1
|
Mustonen L, Nieminen JK, Koskela S, Kaunisto M, Kalso E, Tienari PJ, Harno H. HLA-Region Genetic Association Analysis of Breast Cancer Patients With and Without Persistent Postsurgical Neuropathic Pain. Eur J Pain 2025; 29:e70009. [PMID: 40084918 DOI: 10.1002/ejp.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 02/13/2025] [Accepted: 03/02/2025] [Indexed: 03/16/2025]
Abstract
BACKGROUND Surgical nerve injuries lead to persistent neuropathic pain (NP) in up to 30% of patients. Among many other factors, polymorphisms in the human leukocyte antigen (HLA) genes have been suggested to contribute to the development of neuropathic pain. METHODS We performed a genetic association analysis of HLA class I and class II alleles in women who had been operated on for breast cancer. Patients had a surgeon-confirmed perioperative nerve injury and were examined 4-9 years after their surgery. Patients with painful (cases, n = 27) and painless (controls, n = 30) intercostobrachial nerve resection were studied. Cases included patients with definite NP with worst pain intensity in the past week ≥ 4/10 on a numerical rating scale (NRS) and controls had the same nerve injury with no NP or other pains. Whole-genome single nucleotide polymorphism data were produced, and HLA class I (HLA-A, -B, -C) and class II (HLA-DRB1, -DQA1, -DQB1 and -DPB1) alleles were determined by imputation. RESULTS HLA-DRB1*03:01, DQA1*05:01 and DQB1*02:01 alleles appeared to be associated with painful nerve injury after breast cancer surgery (nominal p = 0.007 for all, carriership OR = 12.0, 95% CI 1.38-104; FDR corrected p > 0.07). These alleles comprise the DR3-DQ2 haplotype, which is part of the ancestral haplotype AH8.1. CONCLUSIONS Our results provide further support for the role of HLA genetic variation in the development of persistent post-surgical neuropathic pain, which indirectly implies a mechanism involving immunological memory in this process. SIGNIFICANCE STATEMENT We report a novel association between the HLA-DR3-DQ2 haplotype and the development of persistent neuropathic pain after breast cancer surgery. Our results provide further evidence for the role of HLA polymorphism in persistent neuropathic pain.
Collapse
Affiliation(s)
- L Mustonen
- Clinical Neurosciences, Neurology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- Department of Anaesthesiology, Intensive Care and Pain Medicine, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - J K Nieminen
- Clinical Neurosciences, Neurology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - S Koskela
- Department of Research and Development, Finnish Red Cross Blood Service, Helsinki, Finland
| | - M Kaunisto
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - E Kalso
- Department of Anaesthesiology, Intensive Care and Pain Medicine, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- SleepWell Research Program, University of Helsinki, Helsinki, Finland
| | - P J Tienari
- Clinical Neurosciences, Neurology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - H Harno
- Clinical Neurosciences, Neurology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- Department of Anaesthesiology, Intensive Care and Pain Medicine, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- SleepWell Research Program, University of Helsinki, Helsinki, Finland
| |
Collapse
|
2
|
Wang H, Chen G, Gong Q, Wu J, Chen P. Systemic inflammatory regulators are associated with two common types of neuropathic pain: A bidirectional Mendelian randomization study. Int Immunopharmacol 2024; 143:113466. [PMID: 39471697 DOI: 10.1016/j.intimp.2024.113466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 09/03/2024] [Accepted: 10/19/2024] [Indexed: 11/01/2024]
Abstract
BACKGROUND Currently, there is limited and inconsistent evidence regarding the causal relationship between systemic inflammatory regulators and two common types of neuropathic pain, namely, postherpetic neuralgia (PHN) and trigeminal neuralgia (TN). This study employed a Mendelian randomization (MR) approach to investigate the causal relationship between systemic inflammatory regulators and these two common neuropathic pain conditions. METHODS In this study, 41 single-nucleotide polymorphisms (SNPs) associated with PHN and TN were selected as instrumental variables (IVs) representing systemic inflammatory regulators. Genetic associations of systemic inflammatory regulators were derived from recent genome-wide association studies (GWAS) on the human proteome and cytokines. Genetic data related to PHN and TN were obtained from the FinnGen. The primary analytical method utilized inverse variance weighting (IVW) and various sensitivity analyses. RESULTS Prior to applying the false discovery rate (FDR) correction, our bidirectional MR analysis revealed that increased levels of IFNγ (OR: 0.46, 95% CI: 0.24-0.87, PIVW: 0.016) and MCP3 (OR: 0.52, 95% CI: 0.35-0.77, PIVW: 0.001) were associated with a reduced risk of PHN, and increased levels of IL-16 (OR: 0.81, 95% CI: 0.67-0.98, PIVW: 0.026) were causally associated with a reduced risk of TN. In discussing the impact of PHN and TN on systemic inflammatory regulator levels, we observed the following findings: The BETA for CTACK was -0.07 (95% CI: -0.13 to -0.01, PIVW: 0.015), the BETA for FGFBasic was -0.04 (95% CI: -0.08 to -0.01, PIVW: 0.020), and the BETA for IL-17 was -0.04 (95% CI: -0.08 to -0.01, PIVW: 0.019). These results indicate that patients with PHN tend to have lower levels of CTACK, FGFBasic, and IL-17. Conversely, the BETA for IFNγ was -0.09 (95% CI: -0.18 to 0.00, PIVW: 0.046), suggesting that patients with TN tend to have lower levels of IFN γ. However, after FDR correction, only the association between MCP3 and PHN remained statistically significant (PFDR: 0.044). CONCLUSION This study found that certain systemic inflammatory regulators are associated with PHN and TN to some extent. However, further research is needed to explore the specific mechanisms underlying these connections.
Collapse
Affiliation(s)
- Hao Wang
- Basic Medical School, Guizhou University of Traditional Chinese Medicine, Guizhou 550025, China
| | - Guanglei Chen
- Basic Medical School, Guizhou University of Traditional Chinese Medicine, Guizhou 550025, China
| | - Qian Gong
- First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Jing Wu
- Basic Medical School, Guizhou University of Traditional Chinese Medicine, Guizhou 550025, China
| | - Peng Chen
- Basic Medical School, Guizhou University of Traditional Chinese Medicine, Guizhou 550025, China.
| |
Collapse
|
3
|
Åkerlund M, Baskozos G, Li W, Themistocleous AC, Pascal MMV, Rayner NW, Attal N, Baron R, Baudic S, Bennedsgaard K, Bouhassira D, Comini M, Crombez G, Faber CG, Finnerup NB, Gierthmühlen J, Granovsky Y, Gylfadottir SS, Hébert HL, Jensen TS, John J, Kemp HI, Lauria G, Laycock H, Meng W, Nilsen KB, Palmer C, Rice ASC, Serra J, Smith BH, Tesfaye S, Topaz LS, Veluchamy A, Vollert J, Yarnitsky D, van Zuydam N, Zwart JA, McCarthy MI, Lyssenko V, Bennett DL. Genetic associations of neuropathic pain and sensory profile in a deeply phenotyped neuropathy cohort. Pain 2024:00006396-990000000-00756. [PMID: 39471050 DOI: 10.1097/j.pain.0000000000003463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/27/2024] [Indexed: 11/01/2024]
Abstract
ABSTRACT We aimed to investigate the genetic associations of neuropathic pain in a deeply phenotyped cohort. Participants with neuropathic pain were cases and compared with those exposed to injury or disease but without neuropathic pain as control subjects. Diabetic polyneuropathy was the most common aetiology of neuropathic pain. A standardised quantitative sensory testing protocol was used to categorize participants based on sensory profile. We performed genome-wide association study, and in a subset of participants, we undertook whole-exome sequencing targeting analyses of 45 known pain-related genes. In the genome-wide association study of diabetic neuropathy (N = 1541), a top significant association was found at the KCNT2 locus linked with pain intensity (rs114159097, P = 3.55 × 10-8). Gene-based analysis revealed significant associations between LHX8 and TCF7L2 and neuropathic pain. Polygenic risk score for depression was associated with neuropathic pain in all participants. Polygenic risk score for C-reactive protein showed a positive association, while that for fasting insulin showed a negative association with neuropathic pain, in individuals with diabetic polyneuropathy. Gene burden analysis of candidate pain genes supported significant associations between rare variants in SCN9A and OPRM1 and neuropathic pain. Comparison of individuals with the "irritable" nociceptor profile to those with a "nonirritable" nociceptor profile identified a significantly associated variant (rs72669682, P = 4.39 × 10-8) within the ANK2 gene. Our study on a deeply phenotyped cohort with neuropathic pain has confirmed genetic associations with the known pain-related genes KCNT2, OPRM1, and SCN9A and identified novel associations with LHX8 and ANK2, genes not previously linked to pain and sensory profiles, respectively.
Collapse
Affiliation(s)
- Mikael Åkerlund
- Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Lund, Sweden
| | - Georgios Baskozos
- Nuffield Department of Clinical Neuroscience, The University of Oxford, Oxford, United Kingdom
| | - Wenqianglong Li
- Nuffield Department of Clinical Neuroscience, The University of Oxford, Oxford, United Kingdom
| | | | - Mathilde M V Pascal
- Nuffield Department of Clinical Neuroscience, The University of Oxford, Oxford, United Kingdom
| | - N William Rayner
- NIHR Oxford Biomedical Research Centre, Oxford University Hospitals Trust, Oxford, United Kingdom
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
- Department of Human Genetics, Wellcome Sanger Institute, Hinxton, United Kingdom
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Nadine Attal
- INSERM U987, APHP and UVSQ Paris Saclay University, CHU Ambroise Paré, Boulogne Billancourt, France
| | - Ralf Baron
- Division of Neurological Pain Research and Therapy, Department of Neurology, Universitätsklinikum Schleswig-Holstein, Kiel, Germany
| | - Sophie Baudic
- INSERM U987, APHP and UVSQ Paris Saclay University, CHU Ambroise Paré, Boulogne Billancourt, France
| | | | - Didier Bouhassira
- INSERM U987, APHP and UVSQ Paris Saclay University, CHU Ambroise Paré, Boulogne Billancourt, France
| | - Maddalena Comini
- Nuffield Department of Clinical Neuroscience, The University of Oxford, Oxford, United Kingdom
| | - Geert Crombez
- Department of Experimental-Clinical and Health Psychology, Ghent University, Ghent, Belgium
| | - Catharina G Faber
- Department of Neurology, Maastricht University Medical Center, Mental Health and Neuroscience Reseach Institute, Maastricht, the Netherlands
| | - Nanna B Finnerup
- Department of Clinical Medicine, Danish Pain Research Center, Aarhus University, Aarhus, Denmark
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | - Janne Gierthmühlen
- Department for Anesthesiology and Surgical Intensive Care Medicine, Pain Therapy, University Hospital of Kiel, Kiel, Germany
| | - Yelena Granovsky
- Department of Neurology, Rambam Health Care Campus, Technion-Israel Institute of Technology, Haifa, Israel
| | - Sandra Sif Gylfadottir
- Department of Clinical Medicine, Danish Pain Research Center, Aarhus University, Aarhus, Denmark
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | - Harry L Hébert
- Chronic Pain Research Group, Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| | - Troels S Jensen
- Department of Clinical Medicine, Danish Pain Research Center, Aarhus University, Aarhus, Denmark
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | - Jishi John
- Nuffield Department of Clinical Neuroscience, The University of Oxford, Oxford, United Kingdom
| | - Harriet I Kemp
- Pain Research, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Giuseppe Lauria
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
- Department of Clinical Neurosciences, IRCCS Fondazione Istituto Neurologico "Carlo Besta," Milan, Italy
| | - Helen Laycock
- Pain Research, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Weihua Meng
- Chronic Pain Research Group, Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo, China
| | - Kristian Bernhard Nilsen
- Section for Clinical Neurophysiology, Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Colin Palmer
- Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| | - Andrew S C Rice
- Pain Research, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Jordi Serra
- Department of Clinical Neurophysiology, King's College Hospital, London, United Kingdom
| | - Blair H Smith
- Chronic Pain Research Group, Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| | - Solomon Tesfaye
- Diabetes Research Unit, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
| | - Leah Shafran Topaz
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Abirami Veluchamy
- Chronic Pain Research Group, Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| | - Jan Vollert
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - David Yarnitsky
- Department of Neurology, Rambam Health Care Campus, Technion-Israel Institute of Technology, Haifa, Israel
| | - Natalie van Zuydam
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - John Anker Zwart
- Department of Research and Innovation, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Mark I McCarthy
- NIHR Oxford Biomedical Research Centre, Oxford University Hospitals Trust, Oxford, United Kingdom
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Valeriya Lyssenko
- Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Lund, Sweden
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - David L Bennett
- Nuffield Department of Clinical Neuroscience, The University of Oxford, Oxford, United Kingdom
| |
Collapse
|
4
|
Mackenzie SC, Rahmioglu N, Romaniuk L, Collins F, Coxon L, Whalley HC, Vincent K, Zondervan KT, Horne AW, Whitaker LH. Genome-wide association reveals a locus in neuregulin 3 associated with gabapentin efficacy in women with chronic pelvic pain. iScience 2024; 27:110370. [PMID: 39258169 PMCID: PMC11384074 DOI: 10.1016/j.isci.2024.110370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/13/2024] [Accepted: 06/21/2024] [Indexed: 09/12/2024] Open
Abstract
Chronic pelvic pain (CPP) in women with no obvious pelvic pathology has few evidence-based treatment options. Our recent multicenter randomized controlled trial (GaPP2) in women with CPP and no obvious pelvic pathology showed that gabapentin did not relieve pain overall and was associated with more side effects than placebo. We conducted an exploratory genome-wide association study using eligible GaPP2 participants aiming to identify genetic variants associated with gabapentin response. One genome-wide significant association with gabapentin analgesic response was identified, rs4442490, an intron variant located in Neuregulin 3 (NRG3) (p = 2·11×10-8; OR = 18·82 (95% CI 4·86-72·83). Analysis of a large sample of UK Biobank participants demonstrated phenome-wide significant brain imaging features of rs4442490, particularly implicating the orbitofrontal cortex. NRG3 is expressed predominantly in central nervous system tissues and plays a critical role in nervous system development, maintenance, and repair, suggesting a neurobiologically plausible role in gabapentin efficacy and potential for personalized analgesic treatment.
Collapse
Affiliation(s)
- Scott C. Mackenzie
- Centre for Reproductive Health, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Nilufer Rahmioglu
- Wellcome Centre for Human Genetics, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7BN, UK
- Oxford Endometriosis CaRe Centre, Nuffield Department of Women’s & Reproductive Health, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Liana Romaniuk
- Division of Psychiatry, University of Edinburgh, Edinburgh EH10 5HF, UK
| | - Frances Collins
- Centre for Reproductive Health, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Lydia Coxon
- Oxford Endometriosis CaRe Centre, Nuffield Department of Women’s & Reproductive Health, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Heather C. Whalley
- Division of Psychiatry, University of Edinburgh, Edinburgh EH10 5HF, UK
- Generation Scotland, Institute for Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Katy Vincent
- Oxford Endometriosis CaRe Centre, Nuffield Department of Women’s & Reproductive Health, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Krina T. Zondervan
- Wellcome Centre for Human Genetics, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7BN, UK
- Oxford Endometriosis CaRe Centre, Nuffield Department of Women’s & Reproductive Health, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Andrew W. Horne
- Centre for Reproductive Health, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Lucy H.R. Whitaker
- Centre for Reproductive Health, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK
| |
Collapse
|
5
|
Cao B, Xu Q, Shi Y, Zhao R, Li H, Zheng J, Liu F, Wan Y, Wei B. Pathology of pain and its implications for therapeutic interventions. Signal Transduct Target Ther 2024; 9:155. [PMID: 38851750 PMCID: PMC11162504 DOI: 10.1038/s41392-024-01845-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 04/08/2024] [Accepted: 04/25/2024] [Indexed: 06/10/2024] Open
Abstract
Pain is estimated to affect more than 20% of the global population, imposing incalculable health and economic burdens. Effective pain management is crucial for individuals suffering from pain. However, the current methods for pain assessment and treatment fall short of clinical needs. Benefiting from advances in neuroscience and biotechnology, the neuronal circuits and molecular mechanisms critically involved in pain modulation have been elucidated. These research achievements have incited progress in identifying new diagnostic and therapeutic targets. In this review, we first introduce fundamental knowledge about pain, setting the stage for the subsequent contents. The review next delves into the molecular mechanisms underlying pain disorders, including gene mutation, epigenetic modification, posttranslational modification, inflammasome, signaling pathways and microbiota. To better present a comprehensive view of pain research, two prominent issues, sexual dimorphism and pain comorbidities, are discussed in detail based on current findings. The status quo of pain evaluation and manipulation is summarized. A series of improved and innovative pain management strategies, such as gene therapy, monoclonal antibody, brain-computer interface and microbial intervention, are making strides towards clinical application. We highlight existing limitations and future directions for enhancing the quality of preclinical and clinical research. Efforts to decipher the complexities of pain pathology will be instrumental in translating scientific discoveries into clinical practice, thereby improving pain management from bench to bedside.
Collapse
Affiliation(s)
- Bo Cao
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Qixuan Xu
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Yajiao Shi
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100191, China
| | - Ruiyang Zhao
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Hanghang Li
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Jie Zheng
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100191, China
| | - Fengyu Liu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100191, China.
| | - You Wan
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100191, China.
| | - Bo Wei
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
6
|
Guo W, Zhang J, Feng Y. Treatment of neuropathic pain by traditional Chinese medicine: An updated review on their effect and putative mechanisms of action. Phytother Res 2024; 38:2962-2992. [PMID: 38600617 DOI: 10.1002/ptr.8180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/02/2024] [Accepted: 02/19/2024] [Indexed: 04/12/2024]
Abstract
Neuropathic pain (NP) is a common chronic pain with heterogeneous clinical features, and consequent lowering of quality of life. Currently, although conventional chemical drugs can effectively manage NP symptoms in the short term, their long-term efficacy is limited, and they come with significant side effects. In this regard, traditional Chinese medicine (TCM) provides a promising avenue for treating NP. Numerous pharmacological and clinical studies have substantiated the effectiveness of TCM with multiple targets and mechanisms. We aimed to outline the characteristics of TCM, including compound prescriptions, single Chinese herbs, active ingredients, and TCM physical therapy, for NP treatment and discussed their efficacy by analyzing the pathogenesis of NP. Various databases, such as PubMed, Web of Science, China National Knowledge Infrastructure, and Wanfang database, were searched. We focused on recent research progress in NP treatment by TCM. Finally, we proposed the future challenges and emerging trends in the treatment of NP. TCM demonstrates significant clinical efficacy in NP treatment, employing multi-mechanisms. Drawing from the theory of syndrome differentiation, four types of dialectical treatments for NP by compound TCM prescriptions were introduced: promoting blood circulation and removing blood stasis; promoting blood circulation and promote Qi flow; warming Yang and benefiting Qi; soothing the liver and regulating Qi. Meanwhile, 33 single Chinese herbs and 25 active ingredients were included. In addition, TCM physical therapy (e.g., acupuncture, massage, acupoint injection, and fumigation) also showed good efficacy in NP treatment. TCM, particularly through the use of compound prescriptions and acupuncture, holds bright prospects in treating NP owing to its diverse holistic effects. Nonetheless, the multi-targets of TCM may result in possible disadvantages to NP treatment, and the pharmacological mechanisms of TCM need further evaluation. Here, we provide an overview of NP treatment via TCM, based on the pathogenesis and the potential therapeutic mechanisms, thus providing a reference for further studies.
Collapse
Affiliation(s)
- Wenjing Guo
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Jiquan Zhang
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Yi Feng
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| |
Collapse
|
7
|
De Stefano G, Truini A. An overview of diagnosis and assessment methods for neuropathic pain. Presse Med 2024; 53:104234. [PMID: 38636786 DOI: 10.1016/j.lpm.2024.104234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/04/2024] [Indexed: 04/20/2024] Open
Abstract
Neuropathic pain, defined as pain arising as a consequence of a lesion or disease affecting the somatosensory nervous system, requires precise diagnostic assessment. Different diagnostic tools have been devised for the diagnosis of neuropathic pain. This review offers insights into the diagnostic accuracy of screening questionnaires and different tests that investigate the somatosensory nervous system, in patients with suspected neuropathic pain. Thus, it illustrates how these tools can aid clinicians in accurately diagnosing neuropathic pain.
Collapse
Affiliation(s)
| | - Andrea Truini
- Sapienza University, Department of Human Neuroscience, Rome, Italy.
| |
Collapse
|
8
|
Miclescu A, Rönngren C, Bengtsson M, Gordh T, Hedin A. Increased risk of persistent neuropathic pain after traumatic nerve injury and surgery for carriers of a human leukocyte antigen haplotype. Pain 2024; 165:1404-1412. [PMID: 38147413 PMCID: PMC11090029 DOI: 10.1097/j.pain.0000000000003143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/20/2023] [Accepted: 10/21/2023] [Indexed: 12/28/2023]
Abstract
ABSTRACT It is not known why some patients develop persistent pain after nerve trauma while others do not. Among multiple risk factors for the development of persistent posttrauma and postsurgical pain, a neuropathic mechanism due to iatrogenic nerve lesion has been proposed as the major cause of these conditions. Because there is some evidence that the human leukocyte antigen (HLA) system plays a role in persistent postsurgical pain, this study aimed to identify the genetic risk factors, specifically among HLA loci, associated with chronic neuropathic pain after traumatic nerve injuries and surgery in the upper extremities. Blood samples were taken to investigate the contribution of HLA alleles (ie, HLA-A, HLA-B, HLA-DRB1, HLA-DQB1, and HLA-DPB1) in a group of patients with persistent neuropathic pain (n = 70) and a group of patients with neuropathy without pain (n = 61). All subjects had intraoperatively verified nerve damage in the upper extremity. They underwent bedside clinical neurological examination to identify the neuropathic pain component according to the present grading system of neuropathic pain. Statistical analyses on the allele and haplotype were conducted using the BIGDAWG package. We found that the HLA haplotype A*02:01-B*15:01-C*03:04-DRB1*04:01-DQB1*03:02 was associated with an increased risk of developing persistent neuropathic pain in the upper extremity (OR = 9.31 [95% CI 1.28-406.45], P < 0.05). No significant associations were found on an allele level when correcting for multiple testing. Further studies are needed to investigate whether this association is on a haplotypic level or if certain alleles may be causing the association.
Collapse
Affiliation(s)
| | | | - Mats Bengtsson
- Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | | | - Anders Hedin
- Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
9
|
Sommer C, Baron R, Sachau J, Papagianni A, Özgül ÖS, Enax-Krumova E. [The EAN-NeuPSIG guideline on the diagnosis of neuropathic pain-a summary]. Schmerz 2024:10.1007/s00482-024-00806-0. [PMID: 38602515 DOI: 10.1007/s00482-024-00806-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2024] [Indexed: 04/12/2024]
Abstract
In this joint guideline of the scientific societies and working groups mentioned in the title, evidence-based recommendations for the use of screening questionnaires and diagnostic tests in patients with neuropathic pain were developed. The systematic literature search and meta-analysis yielded the following results: Of the screening questionnaires, Douleur Neuropathique en 4 Questions (DN4), I‑DN4 (self-administered DN4), and Leeds Assessment of Neuropathic Symptoms and Signs (LANSS) received a strong recommendation, while S‑LANSS (self-administered LANSS) and PainDETECT received weak recommendations for their use in the diagnostic workup of patients with possible neuropathic pain. There was a strong recommendation for the use of skin biopsy and a weak recommendation for quantitative sensory testing and nociceptive evoked potentials. The role of confocal corneal microscopy is still unclear. Functional imaging and peripheral nerve blocks are helpful in elucidating the pathophysiology, but current literature does not support their use in diagnosing neuropathic pain. In selected cases, genetic testing in specialized centers may be considered.
Collapse
Affiliation(s)
- Claudia Sommer
- Neurologische Klinik, Universitätsklinikum Würzburg, 97080, Würzburg, Deutschland.
| | - Ralf Baron
- Sektion Neurologische Schmerzforschung und -therapie, Klinik für Neurologie, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel, Deutschland
| | - Juliane Sachau
- Sektion Neurologische Schmerzforschung und -therapie, Klinik für Neurologie, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel, Deutschland
| | | | - Özüm S Özgül
- Neurologische Klinik und Poliklinik, Berufsgenossenschaftliches Universitätsklinikum Bergmannsheil gGmbH, Ruhr-Universität Bochum, Bochum, Deutschland
| | - Elena Enax-Krumova
- Neurologische Klinik und Poliklinik, Berufsgenossenschaftliches Universitätsklinikum Bergmannsheil gGmbH, Ruhr-Universität Bochum, Bochum, Deutschland
| |
Collapse
|
10
|
Sachula, Yang Z, Yu T, Chen J, Zhang R, Zhang Y, Liu J, Zhang H, Sun J. Exploring the Mechanism of Immediate Analgesia Induced by Tuina Intervention on Minor Chronic Constriction Injury in Rats Using LC-MS. J Pain Res 2024; 17:321-334. [PMID: 38283563 PMCID: PMC10821647 DOI: 10.2147/jpr.s438682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/11/2024] [Indexed: 01/30/2024] Open
Abstract
Purpose This study aimed to investigate changes in metabolomic expression in the spinal dorsal horn (SDH) and thalamus during a Tuina session, aiming to elucidate the mechanism of immediate analgesia. Methods The rats were randomly divided into three groups: the Sham group, the Model group, and the Tuina group. A minor chronic constriction injury (minor CCI) model was established in both the Model group and the Tuina group. The therapeutic effect of Tuina was determined using the mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) tests. Differential metabolites of the SDH and thalamus were detected using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Bioinformatic analysis was performed using CV, PCA, Venn, and KEGG. Results The therapeutic effect of MWT and TWL after instant Tuina intervention was significant. The therapeutic effect of Tuina instant was significantly better compared to the Model group. In the Veen analysis, it was found that Tuina instantly regulates 10 differential metabolites in the SDH and 5 differential metabolites in the thalamus. In the KEGG enrichment analysis, we found that differential metabolites were enriched in 43 pathways in the thalamus and 70 pathways in the SDH. Conclusion Tuina therapy may have analgesic effects by metabolizing neurotransmitters such as 2-Picolinic Acid, 5-Hydroxy-Tryptophan Glutathione Betaine-aldehyde-chloride Leucine Lysine Methionine Sarcosine Succinic Acid Histidine Acetylcholine and 5-Hydroxyindoleacetic Acid through the cAMP pathway. It also affects pathways of neurodegeneration-multiple diseases, butanoate metabolism, tyrosine metabolism.
Collapse
Affiliation(s)
- Sachula
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Zhenjie Yang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Tianyuan Yu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Jinping Chen
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Runlong Zhang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Yingqi Zhang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Jiayue Liu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Hanyu Zhang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Jiawei Sun
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| |
Collapse
|
11
|
Lyssenko V, Vaag A. Genetics of diabetes-associated microvascular complications. Diabetologia 2023; 66:1601-1613. [PMID: 37452207 PMCID: PMC10390394 DOI: 10.1007/s00125-023-05964-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/27/2023] [Indexed: 07/18/2023]
Abstract
Diabetes is associated with excess morbidity and mortality due to both micro- and macrovascular complications, as well as a range of non-classical comorbidities. Diabetes-associated microvascular complications are those considered most closely related to hyperglycaemia in a causal manner. However, some individuals with hyperglycaemia (even those with severe hyperglycaemia) do not develop microvascular diseases, which, together with evidence of co-occurrence of microvascular diseases in families, suggests a role for genetics. While genome-wide association studies (GWASs) produced firm evidence of multiple genetic variants underlying differential susceptibility to type 1 and type 2 diabetes, genetic determinants of microvascular complications are mostly suggestive. Identified susceptibility variants of diabetic kidney disease (DKD) in type 2 diabetes mirror variants underlying chronic kidney disease (CKD) in individuals without diabetes. As for retinopathy and neuropathy, reported risk variants currently lack large-scale replication. The reported associations between type 2 diabetes risk variants and microvascular complications may be explained by hyperglycaemia. More extensive phenotyping, along with adjustments for unmeasured confounding, including both early (fetal) and late-life (hyperglycaemia, hypertension, etc.) environmental factors, are urgently needed to understand the genetics of microvascular complications. Finally, genetic variants associated with reduced glycolysis, mitochondrial dysfunction and DNA damage and sustained cell regeneration may protect against microvascular complications, illustrating the utility of studies in individuals who have escaped these complications.
Collapse
Affiliation(s)
- Valeriya Lyssenko
- Department of Clinical Science, Mohn Research Center for Diabetes Precision Medicine, University of Bergen, Bergen, Norway.
- Department of Clinical Sciences, Lund University Diabetes Center, Lund University, Lund, Sweden.
| | - Allan Vaag
- Department of Clinical Sciences, Lund University Diabetes Center, Lund University, Lund, Sweden
- Steno Diabetes Center Copenhagen, Herlev, Denmark
| |
Collapse
|
12
|
Ege F, Kazci Ö, Aydin S. Diabetic neuropathy results in vasomotor dysfunction of medium sized peripheral arteries. World J Clin Cases 2023; 11:5244-5251. [PMID: 37621590 PMCID: PMC10445082 DOI: 10.12998/wjcc.v11.i22.5244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/06/2023] [Accepted: 07/03/2023] [Indexed: 08/04/2023] Open
Abstract
BACKGROUND The effect of the sympathetic nervous system on peripheral arteries causes vasoconstriction when smooth muscle cells in the walls of blood vessels contract, which leads to narrowing of arteries and reduction of the blood flow. AIM To compare sympathetic vasomotor activation of the brachial arteries in healthy subjects and patients with painful diabetic neuropathy; and therefore, to assess whether there is significant vasomotor dysfunction of medium sized arteries in diabetic neuropathy. METHODS The study included 41 diabetic neuropathy patients and 41 healthy controls. Baseline diameter and flow rate of the brachial arteries were measured. Then, using a bipolar stimulus electrode, a 10 mA, 1 Hz electrical stimulus was administered to the median nerve at the wrist level for 5 s. The brachial artery diameter and blood flow rate were re-measured after stimulation. RESULTS In the control group, the median flow rate was 70.0 mL/min prior to stimulation and 35.0 mL/min after stimulation, with a statistically significant decrease (P < 0.001), which is consistent with sympathetic nervous system functioning (vasoconstriction). In the diabetic neuropathy group, median flow rate before the stimulation was 35.0 mL/min. After stimulation, the median flow rate was 77.0 mL/min; thus, no significant decrease in the flow rate was detected. In the control group, the median brachial artery diameter, which was 3.6 mm prior to stimulation, decreased to 3.4 mm after stimulation, and this decrease was also statistically significant (P = 0.046). In the diabetic neuropathy group, the median brachial artery diameter increased from 3.4 mm to 3.6 mm following nerve stimulation. Once again, no narrowing was observed. CONCLUSION Our research suggests that diabetic neuropathy results in significant vasomotor dysfunction of medium sized peripheral arteries. Physiological vasoconstriction in response to sympathetic activation is impaired in diabetic neuropathy.
Collapse
Affiliation(s)
- Fahrettin Ege
- Department of Neurology, VM Medicalpark Hospital, Ankara 063200, Turkey
| | - Ömer Kazci
- Department of Radiology, Ankara Training and Research Hospital, Ankara 063200, Turkey
| | - Sonay Aydin
- Department of Radiology, Erzincan Binali Yıldırım University Faculty of Medicine, Erzincan 063200, Turkey
| |
Collapse
|
13
|
Ege F, Kazci Ö, Aydin S. Diabetic neuropathy results in vasomotor dysfunction of medium sized peripheral arteries. World J Clin Cases 2023; 11:5238-5245. [DOI: 10.12998/wjcc.v11.i22.5238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/06/2023] [Accepted: 07/03/2023] [Indexed: 08/03/2023] Open
Abstract
In recent years, because of the growing desire to improve the noninvasiveness and safety of tumor treatments, sonodynamic therapy has gradually become a popular research topic. However, due to the complexity of the therapeutic process, the relevant mechanisms have not yet been fully elucidated. One of the widely accepted possibilities involves the effect of reactive oxygen species. In this review, the mechanism of reactive oxygen species production by sonodynamic therapy (SDT) and ways to enhance the sonodynamic production of reactive oxygen species are reviewed. Then, the clinical application and limitations of SDT are discussed. In conclusion, current research on sonodynamic therapy should focus on the development of sonosensitizers that efficiently produce active oxygen, exhibit biological safety, and promote the clinical transformation of sonodynamic therapy.
Collapse
Affiliation(s)
- Fahrettin Ege
- Department of Neurology, VM Medicalpark Hospital, Ankara 063200, Turkey
| | - Ömer Kazci
- Department of Radiology, Ankara Training and Research Hospital, Ankara 063200, Turkey
| | - Sonay Aydin
- Department of Radiology, Erzincan Binali Yıldırım University Faculty of Medicine, Erzincan 063200, Turkey
| |
Collapse
|
14
|
Truini A, Aleksovska K, Anderson CC, Attal N, Baron R, Bennett DL, Bouhassira D, Cruccu G, Eisenberg E, Enax-Krumova E, Davis KD, Di Stefano G, Finnerup NB, Garcia-Larrea L, Hanafi I, Haroutounian S, Karlsson P, Rakusa M, Rice ASC, Sachau J, Smith BH, Sommer C, Tölle T, Valls-Solé J, Veluchamy A. Joint European Academy of Neurology-European Pain Federation-Neuropathic Pain Special Interest Group of the International Association for the Study of Pain guidelines on neuropathic pain assessment. Eur J Neurol 2023; 30:2177-2196. [PMID: 37253688 DOI: 10.1111/ene.15831] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 04/03/2023] [Accepted: 04/12/2023] [Indexed: 06/01/2023]
Abstract
BACKGROUND AND PURPOSE In these guidelines, we aimed to develop evidence-based recommendations for the use of screening questionnaires and diagnostic tests in patients with neuropathic pain (NeP). METHODS We systematically reviewed studies providing information on the sensitivity and specificity of screening questionnaires, and quantitative sensory testing, neurophysiology, skin biopsy, and corneal confocal microscopy. We also analysed how functional neuroimaging, peripheral nerve blocks, and genetic testing might provide useful information in diagnosing NeP. RESULTS Of the screening questionnaires, Douleur Neuropathique en 4 Questions (DN4), I-DN4 (self-administered DN4), and Leeds Assessment of Neuropathic Symptoms and Signs (LANSS) received a strong recommendation, and S-LANSS (self-administered LANSS) and PainDETECT weak recommendations for their use in the diagnostic pathway for patients with possible NeP. We devised a strong recommendation for the use of skin biopsy and a weak recommendation for quantitative sensory testing and nociceptive evoked potentials in the NeP diagnosis. Trigeminal reflex testing received a strong recommendation in diagnosing secondary trigeminal neuralgia. Although many studies support the usefulness of corneal confocal microscopy in diagnosing peripheral neuropathy, no study specifically investigated the diagnostic accuracy of this technique in patients with NeP. Functional neuroimaging and peripheral nerve blocks are helpful in disclosing pathophysiology and/or predicting outcomes, but current literature does not support their use for diagnosing NeP. Genetic testing may be considered at specialist centres, in selected cases. CONCLUSIONS These recommendations provide evidence-based clinical practice guidelines for NeP diagnosis. Due to the poor-to-moderate quality of evidence identified by this review, future large-scale, well-designed, multicentre studies assessing the accuracy of diagnostic tests for NeP are needed.
Collapse
Affiliation(s)
- Andrea Truini
- Department of Human Neuroscience, University Sapienza, Rome, Italy
| | - Katina Aleksovska
- European Academy of Neurology, Vienna, Austria
- Department of Neurology, Ss. Cyril and Methodius University, Skopje, North Macedonia
| | - Christopher C Anderson
- Division of Clinical and Translational Research, Department of Anesthesiology, Pain Center, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nadine Attal
- Université Versailles Saint Quentin en Yvelines, Versailles, France
- Inserm U987, Pathophysiology and Clinical Pharmacology of Pain, Centre d'évaluation et de Traitement de la Douleur, Hôpital Ambroise Paré, Boulogne-Billancourt, France
| | - Ralf Baron
- Division of Neurological Pain Research and Therapy, Department of Neurology, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - David L Bennett
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Didier Bouhassira
- Inserm U987, Pathophysiology and Clinical Pharmacology of Pain, Centre d'évaluation et de Traitement de la Douleur, Hôpital Ambroise Paré, Boulogne-Billancourt, France
| | - Giorgio Cruccu
- Department of Human Neuroscience, University Sapienza, Rome, Italy
| | - Elon Eisenberg
- Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Elena Enax-Krumova
- Department of Neurology, BG University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Karen Deborah Davis
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | | | - Nanna B Finnerup
- Department of Clinical Medicine, Danish Pain Research Centre, Aarhus University, Aarhus, Denmark
| | - Luis Garcia-Larrea
- Central Integration of Pain (NeuroPain) Lab-Lyon Neuroscience Research Centre, INSERM U1028, CNRS, UMR5292, Université Claude Bernard, Bron, France
- Centre D'évaluation et de Traitement de la Douleur, Hôpital Neurologique, Lyon, France
| | - Ibrahem Hanafi
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Simon Haroutounian
- Division of Clinical and Translational Research, Department of Anesthesiology, Pain Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Pall Karlsson
- Department of Clinical Medicine, Danish Pain Research Centre, Aarhus University, Aarhus, Denmark
- Core Centre for Molecular Morphology, Section for Stereology and Microscopy, Aarhus University, Aarhus, Denmark
| | - Martin Rakusa
- Division of Neurology, University Medical Centre Maribor, Maribor, Slovenia
| | - Andrew S C Rice
- Pain Research, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Juliane Sachau
- Division of Neurological Pain Research and Therapy, Department of Neurology, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Blair H Smith
- Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Claudia Sommer
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Thomas Tölle
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Josep Valls-Solé
- Institut d'Investigació Biomèdica August Pi i Sunyer, Barcelona, Spain
| | - Abirami Veluchamy
- Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| |
Collapse
|
15
|
Jordan A, Glauser DA. Distinct clusters of human pain gene orthologs in Caenorhabditis elegans regulate thermo-nociceptive sensitivity and plasticity. Genetics 2023; 224:iyad047. [PMID: 36947448 PMCID: PMC10158838 DOI: 10.1093/genetics/iyad047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 05/13/2022] [Accepted: 03/07/2023] [Indexed: 03/23/2023] Open
Abstract
The detection and avoidance of harmful stimuli are essential animal capabilities. The molecular and cellular mechanisms controlling nociception and its plasticity are conserved, genetically controlled processes of broad biomedical interest given their relevance to understand and treat pain conditions that represent a major health burden. Recent genome-wide association studies (GWAS) have identified a rich set of polymorphisms related to different pain conditions and pointed to many human pain gene candidates, whose connection to the pain pathways is however often poorly understood. Here, we used a computer-assisted Caenorhabditis elegans thermal avoidance analysis pipeline to screen for behavioral defects in a set of 109 mutants for genes orthologous to human pain-related genes. We measured heat-evoked reversal thermosensitivity profiles, as well as spontaneous reversal rate, and compared naïve animals with adapted animals submitted to a series of repeated noxious heat stimuli, which in wild type causes a progressive habituation. Mutations affecting 28 genes displayed defects in at least one of the considered parameters and could be clustered based on specific phenotypic footprints, such as high-sensitivity mutants, nonadapting mutants, or mutants combining multiple defects. Collectively, our data reveal the functional architecture of a network of conserved pain-related genes in C. elegans and offer novel entry points for the characterization of poorly understood human pain genes in this genetic model.
Collapse
Affiliation(s)
- Aurore Jordan
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | | |
Collapse
|
16
|
Miękisiak G. Editorial for the Special Issue “Chronic Neuropathic Pain Therapy and Anaesthesia”. Medicina (B Aires) 2023; 59:medicina59040674. [PMID: 37109632 PMCID: PMC10145259 DOI: 10.3390/medicina59040674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Chronic neuropathic pain (CNP), a complex and debilitating condition arising from damage or dysfunction of the somatosensory nervous system, affects millions of people worldwide [...]
Collapse
|
17
|
Abstract
Interactions between the immune and nervous systems are of central importance in neuropathic pain, a common and debilitating form of chronic pain caused by a lesion or disease affecting the somatosensory system. Our understanding of neuroimmune interactions in pain research has advanced considerably. Initially considered as passive bystanders, then as culprits in the pathogenesis of neuropathic pain, immune responses in the nervous system are now established to underpin not only the initiation and progression of pain but also its resolution. Indeed, immune cells and their mediators are well-established promoters of neuroinflammation at each level of the neural pain pathway that contributes to pain hypersensitivity. However, emerging evidence indicates that specific subtypes of immune cells (including antinociceptive macrophages, pain-resolving microglia and T regulatory cells) as well as immunoresolvent molecules and modulators of the gut microbiota-immune system axis can reduce the pain experience and contribute to the resolution of neuropathic pain. This Review provides an overview of the immune mechanisms responsible for the resolution of neuropathic pain, including those involved in innate, adaptive and meningeal immunity as well as interactions with the gut microbiome. Specialized pro-resolving mediators and therapeutic approaches that target these neuroimmune mechanisms are also discussed.
Collapse
|
18
|
Baskozos G, Hébert HL, Pascal MM, Themistocleous AC, Macfarlane GJ, Wynick D, Bennett DL, Smith BH. Epidemiology of neuropathic pain: an analysis of prevalence and associated factors in UK Biobank. Pain Rep 2023; 8:e1066. [PMID: 37090682 PMCID: PMC7614463 DOI: 10.1097/pr9.0000000000001066] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/14/2022] [Accepted: 12/13/2022] [Indexed: 02/12/2023] Open
Abstract
Supplemental Digital Content is Available in the Text. An analysis of UK Biobank participants who completed a detailed pain questionnaire identified factors associated with neuropathic pain (NeuP) vs no chronic pain and non-NeuP and estimated the prevalence of NeuP. Introduction: Previous epidemiological studies of neuropathic pain have reported a range of prevalences and factors associated with the disorder. Objectives: This study aimed to verify these characteristics in a large UK cohort. Methods: A cross-sectional analysis was conducted of 148,828 UK Biobank participants who completed a detailed questionnaire on chronic pain. The Douleur Neuropathique en Quatre Questions (DN4) was used to distinguish between neuropathic pain (NeuP) and non-neuropathic pain (non-NeuP) in participants with pain of at least 3 months' duration. Participants were also identified with less than 3 months' pain or without pain (NoCP). Multivariable regression was used to identify factors associated with NeuP compared with non-NeuP and NoCP, respectively. Results: Chronic pain was present in 76,095 participants (51.1%). The overall prevalence of NeuP was 9.2%. Neuropathic pain was significantly associated with worse health-related quality of life, having a manual or personal service type occupation, and younger age compared with NoCP. As expected, NeuP was associated with diabetes and neuropathy, but also other pains (pelvic, postsurgical, and migraine) and musculoskeletal disorders (rheumatoid arthritis, osteoarthritis, and fibromyalgia). In addition, NeuP was associated with pain in the limbs and greater pain intensity and higher body mass index compared with non-NeuP. Female sex was associated with NeuP when compared with NoCP, whereas male sex was associated with NeuP when compared with non-NeuP. Conclusion: This is the largest epidemiological study of neuropathic pain to date. The results confirm that the disorder is common in a population of middle- to older-aged people with mixed aetiologies and is associated with a higher health impact than non-neuropathic pain.
Collapse
Affiliation(s)
- Georgios Baskozos
- Neural Injury Group, Nuffield Department of Clinical Neuroscience, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Harry L. Hébert
- Chronic Pain Research Group, Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| | - Mathilde M.V. Pascal
- Neural Injury Group, Nuffield Department of Clinical Neuroscience, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Andreas C. Themistocleous
- Neural Injury Group, Nuffield Department of Clinical Neuroscience, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Gary J. Macfarlane
- Epidemiology Group and Aberdeen Centre for Arthritis and Musculoskeletal Health, School of Medicine, Medical Sciences, and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | - David Wynick
- Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - David L.H. Bennett
- Neural Injury Group, Nuffield Department of Clinical Neuroscience, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Blair H. Smith
- Chronic Pain Research Group, Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
19
|
Hébert HL, Veluchamy A, Baskozos G, Fardo F, Van Ryckeghem D, Pearson ER, Colvin LA, Crombez G, Bennett DLH, Meng W, Palmer CNA, Smith BH. Development and external validation of multivariable risk models to predict incident and resolved neuropathic pain: a DOLORisk Dundee study. J Neurol 2023; 270:1076-1094. [PMID: 36355188 PMCID: PMC9886655 DOI: 10.1007/s00415-022-11478-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/12/2022]
Abstract
Neuropathic pain is difficult to treat, and an understanding of the risk factors for its onset and resolution is warranted. This study aimed to develop and externally validate two clinical risk models to predict onset and resolution of chronic neuropathic pain. Participants of Generation Scotland: Scottish Family Health Study (GS; general Scottish population; n = 20,221) and Genetic of Diabetes Audit and Research in Tayside Scotland (GoDARTS; n = 5236) were sent a questionnaire on neuropathic pain and followed- -up 18 months later. Chronic neuropathic pain was defined using DN4 scores (≥ 3/7) and pain for 3 months or more. The models were developed in GS using logistic regression with backward elimination based on the Akaike information criterion. External validation was conducted in GoDARTS and assessed model discrimination (ROC and Precision-Recall curves), calibration and clinical utility (decision curve analysis [DCA]). Analysis revealed incidences of neuropathic pain onset (6.0% in GS [236/3903] and 10.7% in GoDARTS [61/571]) and resolution (42.6% in GS [230/540] and 23.7% in GoDARTS [56/236]). Psychosocial and lifestyle factors were included in both onset and resolved prediction models. In GoDARTS, these models showed adequate discrimination (ROC = 0.636 and 0.699), but there was evidence of miscalibration (Intercept = - 0.511 and - 0.424; slope = 0.623 and 0.999). The DCA indicated that the models would provide clinical benefit over a range of possible risk thresholds. To our knowledge, these are the first externally validated risk models for neuropathic pain. The findings are of interest to patients and clinicians in the community, who may take preventative or remedial measures.
Collapse
Affiliation(s)
- Harry L Hébert
- Chronic Pain Research Group, Division of Population Health and Genomics, Mackenzie Building, Ninewells Hospital and Medical School, University of Dundee, Kirsty Semple Way, Dundee, DD2 4BF, UK
| | - Abirami Veluchamy
- Chronic Pain Research Group, Division of Population Health and Genomics, Mackenzie Building, Ninewells Hospital and Medical School, University of Dundee, Kirsty Semple Way, Dundee, DD2 4BF, UK
- Pat Macpherson Centre for Pharmacogenetics and Pharmacogenomics, Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Georgios Baskozos
- Neural Injury Group, Nuffield Department of Clinical Neuroscience, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Francesca Fardo
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Dimitri Van Ryckeghem
- Department of Experimental-Clinical and Health Psychology, Faculty of Psychology and Educational Sciences, Ghent University, Ghent, Belgium
- Section Experimental Health Psychology, Clinical Psychological Science, Departments, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Ewan R Pearson
- Pat Macpherson Centre for Pharmacogenetics and Pharmacogenomics, Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Lesley A Colvin
- Chronic Pain Research Group, Division of Population Health and Genomics, Mackenzie Building, Ninewells Hospital and Medical School, University of Dundee, Kirsty Semple Way, Dundee, DD2 4BF, UK
| | - Geert Crombez
- Department of Experimental-Clinical and Health Psychology, Faculty of Psychology and Educational Sciences, Ghent University, Ghent, Belgium
| | - David L H Bennett
- Neural Injury Group, Nuffield Department of Clinical Neuroscience, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Weihua Meng
- Chronic Pain Research Group, Division of Population Health and Genomics, Mackenzie Building, Ninewells Hospital and Medical School, University of Dundee, Kirsty Semple Way, Dundee, DD2 4BF, UK
| | - Colin N A Palmer
- Pat Macpherson Centre for Pharmacogenetics and Pharmacogenomics, Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Blair H Smith
- Chronic Pain Research Group, Division of Population Health and Genomics, Mackenzie Building, Ninewells Hospital and Medical School, University of Dundee, Kirsty Semple Way, Dundee, DD2 4BF, UK.
| |
Collapse
|
20
|
Rs11726196 Single-Nucleotide Polymorphism of the Transient Receptor Potential Canonical 3 ( TRPC3) Gene Is Associated with Chronic Pain. Int J Mol Sci 2023; 24:ijms24021028. [PMID: 36674543 PMCID: PMC9867099 DOI: 10.3390/ijms24021028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/15/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
Chronic pain is reportedly associated with the transient receptor potential canonical 3 (TRPC3) gene. The present study examined the genetic associations between the single-nucleotide polymorphisms (SNPs) of the TRPC3 gene and chronic pain. The genomic samples from 194 patients underwent linkage disequilibrium (LD) analyses of 29 SNPs within and around the vicinity of the TRPC3 gene. We examined the associations between the SNPs and the susceptibility to chronic pain by comparing the genotype distribution of 194 patients with 282 control subjects. All SNP genotype data were extracted from our previous whole-genome genotyping results. Twenty-nine SNPs were extracted, and a total of four LD blocks with 15 tag SNPs were observed within and around the TRPC3 gene. We further analyzed the associations between these tag SNPs and chronic pain. The rs11726196 SNP genotype distribution of patients was significantly different from the control subjects even after multiple-testing correction with the number of SNPs. The TT + TG genotype of rs11726196 is often carried by chronic pain patients, suggesting a causal role for the T allele. These results contribute to our understanding of the genetic risk factors for chronic pain.
Collapse
|
21
|
Maximizing treatment efficacy through patient stratification in neuropathic pain trials. Nat Rev Neurol 2023; 19:53-64. [PMID: 36400867 DOI: 10.1038/s41582-022-00741-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2022] [Indexed: 11/19/2022]
Abstract
Treatment of neuropathic pain remains inadequate despite the elucidation of multiple pathophysiological mechanisms and the development of promising therapeutic compounds. The lack of success in translating knowledge into clinical practice has discouraged pharmaceutical companies from investing in pain medicine; however, new patient stratification approaches could help bridge the translation gap and develop individualized therapeutic approaches. As we highlight in this article, subgrouping of patients according to sensory profiles and other baseline characteristics could aid the prediction of treatment success. Furthermore, novel outcome measures have been developed for patients with neuropathic pain. The extent to which sensory profiles and outcome measures can be employed in routine clinical practice and clinical trials and across distinct neuropathic pain aetiologies is yet to be determined. Improvements in animal models, drawing on our knowledge of human pain, and robust public-private partnerships will be needed to pave the way to innovative and effective pain medicine in the future.
Collapse
|
22
|
Chae Y, Park HJ, Lee IS. Pain modalities in the body and brain: Current knowledge and future perspectives. Neurosci Biobehav Rev 2022; 139:104744. [PMID: 35716877 DOI: 10.1016/j.neubiorev.2022.104744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/29/2022] [Accepted: 06/11/2022] [Indexed: 11/16/2022]
Abstract
Development and validation of pain biomarkers has become a major issue in pain research. Recent advances in multimodal data acquisition have allowed researchers to gather multivariate and multilevel whole-body measurements in patients with pain conditions, and data analysis techniques such as machine learning have led to novel findings in neural biomarkers for pain. Most studies have focused on the development of a biomarker to predict the severity of pain with high precision and high specificity, however, a similar approach to discriminate different modalities of pain is lacking. Identification of more accurate and specific pain biomarkers will require an in-depth understanding of the modality specificity of pain. In this review, we summarize early and recent findings on the modality specificity of pain in the brain, with a focus on distinct neural activity patterns between chronic clinical and acute experimental pain, direct, social, and vicarious pain, and somatic and visceral pain. We also suggest future directions to improve our current strategy of pain management using our knowledge of modality-specific aspects of pain.
Collapse
Affiliation(s)
- Younbyoung Chae
- College of Korean Medicine, Kyung Hee University, Seoul, the Republic of Korea; Acupuncture & Meridian Science Research Center, Kyung Hee University, Seoul, the Republic of Korea
| | - Hi-Joon Park
- College of Korean Medicine, Kyung Hee University, Seoul, the Republic of Korea; Acupuncture & Meridian Science Research Center, Kyung Hee University, Seoul, the Republic of Korea
| | - In-Seon Lee
- College of Korean Medicine, Kyung Hee University, Seoul, the Republic of Korea; Acupuncture & Meridian Science Research Center, Kyung Hee University, Seoul, the Republic of Korea.
| |
Collapse
|
23
|
Diaz MM, Caylor J, Strigo I, Lerman I, Henry B, Lopez E, Wallace MS, Ellis RJ, Simmons AN, Keltner JR. Toward Composite Pain Biomarkers of Neuropathic Pain-Focus on Peripheral Neuropathic Pain. FRONTIERS IN PAIN RESEARCH 2022; 3:869215. [PMID: 35634449 PMCID: PMC9130475 DOI: 10.3389/fpain.2022.869215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/21/2022] [Indexed: 01/09/2023] Open
Abstract
Chronic pain affects ~10-20% of the U.S. population with an estimated annual cost of $600 billion, the most significant economic cost of any disease to-date. Neuropathic pain is a type of chronic pain that is particularly difficult to manage and leads to significant disability and poor quality of life. Pain biomarkers offer the possibility to develop objective pain-related indicators that may help diagnose, treat, and improve the understanding of neuropathic pain pathophysiology. We review neuropathic pain mechanisms related to opiates, inflammation, and endocannabinoids with the objective of identifying composite biomarkers of neuropathic pain. In the literature, pain biomarkers typically are divided into physiological non-imaging pain biomarkers and brain imaging pain biomarkers. We review both types of biomarker types with the goal of identifying composite pain biomarkers that may improve recognition and treatment of neuropathic pain.
Collapse
Affiliation(s)
- Monica M. Diaz
- Department of Neurology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States
| | - Jacob Caylor
- Department of Anesthesiology, University of California, San Diego, San Diego, CA, United States
| | - Irina Strigo
- Department of Psychiatry, San Francisco Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Imanuel Lerman
- Department of Anesthesiology, University of California, San Diego, San Diego, CA, United States
| | - Brook Henry
- Department of Psychiatry, University of California, San Diego, San Diego, CA, United States
| | - Eduardo Lopez
- Department of Psychiatry, San Francisco Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Mark S. Wallace
- Department of Anesthesiology, University of California, San Diego, San Diego, CA, United States
| | - Ronald J. Ellis
- Department of Neurosciences, University of California, San Diego, San Diego, CA, United States
| | - Alan N. Simmons
- Department of Psychiatry, San Diego & Center of Excellence in Stress and Mental Health, Veteran Affairs Health Care System, University of California, San Diego, San Diego, CA, United States
| | - John R. Keltner
- Department of Psychiatry, San Diego & San Diego VA Medical Center, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
24
|
Veluchamy A, Hébert HL, van Zuydam NR, Pearson ER, Campbell A, Hayward C, Meng W, McCarthy MI, Bennett DLH, Palmer CNA, Smith BH. Association of Genetic Variant at Chromosome 12q23.1 With Neuropathic Pain Susceptibility. JAMA Netw Open 2021; 4:e2136560. [PMID: 34854908 PMCID: PMC8640893 DOI: 10.1001/jamanetworkopen.2021.36560] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
IMPORTANCE Neuropathic pain (NP) has important clinical and socioeconomic consequences for individuals and society. Increasing evidence indicates that genetic factors make a significant contribution to NP, but genome-wide association studies (GWASs) are scant in this field and could help to elucidate susceptibility to NP. OBJECTIVE To identify genetic variants associated with NP susceptibility. DESIGN, SETTING, AND PARTICIPANTS This genetic association study included a meta-analysis of GWASs of NP using 3 independent cohorts: ie, Genetics of Diabetes Audit and Research in Tayside Scotland (GoDARTS); Generation Scotland: Scottish Family Health Study (GS:SFHS); and the United Kingdom Biobank (UKBB). Data analysis was conducted from April 2018 to December 2019. EXPOSURES Individuals with NP (ie, case participants; those with pain of ≥3 months' duration and a Douleur Neuropathique en 4 Questions score ≥3) and individuals with no pain (ie, control participants) with or without diabetes from GoDARTS and GS:SFHS were identified using validated self-completed questionnaires. In the UKBB, self-reported prescribed medication and hospital records were used as a proxy to identify case participants (patients recorded as receiving specific anti-NP medicines) and control participants. MAIN OUTCOMES AND MEASURES GWAS was performed using linear mixed modeling. GWAS summary statistics were combined using fixed-effect meta-analysis. A total of 51 variants previously shown to be associated with NP were tested for replication. RESULTS This study included a total of 4512 case participants (2662 [58.9%] women; mean [SD] age, 61.7 [10.8] years) and 428 489 control participants (227 817 [53.2%] women; mean [SD] age, 62.3 [11.5] years) in the meta-analysis of 3 cohorts with European descent. The study found a genome-wide significant locus at chromosome 12q23.1, which mapped to SLC25A3 (rs369920026; odds ratio [OR] for having NP, 1.68; 95% CI, 1.40-2.02; P = 1.30 × 10-8), and a suggestive variant at 13q14.2 near CAB39L (rs7992766; OR, 1.09; 95% CI, 1.05-1.14; P = 1.22 × 10-7). These mitochondrial phosphate carriers and calcium binding genes are expressed in brain and dorsal root ganglia. Colocalization analyses using expression quantitative loci data found that the suggestive variant was associated with expression of CAB39L in the brain cerebellum (P = 1.01 × 10-14). None of the previously reported variants were replicated. CONCLUSIONS AND RELEVANCE To our knowledge, this was the largest meta-analyses of GWAS to date. It found novel genetic variants associated with NP susceptibility. These findings provide new insights into the genetic architecture of NP and important information for further studies.
Collapse
Affiliation(s)
- Abirami Veluchamy
- Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| | - Harry L. Hébert
- Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| | | | - Ewan R. Pearson
- Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| | - Archie Campbell
- Generation Scotland, Centre for Genomics and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Caroline Hayward
- Generation Scotland, Centre for Genomics and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
- Medical Research Council Human Genetics Unit, Medical Research Council Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Weihua Meng
- Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| | - Mark I. McCarthy
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Oxford Centre for Diabetes, Endocrinology, and Metabolism, University of Oxford, Oxford, United Kingdom
| | - David L. H. Bennett
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Colin N. A. Palmer
- Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| | - Blair H. Smith
- Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
25
|
De Ridder D, Adhia D, Vanneste S. The anatomy of pain and suffering in the brain and its clinical implications. Neurosci Biobehav Rev 2021; 130:125-146. [PMID: 34411559 DOI: 10.1016/j.neubiorev.2021.08.013] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 08/09/2021] [Accepted: 08/13/2021] [Indexed: 02/08/2023]
Abstract
Pain is an unpleasant sensory and emotional experience associated with actual or potential tissue damage. Chronic pain, with a prevalence of 20-30 % is the major cause of human suffering worldwide, because effective, specific and safe therapies have yet to be developed. It is unevenly distributed among sexes, with women experiencing more pain and suffering. Chronic pain can be anatomically and phenomenologically dissected into three separable but interacting pathways, a lateral 'painfulness' pathway, a medial 'suffering' pathway and a descending pain inhibitory pathway. One may have pain(fullness) without suffering and suffering without pain(fullness). Pain sensation leads to suffering via a cognitive, emotional and autonomic processing, and is expressed as anger, fear, frustration, anxiety and depression. The medial pathway overlaps with the salience and stress networks, explaining that behavioural relevance or meaning determines the suffering associated with painfulness. Genetic and epigenetic influences trigger chronic neuroinflammatory changes which are involved in transitioning from acute to chronic pain. Based on the concept of the Bayesian brain, pain (and suffering) can be regarded as the consequence of an imbalance between the two ascending and the descending pain inhibitory pathways under control of the reward system. The therapeutic clinical implications of this simple pain model are obvious. After categorizing the working mechanisms of each of the available treatments (pain killers, psychopharmacology, psychotherapy, neuromodulation, psychosurgery, spinal cord stimulation) to 1 or more of the 3 pathways, a rational combination can be proposed of activating the descending pain inhibitory pathway in combination with inhibition of the medial and lateral pathway, so as to rebalance the pain (and suffering) pathways.
Collapse
Affiliation(s)
- Dirk De Ridder
- Section of Neurosurgery, Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand.
| | - Divya Adhia
- Section of Neurosurgery, Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Sven Vanneste
- Global Brain Health Institute, Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
26
|
Abstract
Pain is an immense clinical and societal challenge, and the key to understanding and treating it is variability. Robust interindividual differences are consistently observed in pain sensitivity, susceptibility to developing painful disorders, and response to analgesic manipulations. This review examines the causes of this variability, including both organismic and environmental sources. Chronic pain development is a textbook example of a gene-environment interaction, requiring both chance initiating events (e.g., trauma, infection) and more immutable risk factors. The focus is on genetic factors, since twin studies have determined that a plurality of the variance likely derives from inherited genetic variants, but sex, age, ethnicity, personality variables, and environmental factors are also considered.
Collapse
Affiliation(s)
- Jeffrey S Mogil
- Departments of Psychology and Anesthesia, Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec H3A 1B1, Canada;
| |
Collapse
|
27
|
Doshi TL, Dworkin RH, Polomano RC, Carr DB, Edwards RR, Finnerup NB, Freeman RL, Paice JA, Weisman SJ, Raja SN. AAAPT Diagnostic Criteria for Acute Neuropathic Pain. PAIN MEDICINE 2021; 22:616-636. [PMID: 33575803 DOI: 10.1093/pm/pnaa407] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Acute neuropathic pain is a significant diagnostic challenge, and it is closely related to our understanding of both acute pain and neuropathic pain. Diagnostic criteria for acute neuropathic pain should reflect our mechanistic understanding and provide a framework for research on and treatment of these complex pain conditions. METHODS The Analgesic, Anesthetic, and Addiction Clinical Trial Translations, Innovations, Opportunities, and Networks (ACTTION) public-private partnership with the U.S. Food and Drug Administration (FDA), the American Pain Society (APS), and the American Academy of Pain Medicine (AAPM) collaborated to develop the ACTTION-APS-AAPM Pain Taxonomy (AAAPT) for acute pain. A working group of experts in research and clinical management of neuropathic pain was convened. Group members used literature review and expert opinion to develop diagnostic criteria for acute neuropathic pain, as well as three specific examples of acute neuropathic pain conditions, using the five dimensions of the AAAPT classification of acute pain. RESULTS AAAPT diagnostic criteria for acute neuropathic pain are presented. Application of these criteria to three specific conditions (pain related to herpes zoster, chemotherapy, and limb amputation) illustrates the spectrum of acute neuropathic pain and highlights unique features of each condition. CONCLUSIONS The proposed AAAPT diagnostic criteria for acute neuropathic pain can be applied to various acute neuropathic pain conditions. Both the general and condition-specific criteria may guide future research, assessment, and management of acute neuropathic pain.
Collapse
Affiliation(s)
- Tina L Doshi
- Department of Anesthesiology and Critical Care Medicine, Division of Pain Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Robert H Dworkin
- Department of Anesthesiology, University of Rochester School of Medicine and Dentistry, Rochester, New York, and Department of Neurology, Center for Human Experimental Therapeutics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Rosemary C Polomano
- Division of Biobehavioral Health Sciences, University of Pennsylvania-School of Nursing, Philadelphia, Pennsylvania, USA
| | - Daniel B Carr
- Public Health and Community Medicine Program, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Robert R Edwards
- Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Nanna B Finnerup
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, and Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | - Roy L Freeman
- Center for Autonomic and Peripheral Nerve Disorders, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Judith A Paice
- Cancer Pain Program, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Steven J Weisman
- Jane B. Pettit Pain and Headache Center, Children's Wisconsin, Departments of Anesthesiology and Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Srinivasa N Raja
- Department of Anesthesiology and Critical Care Medicine, Division of Pain Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
28
|
Hébert HL, Veluchamy A, Baskozos G, Fardo F, Van Ryckeghem DML, Pascal MMV, Jones C, Milburn K, Pearson ER, Crombez G, Bennett DLH, Meng W, Palmer CNA, Smith BH. Cohort profile: DOLORisk Dundee: a longitudinal study of chronic neuropathic pain. BMJ Open 2021; 11:e042887. [PMID: 33952538 PMCID: PMC8103377 DOI: 10.1136/bmjopen-2020-042887] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 12/09/2020] [Accepted: 04/11/2021] [Indexed: 02/07/2023] Open
Abstract
PURPOSE Neuropathic pain is a common disorder of the somatosensory system that affects 7%-10% of the general population. The disorder places a large social and economic burden on patients as well as healthcare services. However, not everyone with a relevant underlying aetiology develops corresponding pain. DOLORisk Dundee, a European Union-funded cohort, part of the multicentre DOLORisk consortium, was set up to increase current understanding of this variation in onset. In particular, the cohort will allow exploration of psychosocial, clinical and genetic predictors of neuropathic pain onset. PARTICIPANTS DOLORisk Dundee has been constructed by rephenotyping two pre-existing Scottish population cohorts for neuropathic pain using a standardised 'core' study protocol: Genetics of Diabetes Audit and Research in Tayside Scotland (GoDARTS) (n=5236) consisting of predominantly type 2 diabetics from the Tayside region, and Generation Scotland: Scottish Family Health Study (GS:SFHS; n=20 221). Rephenotyping was conducted in two phases: a baseline postal survey and a combined postal and online follow-up survey. DOLORisk Dundee consists of 9155 participants (GoDARTS=1915; GS:SFHS=7240) who responded to the baseline survey, of which 6338 (69.2%; GoDARTS=1046; GS:SFHS=5292) also responded to the follow-up survey (18 months later). FINDINGS TO DATE At baseline, the proportion of those with chronic neuropathic pain (Douleur Neuropathique en 4 Questions questionnaire score ≥3, duration ≥3 months) was 30.5% in GoDARTS and 14.2% in Generation Scotland. Electronic record linkage enables large scale genetic association studies to be conducted and risk models have been constructed for neuropathic pain. FUTURE PLANS The cohort is being maintained by an access committee, through which collaborations are encouraged. Details of how to do this will be available on the study website (http://dolorisk.eu/). Further follow-up surveys of the cohort are planned and funding applications are being prepared to this effect. This will be conducted in harmony with similar pain rephenotyping of UK Biobank.
Collapse
Affiliation(s)
- Harry L Hébert
- Chronic Pain Research Group, Division of Population Health and Genomics, Mackenzie Building, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Abirami Veluchamy
- Chronic Pain Research Group, Division of Population Health and Genomics, Mackenzie Building, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
- Pat Macpherson Centre for Pharmacogenetics and Pharmacogenomics, Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Georgios Baskozos
- Neural Injury Group, Nuffield Department of Clinical Neuroscience, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Francesca Fardo
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Dimitri M L Van Ryckeghem
- Department of Experimental-Clinical and Health Psychology, Faculty of Psychology and Educational Sciences, Ghent University, Gent, Belgium
- Section Experimental Health Psychology, Clinical Psychological Science, Departments, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
- Institute of Health and Behaviour, INSIDE, University of Luxembourg, Luxembourg, Luxembourg
| | - Mathilde M V Pascal
- Neural Injury Group, Nuffield Department of Clinical Neuroscience, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Claire Jones
- Health Informatics Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Keith Milburn
- Health Informatics Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Ewan R Pearson
- Pat Macpherson Centre for Pharmacogenetics and Pharmacogenomics, Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Geert Crombez
- Department of Experimental-Clinical and Health Psychology, Faculty of Psychology and Educational Sciences, Ghent University, Gent, Belgium
| | - David L H Bennett
- Neural Injury Group, Nuffield Department of Clinical Neuroscience, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Weihua Meng
- Chronic Pain Research Group, Division of Population Health and Genomics, Mackenzie Building, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Colin N A Palmer
- Pat Macpherson Centre for Pharmacogenetics and Pharmacogenomics, Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Blair H Smith
- Chronic Pain Research Group, Division of Population Health and Genomics, Mackenzie Building, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| |
Collapse
|
29
|
Probert JM, Lin S, Yan H, Leoutsakos JMS, Dinglas VD, Hosey MM, Parker AM, Hopkins RO, Needham DM, Neufeld KJ. Bodily pain in survivors of acute respiratory distress syndrome: A 1-year longitudinal follow-up study. J Psychosom Res 2021; 144:110418. [PMID: 33744745 DOI: 10.1016/j.jpsychores.2021.110418] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 02/04/2021] [Accepted: 03/10/2021] [Indexed: 01/11/2023]
Abstract
PURPOSE Acute respiratory distress syndrome (ARDS) survivors frequently experience bodily pain during recovery after the intensive care unit. Longitudinal course, risk factors and associations with physical and neuropsychological health is lacking. METHODS We collected self-reported pain using the Short Form-36 Bodily Pain (SF-36 BP) scale, normalized for sex and age (range: 0-100; higher score = less pain), along with physical and mental health measures in a multi-center, prospective cohort of 826 ARDS survivors at 6- and 12-month follow-up. We examined baseline and ICU variables' associations with pain via separate unadjusted regression models. RESULTS Pain prevalence (SF-36 BP ≤40) was 45% and 42% at 6 and 12 months, respectively. Among 706 patients with both 6- and 12-month data, 34% reported pain at both timepoints. Pre-ARDS employment was associated with less pain at 6-months (mean difference (standard error), 5.7 (0.9), p < 0.001) and 12-months (6.3 (0.9), p < 0.001); smoking history was associated with greater pain (-5.0 (0.9), p < 0.001, and - 5.4 (1.0), p < 0.001, respectively). In-ICU opioid use was associated with greater pain (-6.3 (2.7), p = 0.02, and - 7.3 (2.8), p = 0.01, respectively). At 6 months, 174 (22%) patients reported co-occurring pain, depression and anxiety, and 227 (33%) reported co-occurring pain and impaired physical function. CONCLUSION Nearly half of ARDS survivors reported bodily pain at 6- and 12-month follow-up; one-third reported pain at both time points. Pre-ARDS unemployment, smoking history, and in-ICU opioid use may identify patients who report greater pain during recovery. Given its frequent co-occurrence, clinicians should manage both physical and neuropsychological issues when pain is reported.
Collapse
Affiliation(s)
- Julia M Probert
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA.
| | - Shihong Lin
- Department of Counseling, Higher Education and Special Education University of Maryland, College Park, MD, USA.
| | - Haijuan Yan
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| | | | - Victor D Dinglas
- Division of Pulmonary and Critical Care Medicine, Outcomes After Critical Illness and Surgery (OACIS) Group, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Megan M Hosey
- Department of Physical Medicine and Rehabilitation and Division of Pulmonary and Critical Care Medicine, Outcomes After Critical Illness and Surgery (OACIS) Group, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| | - Ann M Parker
- Division of Pulmonary and Critical Care Medicine, Outcomes After Critical Illness and Surgery (OACIS) Group, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Ramona O Hopkins
- Neuroscience Center and Psychology Department, Brigham Young University, Provo, Utah, USA and Pulmonary and Critical Care Medicine, Intermountain Health Care, and Center for Humanizing Critical Care, Intermountain Medical Center, Murray, UT, USA.
| | - Dale M Needham
- Division of Pulmonary and Critical Care Medicine, Outcomes After Critical Illness and Surgery (OACIS) Group, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Physical Medicine and Rehabilitation and Division of Pulmonary and Critical Care Medicine, Outcomes After Critical Illness and Surgery (OACIS) Group, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| | - Karin J Neufeld
- Department of Psychiatry and Behavioral Sciences, Outcomes After Critical Illness and Surgery (OACIS) Group, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
30
|
|
31
|
Brandl E, Halford Z, Clark MD, Herndon C. Pharmacogenomics in Pain Management: A Review of Relevant Gene-Drug Associations and Clinical Considerations. Ann Pharmacother 2021; 55:1486-1501. [PMID: 33771051 DOI: 10.1177/10600280211003875] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE To provide an overview of clinical recommendations regarding genomic medicine relating to pain management and opioid use disorder. DATA SOURCES A literature review was conducted using the search terms pain management, pharmacogenomics, pharmacogenetics, pharmacokinetics, pharmacodynamics, and opioids on PubMed (inception to February 1, 2021), CINAHL (2016 through February 1, 2021), and EMBASE (inception through February 1, 2021). STUDY SELECTION AND DATA EXTRACTION All relevant clinical trials, review articles, package inserts, and guidelines evaluating applicable pharmacogenotypes were considered for inclusion. DATA SYNTHESIS More than 300 Food and Drug Administration-approved medications contain pharmacogenomic information in their labeling. Genetic variability may alter the therapeutic effects of commonly prescribed pain medications. Pharmacogenomic-guided therapy continues to gain traction in clinical practice, but a multitude of barriers to widespread pharmacogenomic implementation exist. RELEVANCE TO PATIENT CARE AND CLINICAL PRACTICE Pain is notoriously difficult to treat given the need to balance safety and efficacy when selecting pharmacotherapy. Pharmacogenomic data can help optimize outcomes for patients with pain. With improved technological advances, more affordable testing, and a better understanding of genomic variants resulting in treatment disparities, pharmacogenomics continues to gain popularity. Unfortunately, despite these and other advancements, pharmacogenomic testing and implementation remain underutilized and misunderstood in clinical care, in part because of a lack of health care professionals trained in assessing and implementing test results. CONCLUSIONS A one-size-fits-all approach to pain management is inadequate and outdated. With increasing genomic data and pharmacogenomic understanding, patient-specific genomic testing offers a comprehensive and personalized treatment alternative worthy of additional research and consideration.
Collapse
Affiliation(s)
- Emily Brandl
- Memphis Veterans Affairs Medical Center, Memphis, TN, USA
| | | | - Matthew D Clark
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chris Herndon
- Southern Illinois University Edwardsville School of Pharmacy, Edwardsville, IL, USA.,St Louis University School of Medicine, MO, USA
| |
Collapse
|
32
|
Single cell transcriptomics of primate sensory neurons identifies cell types associated with chronic pain. Nat Commun 2021; 12:1510. [PMID: 33686078 PMCID: PMC7940623 DOI: 10.1038/s41467-021-21725-z] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 02/08/2021] [Indexed: 01/24/2023] Open
Abstract
Distinct types of dorsal root ganglion sensory neurons may have unique contributions to chronic pain. Identification of primate sensory neuron types is critical for understanding the cellular origin and heritability of chronic pain. However, molecular insights into the primate sensory neurons are missing. Here we classify non-human primate dorsal root ganglion sensory neurons based on their transcriptome and map human pain heritability to neuronal types. First, we identified cell correlates between two major datasets for mouse sensory neuron types. Machine learning exposes an overall cross-species conservation of somatosensory neurons between primate and mouse, although with differences at individual gene level, highlighting the importance of primate data for clinical translation. We map genomic loci associated with chronic pain in human onto primate sensory neuron types to identify the cellular origin of chronic pain. Genome-wide associations for chronic pain converge on two different neuronal types distributed between pain disorders that display different genetic susceptibilities, suggesting both unique and shared mechanisms between different pain conditions. The contribution of distinct types of dorsal root ganglion neurons to chronic pain is unclear. Here, the authors molecularly profile non-human primate sensory neurons and show that genome-wide associations converge on two neuronal types with different genetic susceptibilities for chronic pain.
Collapse
|
33
|
Nishizawa D, Iseki M, Arita H, Hanaoka K, Yajima C, Kato J, Ogawa S, Hiranuma A, Kasai S, Hasegawa J, Hayashida M, Ikeda K. Genome-wide association study identifies candidate loci associated with chronic pain and postherpetic neuralgia. Mol Pain 2021; 17:1744806921999924. [PMID: 33685280 PMCID: PMC8822450 DOI: 10.1177/1744806921999924] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Human twin studies and other studies have indicated that chronic pain has heritability that ranges from 30% to 70%. We aimed to identify potential genetic variants that contribute to the susceptibility to chronic pain and efficacy of administered drugs. We conducted genome-wide association studies (GWASs) using whole-genome genotyping arrays with more than 700,000 markers in 191 chronic pain patients and a subgroup of 89 patients with postherpetic neuralgia (PHN) in addition to 282 healthy control subjects in several genetic models, followed by additional gene-based and gene-set analyses of the same phenotypes. We also performed a GWAS for the efficacy of drugs for the treatment of pain. RESULTS Although none of the single-nucleotide polymorphisms (SNPs) were found to be genome-wide significantly associated with chronic pain (p ≥ 1.858 × 10-7), the GWAS of PHN patients revealed that the rs4773840 SNP within the ABCC4 gene region was significantly associated with PHN in the trend model (nominal p = 1.638 × 10-7). In the additional gene-based analysis, one gene, PRKCQ, was significantly associated with chronic pain in the trend model (adjusted p = 0.03722). In the gene-set analysis, several gene sets were significantly associated with chronic pain and PHN. No SNPs were significantly associated with the efficacy of any of types of drugs in any of the genetic models. CONCLUSIONS These results suggest that the PRKCQ gene and rs4773840 SNP within the ABCC4 gene region may be related to the susceptibility to chronic pain conditions and PHN, respectively.
Collapse
Affiliation(s)
- Daisuke Nishizawa
- Addictive Substance Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Masako Iseki
- Department of Anesthesiology & Pain Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Hideko Arita
- Department of Anesthesiology and Pain Relief Center, JR Tokyo General Hospital, Tokyo, Japan
| | - Kazuo Hanaoka
- Department of Anesthesiology and Pain Relief Center, JR Tokyo General Hospital, Tokyo, Japan
| | - Choku Yajima
- Department of Anesthesiology and Pain Relief Center, JR Tokyo General Hospital, Tokyo, Japan
| | - Jitsu Kato
- Department of Anesthesiology, Nihon University School of Medicine, Tokyo, Japan
| | - Setsuro Ogawa
- Nihon University, University Research Center, Tokyo, Japan
| | - Ayako Hiranuma
- Addictive Substance Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.,Department of Surgery, Toho University Sakura Medical Center, Sakura, Japan
| | - Shinya Kasai
- Addictive Substance Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Junko Hasegawa
- Addictive Substance Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Masakazu Hayashida
- Addictive Substance Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.,Department of Anesthesiology & Pain Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Kazutaka Ikeda
- Addictive Substance Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
34
|
Genetic Variation as a Possible Explanation for the Heterogeneity of Pain in Tendinopathy: What can we learn from other pain syndromes? CENTRAL EUROPEAN JOURNAL OF SPORT SCIENCES AND MEDICINE 2021. [DOI: 10.18276/cej.2021.4-06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
35
|
Slade GD, Fillingim RB, Ohrbach R, Hadgraft H, Willis J, Arbes SJ, Tchivileva IE. COMT Genotype and Efficacy of Propranolol for TMD Pain: A Randomized Trial. J Dent Res 2020; 100:163-170. [PMID: 33030089 PMCID: PMC8163522 DOI: 10.1177/0022034520962733] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Propranolol is a nonselective β-adrenergic receptor antagonist that is
efficacious in reducing facial pain. There is evidence that its analgesic
efficacy might be modified by variants of the catechol-O-methyltransferase
(COMT) gene. We tested the hypothesis in a subset of 143
non-Hispanic Whites from a randomized controlled trial of patients with painful
temporomandibular disorder (TMD). Patients were genotyped for rs4680, a single
nucleotide polymorphism of COMT, and randomly allocated to
either propranolol 60 mg twice daily or placebo. During the 9-wk follow-up
period, patients recorded daily ratings of facial pain intensity and duration;
the product was computed as an index of facial pain. Postbaseline change in the
index at week 9 (the primary endpoint) was analyzed as a continuous variable and
dichotomized at thresholds of ≥30% and ≥50% reduction. Mixed models for repeated
measures tested for the genotype × treatment group interaction and estimated
means, odds ratios (ORs), and 95% confidence limits (95% CLs) of efficacy within
COMT genotypes assuming an additive genetic model. In
secondary analysis, the cumulative response curves were plotted for dichotomized
reductions ranging from ≥20% to ≥70%, and genotype differences in area under the
curve percentages (%AUC) were calculated to signify efficacy. Mean index
reduction did not differ significantly (P = 0.277) according to
genotype, whereas the dichotomized ≥30% reduction revealed greater efficacy
among G:G homozygotes (OR = 10.9, 95%CL = 2.4, 50.7) than among A:A homozygotes
(OR = 0.8, 95%CL = 0.2, 3.2) with statistically significant interaction
(P = 0.035). Cumulative response curves confirmed greater
(P = 0.003) efficacy for G:G homozygotes (%AUC difference =
43.7, 95%CL = 15.4, 72.1) than for A:A homozygotes (%AUC difference = 6.5, 95%CL
= -30.2, 43.2). The observed antagonistic effect of the A allele on
propranolol’s efficacy was opposite the synergistic effect hypothesized a
priori. This unexpected result highlights the need for better knowledge of
COMT’s role in pain pathogenesis if the gene is to be used
for precision-medicine treatment of TMD (ClinicalTrials.gov NCT02437383).
Collapse
Affiliation(s)
- G D Slade
- Center for Pain Research and Innovation, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Division of Pediatric and Public Health, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - R B Fillingim
- Department of Community Dentistry and Behavioral Science, University of Florida, Gainesville, FL, USA
| | - R Ohrbach
- Department of Oral and Maxillofacial Surgery, University at Buffalo, State University of New York, Buffalo, NY, USA
| | | | | | | | - I E Tchivileva
- Center for Pain Research and Innovation, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
36
|
Weighted gene co-expression network analysis reveals specific modules and hub genes related to neuropathic pain in dorsal root ganglions. Biosci Rep 2020; 39:220865. [PMID: 31696225 PMCID: PMC6851524 DOI: 10.1042/bsr20191511] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 09/24/2019] [Accepted: 10/17/2019] [Indexed: 12/21/2022] Open
Abstract
Neuropathic pain is a common, debilitating clinical issue. Here, the weighted gene co-expression network analysis (WGCNA) was used to identify the specific modules and hub genes that are related to neuropathic pain. The microarray dataset of a neuropathic rat model induced by tibial nerve transection (TNT), including dorsal root ganglion (DRG) tissues from TNT model (n=7) and sham (n=8) rats, was downloaded from the ArrayExpress database (E-MTAB-2260). The co-expression network modules were identified by the WGCNA package. The protein–protein interaction (PPI) network was constructed, and the node with highest level of connectivity in the network were identified as the hub gene. A total of 1739 genes and seven modules were identified. The most significant module was the brown module, which contained 215 genes that were primarily associated with the biological process (BP) of the defense response and molecular function of calcium ion binding. Furthermore, C–C motif chemokine ligand 2 (Ccl2), Fos and tissue inhibitor of metalloproteinase 1 (Timp1) which were identified as the hub genes in the PPI network and two subnetworks separately. The in vivo studies validated that mRNA and protein levels of Ccl2, Fos and Timp1 were up-regulated in DRG and spinal cord tissues after TNT. The present study offers novel insights into the molecular mechanisms of neuropathic pain in the context of peripheral nerve injury.
Collapse
|
37
|
Ebrahimiadib N, Yousefshahi F, Abdi P, Ghahari M, Modjtahedi BS. Ocular Neuropathic Pain: An Overview Focusing on Ocular Surface Pains. Clin Ophthalmol 2020; 14:2843-2854. [PMID: 33061269 PMCID: PMC7524198 DOI: 10.2147/opth.s262060] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 08/24/2020] [Indexed: 12/18/2022] Open
Abstract
Objective This paper reviews ocular pain with the main focus on ocular surface discomfort and dry eye pain. Anatomy, physiology, epidemiology, assessment, and treatment are discussed in this paper. Methods A PubMed search was conducted for studies published from 2000 to 2019 on the anatomy, pathophysiology, epidemiology, assessment, and treatment of ocular pain. Reviews, meta-analyses, and randomized clinical trials were included. Inclusion criteria focused on ocular surface discomfort, dry eye pain and neuropathic pain. Results A total of 112 articles were found through searches, 45 of which were selected and studied in this review. Discussion Pain in general can be acute or chronic. Acute pain is usually a physiologic response to a serious damage to the tissues and alleviates with pain relief treatments. Chronic pain is defined as the persistence of pain for more than three months. From another point of view, pain has been classified into either nociceptive or neuropathic. Nociceptive pain is a physiologic response to a noxious stimulus. Both central and peripheral nervous systems can be involved in the development of a neuropathic pain, which is characterized by positive or negative sensory signs, a pain perceived disproportionate to a noxious stimulus, and/or not responsive to analgesics. Chronic pain usually has a neuropathic component. Ocular surface pain is a well-known complaint after any corneal surgery. This is mainly due to abnormal regeneration of damaged corneal nerve endings and abnormal connections with adjacent nerve endings which produce spontaneous activity. Tear hyperosmolarity and the resultant ocular surface inflammation can also trigger voluntary activity of corneal nerve endings. Referral pain to the first and second division of the trigeminal nerve has been reported. Interference with vision and even sleep, which is out of proportion to the examination are among patients' complaints. All of these elements proposed the new concept of ocular neuropathic pain syndrome. The first step in conventional evaluation of ocular discomfort is search for tear insufficiency. Pathologies of lid and blinking as well as conjunctival irregularities should be addressed. Anti-inflammatory agents and, in resistant cases, systemic neuromodulators are shown to be helpful. Education on behavioral changes and reassurance are essential steps. Considering the neuropathic origin for the ocular pain, treatment modalities used for such pain in other parts of the body can be considered for this syndrome.
Collapse
Affiliation(s)
| | - Fardin Yousefshahi
- Department of Anesthesiology, Pain and Critical Care, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Abdi
- Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Bobeck S Modjtahedi
- Department of Ophthalmology, Southern California Permanent Medical Group, Baldwin Park, CA, USA.,Eye Monitoring Center, Kaiser Permanent Southern California, Baldwin Park, CA, USA.,Department of Research and Evaluation, Southern California Permanente Medical Group, Pasadena, CA
| |
Collapse
|
38
|
Kwiatkowska KM, Bacalini MG, Sala C, Kaziyama H, de Andrade DC, Terlizzi R, Giannini G, Cevoli S, Pierangeli G, Cortelli P, Garagnani P, Pirazzini C. Analysis of Epigenetic Age Predictors in Pain-Related Conditions. Front Public Health 2020; 8:172. [PMID: 32582603 PMCID: PMC7296181 DOI: 10.3389/fpubh.2020.00172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/20/2020] [Indexed: 01/31/2023] Open
Abstract
Chronic pain prevalence is high worldwide and increases at older ages. Signs of premature aging have been associated with chronic pain, but few studies have investigated aging biomarkers in pain-related conditions. A set of DNA methylation (DNAm)-based estimates of age, called “epigenetic clocks,” has been proposed as biological measures of age-related adverse processes, morbidity, and mortality. The aim of this study is to assess if different pain-related phenotypes show alterations in DNAm age. In our analysis, we considered three cohorts for which whole-blood DNAm data were available: heat pain sensitivity (HPS), including 20 monozygotic twin pairs discordant for heat pain temperature threshold; fibromyalgia (FM), including 24 cases and 20 controls; and headache, including 22 chronic migraine and medication overuse headache patients (MOH), 18 episodic migraineurs (EM), and 13 healthy subjects. We used the Horvath's epigenetic age calculator to obtain DNAm-based estimates of epigenetic age, telomere length, levels of 7 proteins in plasma, number of smoked packs of cigarettes per year, and blood cell counts. We did not find differences in epigenetic age acceleration, calculated using five different epigenetic clocks, between subjects discordant for pain-related phenotypes. Twins with high HPS had increased CD8+ T cell counts (nominal p = 0.028). HPS thresholds were negatively associated with estimated levels of GDF15 (nominal p = 0.008). FM patients showed decreased naive CD4+ T cell counts compared with controls (nominal p = 0.015). The severity of FM manifestations expressed through various evaluation tests was associated with decreased levels of leptin, shorter length of telomeres, and reduced CD8+ T and natural killer cell counts (nominal p < 0.05), while the duration of painful symptoms was positively associated with telomere length (nominal p = 0.034). No differences in DNAm-based estimates were detected for MOH or EM compared with controls. In summary, our study suggests that HPS, FM, and MOH/EM do not show signs of epigenetic age acceleration in whole blood, while HPS and FM are associated with DNAm-based estimates of immunological parameters, plasma proteins, and telomere length. Future studies should extend these observations in larger cohorts.
Collapse
Affiliation(s)
| | | | - Claudia Sala
- Department of Physics and Astronomy, University of Bologna, Bologna, Italy
| | - Helena Kaziyama
- Department of Neurology, Pain Center, LIM 62, University of São Paulo, São Paulo, Brazil
| | - Daniel Ciampi de Andrade
- Department of Neurology, Pain Center, LIM 62, University of São Paulo, São Paulo, Brazil.,Pain Center, Instituto do Câncer do Estado de São Paulo, São Paulo, Brazil
| | | | - Giulia Giannini
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Sabina Cevoli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Giulia Pierangeli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Pietro Cortelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Paolo Garagnani
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy.,Department of Laboratory Medicine, Clinical Chemistry, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.,Applied Biomedical Research Center (CRBA), Policlinico S.Orsola-Malpighi Polyclinic, Bologna, Italy.,Unit of Bologna, CNR Institute of Molecular Genetics Luigi Luca Cavalli-Sforza, Bologna, Italy
| | - Chiara Pirazzini
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| |
Collapse
|
39
|
Abstract
Neuropathic pain caused by a lesion or disease of the somatosensory nervous system is a common chronic pain condition with major impact on quality of life. Examples include trigeminal neuralgia, painful polyneuropathy, postherpetic neuralgia, and central poststroke pain. Most patients complain of an ongoing or intermittent spontaneous pain of, for example, burning, pricking, squeezing quality, which may be accompanied by evoked pain, particular to light touch and cold. Ectopic activity in, for example, nerve-end neuroma, compressed nerves or nerve roots, dorsal root ganglia, and the thalamus may in different conditions underlie the spontaneous pain. Evoked pain may spread to neighboring areas, and the underlying pathophysiology involves peripheral and central sensitization. Maladaptive structural changes and a number of cell-cell interactions and molecular signaling underlie the sensitization of nociceptive pathways. These include alteration in ion channels, activation of immune cells, glial-derived mediators, and epigenetic regulation. The major classes of therapeutics include drugs acting on α2δ subunits of calcium channels, sodium channels, and descending modulatory inhibitory pathways.
Collapse
Affiliation(s)
- Nanna Brix Finnerup
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Neurology, Aarhus University Hospital, Aarhus, Denmark; and Department of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Rohini Kuner
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Neurology, Aarhus University Hospital, Aarhus, Denmark; and Department of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Troels Staehelin Jensen
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Neurology, Aarhus University Hospital, Aarhus, Denmark; and Department of Pharmacology, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
40
|
Rezaei Tavirani M, Rezaei Tavirani S, Zadeh-Esmaeel MM, Ali Ahmadi N. Introducing Critical Pain-related Genes: A System Biology Approach. Basic Clin Neurosci 2020; 10:401-408. [PMID: 32231777 PMCID: PMC7101522 DOI: 10.32598/bcn.9.10.310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 09/29/2018] [Accepted: 01/10/2019] [Indexed: 12/02/2022] Open
Abstract
Introduction: Pain is valuable in diagnosis and also warning of the patients. Many molecular reagents are introduced which are related to pain. In this research, the pain-related genes are screened to identify the critical ones. Methods: First, the pain-related genes were pulling out from the STRING database, and Cytoscape software was used to make the interactome unit. Then the central genes and their neighbors were analyzed. Finally, the genes were clustered, and the essential genes were introduced. Results: After analyzing 159 genes of the network, FOS, IL6, TNF, TAC1, IL8, and KNG1 were identified as the essential genes. Further analysis revealed that 88 genes are directly connected to the central genes. More resolution led to ignoring TNF and IL8 and considering SCN-alpha and PAICS as additional critical nodes. Conclusion: Six critical genes related to pain were identified. They can be potentially considered as new drug targets. Further investigation is required to introduce the central genes as a pain killer.
Collapse
Affiliation(s)
| | - Sina Rezaei Tavirani
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Nayeb Ali Ahmadi
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
41
|
Jones G, Pilling LC, Kuo CL, Kuchel G, Ferrucci L, Melzer D. Sarcopenia and Variation in the Human Leukocyte Antigen Complex. J Gerontol A Biol Sci Med Sci 2020; 75:301-308. [PMID: 30772894 PMCID: PMC7176057 DOI: 10.1093/gerona/glz042] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Aging is characterized by chronic inflammation plus loss of muscle mass and strength, termed sarcopenia. Human leukocyte antigen (HLA) types are drivers of autoimmune disease, although with limited penetrance. We tested whether autoimmune diagnoses are associated with sarcopenia, and whether HLA types and related genetic variants are associated with sarcopenia in autoimmune disease-free older people. METHODS Data were collected from 181,301 UK Biobank European descent volunteers aged 60-70 with measured hand grip strength and impedance. Logistic regression analysis estimated HLA type and sarcopenia associations, adjusted for confounders and multiple testing. RESULTS Having any autoimmune diagnosis was associated with sarcopenia (odds ratio [OR] 1.83, 95% confidence interval (CI) 1.74-1.92, p = 4.0*10-125). After excluding autoimmune diagnoses, 6 of 100 HLA types (allele frequency >1%) were associated with sarcopenia (low grip strength and muscle mass). Having two HLA-DQA1*03:01 alleles increased odds of sarcopenia by 19.3% (OR 1.19, CI 1.09-1.29, p = 2.84*10-5), compared to no alleles. Having ≥6 of the 12 HLA alleles increased sarcopenia odds by 23% (OR 1.23, CI 1.12-1.35, p = 7.28*10-6). Of 658 HLA region non-coding genetic variants previously implicated in disease, 4 were associated with sarcopenia, including rs41268896 and rs29268645 (OR 1.08, CI 1.05-1.11, p = 1.06*10-8 and 1.07, CI 1.04-1.09, p = 1.5*10-6, respectively). Some HLA associations with sarcopenia were greater in female participants. CONCLUSION Autoimmune diagnoses are strongly associated with sarcopenia in 60- to 70-year olds. Variation in specific HLA types and non-coding single nucleotide polymorphisms is also associated with sarcopenia in older carriers free of diagnosed autoimmune diseases. Patients with sarcopenia might benefit from targeted treatment of autoimmune processes.
Collapse
Affiliation(s)
- Garan Jones
- Epidemiology and Public Health Group, University of Exeter Medical School
| | - Luke C Pilling
- Epidemiology and Public Health Group, University of Exeter Medical School
| | - Chia-Ling Kuo
- Biostatistics Center, CT Institute for Clinical &Translational Science, Department of Community Medicine and Health Care, University of Connecticut Health Center, Farmington
- Center on Aging, University of Connecticut Health Center, Farmington
| | - George Kuchel
- Center on Aging, University of Connecticut Health Center, Farmington
| | | | - David Melzer
- Epidemiology and Public Health Group, University of Exeter Medical School
- Center on Aging, University of Connecticut Health Center, Farmington
| |
Collapse
|
42
|
Yang H, Sloan G, Ye Y, Wang S, Duan B, Tesfaye S, Gao L. New Perspective in Diabetic Neuropathy: From the Periphery to the Brain, a Call for Early Detection, and Precision Medicine. Front Endocrinol (Lausanne) 2020; 10:929. [PMID: 32010062 PMCID: PMC6978915 DOI: 10.3389/fendo.2019.00929] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 12/19/2019] [Indexed: 12/12/2022] Open
Abstract
Diabetic peripheral neuropathy (DPN) is a common chronic complication of diabetes mellitus. It leads to distressing and expensive clinical sequelae such as foot ulceration, leg amputation, and neuropathic pain (painful-DPN). Unfortunately, DPN is often diagnosed late when irreversible nerve injury has occurred and its first presentation may be with a diabetic foot ulcer. Several novel diagnostic techniques are available which may supplement clinical assessment and aid the early detection of DPN. Moreover, treatments for DPN and painful-DPN are limited. Only tight glucose control in type 1 diabetes has robust evidence in reducing the risk of developing DPN. However, neither glucose control nor pathogenetic treatments are effective in painful-DPN and symptomatic treatments are often inadequate. It has recently been hypothesized that using various patient characteristics it may be possible to stratify individuals and assign them targeted therapies to produce better pain relief. We review the diagnostic techniques which may aid the early detection of DPN in the clinical and research environment, and recent advances in precision medicine techniques for the treatment of painful-DPN.
Collapse
Affiliation(s)
- Heng Yang
- Endocrinology Department, Renmin Hospital of Wuhan University, Wuhan, China
| | - Gordon Sloan
- Diabetes Research Unit, Sheffield Teaching Hospitals, Royal Hallamshire Hospital, Sheffield, United Kingdom
| | - Yingchun Ye
- Endocrinology Department, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shuo Wang
- Endocrinology Department, Renmin Hospital of Wuhan University, Wuhan, China
| | - Bihan Duan
- Endocrinology Department, Renmin Hospital of Wuhan University, Wuhan, China
| | - Solomon Tesfaye
- Diabetes Research Unit, Sheffield Teaching Hospitals, Royal Hallamshire Hospital, Sheffield, United Kingdom
| | - Ling Gao
- Endocrinology Department, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
43
|
Calvo M, Davies AJ, Hébert HL, Weir GA, Chesler EJ, Finnerup NB, Levitt RC, Smith BH, Neely GG, Costigan M, Bennett DL. The Genetics of Neuropathic Pain from Model Organisms to Clinical Application. Neuron 2019; 104:637-653. [PMID: 31751545 PMCID: PMC6868508 DOI: 10.1016/j.neuron.2019.09.018] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/05/2019] [Accepted: 09/12/2019] [Indexed: 12/14/2022]
Abstract
Neuropathic pain (NeuP) arises due to injury of the somatosensory nervous system and is both common and disabling, rendering an urgent need for non-addictive, effective new therapies. Given the high evolutionary conservation of pain, investigative approaches from Drosophila mutagenesis to human Mendelian genetics have aided our understanding of the maladaptive plasticity underlying NeuP. Successes include the identification of ion channel variants causing hyper-excitability and the importance of neuro-immune signaling. Recent developments encompass improved sensory phenotyping in animal models and patients, brain imaging, and electrophysiology-based pain biomarkers, the collection of large well-phenotyped population cohorts, neurons derived from patient stem cells, and high-precision CRISPR generated genetic editing. We will discuss how to harness these resources to understand the pathophysiological drivers of NeuP, define its relationship with comorbidities such as anxiety, depression, and sleep disorders, and explore how to apply these findings to the prediction, diagnosis, and treatment of NeuP in the clinic.
Collapse
Affiliation(s)
- Margarita Calvo
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexander J Davies
- Neural Injury Group, Nuffield Department of Clinical Neuroscience, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Harry L Hébert
- Chronic Pain Research Group, Division of Population Health and Genomics, Mackenzie Building, Ninewells Hospital & Medical School, University of Dundee, Dundee, UK
| | - Greg A Weir
- Neural Injury Group, Nuffield Department of Clinical Neuroscience, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | | | - Nanna B Finnerup
- Department of Clinical Medicine, Danish Pain Research Center, Aarhus University, Aarhus 8000, Denmark
| | - Roy C Levitt
- Department of Anesthesiology, Perioperative Medicine and Pain Management, and John T. MacDonald Foundation Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Blair H Smith
- Chronic Pain Research Group, Division of Population Health and Genomics, Mackenzie Building, Ninewells Hospital & Medical School, University of Dundee, Dundee, UK
| | - G Gregory Neely
- Dr. John and Anne Chong Lab for Functional Genomics, Camperdown, University of Sydney, Sydney, NSW, Australia
| | - Michael Costigan
- Departments of Anesthesia and Neurobiology, Children's Hospital Boston and Harvard Medical School, Boston, MA, USA.
| | - David L Bennett
- Neural Injury Group, Nuffield Department of Clinical Neuroscience, John Radcliffe Hospital, University of Oxford, Oxford, UK.
| |
Collapse
|
44
|
Loke MF, Wei H, Yeo J, Sng BL, Sia AT, Tan EC. Deep sequencing analysis to identify novel and rare variants in pain-related genes in patients with acute postoperative pain and high morphine use. J Pain Res 2019; 12:2755-2770. [PMID: 31571979 PMCID: PMC6756825 DOI: 10.2147/jpr.s213869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 08/01/2019] [Indexed: 01/04/2023] Open
Abstract
Purpose Most of the genetic variants that are reported to be associated with common pain phenotypes and analgesic use are common polymorphisms. The objective of our study was to identify new variants and investigate less common genetic variants that are usually not included in either small single-gene studies or high-throughput genotyping arrays. Patients and methods From a cohort of 1075 patients who underwent a scheduled total abdominal hysterectomy, 92 who had higher self-rated pain scores and used more morphine were selected for the re-sequencing of 105 genes. Results We identified over 2400 variants in 104 genes. Most were intronic with frequencies >5%. There were 181 novel variants, of which 30 were located in exons: 17 nonsynonymous, 10 synonymous, 2 non-coding RNA, and 1 stop-gain. For known variants that are rare (population frequency <1%), the frequencies of 54 exonic variants and eight intronic variants for the sequenced samples were higher than the weighted frequencies in the Genome Aggregation Database for East and South Asians (P-values ranging from 0.000 to 0.046). Overall, patients who had novel and/or rare variants used more morphine than those who only had common variants. Conclusion Our study uncovered novel variants in patients who reported higher pain and used more morphine. Compared with the general population, rare variants were more common in this group.
Collapse
Affiliation(s)
- Mun-Fai Loke
- Research Laboratory, KK Women's & Children's Hospital, Singapore, Singapore
| | - Heming Wei
- Research Laboratory, KK Women's & Children's Hospital, Singapore, Singapore
| | - Junjie Yeo
- Duke-NUS Medical School, Singapore, Singapore
| | - Ban-Leong Sng
- Department of Women's Anaesthesia, KK Women's & Children's Hospital, Singapore, Singapore
| | - Alex T Sia
- Department of Women's Anaesthesia, KK Women's & Children's Hospital, Singapore, Singapore
| | - Ene-Choo Tan
- Research Laboratory, KK Women's & Children's Hospital, Singapore, Singapore
| |
Collapse
|
45
|
Zheng NN, Zhang RC, Yang XX, Zhong LS. Association of rs3783641 single-nucleotide polymorphism in GTP cyclohydrolase 1 gene with post-herpetic neuralgia. J Dermatol 2019; 46:993-997. [PMID: 31486149 DOI: 10.1111/1346-8138.15067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 08/02/2019] [Indexed: 12/17/2022]
Abstract
Post-herpetic neuralgia (PHN) is a well-established clinical problem with potential severe personal and socioeconomic implications. GTP cyclohydrolase 1 (GCH1) gene, which encodes the rate-limiting enzyme in tetrahydrobiopterin synthesis, has been strongly implicated to be associated with neuropathic pain in previous animal and human studies. The rs3783641 (T > A) single-nucleotide polymorphism (SNP) in the GCH1 gene is functional. Here we examine the association between rs3783641 and PHN. A total of 292 subjects including 103 PHN patients, 87 herpes zoster (HZ) patients and 102 healthy controls were enrolled in this study. The rs3783641 polymorphisms were detected via the high-resolution melting curve (HRM) method. There were statistical differences between PHN group and the other two groups in genotype distribution (P = 0.029 and 0.017, respectively) and allele frequency (P = 0.032 and 0.005, respectively) of rs3783641. The proportion of subjects with AA genotype in the PHN group was significantly lower compared to HZ group and control group (P = 0.026 and 0.016, respectively). The frequency of A allele was lower in the PHN group than in control group (P = 0.005), and the frequency of T allele in the PHN group was higher than in HZ group and control group (P = 0.001 and 0.003, respectively). The results of this study suggest that the rs3783641 SNP in the GCH1 gene is associated with PHN, and the AA genotype showed a protective effect in PHN.
Collapse
Affiliation(s)
- Na-Na Zheng
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Ruo-Chen Zhang
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xiao-Xiao Yang
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Lian-Sheng Zhong
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
46
|
Mills SEE, Nicolson KP, Smith BH. Chronic pain: a review of its epidemiology and associated factors in population-based studies. Br J Anaesth 2019; 123:e273-e283. [PMID: 31079836 PMCID: PMC6676152 DOI: 10.1016/j.bja.2019.03.023] [Citation(s) in RCA: 858] [Impact Index Per Article: 143.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 03/22/2019] [Indexed: 12/18/2022] Open
Abstract
Chronic pain is a common, complex, and distressing problem that has a profound impact on individuals and society. It frequently presents as a result of a disease or an injury; however, it is not merely an accompanying symptom, but rather a separate condition in its own right, with its own medical definition and taxonomy. Studying the distribution and determinants of chronic pain allows us to understand and manage the problem at the individual and population levels. Targeted and appropriate prevention and management strategies need to take into account the biological, psychological, socio-demographic, and lifestyle determinants and outcomes of pain. We present a narrative review of the current understanding of these factors.
Collapse
Affiliation(s)
- Sarah E E Mills
- Population Health and Genomics Division, University of Dundee School of Medicine, Ninewells Hospital and Medical School, Dundee, Scotland, UK.
| | - Karen P Nicolson
- Population Health and Genomics Division, University of Dundee School of Medicine, Ninewells Hospital and Medical School, Dundee, Scotland, UK
| | - Blair H Smith
- Population Health and Genomics Division, University of Dundee School of Medicine, Ninewells Hospital and Medical School, Dundee, Scotland, UK
| |
Collapse
|
47
|
Chidambaran V, Gang Y, Pilipenko V, Ashton M, Ding L. Systematic Review and Meta-Analysis of Genetic Risk of Developing Chronic Postsurgical Pain. THE JOURNAL OF PAIN 2019; 21:2-24. [PMID: 31129315 DOI: 10.1016/j.jpain.2019.05.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/06/2019] [Accepted: 05/20/2019] [Indexed: 02/08/2023]
Abstract
Chronic postsurgical pain (CPSP) is a significant detriment to postsurgical recovery and a risk factor for prolonged opioid use. Emerging evidence suggests the estimated heritability for chronic pain is 45% and that genetic factors partially explain individual susceptibility to CPSP. The aim of this study was to systematically review, assess quality, and summarize the studies in humans that have investigated genetic factors associated with CPSP. We also conducted a meta-analysis to derive a single effect size for evaluable genetic associations with CPSP. Our comprehensive literature search included review of 21 full-text articles evaluating variants of 69 genes for association with CPSP. We found significant gene variant associations reported for variants/haplotypes of 26 genes involved in neurotransmission, pain signaling, immune responses and neuroactive ligand-receptor interaction, with CPSP. Six variants of 5 genes (COMT: rs4680 and rs6269, OPRM1: rs1799971, GCH1: rs3783641, KCNS1: rs734784 and TNFA: rs1800629), were evaluated by more than one study and were included in the meta-analysis. At rs734784 (A>G) of KCNS1, presence of G allele marginally increased risk of CPSP (Additive genetic model; Odds ratio: 1.511; 95% CI 1-2.284; P value: .050), while the other variants did not withstand meta-analyses criteria. Our findings demonstrate the role of genetic factors with different functions in CPSP, and also emphasize that single genetic factors have small effect sizes in explaining complex conditions like CPSP. Heterogeneity in surgical cohorts, population structure, and outcome definitions, as well as small number of available studies evaluating same variants, limit the meta-analysis. There is a need for large-scale, homogenous, replication studies to validate candidate genes, and understand the underlying biological networks underpinning CPSP. PERSPECTIVE: Our systematic review comprehensively describes 21 studies evaluating genetic association with CPSP, and limitations thereof. A meta-analysis of 6 variants (5 genes) found marginally increased risk for CPSP associated with rs734784 A>G of the potassium voltage-gated channel gene (KCNS1). Understanding genetic predisposition for CPSP will enable prediction and personalized management.
Collapse
Affiliation(s)
- Vidya Chidambaran
- Department of Anesthesiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio.
| | - Yang Gang
- Division of Biostatistics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Mathematical Sciences, University of Cincinnati, Cincinnati, Ohio
| | - Valentina Pilipenko
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Maria Ashton
- Department of Anesthesiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Lili Ding
- Division of Biostatistics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| |
Collapse
|
48
|
|
49
|
Tracey I, Woolf CJ, Andrews NA. Composite Pain Biomarker Signatures for Objective Assessment and Effective Treatment. Neuron 2019; 101:783-800. [PMID: 30844399 PMCID: PMC6800055 DOI: 10.1016/j.neuron.2019.02.019] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 02/05/2019] [Accepted: 02/13/2019] [Indexed: 02/09/2023]
Abstract
Pain is a subjective sensory experience that can, mostly, be reported but cannot be directly measured or quantified. Nevertheless, a suite of biomarkers related to mechanisms, neural activity, and susceptibility offer the possibility-especially when used in combination-to produce objective pain-related indicators with the specificity and sensitivity required for diagnosis and for evaluation of risk of developing pain and of analgesic efficacy. Such composite biomarkers will also provide improved understanding of pain pathophysiology.
Collapse
Affiliation(s)
- Irene Tracey
- Nuffield Department of Clinical Neurosciences, University of Oxford, West Wing, John Radcliffe Hospital, Oxford OX3 9DU, UK.
| | - Clifford J Woolf
- Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, 02115 MA, USA.
| | - Nick A Andrews
- Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, 02115 MA, USA
| |
Collapse
|
50
|
Bryant CD, Bagdas D, Goldberg LR, Khalefa T, Reed ER, Kirkpatrick SL, Kelliher JC, Chen MM, Johnson WE, Mulligan MK, Imad Damaj M. C57BL/6 substrain differences in inflammatory and neuropathic nociception and genetic mapping of a major quantitative trait locus underlying acute thermal nociception. Mol Pain 2019; 15:1744806918825046. [PMID: 30632432 PMCID: PMC6365993 DOI: 10.1177/1744806918825046] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/26/2018] [Accepted: 12/21/2018] [Indexed: 11/17/2022] Open
Abstract
Sensitivity to different pain modalities has a genetic basis that remains largely unknown. Employing closely related inbred mouse substrains can facilitate gene mapping of nociceptive behaviors in preclinical pain models. We previously reported enhanced sensitivity to acute thermal nociception in C57BL/6J (B6J) versus C57BL/6N (B6N) substrains. Here, we expanded on nociceptive phenotypes and observed an increase in formalin-induced inflammatory nociceptive behaviors and paw diameter in B6J versus B6N mice (Charles River Laboratories). No strain differences were observed in mechanical or thermal hypersensitivity or in edema following the Complete Freund's Adjuvant model of inflammatory pain, indicating specificity in the inflammatory nociceptive stimulus. In the chronic constrictive nerve injury, a model of neuropathic pain, no strain differences were observed in baseline mechanical threshold or in mechanical hypersensitivity up to one month post-chronic constrictive nerve injury. We replicated the enhanced thermal nociception in the 52.5°C hot plate test in B6J versus B6N mice from The Jackson Laboratory. Using a B6J × B6N-F2 cross (N = 164), we mapped a major quantitative trait locus underlying hot plate sensitivity to chromosome 7 that peaked at 26 Mb (log of the odds [LOD] = 3.81, p < 0.01; 8.74 Mb-36.50 Mb) that was more pronounced in males. Genes containing expression quantitative trait loci associated with the peak nociceptive marker that are implicated in pain and inflammation include Ryr1, Cyp2a5, Pou2f2, Clip3, Sirt2, Actn4, and Ltbp4 (false discovery rate < 0.05). Future studies involving positional cloning and gene editing will determine the quantitative trait gene(s) and potential pleiotropy of this locus across pain modalities.
Collapse
Affiliation(s)
- Camron D Bryant
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
- Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Deniz Bagdas
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, USA
- Translational Research Initiative for Pain and Neuropathy, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, USA
| | - Lisa R Goldberg
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
- Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
- Program in Biomolecular Pharmacology, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Tala Khalefa
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, USA
- Translational Research Initiative for Pain and Neuropathy, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, USA
| | - Eric R Reed
- Department of Medicine, Computational Biomedicine, Bioinformatics Program, Boston University, Boston, MA, USA
| | - Stacey L Kirkpatrick
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
- Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Julia C Kelliher
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
- Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Melanie M Chen
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
- Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - William E Johnson
- Department of Medicine, Computational Biomedicine, Boston University School of Medicine, Boston, MA, USA
| | - Megan K Mulligan
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - M Imad Damaj
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, USA
- Translational Research Initiative for Pain and Neuropathy, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|