1
|
Arendt-Tranholm A, Sankaranarayanan I, Payne C, Moreno MM, Mazhar K, Yap N, Chiu AP, Barry A, Patel PP, Inturi NN, Ferreira DT, Amin A, Karandikar M, Jarvik JG, Turner JA, Hofstetter CP, Curatolo M, Price TJ. Single-cell characterization of the human C2 dorsal root ganglion recovered from C1-2 arthrodesis surgery: implications for neck pain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.24.645122. [PMID: 40196625 PMCID: PMC11974819 DOI: 10.1101/2025.03.24.645122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Neurons in the dorsal root ganglion (DRG) receive and transmit sensory information from the tissues they innervate and from the external environment. Upper cervical (C1-C2) DRGs are functionally unique as they receive input from the neck, head, and occipital cranial dura, the latter two of which are also innervated by the trigeminal ganglion (TG). The C2 DRG also plays an important role in neck pain, a common and disabling disorder that is poorly understood. Advanced transcriptomic approaches have significantly improved our ability to characterize RNA expression patterns at single-cell resolution in the DRG and TG, but no previous studies have characterized the C2 DRG. Our aim was to use single-nucleus and spatial transcriptomic approaches to create a molecular map of C2 DRGs from patients undergoing arthrodesis surgery with ganglionectomy. Patients with acute (<3 months) or chronic (≥3 months) neck pain were enrolled and completed patient-reported outcomes and quantitative sensory testing prior to surgery. C2 DRGs were characterized with bulk, single nucleus, and spatial RNA sequencing technologies from 22 patients. Through a comparative analysis to published datasets of the lumbar DRG and TG, neuronal clusters identified in both TG and DRG were identified in the C2 DRG. Therefore, our study definitively characterizes the molecular composition of human C2 neurons and establishes their similarity with unique characteristics of subsets of TG neurons. We identified differentially expressed genes in endothelial, fibroblast and myelinating Schwann cells associated with chronic pain, including FGFBP2, C8orf34 and EFNA1 which have been identified in previous genome and transcriptome wide association studies (GWAS/TWAS). Our work establishes an atlas of the human C2 DRG and identifies altered gene expression patterns associated with chronic neck pain. This work establishes a foundation for the exploration of painful disorders in humans affecting the cervical spine.
Collapse
Affiliation(s)
- Asta Arendt-Tranholm
- Center for Advanced Pain Studies, Department of Neuroscience, University of Texas at Dallas, Richardson, TX, USA
| | - Ishwarya Sankaranarayanan
- Center for Advanced Pain Studies, Department of Neuroscience, University of Texas at Dallas, Richardson, TX, USA
| | - Cathryn Payne
- Department of Neurological Surgery, University of Washington, Seattle WA, USA
| | - Marisol Mancilla Moreno
- Center for Advanced Pain Studies, Department of Neuroscience, University of Texas at Dallas, Richardson, TX, USA
| | - Khadijah Mazhar
- Center for Advanced Pain Studies, Department of Neuroscience, University of Texas at Dallas, Richardson, TX, USA
| | - Natalie Yap
- Department of Neurological Surgery, University of Washington, Seattle WA, USA
| | - Abby P Chiu
- Department of Neurological Surgery, University of Washington, Seattle WA, USA
| | - Allison Barry
- Center for Advanced Pain Studies, Department of Neuroscience, University of Texas at Dallas, Richardson, TX, USA
| | - Pooja P Patel
- Center for Advanced Pain Studies, Department of Neuroscience, University of Texas at Dallas, Richardson, TX, USA
| | - Nikhil N Inturi
- Center for Advanced Pain Studies, Department of Neuroscience, University of Texas at Dallas, Richardson, TX, USA
| | - Diana Tavares Ferreira
- Center for Advanced Pain Studies, Department of Neuroscience, University of Texas at Dallas, Richardson, TX, USA
| | - Anubhav Amin
- Department of Neurological Surgery, University of Washington, Seattle WA, USA
| | - Mahesh Karandikar
- Department of Neurological Surgery, University of Washington, Seattle WA, USA
| | - Jeffrey G Jarvik
- Department of Neurological Surgery, University of Washington, Seattle WA, USA
- Department of Radiology, University of Washington, Seattle WA, USA
- The University of Washington Clinical Learning, Evidence and Research (CLEAR) Center for Musculoskeletal Disorders
| | - Judith A Turner
- Department of Psychiatry & Behavioral Sciences, University of Washington, Seattle WA, USA
- The University of Washington Clinical Learning, Evidence and Research (CLEAR) Center for Musculoskeletal Disorders
| | | | - Michele Curatolo
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle WA, USA
- The University of Washington Clinical Learning, Evidence and Research (CLEAR) Center for Musculoskeletal Disorders
| | - Theodore J Price
- Center for Advanced Pain Studies, Department of Neuroscience, University of Texas at Dallas, Richardson, TX, USA
| |
Collapse
|
2
|
Gebru NT, Hill SE, Blair LJ. Genetically engineered mouse models of FK506-binding protein 5. J Cell Biochem 2024; 125:e30374. [PMID: 36780339 PMCID: PMC10423308 DOI: 10.1002/jcb.30374] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/25/2022] [Accepted: 01/15/2023] [Indexed: 02/14/2023]
Abstract
FK506 binding protein 51 (FKBP51) is a molecular chaperone that influences stress response. In addition to having an integral role in the regulation of steroid hormone receptors, including glucocorticoid receptor, FKBP51 has been linked with several biological processes including metabolism and neuronal health. Genetic and epigenetic alterations in the gene that encodes FKBP51, FKBP5, are associated with increased susceptibility to multiple neuropsychiatric disorders, which has fueled much of the research on this protein. Because of the complexity of these processes, animal models have been important in understanding the role of FKBP51. This review examines each of the current mouse models of FKBP5, which include whole animal knockout, conditional knockout, overexpression, and humanized mouse models. The generation of each model and observational details are discussed, including behavioral phenotypes, molecular changes, and electrophysiological alterations basally and following various challenges. While much has been learned through these models, there are still many aspects of FKBP51 biology that remain opaque and future studies are needed to help illuminate these current gaps in knowledge. Overall, FKBP5 continues to be an exciting potential target for stress-related disorders.
Collapse
Affiliation(s)
- Niat T. Gebru
- USF Health Byrd Alzheimer’s Institute, University of South Florida, 4001 E. Fletcher Ave. Tampa, Florida 33613, United States
- Department of Molecular Medicine, University of South Florida, 4001 E. Fletcher Ave. Tampa, Florida 33613, United States
| | - Shannon E. Hill
- USF Health Byrd Alzheimer’s Institute, University of South Florida, 4001 E. Fletcher Ave. Tampa, Florida 33613, United States
- Department of Molecular Medicine, University of South Florida, 4001 E. Fletcher Ave. Tampa, Florida 33613, United States
| | - Laura J. Blair
- USF Health Byrd Alzheimer’s Institute, University of South Florida, 4001 E. Fletcher Ave. Tampa, Florida 33613, United States
- Department of Molecular Medicine, University of South Florida, 4001 E. Fletcher Ave. Tampa, Florida 33613, United States
- Research Service, James A. Haley Veterans Hospital, 13000 Bruce B Downs Blvd, Tampa, FL 33612, United States
| |
Collapse
|
3
|
Ahlström FH, Viisanen H, Karhinen L, Velagapudi V, Blomqvist KJ, Lilius TO, Rauhala PV, Kalso EA. Gene expression in the dorsal root ganglion and the cerebrospinal fluid metabolome in polyneuropathy and opioid tolerance in rats. IBRO Neurosci Rep 2024; 17:38-51. [PMID: 38933596 PMCID: PMC11201153 DOI: 10.1016/j.ibneur.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 05/13/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
First-line pharmacotherapy for peripheral neuropathic pain (NP) of diverse pathophysiology consists of antidepressants and gabapentinoids, but only a minority achieve sufficient analgesia with these drugs. Opioids are considered third-line analgesics in NP due to potential severe and unpredictable adverse effects in long-term use. Also, opioid tolerance and NP may have shared mechanisms, raising further concerns about opioid use in NP. We set out to further elucidate possible shared and separate mechanisms after chronic morphine treatment and oxaliplatin-induced and diabetic polyneuropathies, and to identify potential diagnostic markers and therapeutic targets. We analysed thermal nociceptive behaviour, the transcriptome of dorsal root ganglia (DRG) and the metabolome of cerebrospinal fluid (CSF) in these three conditions, in rats. Several genes were differentially expressed, most following oxaliplatin and least after chronic morphine treatment, compared with saline-treated rats. A few genes were differentially expressed in the DRGs in all three models (e.g. Csf3r and Fkbp5). Some, e.g. Alox15 and Slc12a5, were differentially expressed in both diabetic and oxaliplatin models. Other differentially expressed genes were associated with nociception, inflammation, and glial cells. The CSF metabolome was most significantly affected in the diabetic rats. Interestingly, we saw changes in nicotinamide metabolism, which has been associated with opioid addiction and withdrawal, in the CSF of morphine-tolerant rats. Our results offer new hypotheses for the pathophysiology and treatment of NP and opioid tolerance. In particular, the role of nicotinamide metabolism in opioid addiction deserves further study.
Collapse
Affiliation(s)
- Fredrik H.G. Ahlström
- Department of Pharmacology, Faculty of Medicine, Biomedicum 1, University of Helsinki, Haartmaninkatu 8, 00014, Finland
- Individualized Drug Therapy Research Programme, Faculty of Medicine, Biomedicum 1, University of Helsinki, Haartmaninkatu 8, 00014, Finland
| | - Hanna Viisanen
- Department of Pharmacology, Faculty of Medicine, Biomedicum 1, University of Helsinki, Haartmaninkatu 8, 00014, Finland
- Individualized Drug Therapy Research Programme, Faculty of Medicine, Biomedicum 1, University of Helsinki, Haartmaninkatu 8, 00014, Finland
| | - Leena Karhinen
- Department of Pharmacology, Faculty of Medicine, Biomedicum 1, University of Helsinki, Haartmaninkatu 8, 00014, Finland
| | - Vidya Velagapudi
- Metabolomics Unit, Institute for Molecular Medicine Finland FIMM, University of Helsinki, P.O. Box 20, FI-00014, Finland
| | - Kim J. Blomqvist
- Department of Pharmacology, Faculty of Medicine, Biomedicum 1, University of Helsinki, Haartmaninkatu 8, 00014, Finland
- Individualized Drug Therapy Research Programme, Faculty of Medicine, Biomedicum 1, University of Helsinki, Haartmaninkatu 8, 00014, Finland
| | - Tuomas O. Lilius
- Department of Pharmacology, Faculty of Medicine, Biomedicum 1, University of Helsinki, Haartmaninkatu 8, 00014, Finland
- Individualized Drug Therapy Research Programme, Faculty of Medicine, Biomedicum 1, University of Helsinki, Haartmaninkatu 8, 00014, Finland
- Department of Clinical Pharmacology, University of Helsinki and Helsinki University Hospital, Tukholmankatu 8C, 00014, Finland
- Department of Emergency Medicine and Services, University of Helsinki and HUS Helsinki University Hospital, Haartmaninkatu 4, Helsinki 00290, Finland
| | - Pekka V. Rauhala
- Department of Pharmacology, Faculty of Medicine, Biomedicum 1, University of Helsinki, Haartmaninkatu 8, 00014, Finland
- Individualized Drug Therapy Research Programme, Faculty of Medicine, Biomedicum 1, University of Helsinki, Haartmaninkatu 8, 00014, Finland
| | - Eija A. Kalso
- Department of Pharmacology, Faculty of Medicine, Biomedicum 1, University of Helsinki, Haartmaninkatu 8, 00014, Finland
- SleepWell Research Programme, Faculty of Medicine, , University of Helsinki, Haartmaninkatu 3, 00014, Finland
- Department of Anaesthesiology and Intensive Care Medicine, Helsinki University Hospital and University of Helsinki, HUS, Stenbäckinkatu 9, P.O. Box 440, 00029, Finland
| |
Collapse
|
4
|
Hestehave S, Florea R, Fedorec AJ, Jevic M, Mercy L, Wright A, Morgan OB, Brown LA, Peirson SN, Géranton SM. Differences in multidimensional phenotype of 2 joint pain models link early weight-bearing deficit to late depressive-like behavior in male mice. Pain Rep 2024; 9:e1213. [PMID: 39574483 PMCID: PMC11581759 DOI: 10.1097/pr9.0000000000001213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/11/2024] [Accepted: 09/15/2024] [Indexed: 11/24/2024] Open
Abstract
Introduction Chronic pain is a hallmark of joint diseases. Although these conditions are often accompanied by negative affective symptoms including depression and anxiety, these comorbidities are rarely studied simultaneously in preclinical models where they are poorly characterised. Moreover, how affective symptoms relate to the more obvious sensory and functional symptoms of joint diseases is not well understood. Here, we have addressed these gaps in knowledge. Methods We used 2 preclinical models of joint pain in male mice and an array of behavioural and molecular assays to fully characterise functional deficits, mechanical hypersensitivity, affective symptoms, and nociceptive signaling in joint pain, as well as investigate their relationship. Results Ankle joint inflammation and knee osteoarthritis induced mechanical hypersensitivity that lasted at least 3 months and that was not different between the 2 models on most days. However, the models presented with markedly different weight-bearing deficits, molecular profiles, and affective outcomes. Specifically, only the model of knee osteoarthritis was accompanied by an increase in negative affective behaviors, including early changes in circadian patterns, persistent cognitive impairments, and late development of depressive-like behavior. Importantly, the early weight-bearing deficit strongly correlated with the emotional profiles and the hypersensitivity at 3 months, suggesting that early objective functional measures may be used as predictors of long-term affective symptoms and pain. Conclusion The predictive value of early weight-bearing deficit could prove useful in the clinical setting for adapted therapeutic approaches for the prevention of emotional comorbidities and better pain management for patients with joint pain.
Collapse
Affiliation(s)
- Sara Hestehave
- Department of Cell & Developmental Biology, University College London, London, United Kingdom. Hestehave is now with the Department of Experimental Medicine, University of Copenhagen, Copenhagen N, Denmark
| | - Roxana Florea
- Department of Cell & Developmental Biology, University College London, London, United Kingdom. Hestehave is now with the Department of Experimental Medicine, University of Copenhagen, Copenhagen N, Denmark
| | - Alexander J.H. Fedorec
- Department of Cell & Developmental Biology, University College London, London, United Kingdom. Hestehave is now with the Department of Experimental Medicine, University of Copenhagen, Copenhagen N, Denmark
| | - Maria Jevic
- Department of Cell & Developmental Biology, University College London, London, United Kingdom. Hestehave is now with the Department of Experimental Medicine, University of Copenhagen, Copenhagen N, Denmark
| | - Lucile Mercy
- Department of Cell & Developmental Biology, University College London, London, United Kingdom. Hestehave is now with the Department of Experimental Medicine, University of Copenhagen, Copenhagen N, Denmark
| | - Annia Wright
- Department of Cell & Developmental Biology, University College London, London, United Kingdom. Hestehave is now with the Department of Experimental Medicine, University of Copenhagen, Copenhagen N, Denmark
| | - Oakley B. Morgan
- Department of Cell & Developmental Biology, University College London, London, United Kingdom. Hestehave is now with the Department of Experimental Medicine, University of Copenhagen, Copenhagen N, Denmark
| | | | - Stuart N. Peirson
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, United Kingdom
| | - Sandrine M. Géranton
- Department of Cell & Developmental Biology, University College London, London, United Kingdom. Hestehave is now with the Department of Experimental Medicine, University of Copenhagen, Copenhagen N, Denmark
| |
Collapse
|
5
|
Guichard L, Engoren MC, Li YJ, Sigakis MJ, An X, Brummett CM, Mauck MC, Raghunathan K, Clauw DJ, Krishnamoorthy V. Risk Factors for Increased Opioid Use During Postoperative Intensive Care. Crit Care Explor 2024; 6:e1172. [PMID: 39466155 PMCID: PMC11519407 DOI: 10.1097/cce.0000000000001172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024] Open
Abstract
IMPORTANCE In the ICU, opioids treat pain and improve ventilator tolerance as part of an analgosedation approach. Identifying predictors of opioid consumption during the ICU course might highlight actionable items to reduce opioid consumption. OBJECTIVES To identify risk factors for opioid use during a postoperative ICU course. DESIGN, SETTING, AND PARTICIPANTS Patients enrolled in the Michigan Genomics Initiative single-center prospective observational cohort study completed baseline preoperative sociodemographic and mental/physical health questionnaires and provided blood samples for genetic analysis. Included patients were 18 years old and older, admitted to ICU postoperatively, and received opioids postoperatively. MAIN OUTCOMES AND MEASURES The primary outcome was ICU mean daily oral morphine equivalent (OME) use. The association between OME and phenotypic risk factors and genetic variants previously associated with pain were analyzed through univariable and multivariable linear regression models. RESULTS The cohort consisted of 1865 mixed-surgical patients with mean age of 56 years (sd, 15 yr). Preoperative opioid users were more likely to continue to receive opioids throughout their ICU stay than opioid-naive patients. OME (log10 scale) was most strongly associated with ICU mechanical ventilation (β = 0.27; 95% CI, 0.15-0.38; p < 0.0001; effect size 1.85 for receiving > 24 hours of mechanical ventilation), preoperative opioid use (β = 0.22; 95% CI, 0.16-0.29; p < 0.0001; effect size 1.67 for receiving preoperative opioids), major surgery (β = 0.21; 95% CI, 0.12-0.30; p < 0.0001; effect size 1.62 compared with minor surgery), and current/former illicit drug use (β = 0.12; 95% CI, 0.01-0.23; p = 0.04; effect size 1.30 for drug use). Younger age, centralized pain, and longer anesthetic duration were also significantly associated with OME but with smaller effect sizes. Selected genetic variants (FKBP5, COMT, and OPRM1) were not associated with OME use. CONCLUSIONS AND RELEVANCE Mechanical ventilation and preoperative opioids were the strongest risk factors for postoperative ICU opioid consumption, whereas psychologic factors and genetic variants were not associated.
Collapse
Affiliation(s)
- Lauriane Guichard
- Duke University Department of Anesthesiology and Critical Care Medicine, Critical Care and Perioperative Population Health Research (CAPER) Group, Durham, NC
- Department of Anesthesiology and Critical Care, University of Michigan, Ann Arbor, MI
- Department of Anesthesiology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Milo C. Engoren
- Department of Anesthesiology and Critical Care, University of Michigan, Ann Arbor, MI
| | - Yi-Ju Li
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC
| | - Matthew J. Sigakis
- Department of Anesthesiology and Critical Care, University of Michigan, Ann Arbor, MI
| | - Xinming An
- Department of Anesthesiology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Chad M. Brummett
- Department of Anesthesiology and Critical Care, University of Michigan, Ann Arbor, MI
| | - Matthew C. Mauck
- Department of Anesthesiology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Karthik Raghunathan
- Duke University Department of Anesthesiology and Critical Care Medicine, Critical Care and Perioperative Population Health Research (CAPER) Group, Durham, NC
| | - Daniel J. Clauw
- Chronic Pain and Fatigue Research Center, Department of Anesthesiology, University of Michigan, Ann Arbor, MI
| | - Vijay Krishnamoorthy
- Duke University Department of Anesthesiology and Critical Care Medicine, Critical Care and Perioperative Population Health Research (CAPER) Group, Durham, NC
| |
Collapse
|
6
|
Wang J, Wang Z, Zhang K, Cui Y, Zhou J, Liu J, Li H, Zhao M, Jiang J. The role of the ubiquitin system in the onset and reversal of neuropathic pain. Biomed Pharmacother 2024; 179:117127. [PMID: 39191026 DOI: 10.1016/j.biopha.2024.117127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/07/2024] [Accepted: 07/10/2024] [Indexed: 08/29/2024] Open
Abstract
Neuropathic pain (NP) remains one of the world's most difficult problems, and people suffering from NP have their quality of life affected to a great extent and constantly suffer from pain. Sensitization of injurious receptors, ectopic firing of afferent nerves after nerve injury, and coupling between sympathetic and sensory neurons are involved in the onset or development of NP, but the pathogenesis of NP is still not well understood. We found that the ubiquitin system is involved in the pathogenesis of NP and has a crucial role in it. The ubiquitin system can be involved in the onset or reversal of NP by affecting ion channels, cellular signal transduction, glial cells, and the regulation of non-coding RNAs. This provides new ideas for the treatment of NP. The ubiquitin system may be a new effective target for the treatment of NP. A continued, in-depth understanding of the mechanisms of the ubiquitin system involved in NP could further refine the study of analgesic targets and improve pharmacological studies.
Collapse
Affiliation(s)
- Jialin Wang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhijing Wang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Kexin Zhang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yanping Cui
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jingruo Zhou
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jiazhou Liu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Huanyi Li
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Mingxia Zhao
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jingjing Jiang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
7
|
Wang L, Kumar R, Winblad B, Pavlov PF. Structure-based discovery of small molecule inhibitors of FKBP51-Hsp90 protein-protein interaction. Eur J Med Chem 2024; 270:116356. [PMID: 38579621 DOI: 10.1016/j.ejmech.2024.116356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/22/2024] [Accepted: 03/24/2024] [Indexed: 04/07/2024]
Abstract
The heat shock protein 90 kDa (Hsp90) molecular chaperone machinery is responsible for the folding and activation of hundreds of important clients such as kinases, steroid hormone receptors, transcription factors, etc. This process is dynamically regulated in an ATP-dependent manner by Hsp90 co-chaperones including a group of tetratricopeptide (TPR) motif proteins that bind to the C-terminus of Hsp90. Among these TPR containing co-chaperones, FK506-binding protein 51 kDa (FKBP51) is reported to play an important role in stress-related pathologies, psychiatric disorders, Alzheimer's disease, and cancer, making FKBP51-Hsp90 interaction a potential therapeutic target. In this study, we report identification of potent and selective inhibitors of FKBP51-Hsp90 protein-protein interaction using a structure-based virtual screening approach. Upon in vitro evaluation, the identified hits show a considerable degree of selectivity towards FKBP51 over other TPR proteins, particularly for highly homologous FKBP52. Tyr355 of FKBP51 emerged as an important contributor to inhibitor's specificity. Additionally, we demonstrate the impact of these inhibitors on cellular energy metabolism, and neurite outgrowth, which are subjects of FKBP51 regulation. Overall, the results from this study highlight a novel pharmacological approach towards regulation of FKBP51 function and more generally, Hsp90 function via its interaction with TPR co-chaperones.
Collapse
Affiliation(s)
- Lisha Wang
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, 17164, Solna, Sweden.
| | - Rajnish Kumar
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, 17164, Solna, Sweden; Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), 221005, Varanasi, India.
| | - Bengt Winblad
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, 17164, Solna, Sweden; Theme Inflammation and Aging, Karolinska University Hospital, 14186, Huddinge, Sweden
| | - Pavel F Pavlov
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, 17164, Solna, Sweden
| |
Collapse
|
8
|
Charalampidou A, Nehls T, Meyners C, Gandhesiri S, Pomplun S, Pentelute BL, Lermyte F, Hausch F. Automated Flow Peptide Synthesis Enables Engineering of Proteins with Stabilized Transient Binding Pockets. ACS CENTRAL SCIENCE 2024; 10:649-657. [PMID: 38559286 PMCID: PMC10979424 DOI: 10.1021/acscentsci.3c01283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 04/04/2024]
Abstract
Engineering at the amino acid level is key to enhancing the properties of existing proteins in a desired manner. So far, protein engineering has been dominated by genetic approaches, which have been extremely powerful but only allow for minimal variations beyond the canonical amino acids. Chemical peptide synthesis allows the unrestricted incorporation of a vast set of unnatural amino acids with much broader functionalities, including the incorporation of post-translational modifications or labels. Here we demonstrate the potential of chemical synthesis to generate proteins in a specific conformation, which would have been unattainable by recombinant protein expression. We use recently established rapid automated flow peptide synthesis combined with solid-phase late-stage modifications to rapidly generate a set of FK506-binding protein 51 constructs bearing defined intramolecular lactam bridges. This trapped an otherwise rarely populated transient pocket-as confirmed by crystal structures-which led to an up to 39-fold improved binding affinity for conformation-selective ligands and represents a unique system for the development of ligands for this rare conformation. Overall, our results show how rapid automated flow peptide synthesis can be applied to precision protein engineering.
Collapse
Affiliation(s)
- Anna Charalampidou
- Clemens-Schöpf-Institute,
Department of Chemistry, Technical University
of Darmstadt, Peter-Grünberg-Straße 4, 64287 Darmstadt, Germany
| | - Thomas Nehls
- Clemens-Schöpf-Institute,
Department of Chemistry, Technical University
of Darmstadt, Peter-Grünberg-Straße 4, 64287 Darmstadt, Germany
| | - Christian Meyners
- Clemens-Schöpf-Institute,
Department of Chemistry, Technical University
of Darmstadt, Peter-Grünberg-Straße 4, 64287 Darmstadt, Germany
| | - Satish Gandhesiri
- Department
of Chemistry, Massachusetts Institute of
Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Sebastian Pomplun
- Leiden
Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg
55, 2333 CC Leiden, The Netherlands
| | - Bradley L. Pentelute
- Department
of Chemistry, Massachusetts Institute of
Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Frederik Lermyte
- Clemens-Schöpf-Institute,
Department of Chemistry, Technical University
of Darmstadt, Peter-Grünberg-Straße 4, 64287 Darmstadt, Germany
- Department
of Synthetic Biology, Technical University
of Darmstadt, 64287 Darmstadt, Germany
| | - Felix Hausch
- Clemens-Schöpf-Institute,
Department of Chemistry, Technical University
of Darmstadt, Peter-Grünberg-Straße 4, 64287 Darmstadt, Germany
- Department
of Synthetic Biology, Technical University
of Darmstadt, 64287 Darmstadt, Germany
| |
Collapse
|
9
|
Wang J, Zheng G, Wang L, Meng L, Ren J, Shang L, Li D, Bao Y. Dysregulation of sphingolipid metabolism in pain. Front Pharmacol 2024; 15:1337150. [PMID: 38523645 PMCID: PMC10957601 DOI: 10.3389/fphar.2024.1337150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 02/27/2024] [Indexed: 03/26/2024] Open
Abstract
Pain is a clinical condition that is currently of great concern and is often caused by tissue or nerve damage or occurs as a concomitant symptom of a variety of diseases such as cancer. Severe pain seriously affects the functional status of the body. However, existing pain management programs are not fully satisfactory. Therefore, there is a need to delve deeper into the pathological mechanisms underlying pain generation and to find new targets for drug therapy. Sphingolipids (SLs), as a major component of the bilayer structure of eukaryotic cell membranes, also have powerful signal transduction functions. Sphingolipids are abundant, and their intracellular metabolism constitutes a huge network. Sphingolipids and their various metabolites play significant roles in cell proliferation, differentiation, apoptosis, etc., and have powerful biological activities. The molecules related to sphingolipid metabolism, mainly the core molecule ceramide and the downstream metabolism molecule sphingosine-1-phosphate (S1P), are involved in the specific mechanisms of neurological disorders as well as the onset and progression of various types of pain, and are closely related to a variety of pain-related diseases. Therefore, sphingolipid metabolism can be the focus of research on pain regulation and provide new drug targets and ideas for pain.
Collapse
Affiliation(s)
- Jianfeng Wang
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guangda Zheng
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Linfeng Wang
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Linghan Meng
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Juanxia Ren
- Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning Province, China
| | - Lu Shang
- Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning Province, China
| | - Dongtao Li
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | | |
Collapse
|
10
|
Geiger TM, Walz M, Meyners C, Kuehn A, Dreizler JK, Sugiarto WO, Maciel EVS, Zheng M, Lermyte F, Hausch F. Discovery of a Potent Proteolysis Targeting Chimera Enables Targeting the Scaffolding Functions of FK506-Binding Protein 51 (FKBP51). Angew Chem Int Ed Engl 2024; 63:e202309706. [PMID: 37942685 DOI: 10.1002/anie.202309706] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023]
Abstract
The FK506-binding protein 51 (FKBP51) is a promising target in a variety of disorders including depression, chronic pain, and obesity. Previous FKBP51-targeting strategies were restricted to occupation of the FK506-binding site, which does not affect core functions of FKBP51. Here, we report the discovery of the first FKBP51 proteolysis targeting chimera (PROTAC) that enables degradation of FKBP51 abolishing its scaffolding function. Initial synthesis of 220 FKBP-focused PROTACs yielded a plethora of active PROTACs for FKBP12, six for FKBP51, and none for FKBP52. Structural analysis of a binary FKBP12:PROTAC complex revealed the molecular basis for negative cooperativity. Linker-based optimization of first generation FKBP51 PROTACs led to the PROTAC SelDeg51 with improved cellular activity, selectivity, and high cooperativity. The structure of the ternary FKBP51:SelDeg51:VCB complex revealed how SelDeg51 establishes cooperativity by dimerizing FKBP51 and the von Hippel-Lindau protein (VHL) in a glue-like fashion. SelDeg51 efficiently depletes FKBP51 and reactivates glucocorticoid receptor (GR)-signalling, highlighting the enhanced efficacy of full protein degradation compared to classical FKBP51 binding.
Collapse
Affiliation(s)
- Thomas M Geiger
- Department of Chemistry and Biochemistry Clemens-Schöpf-Institute, Technical University Darmstadt, Peter-Grünberg-Straße 4, 64287, Darmstadt, Germany
| | - Michael Walz
- Department of Chemistry and Biochemistry Clemens-Schöpf-Institute, Technical University Darmstadt, Peter-Grünberg-Straße 4, 64287, Darmstadt, Germany
| | - Christian Meyners
- Department of Chemistry and Biochemistry Clemens-Schöpf-Institute, Technical University Darmstadt, Peter-Grünberg-Straße 4, 64287, Darmstadt, Germany
| | - Angela Kuehn
- Department of Chemistry and Biochemistry Clemens-Schöpf-Institute, Technical University Darmstadt, Peter-Grünberg-Straße 4, 64287, Darmstadt, Germany
| | - Johannes K Dreizler
- Department of Chemistry and Biochemistry Clemens-Schöpf-Institute, Technical University Darmstadt, Peter-Grünberg-Straße 4, 64287, Darmstadt, Germany
| | - Wisely O Sugiarto
- Department of Chemistry and Biochemistry Clemens-Schöpf-Institute, Technical University Darmstadt, Peter-Grünberg-Straße 4, 64287, Darmstadt, Germany
| | - Edvaldo V S Maciel
- Department of Chemistry and Biochemistry Clemens-Schöpf-Institute, Technical University Darmstadt, Peter-Grünberg-Straße 4, 64287, Darmstadt, Germany
| | - Min Zheng
- Department of Chemistry and Biochemistry Clemens-Schöpf-Institute, Technical University Darmstadt, Peter-Grünberg-Straße 4, 64287, Darmstadt, Germany
| | - Frederik Lermyte
- Department of Chemistry and Biochemistry Clemens-Schöpf-Institute, Technical University Darmstadt, Peter-Grünberg-Straße 4, 64287, Darmstadt, Germany
| | - Felix Hausch
- Department of Chemistry and Biochemistry Clemens-Schöpf-Institute, Technical University Darmstadt, Peter-Grünberg-Straße 4, 64287, Darmstadt, Germany
- Centre for Synthetic Biology, Technical University of Darmstadt, 64283, Darmstadt, Germany
| |
Collapse
|
11
|
Martinez GJ, Appleton M, Kipp ZA, Loria AS, Min B, Hinds TD. Glucocorticoids, their uses, sexual dimorphisms, and diseases: new concepts, mechanisms, and discoveries. Physiol Rev 2024; 104:473-532. [PMID: 37732829 PMCID: PMC11281820 DOI: 10.1152/physrev.00021.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/07/2023] [Accepted: 09/10/2023] [Indexed: 09/22/2023] Open
Abstract
The normal stress response in humans is governed by the hypothalamic-pituitary-adrenal (HPA) axis through heightened mechanisms during stress, raising blood levels of the glucocorticoid hormone cortisol. Glucocorticoids are quintessential compounds that balance the proper functioning of numerous systems in the mammalian body. They are also generated synthetically and are the preeminent therapy for inflammatory diseases. They act by binding to the nuclear receptor transcription factor glucocorticoid receptor (GR), which has two main isoforms (GRα and GRβ). Our classical understanding of glucocorticoid signaling is from the GRα isoform, which binds the hormone, whereas GRβ has no known ligands. With glucocorticoids being involved in many physiological and cellular processes, even small disruptions in their release via the HPA axis, or changes in GR isoform expression, can have dire ramifications on health. Long-term chronic glucocorticoid therapy can lead to a glucocorticoid-resistant state, and we deliberate how this impacts disease treatment. Chronic glucocorticoid treatment can lead to noticeable side effects such as weight gain, adiposity, diabetes, and others that we discuss in detail. There are sexually dimorphic responses to glucocorticoids, and women tend to have a more hyperresponsive HPA axis than men. This review summarizes our understanding of glucocorticoids and critically analyzes the GR isoforms and their beneficial and deleterious mechanisms and the sexual differences that cause a dichotomy in responses. We also discuss the future of glucocorticoid therapy and propose a new concept of dual GR isoform agonist and postulate why activating both isoforms may prevent glucocorticoid resistance.
Collapse
Affiliation(s)
- Genesee J Martinez
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, United States
| | - Malik Appleton
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, United States
| | - Zachary A Kipp
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, United States
| | - Analia S Loria
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, United States
- Barnstable Brown Diabetes Center, University of Kentucky College of Medicine, Lexington, Kentucky, United States
| | - Booki Min
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States
| | - Terry D Hinds
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, United States
- Barnstable Brown Diabetes Center, University of Kentucky College of Medicine, Lexington, Kentucky, United States
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, United States
| |
Collapse
|
12
|
Koehler JK, Schmager S, Bender V, Steiner D, Massing U. Preparation of Nanosized Pharmaceutical Formulations by Dual Centrifugation. Pharmaceuticals (Basel) 2023; 16:1519. [PMID: 38004385 PMCID: PMC10675754 DOI: 10.3390/ph16111519] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/16/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
Dual centrifugation (DC) is an innovative in-vial homogenization and in-vial nanomilling technique that has been in use for the preparation of liposomes for more than one decade. Since then, DC has continuously been developed for preparing various liposomes and other lipid nanoparticles including emulsions and solid lipid nanoparticles (SLNs) as well as polymersomes and nanocrystals. Improvements in equipment technology have been achieved over the past decade, so that DC is now on its way to becoming the quasi-standard for the simple, fast, and aseptic production of lipid nanoparticles and nanocrystals in small and medium batch sizes, including the possibility of simple and fast formulation screening or bedside preparations of therapeutic nanoparticles. More than 68 publications in which DC was used to produce nanoparticles have appeared since then, justifying an initial review of the use of DC for pharmaceutical nanotechnology.
Collapse
Affiliation(s)
- Jonas K. Koehler
- Institute of Pharmaceutical Sciences, University of Freiburg, 79104 Freiburg im Breisgau, Germany; (J.K.K.); (S.S.); (V.B.)
| | - Stefanie Schmager
- Institute of Pharmaceutical Sciences, University of Freiburg, 79104 Freiburg im Breisgau, Germany; (J.K.K.); (S.S.); (V.B.)
| | - Valentin Bender
- Institute of Pharmaceutical Sciences, University of Freiburg, 79104 Freiburg im Breisgau, Germany; (J.K.K.); (S.S.); (V.B.)
| | - Denise Steiner
- Department of Pharmaceutical Technology, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
- Institute of Pharmaceutical Technology and Biopharmacy, University of Münster, Corrensstraße 48, 48149 Münster, Germany
| | - Ulrich Massing
- Institute of Pharmaceutical Sciences, University of Freiburg, 79104 Freiburg im Breisgau, Germany; (J.K.K.); (S.S.); (V.B.)
- Andreas Hettich GmbH & Co. KG, 78532 Tuttlingen, Germany
| |
Collapse
|
13
|
Maiarù M, Acton RJ, Woźniak EL, Mein CA, Bell CG, Géranton SM. A DNA methylation signature in the stress driver gene Fkbp5 indicates a neuropathic component in chronic pain. Clin Epigenetics 2023; 15:155. [PMID: 37777763 PMCID: PMC10543848 DOI: 10.1186/s13148-023-01569-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 09/17/2023] [Indexed: 10/02/2023] Open
Abstract
BACKGROUND Epigenetic changes can bring insight into gene regulatory mechanisms associated with disease pathogenicity, including chronicity and increased vulnerability. To date, we are yet to identify genes sensitive to epigenetic regulation that contribute to the maintenance of chronic pain and with an epigenetic landscape indicative of the susceptibility to persistent pain. Such genes would provide a novel opportunity for better pain management, as their epigenetic profile could be targeted for the treatment of chronic pain or used as an indication of vulnerability for prevention strategies. Here, we investigated the epigenetic profile of the gene Fkbp5 for this potential, using targeted bisulphite sequencing in rodent pre-clinical models of chronic and latent hypersensitive states. RESULTS The Fkbp5 promoter DNA methylation (DNAm) signature in the CNS was significantly different between models of persistent pain, and there was a significant correlation between CNS and peripheral blood Fkbp5 DNAm, indicating that further exploration of Fkbp5 promoter DNAm as an indicator of chronic pain pathogenic origin is warranted. We also found that maternal separation, which promotes the persistency of inflammatory pain in adulthood, was accompanied by long-lasting reduction in Fkbp5 DNAm, suggesting that Fkbp5 DNAm profile may indicate the increased vulnerability to chronic pain in individuals exposed to trauma in early life. CONCLUSIONS Overall, our data demonstrate that the Fkbp5 promoter DNAm landscape brings novel insight into the differing pathogenic origins of chronic pain, may be able to stratify patients and predict the susceptibility to chronic pain.
Collapse
Affiliation(s)
- Maria Maiarù
- Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, UK
- Department of Pharmacology, School of Pharmacy, University of Reading, Reading, UK
| | - Richard J Acton
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK
- Human Development and Health, Institute of Developmental Sciences, University of Southampton, Southampton, UK
- William Harvey Research Institute, Barts & The London Faculty of Medicine, Charterhouse Square, Queen Mary University of London, London, EC1M 6BQ, UK
- Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Eva L Woźniak
- Genome Centre, Faculty of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK
| | - Charles A Mein
- Genome Centre, Faculty of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK
| | - Christopher G Bell
- William Harvey Research Institute, Barts & The London Faculty of Medicine, Charterhouse Square, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Sandrine M Géranton
- Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
14
|
Wang X, Lin C, Jin S, Wang Y, Peng Y, Wang X. Cannabidiol alleviates neuroinflammation and attenuates neuropathic pain via targeting FKBP5. Brain Behav Immun 2023; 111:365-375. [PMID: 37196785 DOI: 10.1016/j.bbi.2023.05.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/09/2023] [Accepted: 05/13/2023] [Indexed: 05/19/2023] Open
Abstract
Microglia is a heterogeneous population that mediates neuroinflammation in the central nervous system (CNS) and plays a crucial role in developing neuropathic pain. FKBP5 facilitates the assembly of the IκB kinase (IKK) complex for the activation of NF-κB, which arises as a novel target for treating neuropathic pain. In this study, cannabidiol (CBD), a main active component of Cannabis, was identified as an antagonist of FKBP5. In vitro protein intrinsic fluorescence titration showed that CBD directly bound to FKBP5. Cellular thermal shift assay (CETSA) indicated that CBD binding increased the FKBP5 stability, which implies that FKBP5 is the endogenous target of CBD. CBD was found to inhibit the assembly of the IKK complex and the activation of NF-κB, therefore blocking LPS-induced NF-κB downstream pro-inflammatory factors NO, IL-1β, IL-6 and TNF-α. Stern-Volmer analysis and protein thermal shift assay revealed that tyrosine 113 (Y113) of FKBP5 was critical for FKBP5 interacting with CBD, which is consistent with in silico molecular docking simulation. FKBP5 Y113 mutation (Y113A) alleviated the effect of CBD inhibiting LPS-induced pro-inflammatory factors overproduction. Furthermore, systemic administration of CBD inhibited chronic constriction injury (CCI)-induced microglia activation and FKBP5 overexpression in lumbar spinal cord dorsal horn. These data imply that FKBP5 is an endogenous target of CBD.
Collapse
Affiliation(s)
- Xue Wang
- Department of Anesthesiology, Lequn Branch, The First Hospital of Jilin University, Changchun 130021, China; State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Cong Lin
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Sha Jin
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yibo Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Yinghua Peng
- Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China.
| | - Xiaohui Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China; Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China; Beijing National Laboratory for Molecular Sciences, Beijing 100190, China.
| |
Collapse
|
15
|
Cruz B, Vozella V, Carper BA, Xu JC, Kirson D, Hirsch S, Nolen T, Bradley L, Fain K, Crawford M, Kosten TR, Zorrilla EP, Roberto M. FKBP5 inhibitors modulate alcohol drinking and trauma-related behaviors in a model of comorbid post-traumatic stress and alcohol use disorder. Neuropsychopharmacology 2023; 48:1144-1154. [PMID: 36396784 PMCID: PMC10267127 DOI: 10.1038/s41386-022-01497-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/19/2022]
Abstract
Post-traumatic stress disorder (PTSD) leads to enhanced alcohol drinking and development of alcohol use disorder (AUD). Identifying shared neural mechanisms might help discover new therapies for PTSD/AUD. Here, we employed a rat model of comorbid PTSD/AUD to evaluate compounds that inhibit FK506-binding protein 51 (FKBP5), a co-chaperone modulator of glucocorticoid receptors implicated in stress-related disorders. Male and female rats received a familiar avoidance-based shock stress followed by voluntary alcohol drinking. We then assessed trauma-related behaviors through sleep bout cycles, hyperarousal, fear overgeneralization, and irritability. To evaluate the role of stress and alcohol history on the sensitivity to FKBP5 inhibitors, in two separate studies, we administered two FKBP5 inhibitors, benztropine (Study 1) or SAFit2 (Study 2). FKBP5 inhibitors were administered on the last alcohol drinking session and prior to each trauma-related behavioral assessment. We also measured plasma corticosterone to assess the actions of FKBP5 inhibitors after familiar shock stress and alcohol drinking. Benztropine reduced alcohol preference in stressed males and females, while aggressive bouts were reduced in benztropine-treated stressed females. During hyperarousal, benztropine reduced several startle response outcomes across stressed males and females. Corticosterone was reduced in benztropine-treated stressed males. The selective FKBP5 inhibitor, SAFit2, reduced alcohol drinking in stressed males but not females, with no differences in irritability. Importantly, SAFit2 decreased fear overgeneralization in stressed males and females. SAFit2 also reduced corticosterone across stressed males and females. Neither FKBP5 inhibitor changed sleep bout structure. These findings indicate that FKBP5 inhibitors modulate stress-related alcohol drinking and partially modulate trauma-related behaviors. This work supports the hypothesis that targeting FKBP5 may alleviate PTSD/AUD comorbidity.
Collapse
Affiliation(s)
- Bryan Cruz
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92073, USA
| | - Valentina Vozella
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92073, USA
| | - Benjamin A Carper
- Social, Statistical and Environmental Sciences Unit, RTI International, Research Triangle Park, NC, 27709, USA
| | - Joy C Xu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92073, USA
| | - Dean Kirson
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92073, USA
- Department of Pharmacology, Addiction Science, and Toxicology, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Shawn Hirsch
- Social, Statistical and Environmental Sciences Unit, RTI International, Research Triangle Park, NC, 27709, USA
| | - Tracy Nolen
- Social, Statistical and Environmental Sciences Unit, RTI International, Research Triangle Park, NC, 27709, USA
| | - Lauren Bradley
- Social, Statistical and Environmental Sciences Unit, RTI International, Research Triangle Park, NC, 27709, USA
| | - Katie Fain
- Social, Statistical and Environmental Sciences Unit, RTI International, Research Triangle Park, NC, 27709, USA
| | - Meg Crawford
- Social, Statistical and Environmental Sciences Unit, RTI International, Research Triangle Park, NC, 27709, USA
| | - Thomas R Kosten
- Division of Alcohol and Addiction Psychiatry, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Eric P Zorrilla
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92073, USA.
| | - Marisa Roberto
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92073, USA.
| |
Collapse
|
16
|
Yuan T, Fu D, Xu R, Ding J, Wu J, Han Y, Li W. Corticosterone mediates FKBP51 signaling and inflammation response in the trigeminal ganglion in chronic stress-induced corneal hyperalgesia mice. J Steroid Biochem Mol Biol 2023; 231:106312. [PMID: 37062346 DOI: 10.1016/j.jsbmb.2023.106312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/10/2023] [Accepted: 04/14/2023] [Indexed: 04/18/2023]
Abstract
Stress-induced hyperalgesia is a health-threatening condition that lacks effective therapeutic intervention, impairing the quality of life. Interestingly, a high prevalence of corneal pain symptoms was also found in patients experienced severe stressors. Excessive secretion corticosterone in rodents has been shown to contribute to the development of visceral and mechanical hyperalgesia under stressful conditions. The co-chaperone protein FK506-binding protein 5 (FKBP5) was reported to modulate steroid sensitivity and inhibition of FKBP51 possessed anxiolytic and anti-hyperalgesic in the stressed-mice model. However, whether corticosterone and FKBP5 play a role in chronic stress-induced corneal hyperalgesia remains unknown. The aim of this study was to evaluate the corneal sensitivity after exposure to chronic restraint stress (CRS) and investigate the potential role of corticosterone and FKBP5 mediated proinflammatory cytokines release in trigeminal ganglion (TG) in corneal hyperalgesia under chronic stressful situations. Firstly, mice displayed increased corneal sensitivity without changes in tear production and corneal injury after CRS for 4 hours/day for 14 days. Meanwhile, corticosterone deficiency via adrenalectomy could prevent CRS-induced corneal hyperalgesia, whereas chronic corticosterone feeding increased the corneal sensitivity accompanied by increasing proinflammatory cytokines levels of phospho-NF-κB (p-NF-κB), tumor necrosis factor (TNF)-α and interleukin (IL)-1β in the TG on d14. Notably, we found that FKBP51 was significantly upregulated in the TG in the stressed-mice. Intraperitoneal injection of FKBP51 inhibitor significantly alleviated CRS-induced corneal hyperalgesia, and reversed calcitonin gene related peptide (CGRP) increase and proinflammatory cytokines production in the TG. Moreover, FKBP51 inhibitor could also exert its anti-hyperalgesic effect on corneal pain through intra-TG injection. Our study proves that CRS can induce corneal hyperalgesia in mice and uncovers the role of corticosterone and FKBP51 in modulating corneal sensitivity, providing a novel treatment strategy for stress-induced corneal hyperalgesia. AVAILABILITY OF DATA AND MATERIALS: All data and additional file are available upon request from the corresponding author.
Collapse
Affiliation(s)
- Tianjie Yuan
- Department of Anesthesiology, Eye & ENT Hospital of Fudan University, no.83 Fenyang road, Xuhui district, Shanghai 200031, China
| | - Danyun Fu
- Department of Anesthesiology, Eye & ENT Hospital of Fudan University, no.83 Fenyang road, Xuhui district, Shanghai 200031, China
| | - Rui Xu
- Department of Anesthesiology, Eye & ENT Hospital of Fudan University, no.83 Fenyang road, Xuhui district, Shanghai 200031, China
| | - Jiahui Ding
- Department of Anesthesiology, Eye & ENT Hospital of Fudan University, no.83 Fenyang road, Xuhui district, Shanghai 200031, China
| | - Jinhong Wu
- Department of Anesthesiology, Eye & ENT Hospital of Fudan University, no.83 Fenyang road, Xuhui district, Shanghai 200031, China
| | - Yuan Han
- Department of Anesthesiology, Eye & ENT Hospital of Fudan University, no.83 Fenyang road, Xuhui district, Shanghai 200031, China.
| | - Wenxian Li
- Department of Anesthesiology, Eye & ENT Hospital of Fudan University, no.83 Fenyang road, Xuhui district, Shanghai 200031, China.
| |
Collapse
|
17
|
Wedel S, Hahnefeld L, Schreiber Y, Namendorf C, Heymann T, Uhr M, Schmidt MV, de Bruin N, Hausch F, Thomas D, Geisslinger G, Sisignano M. SAFit2 ameliorates paclitaxel-induced neuropathic pain by reducing spinal gliosis and elevating pro-resolving lipid mediators. J Neuroinflammation 2023; 20:149. [PMID: 37355700 DOI: 10.1186/s12974-023-02835-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/16/2023] [Indexed: 06/26/2023] Open
Abstract
BACKGROUND Chemotherapy-induced neuropathic pain (CIPN) describes a pathological pain state that occurs dose-dependently as a side effect and can limit or even impede an effective cancer therapy. Unfortunately, current treatment possibilities for CIPN are remarkably confined and mostly inadequate as CIPN therapeutics themselves consist of low effectiveness and may induce severe side effects, pointing out CIPN as pathological entity with an emerging need for novel treatment targets. Here, we investigated whether the novel and highly specific FKBP51 inhibitor SAFit2 reduces paclitaxel-induced neuropathic pain. METHODS In this study, we used a well-established multiple low-dose paclitaxel model to investigate analgesic and anti-inflammatory properties of SAFit2. For this purpose, the behavior of the mice was recorded over 14 days and the mouse tissue was then analyzed using biochemical methods. RESULTS Here, we show that SAFit2 is capable to reduce paclitaxel-induced mechanical hypersensitivity in mice. In addition, we detected that SAFit2 shifts lipid levels in nervous tissue toward an anti-inflammatory and pro-resolving lipid profile that counteracts peripheral sensitization after paclitaxel treatment. Furthermore, SAFit2 reduced the activation of astrocytes and microglia in the spinal cord as well as the levels of pain-mediating chemokines. Its treatment also increased anti-inflammatory cytokines levels in neuronal tissues, ultimately leading to a resolution of neuroinflammation. CONCLUSIONS In summary, SAFit2 shows antihyperalgesic properties as it ameliorates paclitaxel-induced neuropathic pain by reducing peripheral sensitization and resolving neuroinflammation. Therefore, we consider SAFit2 as a potential novel drug candidate for the treatment of paclitaxel-induced neuropathic pain.
Collapse
Affiliation(s)
- Saskia Wedel
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt/ZAFES, University Hospital, Goethe-University, 60590, Frankfurt am Main, Germany
| | - Lisa Hahnefeld
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt/ZAFES, University Hospital, Goethe-University, 60590, Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, and Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, 60596, Frankfurt am Main, Germany
| | - Yannick Schreiber
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, and Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, 60596, Frankfurt am Main, Germany
| | - Christian Namendorf
- Core Unit Analytics and Mass Spectrometry, Max Planck Institute of Psychiatry, 80804, Munich, Germany
| | - Tim Heymann
- Department of Biochemistry, Technical University of Darmstadt, 64287, Darmstadt, Germany
| | - Manfred Uhr
- Core Unit Analytics and Mass Spectrometry, Max Planck Institute of Psychiatry, 80804, Munich, Germany
| | - Mathias V Schmidt
- Core Unit Analytics and Mass Spectrometry, Max Planck Institute of Psychiatry, 80804, Munich, Germany
| | - Natasja de Bruin
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, and Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, 60596, Frankfurt am Main, Germany
| | - Felix Hausch
- Department of Biochemistry, Technical University of Darmstadt, 64287, Darmstadt, Germany
| | - Dominique Thomas
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt/ZAFES, University Hospital, Goethe-University, 60590, Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, and Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, 60596, Frankfurt am Main, Germany
| | - Gerd Geisslinger
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt/ZAFES, University Hospital, Goethe-University, 60590, Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, and Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, 60596, Frankfurt am Main, Germany
| | - Marco Sisignano
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt/ZAFES, University Hospital, Goethe-University, 60590, Frankfurt am Main, Germany.
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, and Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, 60596, Frankfurt am Main, Germany.
| |
Collapse
|
18
|
Buffa V, Knaup FH, Heymann T, Springer M, Schmidt MV, Hausch F. Analysis of the Selective Antagonist SAFit2 as a Chemical Probe for the FK506-Binding Protein 51. ACS Pharmacol Transl Sci 2023; 6:361-371. [PMID: 36926456 PMCID: PMC10012253 DOI: 10.1021/acsptsci.2c00234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Indexed: 02/16/2023]
Abstract
The FK506-binding protein 51 (FKBP51) has emerged as an important regulator of the mammalian stress response and is involved in persistent pain states and metabolic pathways. The FK506 analog SAFit2 (short for selective antagonist of FKBP51 by induced fit) was the first potent and selective FKBP51 ligand with an acceptable pharmacokinetic profile. At present, SAFit2 represents the gold standard for FKBP51 pharmacology and has been extensively used in numerous biological studies. Here we review the current knowledge on SAFit2 as well as guidelines for its use.
Collapse
Affiliation(s)
- Vanessa Buffa
- Department
of Chemistry and Biochemistry, Clemens-Schöpf-Institute, Technical University Darmstadt, Alarich-Weiss Straße 4, 64287 Darmstadt, Germany
| | - Fabian H. Knaup
- Department
of Chemistry and Biochemistry, Clemens-Schöpf-Institute, Technical University Darmstadt, Alarich-Weiss Straße 4, 64287 Darmstadt, Germany
| | - Tim Heymann
- Department
of Chemistry and Biochemistry, Clemens-Schöpf-Institute, Technical University Darmstadt, Alarich-Weiss Straße 4, 64287 Darmstadt, Germany
| | - Margherita Springer
- Research
Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Mathias V. Schmidt
- Research
Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Felix Hausch
- Department
of Chemistry and Biochemistry, Clemens-Schöpf-Institute, Technical University Darmstadt, Alarich-Weiss Straße 4, 64287 Darmstadt, Germany
| |
Collapse
|
19
|
The FKBP51 Inhibitor SAFit2 Restores the Pain-Relieving C16 Dihydroceramide after Nerve Injury. Int J Mol Sci 2022; 23:ijms232214274. [PMID: 36430751 PMCID: PMC9695264 DOI: 10.3390/ijms232214274] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
Neuropathic pain is a pathological pain state with a broad symptom scope that affects patients after nerve injuries, but it can also arise after infections or exposure to toxic substances. Current treatment possibilities are still limited because of the low efficacy and severe adverse effects of available therapeutics, highlighting an emerging need for novel analgesics and for a detailed understanding of the pathophysiological alterations in the onset and maintenance of neuropathic pain. Here, we show that the novel and highly specific FKBP51 inhibitor SAFit2 restores lipid signaling and metabolism in nervous tissue after nerve injury. More specifically, we identify that SAFit2 restores the levels of the C16 dihydroceramide, which significantly reduces the sensitization of the pain-mediating TRPV1 channel and subsequently the secretion of the pro-inflammatory neuropeptide CGRP in primary sensory neurons. Furthermore, we show that the C16 dihydroceramide is capable of reducing acute thermal hypersensitivity in a capsaicin mouse model. In conclusion, we report for the first time the C16 dihydroceramide as a novel and crucial lipid mediator in the context of neuropathic pain as it has analgesic properties, contributing to the pain-relieving properties of SAFit2.
Collapse
|
20
|
Wedel S, Mathoor P, Rauh O, Heymann T, Ciotu CI, Fuhrmann DC, Fischer MJM, Weigert A, de Bruin N, Hausch F, Geisslinger G, Sisignano M. SAFit2 reduces neuroinflammation and ameliorates nerve injury-induced neuropathic pain. J Neuroinflammation 2022; 19:254. [PMID: 36217203 PMCID: PMC9552419 DOI: 10.1186/s12974-022-02615-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/04/2022] [Indexed: 01/17/2024] Open
Abstract
Background Neuropathic pain is experienced worldwide by patients suffering from nerve injuries, infectious or metabolic diseases or chemotherapy. However, the treatment options are still limited because of low efficacy and sometimes severe side effects. Recently, the deficiency of FKBP51 was shown to relieve chronic pain, revealing FKBP51 as a potential therapeutic target. However, a specific and potent FKBP51 inhibitor was not available until recently which hampered targeting of FKBP51. Methods In this study, we used the well-established and robust spared nerve injury model to analyze the effect of SAFit2 on nerve injury-induced neuropathic pain and to elucidate its pharmacodynamics profile. Therefore, the mice were treated with 10 mg/kg SAFit2 after surgery, the mice behavior was assessed over 21 days and biochemical analysis were performed after 14 and 21 days. Furthermore, the impact of SAFit2 on sensory neurons and macrophages was investigated in vitro. Results Here, we show that the FKBP51 inhibitor SAFit2 ameliorates nerve injury-induced neuropathic pain in vivo by reducing neuroinflammation. SAFit2 reduces the infiltration of immune cells into neuronal tissue and counteracts the increased NF-κB pathway activation which leads to reduced cytokine and chemokine levels in the DRGs and spinal cord. In addition, SAFit2 desensitizes the pain-relevant TRPV1 channel and subsequently reduces the release of pro-inflammatory neuropeptides from sensory neurons. Conclusions SAFit2 ameliorates neuroinflammation and counteracts enhanced neuronal activity after nerve injury leading to an amelioration of nerve injury-induced neuropathic pain. Based on these findings, SAFit2 constitutes as a novel and promising drug candidate for the treatment of nerve injury-induced neuropathic pain. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02615-7.
Collapse
Affiliation(s)
- Saskia Wedel
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt/ZAFES, University Hospital, Goethe-University, 60590, Frankfurt am Main, Germany
| | - Praveen Mathoor
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590, Frankfurt am Main, Germany
| | - Oliver Rauh
- Membrane Biophysics, Department of Biology, Technical University of Darmstadt, 64287, Darmstadt, Germany
| | - Tim Heymann
- Department of Chemistry, Technical University of Darmstadt, 64287, Darmstadt, Germany
| | - Cosmin I Ciotu
- Center of Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
| | - Dominik C Fuhrmann
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590, Frankfurt am Main, Germany
| | - Michael J M Fischer
- Center of Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
| | - Andreas Weigert
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590, Frankfurt am Main, Germany
| | - Natasja de Bruin
- Center of Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
| | - Felix Hausch
- Department of Chemistry, Technical University of Darmstadt, 64287, Darmstadt, Germany
| | - Gerd Geisslinger
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt/ZAFES, University Hospital, Goethe-University, 60590, Frankfurt am Main, Germany.,Fraunhofer Institute for Translational Medicine and Pharmacology ITMP and Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, 60596, Frankfurt am Main, Germany
| | - Marco Sisignano
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt/ZAFES, University Hospital, Goethe-University, 60590, Frankfurt am Main, Germany. .,Fraunhofer Institute for Translational Medicine and Pharmacology ITMP and Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, 60596, Frankfurt am Main, Germany.
| |
Collapse
|
21
|
Wanstrath BJ, McLean SA, Zhao Y, Mickelson J, Bauder M, Hausch F, Linnstaedt SD. Duration of Reduction in Enduring Stress-Induced Hyperalgesia Via FKBP51 Inhibition Depends on Timing of Administration Relative to Traumatic Stress Exposure. THE JOURNAL OF PAIN 2022; 23:1256-1267. [PMID: 35296422 PMCID: PMC9271550 DOI: 10.1016/j.jpain.2022.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 01/31/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
Chronic pain development is a frequent outcome of severe stressor exposure, with or without tissue injury. Enduring stress-induced hyperalgesia (ESIH) is believed to play a central role, but the precise mechanisms mediating the development of chronic post-traumatic pain, and the time-dependency of these mechanisms, remain poorly understood. Clinical and preclinical data suggest that the inhibition of FK506-binding protein 51 (FKBP51), a key stress system regulator, might prevent ESIH. We evaluated whether peritraumatic inhibition of FKBP51 in an animal model of traumatic stress exposure, the single prolonged stress (SPS) model, reversed ESIH evaluated via daily mechanical von Frey testing. FKBP51 inhibition was achieved using SAFit2, a potent and specific small molecule inhibitor of FKBP51, administered to male and female Sprague-Dawley rats via intraperitoneal injection. To assess timing effects, FKBP51 was administered at different times relative to stress (SPS) exposure. SAFit2 administration immediately after SPS produced a complete reversal in ESIH lasting >7 days. In contrast, SAFit2 administration 72 hours following SPS produced only temporary hyperalgesia reversal, and administration 120h following SPS had no effect. Similarly, animals undergoing SPS together with tissue injury (plantar incision) receiving SAFit2 immediately post-surgery developed acute hyperalgesia but recovered by 4 days and did not develop ESIH. These data suggest that: 1) FKBP51 plays an important, time-dependent role in ESIH pathogenesis, 2) time windows of opportunity may exist to prevent ESIH via FKBP51 inhibition after traumatic stress, with or without tissue injury, and 3) the use of inhibitors of specific pathways may provide new insights into chronic post-traumatic pain development. PERSPECTIVE: The current work adds to a growing body of literature indicating that FKBP51 inhibition is a highly promising potential treatment strategy for reducing hyperalgesia. In the case of post-traumatic chronic pain, we show that such a treatment strategy would be particularly impactful if administered early after traumatic stress exposure.
Collapse
Affiliation(s)
- Britannia J Wanstrath
- Department of Anesthesiology, University of North Carolina, Chapel Hill, North Carolina; Institute for Trauma Recovery, University of North Carolina, Chapel Hill, North Carolina
| | - Samuel A McLean
- Department of Anesthesiology, University of North Carolina, Chapel Hill, North Carolina; Institute for Trauma Recovery, University of North Carolina, Chapel Hill, North Carolina; Department of Emergency Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Ying Zhao
- Department of Anesthesiology, University of North Carolina, Chapel Hill, North Carolina; Institute for Trauma Recovery, University of North Carolina, Chapel Hill, North Carolina
| | - Jacqueline Mickelson
- Department of Anesthesiology, University of North Carolina, Chapel Hill, North Carolina; Institute for Trauma Recovery, University of North Carolina, Chapel Hill, North Carolina
| | - Michael Bauder
- Department of Chemistry and Biochemistry, Technical University Darmstadt, Darmstadt, Germany
| | - Felix Hausch
- Department of Chemistry and Biochemistry, Technical University Darmstadt, Darmstadt, Germany
| | - Sarah D Linnstaedt
- Department of Anesthesiology, University of North Carolina, Chapel Hill, North Carolina; Institute for Trauma Recovery, University of North Carolina, Chapel Hill, North Carolina.
| |
Collapse
|
22
|
Lobo JJ, Ayoub LJ, Moayedi M, Linnstaedt SD. Hippocampal volume, FKBP5 genetic risk alleles, and childhood trauma interact to increase vulnerability to chronic multisite musculoskeletal pain. Sci Rep 2022; 12:6511. [PMID: 35444168 PMCID: PMC9021300 DOI: 10.1038/s41598-022-10411-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 03/30/2022] [Indexed: 01/05/2023] Open
Abstract
Chronic multisite musculoskeletal pain (CMP) is common and highly morbid. However, vulnerability factors for CMP are poorly understood. Previous studies have independently shown that both small hippocampal brain volume and genetic risk alleles in a key stress system gene, FKBP5, increase vulnerability for chronic pain. However, little is known regarding the relationship between these factors and CMP. Here we tested the hypothesis that both small hippocampal brain volume and FKBP5 genetic risk, assessed using the tagging risk variant, FKBP5rs3800373, increase vulnerability for CMP. We used participant data from 36,822 individuals with available genetic, neuroimaging, and chronic pain data in the UK Biobank study. Although no main effects were observed, the interaction between FKBP5 genetic risk and right hippocampal volume was associated with CMP severity (β = -0.020, praw = 0.002, padj = 0.01). In secondary analyses, severity of childhood trauma further moderated the relationship between FKBP5 genetic risk, right hippocampal brain volume, and CMP (β = -0.081, p = 0.016). This study provides novel evidence that both FKBP5 genetic risk and childhood trauma moderate the relationship between right hippocampal brain volume and CMP. The data increases our understanding of vulnerability factors for CMP and builds a foundation for further work assessing causal relationships that might drive CMP development.
Collapse
Affiliation(s)
- Jarred J Lobo
- Institute for Trauma Recovery, University of North Carolina, Campus Box #7010, Chapel Hill, NC, 27599-7010, USA
- Department of Anesthesiology, University of North Carolina, Chapel Hill, NC, USA
| | - Lizbeth J Ayoub
- Centre for Multimodal Sensorimotor and Pain Research, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
- University of Toronto Centre for the Study of Pain, Toronto, ON, Canada
- Division of Clinical and Computational Neuroscience, Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Massieh Moayedi
- University of Toronto Centre for the Study of Pain, Toronto, ON, Canada.
- Division of Clinical and Computational Neuroscience, Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada.
- Department of Dentistry, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.
- Centre for Multimodal Sensorimotor and Pain Research, Faculty of Dentistry, University of Toronto, 123 Edward Street, Suite 501B, Toronto, ON, M5G 1G6, Canada.
| | - Sarah D Linnstaedt
- Institute for Trauma Recovery, University of North Carolina, Campus Box #7010, Chapel Hill, NC, 27599-7010, USA.
- Department of Anesthesiology, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
23
|
Marinelli S, Maiarù M, Colciago A. Editorial: Neuroinflammation and Neuroautoimmunity in Peripheral Neuropathies: Old Players, New Roles. Front Immunol 2021; 12:801760. [PMID: 34887876 PMCID: PMC8649888 DOI: 10.3389/fimmu.2021.801760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 10/29/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Sara Marinelli
- Consiglio Nazionale delle Ricerche, Institute of Biochemistry and Cell Biology, Monterotondo, Italy
| | - Maria Maiarù
- Department of Pharmacology School of Pharmacy, University of Reading, Reading, United Kingdom
| | - Alessandra Colciago
- Department of Pharmacological and Biomolecular Science, University of Milan, Milan, Italy
| |
Collapse
|
24
|
Smedlund KB, Sanchez ER, Hinds TD. FKBP51 and the molecular chaperoning of metabolism. Trends Endocrinol Metab 2021; 32:862-874. [PMID: 34481731 PMCID: PMC8516732 DOI: 10.1016/j.tem.2021.08.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/31/2021] [Accepted: 08/06/2021] [Indexed: 01/30/2023]
Abstract
The molecular chaperone FK506-binding protein 51 (FKBP51) is gaining attention as a meaningful biomarker of metabolic dysfunction. This review examines the emerging contributions of FKBP51 in adipogenesis and lipid metabolism, myogenesis and protein catabolism, and glucocorticoid-induced skin hypoplasia and dermal adipocytes. The FKBP51 signaling mechanisms that may explain these metabolic consequences are discussed. These mechanisms are diverse, with FKBP51 independently and directly regulating phosphorylation cascades and nuclear receptors. We provide a discussion of the newly developed compounds that antagonize FKBP51, which may offer therapeutic advantages for adiposity. These observations suggest we are only beginning to uncover the complex nature of FKBP51 and its molecular chaperoning of metabolism.
Collapse
Affiliation(s)
- Kathryn B Smedlund
- Center for Diabetes and Endocrine Research, Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, OH 43614, USA
| | - Edwin R Sanchez
- Center for Diabetes and Endocrine Research, Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, OH 43614, USA
| | - Terry D Hinds
- Barnstable Brown Diabetes Center, Markey Cancer Center, Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40508, USA.
| |
Collapse
|
25
|
Bae EH, Greenwald MK, Schwartz AG. Chemotherapy-Induced Peripheral Neuropathy: Mechanisms and Therapeutic Avenues. Neurotherapeutics 2021; 18:2384-2396. [PMID: 34676514 PMCID: PMC8804039 DOI: 10.1007/s13311-021-01142-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2021] [Indexed: 12/12/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a serious and often persistent adverse consequence of certain chemotherapeutic agents. It is a major dose-limiting factor of many first-line chemotherapies, affecting 20-50% of patients at standard doses and nearly all patients at high doses. As cancer survivorship continues to increase with improvements in early diagnosis and treatment, more patients will experience CIPN despite completing cancer treatment, which interferes with recovery, leading to chronic pain and worsening quality of life. The National Cancer Institute has identified CIPN as a priority in translational research. To date, there are no FDA-approved drugs for preventing or treating CIPN, with emerging debate on mechanisms and promising new targets. This review highlights current literature and suggests novel approaches to CIPN based on proposed mechanisms of action that aim either to confer neuroprotection against chemotherapy-induced neurotoxicity or reverse the downstream effects of painful neuropathy.
Collapse
Affiliation(s)
- Esther H Bae
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, 3901 Chrysler Service Drive, Suite 2A, Detroit, MI, 48201, USA
| | - Mark K Greenwald
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, 3901 Chrysler Service Drive, Suite 2A, Detroit, MI, 48201, USA.
- Karmanos Cancer Institute, Detroit, MI, USA.
| | - Ann G Schwartz
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, 3901 Chrysler Service Drive, Suite 2A, Detroit, MI, 48201, USA
- Karmanos Cancer Institute, Detroit, MI, USA
| |
Collapse
|
26
|
Poletti F, González-Fernández R, García MDP, Rotoli D, Ávila J, Mobasheri A, Martín-Vasallo P. Molecular-Morphological Relationships of the Scaffold Protein FKBP51 and Inflammatory Processes in Knee Osteoarthritis. Cells 2021; 10:2196. [PMID: 34571845 PMCID: PMC8468871 DOI: 10.3390/cells10092196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/03/2021] [Accepted: 08/22/2021] [Indexed: 12/25/2022] Open
Abstract
Knee osteoarthritis (OA) is one of the most prevalent chronic conditions affecting the adult population. OA is no longer thought to come from a purely biomechanical origin but rather one that has been increasingly recognized to include a persistent low-grade inflammatory component. Intra-articular corticosteroid injections (IACSI) have become a widely used method for treating pain in patients with OA as an effective symptomatic treatment. However, as the disease progresses, IACSI become ineffective. FKBP51 is a regulatory protein of the glucocorticoid receptor function and have been shown to be dysregulated in several pathological scenario's including chronic inflammation. Despite of these facts, to our knowledge, there are no previous studies of the expression and possible role of FKBP51 in OA. We investigated by double and triple immunofluorescence confocal microscopy the cellular and subcellular expression of FKBP51 and its relations with inflammation factors in osteoarthritic knee joint tissues: specifically, in the tibial plateau knee cartilage, Hoffa's fat pad and suprapatellar synovial tissue of the knee. Our results show co-expression of FKBP51 with TNF-α, IL-6, CD31 and CD34 in OA chondrocytes, synovial membrane cells and adipocytes in Hoffa's fat pad. FKBP51 is also abundant in nerve fibers within the fat pad. Co-expression of FKBP51 protein with these markers may be indicative of its contribution to inflammatory processes and associated chronic pain in OA.
Collapse
Affiliation(s)
- Fabián Poletti
- Laboratorio de Biología del Desarrollo, UD de Bioquímica y Biología Molecular Instituto de Tecnologías Biomédicas de Canarias, Universidad de La Laguna, La Laguna, Av. Astrofísico Sánchez s/n, 38206 La Laguna Tenerife, Spain; (F.P.); (R.G.-F.); (D.R.); (J.Á.)
- Orthopaedic Surgery and Trauma Unit, Royal Berkshire Hospital NHS Foundation Trust, Reading RG1 5AN, UK
- Unidad de Cirugía Ortopédica y Traumatología, Hospital San Juan de Dios-Tenerife, Ctra. Santa Cruz Laguna 53, 38009 Santa Cruz de Tenerife, Spain
| | - Rebeca González-Fernández
- Laboratorio de Biología del Desarrollo, UD de Bioquímica y Biología Molecular Instituto de Tecnologías Biomédicas de Canarias, Universidad de La Laguna, La Laguna, Av. Astrofísico Sánchez s/n, 38206 La Laguna Tenerife, Spain; (F.P.); (R.G.-F.); (D.R.); (J.Á.)
| | - María-del-Pino García
- Department of Pathology, Eurofins® Megalab-Hospiten Hospitals, 38001 Santa Cruz de Tenerife, Spain;
| | - Deborah Rotoli
- Laboratorio de Biología del Desarrollo, UD de Bioquímica y Biología Molecular Instituto de Tecnologías Biomédicas de Canarias, Universidad de La Laguna, La Laguna, Av. Astrofísico Sánchez s/n, 38206 La Laguna Tenerife, Spain; (F.P.); (R.G.-F.); (D.R.); (J.Á.)
- Institute of Endocrinology and Experimental Oncology (IEOS), CNR-National Research Council, 80131 Naples, Italy
| | - Julio Ávila
- Laboratorio de Biología del Desarrollo, UD de Bioquímica y Biología Molecular Instituto de Tecnologías Biomédicas de Canarias, Universidad de La Laguna, La Laguna, Av. Astrofísico Sánchez s/n, 38206 La Laguna Tenerife, Spain; (F.P.); (R.G.-F.); (D.R.); (J.Á.)
| | - Ali Mobasheri
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, 90570 Oulu, Finland;
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania
- Departments of Orthopedics, Rheumatology and Clinical Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
- World Health Organization Collaborating Center for Public Health Aspects of Musculoskeletal Health and Aging, Université de Liège, B-4000 Liège, Belgium
| | - Pablo Martín-Vasallo
- Laboratorio de Biología del Desarrollo, UD de Bioquímica y Biología Molecular Instituto de Tecnologías Biomédicas de Canarias, Universidad de La Laguna, La Laguna, Av. Astrofísico Sánchez s/n, 38206 La Laguna Tenerife, Spain; (F.P.); (R.G.-F.); (D.R.); (J.Á.)
| |
Collapse
|
27
|
Voll AM, Meyners C, Taubert MC, Bajaj T, Heymann T, Merz S, Charalampidou A, Kolos J, Purder PL, Geiger TM, Wessig P, Gassen NC, Bracher A, Hausch F. Makrozyklische FKBP51‐Liganden enthüllen einen transienten Bindungsmodus mit erhöhter Selektivität. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202017352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Andreas M. Voll
- Department Chemistry and Biochemistry Clemens-Schöpf-Institute Technical University Darmstadt Alarich-Weiss Straße 4 64287 Darmstadt Deutschland
| | - Christian Meyners
- Department Chemistry and Biochemistry Clemens-Schöpf-Institute Technical University Darmstadt Alarich-Weiss Straße 4 64287 Darmstadt Deutschland
| | - Martha C. Taubert
- Department Chemistry and Biochemistry Clemens-Schöpf-Institute Technical University Darmstadt Alarich-Weiss Straße 4 64287 Darmstadt Deutschland
| | - Thomas Bajaj
- Research Group Neurohomeostasis Department of Psychiatry and Psychotherapy University of Bonn Venusberg Campus 1 53127 Bonn Deutschland
| | - Tim Heymann
- Department Chemistry and Biochemistry Clemens-Schöpf-Institute Technical University Darmstadt Alarich-Weiss Straße 4 64287 Darmstadt Deutschland
| | - Stephanie Merz
- Department Chemistry and Biochemistry Clemens-Schöpf-Institute Technical University Darmstadt Alarich-Weiss Straße 4 64287 Darmstadt Deutschland
| | - Anna Charalampidou
- Department Chemistry and Biochemistry Clemens-Schöpf-Institute Technical University Darmstadt Alarich-Weiss Straße 4 64287 Darmstadt Deutschland
| | - Jürgen Kolos
- Department Chemistry and Biochemistry Clemens-Schöpf-Institute Technical University Darmstadt Alarich-Weiss Straße 4 64287 Darmstadt Deutschland
| | - Patrick L. Purder
- Department Chemistry and Biochemistry Clemens-Schöpf-Institute Technical University Darmstadt Alarich-Weiss Straße 4 64287 Darmstadt Deutschland
| | - Thomas M. Geiger
- Department Chemistry and Biochemistry Clemens-Schöpf-Institute Technical University Darmstadt Alarich-Weiss Straße 4 64287 Darmstadt Deutschland
| | - Pablo Wessig
- Universität Potsdam Institut für Chemie Karl-Liebknecht-Straße 24–25 14476 Potsdam Deutschland
| | - Nils C. Gassen
- Research Group Neurohomeostasis Department of Psychiatry and Psychotherapy University of Bonn Venusberg Campus 1 53127 Bonn Deutschland
| | - Andreas Bracher
- Max-Planck-Institute of Biochemistry Am Klopferspitz 18 82152 Martinsried Deutschland
| | - Felix Hausch
- Department Chemistry and Biochemistry Clemens-Schöpf-Institute Technical University Darmstadt Alarich-Weiss Straße 4 64287 Darmstadt Deutschland
| |
Collapse
|
28
|
Voll AM, Meyners C, Taubert MC, Bajaj T, Heymann T, Merz S, Charalampidou A, Kolos J, Purder PL, Geiger TM, Wessig P, Gassen NC, Bracher A, Hausch F. Macrocyclic FKBP51 Ligands Define a Transient Binding Mode with Enhanced Selectivity. Angew Chem Int Ed Engl 2021; 60:13257-13263. [PMID: 33843131 PMCID: PMC8252719 DOI: 10.1002/anie.202017352] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/14/2021] [Indexed: 12/28/2022]
Abstract
Subtype selectivity represents a challenge in many drug discovery campaigns. A typical example is the FK506 binding protein 51 (FKBP51), which has emerged as an attractive drug target. The most advanced FKBP51 ligands of the SAFit class are highly selective vs. FKBP52 but poorly discriminate against the homologs and off-targets FKBP12 and FKBP12.6. During a macrocyclization pilot study, we observed that many of these macrocyclic analogs have unanticipated and unprecedented preference for FKBP51 over FKBP12 and FKBP12.6. Structural studies revealed that these macrocycles bind with a new binding mode featuring a transient conformation, which is disfavored for the small FKBPs. Using a conformation-sensitive assay we show that this binding mode occurs in solution and is characteristic for this new class of compounds. The discovered macrocycles are non-immunosuppressive, engage FKBP51 in cells, and block the cellular effect of FKBP51 on IKKα. Our findings provide a new chemical scaffold for improved FKBP51 ligands and the structural basis for enhanced selectivity.
Collapse
Affiliation(s)
- Andreas M. Voll
- Department Chemistry and BiochemistryClemens-Schöpf-InstituteTechnical University DarmstadtAlarich-Weiss Strasse 464287DarmstadtGermany
| | - Christian Meyners
- Department Chemistry and BiochemistryClemens-Schöpf-InstituteTechnical University DarmstadtAlarich-Weiss Strasse 464287DarmstadtGermany
| | - Martha C. Taubert
- Department Chemistry and BiochemistryClemens-Schöpf-InstituteTechnical University DarmstadtAlarich-Weiss Strasse 464287DarmstadtGermany
| | - Thomas Bajaj
- Research Group NeurohomeostasisDepartment of Psychiatry and PsychotherapyUniversity of BonnVenusberg Campus 153127BonnGermany
| | - Tim Heymann
- Department Chemistry and BiochemistryClemens-Schöpf-InstituteTechnical University DarmstadtAlarich-Weiss Strasse 464287DarmstadtGermany
| | - Stephanie Merz
- Department Chemistry and BiochemistryClemens-Schöpf-InstituteTechnical University DarmstadtAlarich-Weiss Strasse 464287DarmstadtGermany
| | - Anna Charalampidou
- Department Chemistry and BiochemistryClemens-Schöpf-InstituteTechnical University DarmstadtAlarich-Weiss Strasse 464287DarmstadtGermany
| | - Jürgen Kolos
- Department Chemistry and BiochemistryClemens-Schöpf-InstituteTechnical University DarmstadtAlarich-Weiss Strasse 464287DarmstadtGermany
| | - Patrick L. Purder
- Department Chemistry and BiochemistryClemens-Schöpf-InstituteTechnical University DarmstadtAlarich-Weiss Strasse 464287DarmstadtGermany
| | - Thomas M. Geiger
- Department Chemistry and BiochemistryClemens-Schöpf-InstituteTechnical University DarmstadtAlarich-Weiss Strasse 464287DarmstadtGermany
| | - Pablo Wessig
- Universität PotsdamInstitut für ChemieKarl-Liebknecht-Strasse 24–2514476PotsdamGermany
| | - Nils C. Gassen
- Research Group NeurohomeostasisDepartment of Psychiatry and PsychotherapyUniversity of BonnVenusberg Campus 153127BonnGermany
| | - Andreas Bracher
- Max-Planck-Institute of BiochemistryAm Klopferspitz 1882152MartinsriedGermany
| | - Felix Hausch
- Department Chemistry and BiochemistryClemens-Schöpf-InstituteTechnical University DarmstadtAlarich-Weiss Strasse 464287DarmstadtGermany
| |
Collapse
|
29
|
Park JM, Yang SW, Zhuang W, Bera AK, Liu Y, Gurbani D, von Hoyningen-Huene SJ, Sakurada SM, Gan H, Pruett-Miller SM, Westover KD, Potts MB. The nonreceptor tyrosine kinase SRMS inhibits autophagy and promotes tumor growth by phosphorylating the scaffolding protein FKBP51. PLoS Biol 2021; 19:e3001281. [PMID: 34077419 PMCID: PMC8202955 DOI: 10.1371/journal.pbio.3001281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 06/14/2021] [Accepted: 05/10/2021] [Indexed: 01/18/2023] Open
Abstract
Nutrient-responsive protein kinases control the balance between anabolic growth and catabolic processes such as autophagy. Aberrant regulation of these kinases is a major cause of human disease. We report here that the vertebrate nonreceptor tyrosine kinase Src-related kinase lacking C-terminal regulatory tyrosine and N-terminal myristylation sites (SRMS) inhibits autophagy and promotes growth in a nutrient-responsive manner. Under nutrient-replete conditions, SRMS phosphorylates the PHLPP scaffold FK506-binding protein 51 (FKBP51), disrupts the FKBP51-PHLPP complex, and promotes FKBP51 degradation through the ubiquitin-proteasome pathway. This prevents PHLPP-mediated dephosphorylation of AKT, causing sustained AKT activation that promotes growth and inhibits autophagy. SRMS is amplified and overexpressed in human cancers where it drives unrestrained AKT signaling in a kinase-dependent manner. SRMS kinase inhibition activates autophagy, inhibits cancer growth, and can be accomplished using the FDA-approved tyrosine kinase inhibitor ibrutinib. This illuminates SRMS as a targetable vulnerability in human cancers and as a new target for pharmacological induction of autophagy in vertebrates. This study describes the discovery and characterization of a nutrient-sensitive signaling pathway that drives growth and inhibits autophagy in mammalian cells. This pathway, which involves the non-receptor tyrosine kinase SRMS and the PHLPP scaffold protein FKBP51, promotes tumor growth and is amenable to pharmacological inhibition.
Collapse
Affiliation(s)
- Jung Mi Park
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
- Department of Oncology Research, Amgen Research, Thousand Oaks, California, United States of America
| | - Seung Wook Yang
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Wei Zhuang
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Asim K. Bera
- Departments of Biochemistry and Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Yan Liu
- Departments of Biochemistry and Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Deepak Gurbani
- Departments of Biochemistry and Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Sergei J. von Hoyningen-Huene
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Sadie Miki Sakurada
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Haiyun Gan
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Shondra M. Pruett-Miller
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Kenneth D. Westover
- Departments of Biochemistry and Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Malia B. Potts
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
- Department of Oncology Research, Amgen Research, Thousand Oaks, California, United States of America
- * E-mail:
| |
Collapse
|
30
|
Bauder M, Meyners C, Purder PL, Merz S, Sugiarto WO, Voll AM, Heymann T, Hausch F. Structure-Based Design of High-Affinity Macrocyclic FKBP51 Inhibitors. J Med Chem 2021; 64:3320-3349. [PMID: 33666419 DOI: 10.1021/acs.jmedchem.0c02195] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The FK506-binding protein 51 (FKBP51) emerged as a key player in several diseases like stress-related disorders, chronic pain, and obesity. Linear analogues of FK506 called SAFit were shown to be highly selective for FKBP51 over its closest homologue FKBP52, allowing the proof-of-concept studies in animal models. Here, we designed and synthesized the first macrocyclic FKBP51-selective ligands to stabilize the active conformation. All macrocycles retained full FKBP51 affinity and selectivity over FKBP52 and the incorporation of polar functionalities further enhanced affinity. Six high-resolution crystal structures of macrocyclic inhibitors in complex with FKBP51 confirmed the desired selectivity-enabling binding mode. Our results show that macrocyclization is a viable strategy to target the shallow FKBP51 binding site selectively.
Collapse
Affiliation(s)
- Michael Bauder
- Department Chemistry and Biochemistry, Clemens-Schöpf-Institute, Technical University Darmstadt, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany
| | - Christian Meyners
- Department Chemistry and Biochemistry, Clemens-Schöpf-Institute, Technical University Darmstadt, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany
| | - Patrick L Purder
- Department Chemistry and Biochemistry, Clemens-Schöpf-Institute, Technical University Darmstadt, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany
| | - Stephanie Merz
- Department Chemistry and Biochemistry, Clemens-Schöpf-Institute, Technical University Darmstadt, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany
| | - Wisely Oki Sugiarto
- Department Chemistry and Biochemistry, Clemens-Schöpf-Institute, Technical University Darmstadt, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany
| | - Andreas M Voll
- Department Chemistry and Biochemistry, Clemens-Schöpf-Institute, Technical University Darmstadt, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany
| | - Tim Heymann
- Department Chemistry and Biochemistry, Clemens-Schöpf-Institute, Technical University Darmstadt, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany
| | - Felix Hausch
- Department Chemistry and Biochemistry, Clemens-Schöpf-Institute, Technical University Darmstadt, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany
| |
Collapse
|
31
|
König L, Kalinichenko LS, Huber SE, Voll AM, Bauder M, Kornhuber J, Hausch F, Müller CP. The selective FKBP51 inhibitor SAFit2 reduces alcohol consumption and reinstatement of conditioned alcohol effects in mice. Addict Biol 2020; 25:e12758. [PMID: 31173432 DOI: 10.1111/adb.12758] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 03/13/2019] [Accepted: 03/18/2019] [Indexed: 01/19/2023]
Abstract
There is still no widely effective pharmacotherapy for alcohol addiction available in the clinic. FK506-binding protein 51 (FKBP51) is a negative regulator of the glucocorticoid receptor signaling pathway that regulates the stress-induced glucocorticoid feedback circuit. Here we asked whether selective inhibitors of FKBP51, exemplified by SAFit2, may serve as a new pharmacological strategy to reduce alcohol consumption and conditioned alcohol effects in a mouse model. We report that a relatively short treatment with SAFit2 (20 mg/kg, ip) reduces ongoing 16 vol% alcohol consumption when administered during free access to alcohol in a two-bottle free-choice test. SAFit2 was also able to reduce alcohol consumption when given during an abstinence period immediately before relapse. In contrast, SAFit2 did not affect alcohol consumption when given during a relapse period after repeated withdrawal from alcohol. SAFit2 (10 and 20 mg/kg, ip) showed no effects when used in an intermittent drinking schedule. When 20 vol% alcohol was only available every other day, SAFit2 had no effect on drinking, no matter whether given during a drinking episode or the day before. SAFit2 (2 and 20 mg/kg, ip) did not affect the expression of an alcohol-induced conditioned place preference (CPP). However, SAFit2 was able to inhibit alcohol-induced reinstatement of an extinguished CPP in a dose-dependent way. Altogether, these data may suggest pharmacological inhibition of FKBP51 as a viable strategy to reduce alcohol seeking and consumption.
Collapse
Affiliation(s)
- Loretta König
- Department of Psychiatry and PsychotherapyUniversity Clinic, Friedrich‐Alexander‐University Erlangen‐Nuremberg Germany
| | - Liubov S. Kalinichenko
- Department of Psychiatry and PsychotherapyUniversity Clinic, Friedrich‐Alexander‐University Erlangen‐Nuremberg Germany
| | - Sabine E. Huber
- Department of Psychiatry and PsychotherapyUniversity Clinic, Friedrich‐Alexander‐University Erlangen‐Nuremberg Germany
- Institute of Physiology IWestfälische Wilhelms‐University Münster Germany
| | - Andreas M. Voll
- Department of Translational Research in PsychiatryMax Planck Institute of Psychiatry Germany
- Department of Chemistry, Clemens‐Schöpf‐Institut for Organic Chemistry and BiochemistryTechnical University Darmstadt Germany
| | - Michael Bauder
- Department of Chemistry, Clemens‐Schöpf‐Institut for Organic Chemistry and BiochemistryTechnical University Darmstadt Germany
| | - Johannes Kornhuber
- Department of Psychiatry and PsychotherapyUniversity Clinic, Friedrich‐Alexander‐University Erlangen‐Nuremberg Germany
| | - Felix Hausch
- Department of Translational Research in PsychiatryMax Planck Institute of Psychiatry Germany
- Department of Chemistry, Clemens‐Schöpf‐Institut for Organic Chemistry and BiochemistryTechnical University Darmstadt Germany
| | - Christian P. Müller
- Department of Psychiatry and PsychotherapyUniversity Clinic, Friedrich‐Alexander‐University Erlangen‐Nuremberg Germany
| |
Collapse
|
32
|
Song T, Chang H, Du L, Yin L, Shi F, Zhang X. Glucocorticoid receptor mutations and clinical sensitivity to glucocorticoid in Chinese multiple sclerosis patients. Neurol Sci 2020; 41:2767-2771. [PMID: 32277392 PMCID: PMC7478945 DOI: 10.1007/s10072-020-04376-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 03/26/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND Glucocorticoid (GC) is the first-line therapy in acute attacks of multiple sclerosis (MS), but its efficacy is individually variable and may be associated with glucocorticoid receptor (GR) gene. OBJECTIVE To establish the association between GR gene sequence and clinical GC sensitivity in Chinese MS patients. And to investigate the expression differences of serum GRα and FK506 binding protein 5 (FKBP5) in GC responders and non-responders. MATERIALS AND METHODS Coding exons 2-9 of the GR gene from 97 MS patients were sequenced. We performed ELISA to detect serum GRα and FKBP5 before the GC impulse therapy in patients with different GC sensitivities (according to the EDSS changes before and after the GC medication). RESULTS Seven new mutations were located in exon 2, but the presence or absence of mutations was not associated with the response to GC therapy (P = 0.416). The GC-sensitive patients had higher GRα (P = 0.011) but lower FKBP5 (P = 0.025) levels in the serum. CONCLUSIONS The GR mutations detected in our study were not associated with the response to GC in Chinese MS patients. Higher GRα and lower FKBP5 levels in the serum might predict the response to GC, which may provide potential therapeutic target for GC-resistant patients with acute MS attack.
Collapse
Affiliation(s)
- Tian Song
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China. .,China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China.
| | - Haoxiao Chang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.,China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Li Du
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.,China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Linlin Yin
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.,China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Fudong Shi
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.,China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Xinghu Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.,China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| |
Collapse
|
33
|
Prenatal maternal stress is associated with increased sensitivity to neuropathic pain and sex-specific changes in supraspinal mRNA expression of epigenetic- and stress-related genes in adulthood. Behav Brain Res 2020; 380:112396. [DOI: 10.1016/j.bbr.2019.112396] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 12/15/2022]
|
34
|
Liberman AC, Budziñski ML, Sokn C, Gobbini RP, Ugo MB, Arzt E. SUMO conjugation as regulator of the glucocorticoid receptor-FKBP51 cellular response to stress. Steroids 2020; 153:108520. [PMID: 31604074 DOI: 10.1016/j.steroids.2019.108520] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/20/2019] [Accepted: 10/01/2019] [Indexed: 01/19/2023]
Abstract
In order to adequately respond to stressful stimuli, glucocorticoids (GCs) target almost every tissue of the body. By exerting a negative feedback loop in the hypothalamic-pituitary-adrenal (HPA) axis GCs inhibit their own synthesis and restore homeostasis. GCs actions are mostly mediated by the GC receptor (GR), a member of the nuclear receptor superfamily. Alterations of the GR activity have been associatedto different diseases including mood disorders and can lead to severe complication. Therefore, understanding the molecular complexity of GR modulation is mandatory for the development of new and effective drugs for treating GR-associated disorders. FKBP51 is a GR chaperone that has gained much attention because it is a strong inhibitor of GR activity and has a crucial role in psychiatric diseases. Both GR and FKBP51 activity are regulated by SUMOylation, a posttranslational (PTM). In this review, we focus on the impact of SUMO-conjugation as a regulator of this pathway.
Collapse
Affiliation(s)
- Ana C Liberman
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)- CONICET - Partner Institute of the Max Planck Society, Buenos Aires C1425FQD, Argentina.
| | - Maia L Budziñski
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)- CONICET - Partner Institute of the Max Planck Society, Buenos Aires C1425FQD, Argentina
| | - Clara Sokn
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)- CONICET - Partner Institute of the Max Planck Society, Buenos Aires C1425FQD, Argentina
| | - Romina P Gobbini
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)- CONICET - Partner Institute of the Max Planck Society, Buenos Aires C1425FQD, Argentina
| | - Maria B Ugo
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)- CONICET - Partner Institute of the Max Planck Society, Buenos Aires C1425FQD, Argentina
| | - Eduardo Arzt
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)- CONICET - Partner Institute of the Max Planck Society, Buenos Aires C1425FQD, Argentina; Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina.
| |
Collapse
|
35
|
Feng X, Sippel C, Knaup FH, Bracher A, Staibano S, Romano MF, Hausch F. A Novel Decalin-Based Bicyclic Scaffold for FKBP51-Selective Ligands. J Med Chem 2019; 63:231-240. [PMID: 31800244 DOI: 10.1021/acs.jmedchem.9b01157] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Selective inhibition of FKBP51 has emerged as possible novel treatment for diseases like major depressive disorder, obesity, chronic pain, and certain cancers. The current FKBP51 inhibitors are rather large, flexible, and have to be further optimized. By using a structure-based rigidification strategy, we hereby report the design and synthesis of a novel promising bicyclic scaffold for FKBP51 ligands. The structure-activity analysis revealed the decalin scaffold as the best moiety for the selectivity-enabling subpocket of FBKP51. The resulting compounds retain high potency for FKBP51 and excellent selectivity over the close homologue FKBP52. With the cocrystal structure of an advanced ligand in this novel series, we show how the decalin locks the key selectivity-inducing cyclohexyl moiety of the ligand in a conformation typical for FKBP51-selective binding. The best compound 29 produces cell death in a HeLa-derived KB cell line, a cellular model of cervical adenocarcinoma, where FKBP51 is highly overexpressed. Our results show how FKBP51 inhibitors can be rigidified and extended while preserving FKBP51 selectivity. Such inhibitors might be novel tools in the treatment of human cancers with deregulated FKBP51.
Collapse
Affiliation(s)
- Xixi Feng
- Department of Translational Research in Psychiatry , Max Planck Institute of Psychiatry , Kraepelinstrasse 2 , 80804 Munich , Germany
| | - Claudia Sippel
- Department of Translational Research in Psychiatry , Max Planck Institute of Psychiatry , Kraepelinstrasse 2 , 80804 Munich , Germany
| | - Fabian H Knaup
- Institute for Organic Chemistry and Biochemistry , Technische Universität Darmstadt , Alarich-Weiss-Strasse 4 , D-64287 Darmstadt , Germany
| | - Andreas Bracher
- Max Planck Institute of Biochemistry , Am Klopferspitz 18 , 82152 Martinsried , Germany
| | - Stefania Staibano
- Department of Advanced Biomedical Sciences , Federico II University of Naples , 80131 Naples , Italy
| | - Maria F Romano
- Department of Molecular Medicine and Medical Biotechnologies , Federico II University , 80131 Naples , Italy
| | - Felix Hausch
- Institute for Organic Chemistry and Biochemistry , Technische Universität Darmstadt , Alarich-Weiss-Strasse 4 , D-64287 Darmstadt , Germany
| |
Collapse
|
36
|
Häusl AS, Balsevich G, Gassen NC, Schmidt MV. Focus on FKBP51: A molecular link between stress and metabolic disorders. Mol Metab 2019; 29:170-181. [PMID: 31668388 PMCID: PMC6812026 DOI: 10.1016/j.molmet.2019.09.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/03/2019] [Accepted: 09/05/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Obesity, Type 2 diabetes (T2D) as well as stress-related disorders are rising public health threats and major burdens for modern society. Chronic stress and depression are highly associated with symptoms of the metabolic syndrome, but the molecular link is still not fully understood. Furthermore, therapies tackling these biological disorders are still lacking. The identification of shared molecular targets underlying both pathophysiologies may lead to the development of new treatments. The FK506 binding protein 51 (FKBP51) has recently been identified as a promising therapeutic target for stress-related psychiatric disorders and obesity-related metabolic outcomes. SCOPE OF THE REVIEW The aim of this review is to summarize current evidence of in vitro, preclinical, and human studies on the stress responsive protein FKBP51, focusing on its newly discovered role in metabolism. Also, we highlight the therapeutic potential of FKBP51 as a new treatment target for symptoms of the metabolic syndrome. MAJOR CONCLUSIONS We conclude the review by emphasizing missing knowledge gaps that remain and future research opportunities needed to implement FKBP51 as a drug target for stress-related obesity or T2D.
Collapse
Affiliation(s)
- Alexander S Häusl
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804, Munich, Germany.
| | - Georgia Balsevich
- Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, Ab T2N 4N1, Canada
| | - Nils C Gassen
- Department of Psychiatry and Psychotherapy, Bonn Clinical Center, University of Bonn, 53127, Bonn, Germany; Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, 80804, Munich, Germany
| | - Mathias V Schmidt
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804, Munich, Germany.
| |
Collapse
|
37
|
Géranton SM. Does epigenetic 'memory' of early-life stress predispose to chronic pain in later life? A potential role for the stress regulator FKBP5. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190283. [PMID: 31544613 DOI: 10.1098/rstb.2019.0283] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Animal behaviours are affected not only by inherited genes but also by environmental experiences. For example, in both rats and humans, stressful early-life events such as being reared by an inattentive mother can leave a lasting trace and affect later stress response in adult life. This is owing to a chemical trace left on the chromatin attributed to so-called epigenetic mechanisms. Such an epigenetic trace often has consequences, sometimes long-lasting, on the functioning of our genes, thereby allowing individuals to rapidly adapt to a new environment. One gene under such epigenetic control is FKBP5, the gene that encodes the protein FKPB51, a crucial regulator of the stress axis and a significant driver of chronic pain states. In this article, we will discuss the possibility that exposure to stress could drive the susceptibly to chronic pain via epigenetic modifications of genes within the stress axis such as FKBP5. The possibility that such modifications, and therefore, the susceptibility to chronic pain, could be transmitted across generations in mammals and whether such mechanisms may be evolutionarily conserved across phyla will also be debated. This article is part of the Theo Murphy meeting issue 'Evolution of mechanisms and behaviour important for pain'.
Collapse
Affiliation(s)
- S M Géranton
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
38
|
Jagtap PKA, Asami S, Sippel C, Kaila VRI, Hausch F, Sattler M. Selective Inhibitors of FKBP51 Employ Conformational Selection of Dynamic Invisible States. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201902994] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Pravin Kumar Ankush Jagtap
- Lehrstuhl für Biomolekulare NMR-SpektroskopieTechnische Universität München Lichtenbergstr. 4 85747 Garching Germany
| | - Sam Asami
- Lehrstuhl für Biomolekulare NMR-SpektroskopieTechnische Universität München Lichtenbergstr. 4 85747 Garching Germany
| | - Claudia Sippel
- Max Planck Institute of Psychiatry Kraepelinstr. 2–10 80804 Munich Germany
| | - Ville R. I. Kaila
- Department ChemieTechnische Universität München Lichtenbergstr. 4 85747 Garching Germany
| | - Felix Hausch
- Max Planck Institute of Psychiatry Kraepelinstr. 2–10 80804 Munich Germany
- Present address: Structure-Based Drug ResearchTechnische Universität Darmstadt Alarich-Weiss-Str. 4 64287 Darmstadt Germany
| | - Michael Sattler
- Lehrstuhl für Biomolekulare NMR-SpektroskopieTechnische Universität München Lichtenbergstr. 4 85747 Garching Germany
| |
Collapse
|
39
|
Breitsamer M, Stulz A, Heerklotz HH, Winter G. Do interactions between protein and phospholipids influence the release behavior from lipid-based exenatide depot systems? Eur J Pharm Biopharm 2019; 142:61-69. [PMID: 31195130 DOI: 10.1016/j.ejpb.2019.06.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 05/28/2019] [Accepted: 06/10/2019] [Indexed: 11/27/2022]
Abstract
The release mechanism for proteins and peptides from vesicular phospholipid gels (VPGs) is very complex. Drug release proceeds via a combination of erosion of the gel and diffusion of the drug out of it. This diffusion can be retarded by a slow permeation of the drug across the lipid bilayers in the gel as well as by its direct binding or adsorption to the lipid bilayers. Finally, the viscosity and homogeneity of the formulation may affect the release behavior. So far a direct correlation between one of these parameters and the release kinetics is not possible. In the present study, we aimed to investigate the contribution of drug-membrane interactions to the release kinetics of exenatide from differently composed VPGs (POPC, POPG and mixtures of both). To this end, in vitro release of exenatide as well as in vitro release of the phospholipids was monitored. Binding affinities were determined by microscale thermophoresis (MST). The sustained release behavior of exenatide could not simply be correlated to high viscosity of the VPG formulation. Release of exenatide from VPGs of anionic membranes containing POPG proceeded with a half-life of the order of 5 days and it seems to be controlled by the erosion of the gel. Its rate is unaffected by the initial pH inside the gel, independently of the strong impact of pH on exenatide binding to the membrane. At pH 4.5, exenatide is cationic and binds to membranes containing anionic POPG with a high affinity (Kd ≈ 10-30 µM). No high affinity membrane binding of exenatide is detected in this at pH 7.4, where exenatide is anionic, and to zwitterionic membranes composed of POPC. Exenatide release from the latter has a significantly longer half-life of 30 to 55 days. That means, these VPGs are much more resistant to erosion and show a very slow diffusional release. In this case, diffusion should be slowed down by the barrier function of the membranes rather than membrane affinity. In conclusion, erosion of the VPG matrix and membrane permeability of the drug are the major parameters influencing the release of exenatide from VPGs of POPC-POPG, whereas drug binding to the membranes had a minor effect only.
Collapse
Affiliation(s)
- Michaela Breitsamer
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-Universität München, Butenandtstraße 5, 81377 Munich, Germany.
| | - Anja Stulz
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 9, 79104 Freiburg i. Br., Germany
| | - Heiko H Heerklotz
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 9, 79104 Freiburg i. Br., Germany; Signalling Research Centers CIBBS and BIOSS, Albert-Ludwigs-Universität Freiburg, Schänzlestraße 18, 79104 Freiburg i. Br. Germany; Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, ON, Canada
| | - Gerhard Winter
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-Universität München, Butenandtstraße 5, 81377 Munich, Germany
| |
Collapse
|
40
|
Jagtap PKA, Asami S, Sippel C, Kaila VRI, Hausch F, Sattler M. Selective Inhibitors of FKBP51 Employ Conformational Selection of Dynamic Invisible States. Angew Chem Int Ed Engl 2019; 58:9429-9433. [PMID: 31100184 DOI: 10.1002/anie.201902994] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 04/24/2019] [Indexed: 12/26/2022]
Abstract
The recently discovered SAFit class of inhibitors against the Hsp90 co-chaperone FKBP51 show greater than 10 000-fold selectivity over its closely related paralogue FKBP52. However, the mechanism underlying this selectivity remained unknown. By combining NMR spectroscopy, biophysical and computational methods with mutational analysis, we show that the SAFit molecules bind to a transient pocket in FKBP51. This represents a weakly populated conformation resembling the inhibitor-bound state of FKBP51, suggesting conformational selection rather than induced fit as the major binding mechanism. The inhibitor-bound conformation of FKBP51 is stabilized by an allosteric network of residues located away from the inhibitor-binding site. These residues stabilize the Phe67 side chain in a dynamic outward conformation and are distinct in FKBP52, thus rationalizing the basis for the selectivity of SAFit inhibitors. Our results represent a paradigm for the selective inhibition of transient binding pockets.
Collapse
Affiliation(s)
- Pravin Kumar Ankush Jagtap
- Lehrstuhl für Biomolekulare NMR-Spektroskopie, Technische Universität München, Lichtenbergstr. 4, 85747, Garching, Germany
| | - Sam Asami
- Lehrstuhl für Biomolekulare NMR-Spektroskopie, Technische Universität München, Lichtenbergstr. 4, 85747, Garching, Germany
| | - Claudia Sippel
- Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804, Munich, Germany
| | - Ville R I Kaila
- Department Chemie, Technische Universität München, Lichtenbergstr. 4, 85747, Garching, Germany
| | - Felix Hausch
- Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804, Munich, Germany.,Present address: Structure-Based Drug Research, Technische Universität Darmstadt, Alarich-Weiss-Str. 4, 64287, Darmstadt, Germany
| | - Michael Sattler
- Lehrstuhl für Biomolekulare NMR-Spektroskopie, Technische Universität München, Lichtenbergstr. 4, 85747, Garching, Germany
| |
Collapse
|
41
|
Abstract
The FK506-binding protein 51 (FKBP51) has emerged as a key regulator of endocrine stress responses in mammals and as a potential therapeutic target for stress-related disorders (depression, post-traumatic stress disorder), metabolic disorders (obesity and diabetes) and chronic pain. Recently, FKBP51 has been implicated in several cellular pathways and numerous interacting protein partners have been reported. However, no consensus on the underlying molecular mechanisms has yet emerged. Here, we review the protein interaction partners reported for FKBP51, the proposed pathways involved, their relevance to FKBP51’s physiological function(s), the interplay with other FKBPs, and implications for the development of FKBP51-directed drugs.
Collapse
|
42
|
Breitsamer M, Winter G. Vesicular phospholipid gels as drug delivery systems for small molecular weight drugs, peptides and proteins: State of the art review. Int J Pharm 2018; 557:1-8. [PMID: 30572079 DOI: 10.1016/j.ijpharm.2018.12.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/10/2018] [Accepted: 12/12/2018] [Indexed: 10/27/2022]
Abstract
Lipid-based drug delivery has been investigated for a long time when it comes to liposomes and solid-lipid implants or solid-lipid nanoparticles. The promising, characteristic properties of these systems have led to the development of newer lipid-based drug delivery systems for the sustained release of drugs like liposomes for sustained delivery of substances, DepoFoam™ technology, phospholipid-based phase separation gels and vesicular phospholipid gels. Vesicular phospholipid gels (VPGs) are highly concentrated, viscous dispersions of high amounts of phospholipids in aqueous drug solution. The easy, solvent-free manufacturing process, high biocompatibility and various applications, as depot formulation for the sustained delivery of drugs and as a storage form of small unilamellar vesicles make VPGs highly attractive as drug carriers. Over the last years, the solvent free preparation process has advanced from high pressure homogenization to dual centrifugation (DC). Thereby a very simple one step process has been established for the preparation of VPGs. The semisolid VPG was first described in 1997 by Brandl et al. Since then, many formulations have been developed, encapsulating small molecular weight drugs like 5-FU (2003), cetrorelix (2005), cytarabine (2012) and exenatide (2015). In 2010, the first pharmaceutical protein, erythropoietin, was encapsulated in VPGs and sustained release of the substance was shown in vitro. In 2015, G-CSF was encapsulated in VPGs and tested in vivo for rotator cuff repair in a rat model and for PEGylated IFN-β-1b sustained release from vesicular phospholipid gels was demonstrated in vitro. Further, a very elegant administration technique for VPGs via needle-free injection was established. However this promising drug delivery system does still leave space for improvement and optimization. This review summarizes information about lipid-based depot systems in general and focuses on the historical development of VPGs. It emphasizes the advantages and drawbacks of VPGs as drug delivery device. Additionally, novel preparation methods and applications of VPGs will be discussed. A focus will be set on delivery of pharmaceutical proteins and peptides.
Collapse
Affiliation(s)
- Michaela Breitsamer
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-Universität München, Munich, Germany.
| | - Gerhard Winter
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
43
|
Kolos JM, Voll AM, Bauder M, Hausch F. FKBP Ligands-Where We Are and Where to Go? Front Pharmacol 2018; 9:1425. [PMID: 30568592 PMCID: PMC6290070 DOI: 10.3389/fphar.2018.01425] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 11/19/2018] [Indexed: 12/24/2022] Open
Abstract
In recent years, many members of the FK506-binding protein (FKBP) family were increasingly linked to various diseases. The binding domain of FKBPs differs only in a few amino acid residues, but their biological roles are versatile. High-affinity ligands with selectivity between close homologs are scarce. This review will give an overview of the most prominent ligands developed for FKBPs and highlight a perspective for future developments. More precisely, human FKBPs and correlated diseases will be discussed as well as microbial FKBPs in the context of anti-bacterial and anti-fungal therapeutics. The last section gives insights into high-affinity ligands as chemical tools and dimerizers.
Collapse
Affiliation(s)
| | | | | | - Felix Hausch
- Department of Chemistry, Institute of Chemistry and Biochemistry, Darmstadt University of Technology, Darmstadt, Germany
| |
Collapse
|
44
|
Pöhlmann ML, Häusl AS, Harbich D, Balsevich G, Engelhardt C, Feng X, Breitsamer M, Hausch F, Winter G, Schmidt MV. Pharmacological Modulation of the Psychiatric Risk Factor FKBP51 Alters Efficiency of Common Antidepressant Drugs. Front Behav Neurosci 2018; 12:262. [PMID: 30483074 PMCID: PMC6240676 DOI: 10.3389/fnbeh.2018.00262] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 10/16/2018] [Indexed: 12/28/2022] Open
Abstract
Despite a growing body of research over the last few decades, mental disorders, including anxiety disorders or depression, are still one of the most prevalent and hardest to treat health burdens worldwide. Since pharmacological treatment with a single drug is often rather ineffective, approaches such as co-medication with functionally diverse antidepressants (ADs) have been discussed and tried more recently. Besides classical ADs, there is a growing number of candidate targets identified as potential starting points for new treatment methods. One of these candidates, the FK506 binding protein 51 (FKBP51) is linked to a number of psychiatric disorders in humans. In this study, we used SAFit2—a newly developed modulator of FKBP51, which has shown promising results in rodent models for stress-related disorders delivered in a depot formulation. We combined SAFit2 with the commonly prescribed selective serotonin reuptake inhibitor (SSRI) escitalopram and performed basic behavioral characterization in a mouse model. Remarkably, co-application of SAFit2 lowered the efficacy of escitalopram in anxiety-related tests but improved stress coping behavior. Given the fact that mental diseases such as anxiety disorders or depression can be divided into different sub-categories, some of which more or less prone to stress, SAFit2 could indeed be a highly beneficial co-medication in very specific cases. This study could be a first, promising step towards the use of FKBP51 modulators as potent and specific enhancers of AD efficiency for subclasses of patients in the future.
Collapse
Affiliation(s)
- Max L Pöhlmann
- Department Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Alexander S Häusl
- Department Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Daniela Harbich
- Department Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Georgia Balsevich
- Department Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Clara Engelhardt
- Department Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Xixi Feng
- Department Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Michaela Breitsamer
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-Universität, Munich, Germany
| | - Felix Hausch
- Department Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany.,Department of Chemistry, Technical University Darmstadt, Darmstadt, Germany
| | - Gerhard Winter
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-Universität, Munich, Germany
| | - Mathias V Schmidt
- Department Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
45
|
Abstract
Substance P (SP) is a highly conserved member of the tachykinin peptide family that is widely expressed throughout the animal kingdom. The numerous members of the tachykinin peptide family are involved in a multitude of neuronal signaling pathways, mediating sensations and emotional responses (Steinhoff et al. in Physiol Rev 94:265–301, 2014). In contrast to receptors for classical transmitters, such as glutamate (Parsons et al. in Handb Exp Pharmacol 249–303, 2005), only a minority of neurons in certain brain areas express neurokinin receptors (NKRs) (Mantyh in J Clin Psychiatry 63:6–10, 2002). SP is also expressed by a variety of non-neuronal cell types such as microglia, as well as immune cells (Mashaghi et al. in Cell Mol Life Sci 73:4249–4264, 2016). SP is an 11-amino acid neuropeptide that preferentially activates the neurokinin-1 receptor (NK1R). It transmits nociceptive signals via primary afferent fibers to spinal and brainstem second-order neurons (Cao et al. in Nature 392:390–394, 1998). Compounds that inhibit SP’s action are being investigated as potential drugs to relieve pain. More recently, SP and NKR have gained attention for their role in complex psychiatric processes. It is a key goal in the field of pain research to understand mechanisms involved in the transition between acute pain and chronic pain. The influence of emotional and cognitive inputs and feedbacks from different brain areas makes pain not only a perception but an experience (Zieglgänsberger et al. in CNS Spectr 10:298–308, 2005; Trenkwaldner et al. Sleep Med 31:78–85, 2017). This review focuses on functional neuronal plasticity in spinal dorsal horn neurons as a major relay for nociceptive information.
Collapse
|
46
|
A Functional riboSNitch in the 3' Untranslated Region of FKBP5 Alters MicroRNA-320a Binding Efficiency and Mediates Vulnerability to Chronic Post-Traumatic Pain. J Neurosci 2018; 38:8407-8420. [PMID: 30150364 DOI: 10.1523/jneurosci.3458-17.2018] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 07/11/2018] [Accepted: 07/13/2018] [Indexed: 01/30/2023] Open
Abstract
Previous studies have shown that common variants of the gene coding for FK506-binding protein 51 (FKBP5), a critical regulator of glucocorticoid sensitivity, affect vulnerability to stress-related disorders. In a previous report, FKBP5 rs1360780 was identified as a functional variant because of its effect on gene methylation. Here we report evidence for a novel functional FKBP5 allele, rs3800373. This study assessed the association between rs3800373 and post-traumatic chronic pain in 1607 women and men from two ethnically diverse human cohorts. The molecular mechanism through which rs3800373 affects adverse outcomes was established via in silico, in vivo, and in vitro analyses. The rs3800373 minor allele predicted worse adverse outcomes after trauma exposure, such that individuals with the minor (risk) allele developed more severe post-traumatic chronic musculoskeletal pain. Among these individuals, peritraumatic circulating FKBP5 expression levels increased as cortisol and glucocorticoid receptor (NR3C1) mRNA levels increased, consistent with increased glucocorticoid resistance. Bioinformatic, in vitro, and mutational analyses indicate that the rs3800373 minor allele reduces the binding of a stress- and pain-associated microRNA, miR-320a, to FKBP5 via altering the FKBP5 mRNA 3'UTR secondary structure (i.e., is a riboSNitch). This results in relatively greater FKBP5 translation, unchecked by miR-320a. Overall, these results identify an important gene-miRNA interaction influencing chronic pain risk in vulnerable individuals and suggest that exogenous methods to achieve targeted reduction in poststress FKBP5 mRNA expression may constitute useful therapeutic strategies.SIGNIFICANCE STATEMENT FKBP5 is a critical regulator of the stress response. Previous studies have shown that dysregulation of the expression of this gene plays a role in the pathogenesis of chronic pain development as well as a number of comorbid neuropsychiatric disorders. In the current study, we identified a functional allele (rs3800373) in the 3'UTR of FKBP5 that influences vulnerability to chronic post-traumatic pain in two ethnic cohorts. Using multiple complementary experimental approaches, we show that the FKBP5 rs3800373 minor allele alters the secondary structure of FKBP5 mRNA, decreasing the binding of a stress- and pain-associated microRNA, miR-320a. This results in relatively greater FKBP5 translation, unchecked by miR-320a, increasing glucocorticoid resistance and increasing vulnerability to post-traumatic pain.
Collapse
|
47
|
Pomplun S, Sippel C, Hähle A, Tay D, Shima K, Klages A, Ünal CM, Rieß B, Toh HT, Hansen G, Yoon HS, Bracher A, Preiser P, Rupp J, Steinert M, Hausch F. Chemogenomic Profiling of Human and Microbial FK506-Binding Proteins. J Med Chem 2018; 61:3660-3673. [PMID: 29578710 DOI: 10.1021/acs.jmedchem.8b00137] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
FK506-binding proteins (FKBPs) are evolutionarily conserved proteins that display peptidyl-prolyl isomerase activities and act as coreceptors for immunosuppressants. Microbial macrophage-infectivity-potentiator (Mip)-type FKBPs can enhance infectivity. However, developing druglike ligands for FKBPs or Mips has proven difficult, and many FKBPs and Mips still lack biologically useful ligands. To explore the scope and potential of C5-substituted [4.3.1]-aza-bicyclic sulfonamides as a broadly applicable class of FKBP inhibitors, we developed a new synthesis method for the bicyclic core scaffold and used it to prepare an FKBP- and Mip-focused library. This allowed us to perform a systematic structure-activity-relationship analysis across key human FKBPs and microbial Mips, yielding highly improved inhibitors for all the FKBPs studied. A cocrystal structure confirmed the molecular-binding mode of the core structure and explained the affinity gained as a result of the preferred substituents. The best FKBP and Mip ligands showed promising antimalarial, antileginonellal, and antichlamydial properties in cellular models of infectivity, suggesting that substituted [4.3.1]-aza-bicyclic sulfonamides could be a novel class of anti-infectives.
Collapse
Affiliation(s)
- Sebastian Pomplun
- Department of Translational Research in Psychiatry , Max Planck Institute of Psychiatry , 80804 Munich , Germany
| | - Claudia Sippel
- Department of Translational Research in Psychiatry , Max Planck Institute of Psychiatry , 80804 Munich , Germany
| | - Andreas Hähle
- Department of Translational Research in Psychiatry , Max Planck Institute of Psychiatry , 80804 Munich , Germany.,Technical University Darmstadt , Alarich-Weiss-Straße 4 , 64287 Darmstadt , Germany
| | - Donald Tay
- School of Biological Sciences , Nanyang Technological University , 639798 Singapore
| | - Kensuke Shima
- Department of Infectious Diseases and Microbiology , University of Lübeck , 23562 Lübeck , Germany
| | - Alina Klages
- Technische Universität Braunschweig , 38106 Braunschweig , Germany
| | - Can Murat Ünal
- Technische Universität Braunschweig , 38106 Braunschweig , Germany
| | - Benedikt Rieß
- Department of Translational Research in Psychiatry , Max Planck Institute of Psychiatry , 80804 Munich , Germany
| | - Hui Ting Toh
- School of Biological Sciences , Nanyang Technological University , 639798 Singapore
| | | | - Ho Sup Yoon
- School of Biological Sciences , Nanyang Technological University , 639798 Singapore
| | - Andreas Bracher
- Max Planck Institute of Biochemistry , 82152 Martinsried , Germany
| | - Peter Preiser
- School of Biological Sciences , Nanyang Technological University , 639798 Singapore
| | - Jan Rupp
- Department of Infectious Diseases and Microbiology , University of Lübeck , 23562 Lübeck , Germany
| | - Michael Steinert
- Department of Infectious Diseases and Microbiology , University of Lübeck , 23562 Lübeck , Germany.,Helmholtz Centre for Infection Research , 38124 Braunschweig , Germany
| | - Felix Hausch
- Department of Translational Research in Psychiatry , Max Planck Institute of Psychiatry , 80804 Munich , Germany.,Technical University Darmstadt , Alarich-Weiss-Straße 4 , 64287 Darmstadt , Germany
| |
Collapse
|