel with broad antinociceptive efficacy. Pain 2020; 160:1644-1661. [PMID: 30933958 DOI: 10.1097/j.pain.0000000000001524] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Inhibition of voltage-gated calcium (CaV) channels is a potential therapy for many neurological diseases including chronic pain. Neuronal CaV1/CaV2 channels are composed of α, β, γ and α2δ subunits. The β subunits of CaV channels are cytoplasmic proteins that increase the surface expression of the pore-forming α subunit of CaV. We targeted the high-affinity protein-protein interface of CaVβ's pocket within the CaVα subunit. Structure-based virtual screening of 50,000 small molecule library docked to the β subunit led to the identification of 2-(3,5-dimethylisoxazol-4-yl)-N-((4-((3-phenylpropyl)amino)quinazolin-2-yl)methyl)acetamide (IPPQ). This small molecule bound to CaVβ and inhibited its coupling with N-type voltage-gated calcium (CaV2.2) channels, leading to a reduction in CaV2.2 currents in rat dorsal root ganglion sensory neurons, decreased presynaptic localization of CaV2.2 in vivo, decreased frequency of spontaneous excitatory postsynaptic potentials and miniature excitatory postsynaptic potentials, and inhibited release of the nociceptive neurotransmitter calcitonin gene-related peptide from spinal cord. IPPQ did not target opioid receptors nor did it engage inhibitory G protein-coupled receptor signaling. IPPQ was antinociceptive in naive animals and reversed allodynia and hyperalgesia in models of acute (postsurgical) and neuropathic (spinal nerve ligation, chemotherapy- and gp120-induced peripheral neuropathy, and genome-edited neuropathy) pain. IPPQ did not cause akinesia or motor impairment, a common adverse effect of CaV2.2 targeting drugs, when injected into the brain. IPPQ, a quinazoline analog, represents a novel class of CaV2.2-targeting compounds that may serve as probes to interrogate CaVα-CaVβ function and ultimately be developed as a nonopioid therapeutic for chronic pain.
Collapse
|
28
|
Zhou Y, Cai S, Gomez K, Wijeratne EMK, Ji Y, Bellampalli SS, Luo S, Moutal A, Gunatilaka AAL, Khanna R. 1-O-Acetylgeopyxin A, a derivative of a fungal metabolite, blocks tetrodotoxin-sensitive voltage-gated sodium, calcium channels and neuronal excitability which correlates with inhibition of neuropathic pain. Mol Brain 2020; 13:73. [PMID: 32393368 PMCID: PMC7216607 DOI: 10.1186/s13041-020-00616-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/04/2020] [Indexed: 01/03/2023] Open
Abstract
Chronic pain can be the result of an underlying disease or condition, medical treatment, inflammation, or injury. The number of persons experiencing this type of pain is substantial, affecting upwards of 50 million adults in the United States. Pharmacotherapy of most of the severe chronic pain patients includes drugs such as gabapentinoids, re-uptake blockers and opioids. Unfortunately, gabapentinoids are not effective in up to two-thirds of this population and although opioids can be initially effective, their long-term use is associated with multiple side effects. Therefore, there is a great need to develop novel non-opioid alternative therapies to relieve chronic pain. For this purpose, we screened a small library of natural products and their derivatives in the search for pharmacological inhibitors of voltage-gated calcium and sodium channels, which are outstanding molecular targets due to their important roles in nociceptive pathways. We discovered that the acetylated derivative of the ent-kaurane diterpenoid, geopyxin A, 1-O-acetylgeopyxin A, blocks voltage-gated calcium and tetrodotoxin-sensitive voltage-gated sodium channels but not tetrodotoxin-resistant sodium channels in dorsal root ganglion (DRG) neurons. Consistent with inhibition of voltage-gated sodium and calcium channels, 1-O-acetylgeopyxin A reduced reduce action potential firing frequency and increased firing threshold (rheobase) in DRG neurons. Finally, we identified the potential of 1-O-acetylgeopyxin A to reverse mechanical allodynia in a preclinical rat model of HIV-induced sensory neuropathy. Dual targeting of both sodium and calcium channels may permit block of nociceptor excitability and of release of pro-nociceptive transmitters. Future studies will harness the core structure of geopyxins for the generation of antinociceptive drugs.
Collapse
Affiliation(s)
- Yuan Zhou
- Department of Clinical Laboratory, the First Hospital of Jilin University, Changchun, 130021, China
- Department of Pharmacology, College of Medicine, University of Arizona, 1501 North Campbell Drive, P.O. Box 245050, Tucson, AZ, 85724, USA
| | - Song Cai
- Department of Pharmacology, College of Medicine, University of Arizona, 1501 North Campbell Drive, P.O. Box 245050, Tucson, AZ, 85724, USA
| | - Kimberly Gomez
- Department of Pharmacology, College of Medicine, University of Arizona, 1501 North Campbell Drive, P.O. Box 245050, Tucson, AZ, 85724, USA
| | - E M Kithsiri Wijeratne
- Southwest Center for Natural Products Research, School of Natural Resources & the Environment, College of Agriculture & Life Sciences, The University of Arizona, Tucson, AZ, 85724, USA
| | - Yingshi Ji
- Department of Pharmacology, College of Medicine, University of Arizona, 1501 North Campbell Drive, P.O. Box 245050, Tucson, AZ, 85724, USA
| | - Shreya S Bellampalli
- Department of Pharmacology, College of Medicine, University of Arizona, 1501 North Campbell Drive, P.O. Box 245050, Tucson, AZ, 85724, USA
| | - Shizhen Luo
- Department of Pharmacology, College of Medicine, University of Arizona, 1501 North Campbell Drive, P.O. Box 245050, Tucson, AZ, 85724, USA
| | - Aubin Moutal
- Department of Pharmacology, College of Medicine, University of Arizona, 1501 North Campbell Drive, P.O. Box 245050, Tucson, AZ, 85724, USA
| | - A A Leslie Gunatilaka
- Southwest Center for Natural Products Research, School of Natural Resources & the Environment, College of Agriculture & Life Sciences, The University of Arizona, Tucson, AZ, 85724, USA
| | - Rajesh Khanna
- Department of Pharmacology, College of Medicine, University of Arizona, 1501 North Campbell Drive, P.O. Box 245050, Tucson, AZ, 85724, USA.
- Neuroscience Graduate Interdisciplinary Program, College of Medicine, Tucson, AZ, 85724, USA.
- The Center for Innovation in Brain Sciences, The University of Arizona Health Sciences, Tucson, AZ, 85724, USA.
| |
Collapse
|
29
|
Stratton H, Boinon L, Moutal A, Khanna R. Coordinating Synaptic Signaling with CRMP2. Int J Biochem Cell Biol 2020; 124:105759. [PMID: 32437854 DOI: 10.1016/j.biocel.2020.105759] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/27/2020] [Accepted: 04/21/2020] [Indexed: 10/24/2022]
Abstract
Synaptic transmission is a complex process, dysregulation of which underlies several neurological conditions. Collapsin response mediator protein 2 (CRMP2) is a microtubule associated protein expressed ubiquitously in the central nervous system. Identified initially in the context of Semaphorin 3A (Collapsin) induced growth cone collapse, more recent findings revealed the involvement of CRMP2 in ion channel trafficking, kinesin-dependent axonal transport and maintenance of intracellular calcium homeostasis. CRMP2 is a synaptic protein, expressed at pre- and post-synaptic sites. Interactions with proteins such as N-methyl-D-aspartate receptors, syntaxin1A as well as voltage-gated calcium and sodium channels, suggest that CRMP2 may control both the electrical and chemical components of synaptic transmission. This short review will outline the known synaptic interactions of CRMP2 and illustrate its role in synaptic transmission, thereby introducing CRMP2 as a prospective target for the pathophysiological modulation of aberrant synaptic activity.
Collapse
Affiliation(s)
- Harrison Stratton
- Department of Pharmacology, College of Medicine, University of Arizona, United States
| | - Lisa Boinon
- Department of Pharmacology, College of Medicine, University of Arizona, United States
| | - Aubin Moutal
- Department of Pharmacology, College of Medicine, University of Arizona, United States
| | - Rajesh Khanna
- Department of Pharmacology, College of Medicine, University of Arizona, United States; BIO5 Institute, University of Arizona, United States; The Center for Innovation in Brain Sciences, The University of Arizona Health Sciences, Tucson, Arizona, United States.
| |
Collapse
|
30
|
Cai S, Shan Z, Zhang Z, Moutal A, Khanna R. Activity of T-type calcium channels is independent of CRMP2 in sensory neurons. Channels (Austin) 2020; 13:147-152. [PMID: 31025580 PMCID: PMC6527066 DOI: 10.1080/19336950.2019.1608129] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Amongst the regulators of voltage-gated ion channels is the collapsin response mediator protein 2 (CRMP2). CRMP2 regulation of the activity and trafficking of NaV1.7 voltage-gated sodium channels as well as the N-type (CaV2.2) voltage-gated calcium channel (VGCC) has been reported. On the other hand, CRMP2 does not appear to regulate L- (CaV1.x), P/Q- (CaV2.1), and R- (CaV2.3) type high VGCCs. Whether CRMP2 regulates low VGCCs remains an open question. Here, we asked if CRMP2 could regulate the low voltage-gated (T-type/CaV3.x) channels in sensory neurons. Reducing CRMP2 protein levels with short interfering RNAs yielded no change in macroscopic currents carried by T-type channels. No change in biophysical properties of the T-type currents was noted. Future studies pursuing CRMP2 druggability in neuropathic pain will benefit from the findings that CRMP2 regulates only the N-type (CaV2.2) calcium channels.
Collapse
Affiliation(s)
- Song Cai
- a Department of Pharmacology, College of Medicine , The University of Arizona Health Sciences , Tucson , AZ , USA
| | - Zhiming Shan
- a Department of Pharmacology, College of Medicine , The University of Arizona Health Sciences , Tucson , AZ , USA.,b Department of Anesthesiology , Shenzhen People's Hospital & Second Clinical Medical College of Jinan University , Shenzhen , P.R. China
| | - Zhongjun Zhang
- b Department of Anesthesiology , Shenzhen People's Hospital & Second Clinical Medical College of Jinan University , Shenzhen , P.R. China
| | - Aubin Moutal
- a Department of Pharmacology, College of Medicine , The University of Arizona Health Sciences , Tucson , AZ , USA
| | - Rajesh Khanna
- a Department of Pharmacology, College of Medicine , The University of Arizona Health Sciences , Tucson , AZ , USA.,c The Center for Innovation in Brain Sciences , The University of Arizona Health Sciences , Tucson , AZ , USA
| |
Collapse
|
31
|
Qi B, Yang Y, Cheng Y, Sun D, Wang X, Khanna R, Ju W. Nasal delivery of a CRMP2-derived CBD3 adenovirus improves cognitive function and pathology in APP/PS1 transgenic mice. Mol Brain 2020; 13:58. [PMID: 32272942 PMCID: PMC7144060 DOI: 10.1186/s13041-020-00596-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 03/23/2020] [Indexed: 12/12/2022] Open
Abstract
Calcium dysregulation is a key pathological event in Alzheimer's disease (AD). In studying approaches to mitigate this calcium overload, we identified the collapsin response mediator protein 2 (CRMP2), an axonal guidance protein that participates in synapse dynamics by interacting with and regulating activity of N-methyl-D-aspartate receptors (NMDARs). We further identified a 15 amino acid peptide from CRMP2 (designated CBD3, for calcium-binding domain 3), that reduced NMDAR-mediated Ca2+ influx in cultured neurons and post-synaptic NMDAR-mediated currents in cortical slices. Whether targeting CRMP2 could be therapeutically beneficial in AD is unknown. Here, using CBD3, we tested the utility of this approach. Employing the APP/PS1 mouse model of AD which demonstrates robust pathophysiology including Aβ1-42 deposition, altered tau levels, and diminished cognitive functions, we asked if overexpression of CBD3 could rescue these events. CBD3 was engineered into an adeno-associated vector and nasally delivered into APP/PS1 mice and then biochemical (immunohistochemistry, immunoblotting), cellular (TUNEL apoptosis assays), and behavioral (Morris water maze test) assessments were performed. APP/PS1 mice administered adeno-associated virus (AAV, serotype 2) harboring CBD3 demonstrated: (i) reduced levels of Aβ1-42 and phosphorylated-tau (a marker of AD progression), (ii) reduced apoptosis in the hippocampus, and (iii) reduced cognitive decline compared with APP/PS1 mice or APP/PS1 administered a control virus. These results provide an instructive example of utilizing a peptide-based approach to unravel protein-protein interactions that are necessary for AD pathology and demonstrate the therapeutic potential of CRMP2 as a novel protein player in AD.
Collapse
Affiliation(s)
- Baochang Qi
- Department of Orthopedic Traumatology, The First Hospital of Jilin University, Changchun, 130021, Jilin Province, China
| | - Yu Yang
- Department of Neurology and neuroscience center, The First Hospital of Jilin University, No.1 Xinmin Street, Chaoyang District, Changchun, 130021, Jilin Province, China
| | - Yingying Cheng
- Department of Neurology and neuroscience center, The First Hospital of Jilin University, No.1 Xinmin Street, Chaoyang District, Changchun, 130021, Jilin Province, China
| | - Di Sun
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun, 130021, Jilin Province, China
| | - Xu Wang
- Department of Neurology and neuroscience center, The First Hospital of Jilin University, No.1 Xinmin Street, Chaoyang District, Changchun, 130021, Jilin Province, China
| | - Rajesh Khanna
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, 85718, USA.
- Center for Innovation in Brain Sciences, University of Arizona, Tucson, AZ, 85721, USA.
| | - Weina Ju
- Department of Neurology and neuroscience center, The First Hospital of Jilin University, No.1 Xinmin Street, Chaoyang District, Changchun, 130021, Jilin Province, China.
| |
Collapse
|
32
|
Towards a neurobiological understanding of pain in neurofibromatosis type 1: mechanisms and implications for treatment. Pain 2020; 160:1007-1018. [PMID: 31009417 DOI: 10.1097/j.pain.0000000000001486] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Neurofibromatosis type 1 (NF1) is the most common of a group of rare diseases known by the term, "Neurofibromatosis," affecting 1 in 3000 to 4000 people. NF1 patients present with, among other disease complications, café au lait patches, skin fold freckling, Lisch nodules, orthopedic complications, cutaneous neurofibromas, malignant peripheral nerve sheath tumors, cognitive impairment, and chronic pain. Although NF1 patients inevitably express pain as a debilitating symptom of the disease, not much is known about its manifestation in the NF1 disease, with most current information coming from sporadic case reports. Although these reports indicate the existence of pain, the molecular signaling underlying this symptom remains underexplored, and thus, we include a synopsis of the literature surrounding NF1 pain studies in 3 animal models: mouse, rat, and miniswine. We also highlight unexplored areas of NF1 pain research. As therapy for NF1 pain remains in various clinical and preclinical stages, we present current treatments available for patients and highlight the importance of future therapeutic development. Equally important, NF1 pain is accompanied by psychological complications in comorbidities with sleep, gastrointestinal complications, and overall quality of life, lending to the importance of investigation into this understudied phenomenon of NF1. In this review, we dissect the presence of pain in NF1 in terms of psychological implication, anatomical presence, and discuss mechanisms underlying the onset and potentiation of NF1 pain to evaluate current therapies and propose implications for treatment of this severely understudied, but prevalent symptom of this rare disease.
Collapse
|
33
|
Buchta WC, Moutal A, Hines B, Garcia-Keller C, Smith ACW, Kalivas P, Khanna R, Riegel AC. Dynamic CRMP2 Regulation of CaV2.2 in the Prefrontal Cortex Contributes to the Reinstatement of Cocaine Seeking. Mol Neurobiol 2020; 57:346-357. [PMID: 31359322 PMCID: PMC6980501 DOI: 10.1007/s12035-019-01711-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 07/15/2019] [Indexed: 02/06/2023]
Abstract
Cocaine addiction remains a major health concern with limited effective treatment options. A better understanding of mechanisms underlying relapse may help inform the development of new pharmacotherapies. Emerging evidence suggests that collapsin response mediator protein 2 (CRMP2) regulates presynaptic excitatory neurotransmission and contributes to pathological changes during diseases, such as neuropathic pain and substance use disorders. We examined the role of CRMP2 and its interactions with a known binding partner, CaV2.2, in cocaine-seeking behavior. We employed the rodent self-administration model of relapse to drug seeking and focused on the prefrontal cortex (PFC) for its well-established role in reinstatement behaviors. Our results indicated that repeated cocaine self-administration resulted in a dynamic and persistent alteration in the PFC expression of CRMP2 and its binding partner, the CaV2.2 (N-type) voltage-gated calcium channel. Following cocaine self-administration and extinction training, the expression of both CRMP2 and CaV2.2 was reduced relative to yoked saline controls. By contrast, cued reinstatement potentiated CRMP2 expression and increased CaV2.2 expression above extinction levels. Lastly, we utilized the recently developed peptide myr-TAT-CBD3 to disrupt the interaction between CRMP2 and CaV2.2 in vivo. We assessed the reinstatement behavior after infusing this peptide directly into the medial PFC and found that it decreased cue-induced reinstatement of cocaine seeking. Taken together, these data suggest that neuroadaptations in the CRMP2/CaV2.2 signaling cascade in the PFC can facilitate drug-seeking behavior. Targeting such interactions has implications for the treatment of cocaine relapse behavior.
Collapse
Affiliation(s)
- William C Buchta
- Department of Neuroscience, Medical University of South Carolina (MUSC), 410C Basic Sciences Building, 173 Ashley Avenue, Charleston, SC, 29425, USA
- Neurobiology of Addiction Research Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Aubin Moutal
- Department of Pharmacology, University of Arizona, Tucson, AZ, 85724, USA
| | - Bethany Hines
- Department of Neuroscience, Medical University of South Carolina (MUSC), 410C Basic Sciences Building, 173 Ashley Avenue, Charleston, SC, 29425, USA
- Neurobiology of Addiction Research Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Constanza Garcia-Keller
- Department of Neuroscience, Medical University of South Carolina (MUSC), 410C Basic Sciences Building, 173 Ashley Avenue, Charleston, SC, 29425, USA
- Neurobiology of Addiction Research Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Alexander C W Smith
- Department of Neuroscience, Medical University of South Carolina (MUSC), 410C Basic Sciences Building, 173 Ashley Avenue, Charleston, SC, 29425, USA
- Neurobiology of Addiction Research Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Peter Kalivas
- Department of Neuroscience, Medical University of South Carolina (MUSC), 410C Basic Sciences Building, 173 Ashley Avenue, Charleston, SC, 29425, USA
- Neurobiology of Addiction Research Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Rajesh Khanna
- Department of Pharmacology, University of Arizona, Tucson, AZ, 85724, USA
- Department of Anesthesiology, University of Arizona, Tucson, AZ, 85724, USA
- The Center for Innovation in Brain Sciences, The University of Arizona Health Sciences, Tucson, AZ, USA
| | - Arthur C Riegel
- Department of Neuroscience, Medical University of South Carolina (MUSC), 410C Basic Sciences Building, 173 Ashley Avenue, Charleston, SC, 29425, USA.
- Neurobiology of Addiction Research Center, Medical University of South Carolina, Charleston, SC, 29425, USA.
- Department of Pharmacology, University of Arizona, Tucson, AZ, 85724, USA.
| |
Collapse
|
34
|
Zhou Y, Cai S, Moutal A, Yu J, Gómez K, Madura CL, Shan Z, Pham NYN, Serafini MJ, Dorame A, Scott DD, François-Moutal L, Perez-Miller S, Patek M, Khanna M, Khanna R. The Natural Flavonoid Naringenin Elicits Analgesia through Inhibition of NaV1.8 Voltage-Gated Sodium Channels. ACS Chem Neurosci 2019; 10:4834-4846. [PMID: 31697467 DOI: 10.1021/acschemneuro.9b00547] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Naringenin (2S)-5,7-dihydroxy-2-(4-hydroxyphenyl)-3,4-dihydro-2H-1-benzopyran-4-one is a natural flavonoid found in fruits from the citrus family. Because (2S)-naringenin is known to racemize, its bioactivity might be related to one or both enantiomers. Computational studies predicted that (2R)-naringenin may act on voltage-gated ion channels, particularly the N-type calcium channel (CaV2.2) and the NaV1.7 sodium channel-both of which are key for pain signaling. Here we set out to identify the possible mechanism of action of naringenin. Naringenin inhibited depolarization-evoked Ca2+ influx in acetylcholine-, ATP-, and capsaicin-responding rat dorsal root ganglion (DRG) neurons. This was corroborated in electrophysiological recordings from DRG neurons. Pharmacological dissection of each of the voltage-gated Ca2+ channels subtypes could not pinpoint any selectivity of naringenin. Instead, naringenin inhibited NaV1.8-dependent and tetrodotoxin (TTX)-resistant while sparing tetrodotoxin sensitive (TTX-S) voltage-gated Na+ channels as evidenced by the lack of further inhibition by the NaV1.8 blocker A-803467. The effects of the natural flavonoid were validated ex vivo in spinal cord slices where naringenin decreased both the frequency and amplitude of sEPSC recorded in neurons within the substantia gelatinosa. The antinociceptive potential of naringenin was evaluated in male and female mice. Naringenin had no effect on the nociceptive thresholds evoked by heat. Naringenin's reversed allodynia was in mouse models of postsurgical and neuropathic pain. Here, driven by a call by the National Center for Complementary and Integrative Health's strategic plan to advance fundamental research into basic biological mechanisms of the action of natural products, we advance the antinociceptive potential of the flavonoid naringenin.
Collapse
Affiliation(s)
- Yuan Zhou
- Department of Clinical Laboratory, the First Hospital of Jilin University, Changchun 130021, China
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson 85724-5050, Arizona, United States
| | - Song Cai
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson 85724-5050, Arizona, United States
| | - Aubin Moutal
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson 85724-5050, Arizona, United States
| | - Jie Yu
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson 85724-5050, Arizona, United States
| | - Kimberly Gómez
- Department of Physiology, Biophysics and Neuroscience, Centre for Research and Advanced Studies (Cinvestav), Mexico City 07360, Mexico
| | - Cynthia L. Madura
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson 85724-5050, Arizona, United States
| | - Zhiming Shan
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson 85724-5050, Arizona, United States
| | - Nancy Y. N. Pham
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson 85724-5050, Arizona, United States
| | - Maria J. Serafini
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson 85724-5050, Arizona, United States
| | - Angie Dorame
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson 85724-5050, Arizona, United States
| | - David D. Scott
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson 85724-5050, Arizona, United States
| | - Liberty François-Moutal
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson 85724-5050, Arizona, United States
| | - Samantha Perez-Miller
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson 85724-5050, Arizona, United States
| | - Marcel Patek
- BrightRock Path Consulting, LLC, Tucson, Arizona 85721, United States
| | - May Khanna
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson 85724-5050, Arizona, United States
- The Center for Innovation in Brain Sciences, The University of Arizona Health Sciences, Tucson, Arizona 85724, United States
| | - Rajesh Khanna
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson 85724-5050, Arizona, United States
- The Center for Innovation in Brain Sciences, The University of Arizona Health Sciences, Tucson, Arizona 85724, United States
| |
Collapse
|
35
|
Moutal A, White KA, Chefdeville A, Laufmann RN, Vitiello PF, Feinstein D, Weimer JM, Khanna R. Dysregulation of CRMP2 Post-Translational Modifications Drive Its Pathological Functions. Mol Neurobiol 2019; 56:6736-6755. [PMID: 30915713 PMCID: PMC6728212 DOI: 10.1007/s12035-019-1568-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/15/2019] [Indexed: 12/13/2022]
Abstract
Collapsin response mediator proteins (CRMPs) are a family of ubiquitously expressed, homologous phosphoproteins best known for coordinating cytoskeletal formation and regulating cellular division, migration, polarity, and synaptic connection. CRMP2, the most studied of the five family members, is best known for its affinity for tubulin heterodimers and function in regulating the microtubule network. These functions are tightly regulated by post-translational modifications including phosphorylation, SUMOylation, oxidation, and O-GlcNAcylation. While CRMP2's physiological functions rely mostly on its non-phosphorylated state, dysregulation of CRMP2 phosphorylation and SUMOylation has been reported to be involved in the pathophysiology of multiple diseases including cancer, chronic pain, spinal cord injury, neurofibromatosis type 1, and others. Here, we provide a consolidated update on what is known about CRMP2 signaling and function, first focusing on axonal growth and neuronal polarity, then illustrating the link between dysregulated CRMP2 post-translational modifications and diseases. We additionally discuss the roles of CRMP2 in non-neuronal cells, both in the CNS and regions of the periphery. Finally, we offer thoughts on the therapeutic implications of modulating CRMP2 function in a variety of diseases.
Collapse
Affiliation(s)
- Aubin Moutal
- Department of Pharmacology, College of Medicine, University of Arizona, 1501 North Campbell Drive, P.O. Box 245050, Tucson, AZ, 85724, USA
| | - Katherine A White
- Pediatrics and Rare Diseases Group, Sanford Research, 2301 E 60th St N, Sioux Falls, SD, 57104, USA
| | - Aude Chefdeville
- Department of Pharmacology, College of Medicine, University of Arizona, 1501 North Campbell Drive, P.O. Box 245050, Tucson, AZ, 85724, USA
| | - Rachel N Laufmann
- Pediatrics and Rare Diseases Group, Sanford Research, 2301 E 60th St N, Sioux Falls, SD, 57104, USA
| | - Peter F Vitiello
- Department of Pharmacology, College of Medicine, University of Arizona, 1501 North Campbell Drive, P.O. Box 245050, Tucson, AZ, 85724, USA
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA
| | - Douglas Feinstein
- Department of Veterans Affairs, Jesse Brown VA Medical Center, University of Illinois at Chicago, Chicago, IL, USA
| | - Jill M Weimer
- Department of Pharmacology, College of Medicine, University of Arizona, 1501 North Campbell Drive, P.O. Box 245050, Tucson, AZ, 85724, USA.
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA.
| | - Rajesh Khanna
- Department of Pharmacology, College of Medicine, University of Arizona, 1501 North Campbell Drive, P.O. Box 245050, Tucson, AZ, 85724, USA.
- Pediatrics and Rare Diseases Group, Sanford Research, 2301 E 60th St N, Sioux Falls, SD, 57104, USA.
- Department of Anesthesiology, University of Arizona, Tucson, AZ, USA.
- The Center for Innovation in Brain Sciences, The University of Arizona Health Sciences, Tucson, AZ, USA.
| |
Collapse
|
36
|
Moutal A, Cai S, Luo S, Voisin R, Khanna R. CRMP2 is necessary for Neurofibromatosis type 1 related pain. Channels (Austin) 2019; 12:47-50. [PMID: 28837387 PMCID: PMC5972793 DOI: 10.1080/19336950.2017.1370524] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Neurofibromatosis type 1 (NF1) is one of the most common genetic diseases, affecting roughly 1 in 3000 individuals. As a multisystem disorder, it affects cognitive development, as well as bone, nerve and muscle constitution. Peripheral neuropathy in NF1 constitutes a potentially severe clinical complication and is associated with increased morbidity and mortality. The discovery of effective therapies for Neurofibromatosis type 1 (NF1) pain depends on mechanistic understanding that has been limited, in part, by the relative lack of availability of animal models relevant to NF1 pain. We have used intrathecal targeted editing of Nf1 in rats to provide direct evidence of a causal relationship between neurofibromin and pain responses. We demonstrated that editing of neurofibromin results in functional remodeling of peripheral nociceptors characterized by enhancement of interactions of the tetrodotoxin-sensitive (TTX-S) Na+ voltage-gated sodium channel (NaV1.7) and the collapsin response mediator protein 2 (CRMP2). Collectively, these peripheral adaptations increase sensory neuron excitability and release of excitatory transmitters to the spinal dorsal horn to establish and maintain a state of central sensitization reflected by hyperalgesia to mechanical stimulation of the hindpaw. The data presented here shows that CRMP2 inhibition is sufficient to reverse the dysregulations of voltage-gated ion channels and neurotransmitter release observed after Nf1 gene editing. The concordance in normalization of ion channel dysregulation by a CRMP2-directed strategy and of hyperalgesia supports the translational targeting of CRMP2 to curb NF1-related pain.
Collapse
Affiliation(s)
- Aubin Moutal
- a Department of Pharmacology , University of Arizona , Tucson , AZ , USA
| | - Song Cai
- a Department of Pharmacology , University of Arizona , Tucson , AZ , USA
| | - Shizhen Luo
- a Department of Pharmacology , University of Arizona , Tucson , AZ , USA
| | - Raphaëlle Voisin
- a Department of Pharmacology , University of Arizona , Tucson , AZ , USA
| | - Rajesh Khanna
- a Department of Pharmacology , University of Arizona , Tucson , AZ , USA.,b Department of Anesthesiology , University of Arizona , Tucson , AZ , USA.,c Neuroscience Graduate Interdisciplinary Program , College of Medicine, University of Arizona , Tucson , AZ , USA
| |
Collapse
|
37
|
Bellampalli SS, Ji Y, Moutal A, Cai S, Wijeratne EMK, Gandini MA, Yu J, Chefdeville A, Dorame A, Chew LA, Madura CL, Luo S, Molnar G, Khanna M, Streicher JM, Zamponi GW, Gunatilaka AAL, Khanna R. Betulinic acid, derived from the desert lavender Hyptis emoryi, attenuates paclitaxel-, HIV-, and nerve injury-associated peripheral sensory neuropathy via block of N- and T-type calcium channels. Pain 2019; 160:117-135. [PMID: 30169422 DOI: 10.1097/j.pain.0000000000001385] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Federal Pain Research Strategy recommended development of nonopioid analgesics as a top priority in its strategic plan to address the significant public health crisis and individual burden of chronic pain faced by >100 million Americans. Motivated by this challenge, a natural product extracts library was screened and identified a plant extract that targets activity of voltage-gated calcium channels. This profile is of interest as a potential treatment for neuropathic pain. The active extract derived from the desert lavender plant native to southwestern United States, when subjected to bioassay-guided fractionation, afforded 3 compounds identified as pentacyclic triterpenoids, betulinic acid (BA), oleanolic acid, and ursolic acid. Betulinic acid inhibited depolarization-evoked calcium influx in dorsal root ganglion (DRG) neurons predominantly through targeting low-voltage-gated (Cav3 or T-type) and CaV2.2 (N-type) calcium channels. Voltage-clamp electrophysiology experiments revealed a reduction of Ca, but not Na, currents in sensory neurons after BA exposure. Betulinic acid inhibited spontaneous excitatory postsynaptic currents and depolarization-evoked release of calcitonin gene-related peptide from lumbar spinal cord slices. Notably, BA did not engage human mu, delta, or kappa opioid receptors. Intrathecal administration of BA reversed mechanical allodynia in rat models of chemotherapy-induced peripheral neuropathy and HIV-associated peripheral sensory neuropathy as well as a mouse model of partial sciatic nerve ligation without effects on locomotion. The broad-spectrum biological and medicinal properties reported, including anti-HIV and anticancer activities of BA and its derivatives, position this plant-derived small molecule natural product as a potential nonopioid therapy for management of chronic pain.
Collapse
Affiliation(s)
- Shreya S Bellampalli
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Yingshi Ji
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States.,Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, People's Republic of China
| | - Aubin Moutal
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Song Cai
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - E M Kithsiri Wijeratne
- Natural Products Center, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, The University of Arizona, Tucson, AZ, United States
| | - Maria A Gandini
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jie Yu
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Aude Chefdeville
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Angie Dorame
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Lindsey A Chew
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Cynthia L Madura
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Shizhen Luo
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Gabriella Molnar
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - May Khanna
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States.,The Center for Innovation in Brain Sciences, The University of Arizona Health Sciences, Tucson, AZ, United States
| | - John M Streicher
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Gerald W Zamponi
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - A A Leslie Gunatilaka
- Natural Products Center, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, The University of Arizona, Tucson, AZ, United States
| | - Rajesh Khanna
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States.,The Center for Innovation in Brain Sciences, The University of Arizona Health Sciences, Tucson, AZ, United States.,Department of Neuroscience Graduate Interdisciplinary Program, College of Medicine, The University of Arizona, Tucson, AZ, United States
| |
Collapse
|
38
|
Shan Z, Cai S, Yu J, Zhang Z, Vallecillo TGM, Serafini MJ, Thomas AM, Pham NYN, Bellampalli SS, Moutal A, Zhou Y, Xu GB, Xu YM, Luo S, Patek M, Streicher JM, Gunatilaka AAL, Khanna R. Reversal of Peripheral Neuropathic Pain by the Small-Molecule Natural Product Physalin F via Block of CaV2.3 (R-Type) and CaV2.2 (N-Type) Voltage-Gated Calcium Channels. ACS Chem Neurosci 2019; 10:2939-2955. [PMID: 30946560 DOI: 10.1021/acschemneuro.9b00166] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
No universally efficacious therapy exists for chronic pain, a disease affecting one-fifth of the global population. An overreliance on the prescription of opioids for chronic pain despite their poor ability to improve function has led to a national opioid crisis. In 2018, the NIH launched a Helping to End Addiction Long-term plan to spur discovery and validation of novel targets and mechanisms to develop alternative nonaddictive treatment options. Phytochemicals with medicinal properties have long been used for various treatments worldwide. The natural product physalin F, isolated from the Physalis acutifolia (family: Solanaceae) herb, demonstrated antinociceptive effects in models of inflammatory pain, consistent with earlier reports of its anti-inflammatory and immunomodulatory activities. However, the target of action of physalin F remained unknown. Here, using whole-cell and slice electrophysiology, competition binding assays, and experimental models of neuropathic pain, we uncovered a molecular target for physalin F's antinociceptive actions. We found that physalin F (i) blocks CaV2.3 (R-type) and CaV2.2 (N-type) voltage-gated calcium channels in dorsal root ganglion (DRG) neurons, (ii) does not affect CaV3 (T-type) voltage-gated calcium channels or voltage-gated sodium or potassium channels, (iii) does not bind G-protein coupled opioid receptors, (iv) inhibits the frequency of spontaneous excitatory postsynaptic currents (EPSCs) in spinal cord slices, and (v) reverses tactile hypersensitivity in models of paclitaxel-induced peripheral neuropathy and spinal nerve ligation. Identifying CaV2.2 as a molecular target of physalin F may spur its use as a tool for mechanistic studies and position it as a structural template for future synthetic compounds.
Collapse
Affiliation(s)
- Zhiming Shan
- Department of Anesthesiology, Shenzhen People’s Hospital & Second Clinical Medical College of Jinan University, Shenzhen 518020, P.R. China
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, P.R. China
| | | | - Jie Yu
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou 310058, P.R. China
| | - Zhongjun Zhang
- Department of Anesthesiology, Shenzhen People’s Hospital & Second Clinical Medical College of Jinan University, Shenzhen 518020, P.R. China
| | | | | | | | | | | | | | - Yuan Zhou
- The First Hospital of Jilin University, 71 Xinmin Street, Changchun 130021, P. R. China
- BrightRock Path Consulting, LLC, Tucson 85721, Arizona, United States
| | | | | | | | - Marcel Patek
- BrightRock Path Consulting, LLC, Tucson 85721, Arizona, United States
| | | | | | - Rajesh Khanna
- The Center for Innovation in Brain Sciences, The University of Arizona Health Sciences, Tucson, Arizona 85724, United States
| |
Collapse
|
39
|
Yu H, Shin SM, Xiang H, Chao D, Cai Y, Xu H, Khanna R, Pan B, Hogan QH. AAV-encoded Ca V2.2 peptide aptamer CBD3A6K for primary sensory neuron-targeted treatment of established neuropathic pain. Gene Ther 2019; 26:308-323. [PMID: 31118475 DOI: 10.1038/s41434-019-0082-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/25/2019] [Accepted: 03/20/2019] [Indexed: 12/17/2022]
Abstract
Transmission of pain signals from primary sensory neurons to secondary neurons of the central nervous system is critically dependent on presynaptic voltage-gated calcium channels. Calcium channel-binding domain 3 (CBD3), derived from the collapsin response mediator protein 2 (CRMP2), is a peptide aptamer that is effective in blocking N-type voltage-gated calcium channel (CaV2.2) activity. We previously reported that recombinant adeno-associated virus (AAV)-mediated restricted expression of CBD3 affixed to enhanced green fluorescent protein (EGFP) in primary sensory neurons prevents the development of cutaneous mechanical hypersensitivity in a rat neuropathic pain model. In this study, we tested whether this strategy is effective in treating established pain. We constructed AAV6-EGFP-CBD3A6K (AAV6-CBD3A6K) expressing a fluorescent CBD3A6K (replacing A to K at position 6 of CBD3 peptide), which is an optimized variant of the parental CBD3 peptide that is a more potent blocker of CaV2.2. Delivery of AAV6-CBD3A6K into lumbar (L) 4 and 5 dorsal root ganglia (DRG) of rats 2 weeks following tibial nerve injury (TNI) induced transgene expression in neurons of these DRG and their axonal projections, accompanied by attenuation of pain behavior. We additionally observed that the increased CaV2.2α1b immunoreactivity in the ipsilateral spinal cord dorsal horn and DRG following TNI was significantly normalized by AAV6-CBD3A6K treatment. Finally, the increased neuronal activity in the ipsilateral dorsal horn that developed after TNI was reduced by AAV6-CBD3A6K treatment. Collectively, these results indicate that DRG-restricted AAV6 delivery of CBD3A6K is an effective analgesic molecular strategy for the treatment of established neuropathic pain.
Collapse
Affiliation(s)
- Hongwei Yu
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA. .,Zablocki Veterans Affairs Medical Center, Milwaukee, WI, 53295, USA.
| | - Seung Min Shin
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.,Zablocki Veterans Affairs Medical Center, Milwaukee, WI, 53295, USA
| | - Hongfei Xiang
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.,Department of Orthopedic Surgery, Affiliated Hospital of Qingdao University, 266000, Qingdao, PR China
| | - Dongman Chao
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Yongsong Cai
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.,Xi'an Jiaotong University Health Science Center, 710061, Xi'an, Shaanxi, PR China
| | - Hao Xu
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.,Department of Orthopedic Surgery, Affiliated Hospital of Qingdao University, 266000, Qingdao, PR China
| | - Rajesh Khanna
- Departments of Pharmacology, Neuroscience and Anesthesiology, College of Medicine, University of Arizona, Tucson, AZ, 85724, USA
| | - Bin Pan
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Quinn H Hogan
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.,Zablocki Veterans Affairs Medical Center, Milwaukee, WI, 53295, USA
| |
Collapse
|
40
|
Cai S, Bellampalli SS, Yu J, Li W, Ji Y, Wijeratne EMK, Dorame A, Luo S, Shan Z, Khanna M, Moutal A, Streicher JM, Gunatilaka AAL, Khanna R. (-)-Hardwickiic Acid and Hautriwaic Acid Induce Antinociception via Blockade of Tetrodotoxin-Sensitive Voltage-Dependent Sodium Channels. ACS Chem Neurosci 2019; 10:1716-1728. [PMID: 30525440 DOI: 10.1021/acschemneuro.8b00617] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
For an affliction that debilitates an estimated 50 million adults in the United States, the current chronic pain management approaches are inadequate. The Centers for Disease Control and Prevention have called for a minimization in opioid prescription and use for chronic pain conditions, and thus, it is imperative to discover alternative non-opioid based strategies. For the realization of this call, a library of natural products was screened in search of pharmacological inhibitors of both voltage-gated calcium channels and voltage-gated sodium channels, which are excellent targets due to their well-established roles in nociceptive pathways. We discovered (-)-hardwickiic acid ((-)-HDA) and hautriwaic acid (HTA) isolated from plants, Croton californicus and Eremocarpus setigerus, respectively, inhibited tetrodotoxin-sensitive sodium, but not calcium or potassium, channels in small diameter, presumptively nociceptive, dorsal root ganglion (DRG) neurons. Failure to inhibit spontaneous postsynaptic excitatory currents indicated a preferential targeting of voltage-gated sodium channels over voltage-gated calcium channels by these extracts. Neither compound was a ligand at opioid receptors. Finally, we identified the potential of both (-)-HDA and HTA to reverse chronic pain behavior in preclinical rat models of HIV-sensory neuropathy, and for (-)-HDA specifically, in chemotherapy-induced peripheral neuropathy. Our results illustrate the therapeutic potential for (-)-HDA and HTA for chronic pain management and could represent a scaffold, that, if optimized by structure-activity relationship studies, may yield novel specific sodium channel antagonists for pain relief.
Collapse
Affiliation(s)
| | | | - Jie Yu
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou 310058, P.R. China
| | | | - Yingshi Ji
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | | | | | | | - Zhiming Shan
- Department of Anesthesiology, Shenzhen People’s Hospital & Second Clinical Medical College of Jinan University, Shenzhen 518020, P.R. China
| | - May Khanna
- The Center for Innovation in Brain Sciences, The University of Arizona Health Sciences, Tucson, Arizona 85724, United States
| | | | | | | | - Rajesh Khanna
- The Center for Innovation in Brain Sciences, The University of Arizona Health Sciences, Tucson, Arizona 85724, United States
| |
Collapse
|
41
|
Castillo C, Martinez JC, Longart M, García L, Hernández M, Carballo J, Rojas H, Matteo L, Casique L, Escalona JL, Rodríguez Y, Rodriguez J, Hernández D, Balbi D, Villegas R. Extracellular Application of CRMP2 Increases Cytoplasmic Calcium through NMDA Receptors. Neuroscience 2019; 376:204-223. [PMID: 29555037 DOI: 10.1016/j.neuroscience.2018.02.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 01/30/2018] [Accepted: 02/02/2018] [Indexed: 12/27/2022]
Abstract
Collapsin Response Mediator Protein 2 (CRMP2) is an intracellular protein involved in axon and dendrite growth and specification. In this study, CRMP2 was identified in a conditioned media derived from degenerated sciatic nerves (CM). On cultured rat hippocampal neurons, acute extracellular application of CM or partially purified recombinant CRMP2 produced an increase in cytoplasmic calcium. The increase in cytoplasmic calcium was mostly mediated through NMDA receptors, with a minor contribution of N-type VDCC, and it was maintained as long as CM was present. By using live-labeling of CRMP2, Ca2+ channel binding domain 3 (CBD3) peptide derived from CRMP2, and recombinant CRMP2, we demonstrated that that this effect was mediated by an action on the extracellular side of the NMDA receptor. This is the first report of an extracellular action of CRMP2. Prolonged exposure to extracellular CRMP2, may contribute to neuronal calcium dysregulation and neuronal damage.
Collapse
Affiliation(s)
- Cecilia Castillo
- Unidad de Neurociencias, Instituto de Estudios Avanzados IDEA, Caracas 1080, Venezuela.
| | - Juan Carlos Martinez
- Unidad de Neurociencias, Instituto de Estudios Avanzados IDEA, Caracas 1080, Venezuela
| | - Marines Longart
- Unidad de Neurociencias, Instituto de Estudios Avanzados IDEA, Caracas 1080, Venezuela
| | - Lisbeth García
- Unidad de Neurociencias, Instituto de Estudios Avanzados IDEA, Caracas 1080, Venezuela
| | - Marianela Hernández
- Unidad de Neurociencias, Instituto de Estudios Avanzados IDEA, Caracas 1080, Venezuela
| | - Jeismar Carballo
- Unidad de Neurociencias, Instituto de Estudios Avanzados IDEA, Caracas 1080, Venezuela
| | - Héctor Rojas
- Instituto de Inmunología, Facultad de Medicina, Universidad Central de Venezuela, Caracas 1051, Venezuela
| | - Lorena Matteo
- Unidad de Neurociencias, Instituto de Estudios Avanzados IDEA, Caracas 1080, Venezuela
| | - Liliana Casique
- Depto. de Biología Celular, Universidad Simón Bolívar, Caracas 1080, Venezuela
| | | | - Yuryanni Rodríguez
- Unidad de Neurociencias, Instituto de Estudios Avanzados IDEA, Caracas 1080, Venezuela
| | - Jessica Rodriguez
- Unidad de Neurociencias, Instituto de Estudios Avanzados IDEA, Caracas 1080, Venezuela
| | - Deyanell Hernández
- Unidad de Neurociencias, Instituto de Estudios Avanzados IDEA, Caracas 1080, Venezuela
| | - Domingo Balbi
- Unidad de Neurociencias, Instituto de Estudios Avanzados IDEA, Caracas 1080, Venezuela
| | - Raimundo Villegas
- Unidad de Neurociencias, Instituto de Estudios Avanzados IDEA, Caracas 1080, Venezuela
| |
Collapse
|
42
|
Moutal A, Kalinin S, Kowal K, Marangoni N, Dupree J, Lin SX, Lis K, Lisi L, Hensley K, Khanna R, Feinstein DL. Neuronal Conditional Knockout of Collapsin Response Mediator Protein 2 Ameliorates Disease Severity in a Mouse Model of Multiple Sclerosis. ASN Neuro 2019; 11:1759091419892090. [PMID: 31795726 PMCID: PMC6893573 DOI: 10.1177/1759091419892090] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/23/2019] [Accepted: 11/02/2019] [Indexed: 01/17/2023] Open
Abstract
We previously showed that treatment with lanthionine ketimine ethyl ester (LKE) reduced disease severity and axonal damage in an experimental autoimmune encephalomyelitis (EAE) mouse model of multiple sclerosis and increased neuronal maturation and survival in vitro . A major target of LKE is collapsin response mediator protein 2 (CRMP2), suggesting this protein may mediate LKE actions. We now show that conditional knockout of CRMP2 from neurons using a CamK2a promoter to drive Cre recombinase expression reduces disease severity in the myelin oligodendrocyte glycoprotein (MOG)35–55 EAE model, associated with decreased spinal cord axonal damage, and less glial activation in the cerebellum, but not the spinal cord. Immunohistochemical staining and quantitative polymerase chain reaction show CRMP2 depletion from descending motor neurons in the motor cortex, but not from spinal cord neurons, suggesting that the benefits of CRMP2 depletion on EAE may stem from effects on upper motor neurons. In addition, mice in which CRMP2 S522 phosphorylation was prevented by substitution for an alanine residue also showed reduced EAE severity. These results show that modification of CRMP2 expression and phosphorylation can influence the course of EAE and suggests that treatment with CRMP2 modulators such as LKE act in part by reducing CRMP2 S522 phosphorylation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Kinga Lis
- University of Illinois, Chicago, IL, USA
| | - Lucia Lisi
- Universita Cattolica del Sacro Cuore, Rome,
Italy
| | - Kenneth Hensley
- Arkansas College of Osteopathic Medicine, Fort Smith,
AR, USA
| | | | - Douglas L. Feinstein
- University of Illinois, Chicago, IL, USA
- Jesse Brown VA Medical Center, Chicago, IL, USA
| |
Collapse
|
43
|
Phosphorylated CRMP2 Regulates Spinal Nociceptive Neurotransmission. Mol Neurobiol 2018; 56:5241-5255. [PMID: 30565051 DOI: 10.1007/s12035-018-1445-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 12/03/2018] [Indexed: 01/01/2023]
Abstract
The collapsin response mediator protein 2 (CRMP2) has emerged as a central node in assembling nociceptive signaling complexes involving voltage-gated ion channels. Concerted actions of post-translational modifications, phosphorylation and SUMOylation, of CRMP2 contribute to regulation of pathological pain states. In the present study, we demonstrate a novel role for CRMP2 in spinal nociceptive transmission. We found that, of six possible post-translational modifications, three phosphorylation sites on CRMP2 were critical for regulating calcium influx in dorsal root ganglion sensory neurons. Of these, only CRMP2 phosphorylated at serine 522 by cyclin-dependent kinase 5 (Cdk5) contributed to spinal neurotransmission in a bidirectional manner. Accordingly, expression of a non-phosphorylatable CRMP2 (S522A) decreased the frequency of spontaneous excitatory postsynaptic currents (sEPSCs), whereas expression of a constitutively phosphorylated CRMP2 (S522D) increased the frequency of sEPSCs. The presynaptic nature of CRMP2's actions was further confirmed by pharmacological antagonism of Cdk5-mediated CRMP2 phosphorylation with S-N-benzy-2-acetamido-3-methoxypropionamide ((S)-lacosamide; (S)-LCM) which (i) decreased sEPSC frequency, (ii) increased paired-pulse ratio, and (iii) reduced the presynaptic distribution of CaV2.2 and NaV1.7, two voltage-gated ion channels implicated in nociceptive signaling. (S)-LCM also inhibited depolarization-evoked release of the pro-nociceptive neurotransmitter calcitonin gene-related peptide (CGRP) in the spinal cord. Increased CRMP2 phosphorylation in rats with spared nerve injury (SNI) was decreased by intrathecal administration of (S)-LCM resulting in a loss of presynaptic localization of CaV2.2 and NaV1.7. Together, these findings indicate that CRMP2 regulates presynaptic excitatory neurotransmission in spinal cord and may play an important role in regulating pathological pain. Novel targeting strategies to inhibit CRMP2 phosphorylation by Cdk5 may have great potential for the treatment of chronic pain.
Collapse
|
44
|
Moutal A, Luo S, Largent-Milnes TM, Vanderah TW, Khanna R. Cdk5-mediated CRMP2 phosphorylation is necessary and sufficient for peripheral neuropathic pain. NEUROBIOLOGY OF PAIN 2018; 5. [PMID: 31080913 PMCID: PMC6505708 DOI: 10.1016/j.ynpai.2018.07.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
CRMP2 phosphorylation levels are dysregulated in the SNI model of experimental neuropathy. CRMP2 phosphorylation by Cdk5 is increased at the pre-synaptic sites of the dorsal horn of the spinal cord. CRMP2 expression is necessary for neuropathic pain. Genetic targeting of CRMP2 phosphorylation by Cdk5 reverses neuropathic pain. CRMP2 phosphorylation by Cdk5 is sufficient to elicit allodynia.
Neuropathic pain results from nerve injuries that cause ectopic firing and increased nociceptive signal transmission due to activation of key membrane receptors and channels. The dysregulation of trafficking of voltage-gated ion channels is an emerging mechanism in the etiology of neuropathic pain. We identify increased phosphorylation of collapsin response mediator protein 2 (CRMP2), a protein reported to regulate presynaptic voltage-gated calcium and sodium channels. A spared nerve injury (SNI) increased expression of a cyclin dependent kinase 5 (Cdk5)-phosphorylated form of CRMP2 in the dorsal horn of the spinal cord and the dorsal root ganglia (DRG) in the ipsilateral (injured) versus the contralateral (non-injured) sites. Biochemical fractionation of spinal cord from SNI rats revealed the increase in Cdk5-mediated CRMP2 phosphorylation to be enriched to pre-synaptic sites. CRMP2 has emerged as a central node in assembling nociceptive signaling complexes. Knockdown of CRMP2 using a small interfering RNA (siRNA) reversed SNI-induced mechanical allodynia implicating CRMP2 expression as necessary for neuropathic pain. Intrathecal expression of a CRMP2 resistant to phosphorylation by Cdk5 normalized SNI-induced mechanical allodynia, whereas mimicking constitutive phosphorylation of CRMP2 resulted in induction of mechanical allodynia in naïve rats. Collectively, these results demonstrate that Cdk5-mediated CRMP2 phosphorylation is both necessary and sufficient for peripheral neuropathic pain.
Collapse
Affiliation(s)
- Aubin Moutal
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Shizhen Luo
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Tally M Largent-Milnes
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Todd W Vanderah
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Rajesh Khanna
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA.,Department of Anesthesiology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA.,Neuroscience Graduate Interdisciplinary Program, College of Medicine, University of Arizona, Tucson, AZ 85724, USA.,The Center for Innovation in Brain Sciences, University of Arizona, Tucson, AZ 85724, USA
| |
Collapse
|
45
|
Abstract
INTRODUCTION Neurofibromatosis type 1 (NF1) is an autosomal dominantly inherited tumor predisposition syndrome with an incidence of one in 3000-4000 individuals with no currently effective therapies. The NF1 gene encodes neurofibromin, which functions as a negative regulator of RAS. NF1 is a chronic multisystem disorder affecting many different tissues. Due to cell-specific complexities of RAS signaling, therapeutic approaches for NF1 will likely have to focus on a particular tissue and manifestation of the disease. Areas covered: We discuss the multisystem nature of NF1 and the signaling pathways affected due to neurofibromin deficiency. We explore the cell-/tissue-specific molecular and cellular consequences of aberrant RAS signaling in NF1 and speculate on their potential as therapeutic targets for the disease. We discuss recent genomic, transcriptomic, and proteomic studies combined with molecular, cellular, and biochemical analyses which have identified several targets for specific NF1 manifestations. We also consider the possibility of patient-specific gene therapy approaches for NF1. Expert opinion: The emergence of NF1 genotype-phenotype correlations, characterization of cell-specific signaling pathways affected in NF1, identification of novel biomarkers, and the development of sophisticated animal models accurately reflecting human pathology will continue to provide opportunities to develop therapeutic approaches to combat this multisystem disorder.
Collapse
Affiliation(s)
- James A Walker
- a Center for Genomic Medicine , Massachusetts General Hospital, Harvard Medical School , Boston , MA , USA
| | - Meena Upadhyaya
- b Division of Cancer and Genetics , Cardiff University , Cardiff , UK
| |
Collapse
|
46
|
Moutal A, Sun L, Yang X, Li W, Cai S, Luo S, Khanna R. CRMP2-Neurofibromin Interface Drives NF1-related Pain. Neuroscience 2018; 381:79-90. [PMID: 29655575 DOI: 10.1016/j.neuroscience.2018.04.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 03/22/2018] [Accepted: 04/04/2018] [Indexed: 12/28/2022]
Abstract
An understudied symptom of the genetic disorder Neurofibromatosis type 1 (NF1) is chronic idiopathic pain. We used targeted editing of Nf1 in rats to provide direct evidence of a causal relationship between neurofibromin, the protein product of the Nf1 gene, and pain responses. Our study data identified a protein-interaction network with collapsin response meditator protein 2 (CRMP2) as a node and neurofibromin, syntaxin 1A, and the N-type voltage-gated calcium (CaV2.2) channel as interaction edges. Neurofibromin uncouples CRMP2 from syntaxin 1A. Upon loss/mutation of neurofibromin, as seen in patients with NF1, the CRMP2/Neurofibromin interaction is uncoupled, which frees CRMP2 to interact with both syntaxin 1A and CaV2.2, culminating in increased release of the pro-nociceptive neurotransmitter calcitonin gene-related peptide (CGRP). Our work also identified the CRMP2-derived peptide CNRP1, which uncoupled CRMP2's interactions with neurofibromin, syntaxin 1A, as well as CaV2.2. Here, we tested if CRISPR/Cas9-mediated editing of the Nf1 gene, which leads to functional remodeling of peripheral nociceptors through effects on the tetrodotoxin-sensitive (TTX-S) Na+ voltage-gated sodium channel (NaV1.7) and CaV2.2, could be affected using CNRP1, a peptide designed to target the CRMP2-neurofibromin interface. The data presented here shows that disrupting the CRMP2-neurofibromin interface is sufficient to reverse the dysregulations of voltage-gated ion channels and neurotransmitter release elicited by Nf1 gene editing. As a consequence of these effects, the CNRP1 peptide reversed hyperalgesia to thermal stimulation of the hindpaw observed in Nf1-edited rats. Our findings support future pharmacological targeting of the CRMP2/neurofibromin interface for NF1-related pain relief.
Collapse
Affiliation(s)
- Aubin Moutal
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Li Sun
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin Street 71#, Changchun 130021, China
| | - Xiaofang Yang
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Wennan Li
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Song Cai
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Shizhen Luo
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Rajesh Khanna
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA; Department of Anesthesiology, College of Medicine, University of Arizona, Tucson, AZ, USA; Neuroscience Graduate Interdisciplinary Program, College of Medicine, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
47
|
Abstract
Neuropathic pain represents a significant and mounting burden on patients and society at large. Management of neuropathic pain, however, is both intricate and challenging, exacerbated by the limited quantity and quality of clinically available treatments. On this stage, dysfunctional voltage-gated ion channels, especially the presynaptic N-type voltage-gated calcium channel (VGCC) (Cav2.2) and the tetrodotoxin-sensitive voltage-gated sodium channel (VGSC) (Nav1.7), underlie the pathophysiology of neuropathic pain and serve as high profile therapeutic targets. Indirect regulation of these channels holds promise for the treatment of neuropathic pain. In this review, we focus on collapsin response mediator protein 2 (CRMP2), a protein with emergent roles in voltage-gated ion channel trafficking and discuss the therapeutic potential of targetting this protein.
Collapse
|