1
|
Neyama H, Dozono N, Sahara Y, Nishikawa K, Ueda H. A novel lysophosphatidic acid receptor 1 antagonist with high brain penetrability has a curative effect in the empathic pain-related fibromyalgia model. J Pharmacol Sci 2025; 158:139-142. [PMID: 40288824 DOI: 10.1016/j.jphs.2025.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/15/2025] [Accepted: 03/29/2025] [Indexed: 04/29/2025] Open
Abstract
Lysophosphatidic acid receptor 1 (LPA1) plays a pivotal role in the pathophysiology of various diseases, especially chronic pain. In this study, we assessed the biochemical properties of Compound A, a novel LPA1 antagonist and its beneficial effects in the fibromyalgia (FM)-like pain model. Compound A was found to be a high-affinity and selective LPA1 antagonist and have high brain penetrability. Repeated oral administrations of Compound A reversed the hyperalgesia as late as 9 days after the treatments, suggesting this compound has a curative effect in the FM model.
Collapse
Affiliation(s)
- Hiroyuki Neyama
- Pharmacology and Therapeutic Innovation, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8521, Japan; Multiomics Platform, Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan
| | - Naoki Dozono
- Pharmacology and Therapeutic Innovation, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8521, Japan
| | - Yasuka Sahara
- Pharmacology and Therapeutic Innovation, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8521, Japan
| | - Kenji Nishikawa
- Pharmaceutical Research Laboratory, Pharmaceutical Division, UBE Corporation, Yamaguchi, 755-8633, Japan
| | - Hiroshi Ueda
- Pharmacology and Therapeutic Innovation, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8521, Japan; Graduate Institute of Pharmacology, National Defense Medical Center, Taiwan, 114201, Taipei, China; Laboratory for the Study of Pain, Research Institute for Production Development, Kyoto, 606-0805, Japan.
| |
Collapse
|
2
|
Nango H, Takahashi A, Suzuki N, Kurano T, Sakamoto S, Nagatomo T, Suzuki T, Kanazawa T, Kosuge Y, Miyagishi H. Therapeutic Efficacy of Intranasal N-Acetyl-L-Cysteine with Cell-Penetrating Peptide-Modified Polymer Micelles on Neuropathic Pain in Partial Sciatic Nerve Ligation Mice. Pharmaceutics 2025; 17:44. [PMID: 39861692 PMCID: PMC11768373 DOI: 10.3390/pharmaceutics17010044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/26/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: We previously demonstrated that the intranasal administration of cell-penetrating Tat peptide-modified carrier, PEG-PCL-Tat, improves drug delivery to the central nervous system. This study aimed to evaluate the potential of the post-onset intranasal administration of N-acetyl-L-cysteine (NAC) combined with PEG-PCL-Tat (NAC/PPT) for neuropathic pain. Methods: Neuropathic pain was induced by partial sciatic nerve ligation (PSNL) in mice. Mechanical allodynia was assessed using the von Frey test on days 11-14 post-ligation. NAC or NAC/PPT was intranasally administered after pain onset. Western blotting and immunohistochemistry were conducted to evaluate ionized calcium-binding adapter molecule 1 (Iba-1) expression and microglial activation in the spinal cord. Results: Mechanical allodynia was exacerbated 11 days after the ligation in PSNL mice. The intranasal administration of NAC alone prevented allodynia exacerbation but failed to provide a therapeutic effect against allodynia in PSNL mice. In contrast, NAC/PPT administration ameliorated PSNL-induced tactile allodynia, with maximum efficacy seen 13 and 14 days after ligation. Western blotting demonstrated that Iba-1 levels tended to increase in PSNL mice compared to controls. This trend of increased Iba-1 levels in PSNL mice was attenuated by the administration of NAC/PPT, but not by NAC alone. Immunohistochemistry revealed an increased number of Iba-1-stained microglia in the ipsilateral spinal cord of PSNL mice, which were significantly suppressed by the administration of NAC/PPT. Conclusions: These results suggest that the post-onset intranasal administration of NAC/PPT ameliorates mechanical allodynia by suppressing microglia induction and that intranasal delivery with PEG-PCL-Tat might be a useful tool for the pharmacological management of neuropathic pain.
Collapse
Affiliation(s)
- Hiroshi Nango
- Laboratory of Pharmacology, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi 274-8555, Japan; (H.N.); (A.T.); (S.S.)
| | - Ai Takahashi
- Laboratory of Pharmacology, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi 274-8555, Japan; (H.N.); (A.T.); (S.S.)
| | - Naoto Suzuki
- Laboratory of Pharmaceutics, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi 274-8555, Japan; (N.S.); (T.K.); (T.N.); (T.S.)
| | - Takumi Kurano
- Laboratory of Pharmaceutics, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi 274-8555, Japan; (N.S.); (T.K.); (T.N.); (T.S.)
| | - Saia Sakamoto
- Laboratory of Pharmacology, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi 274-8555, Japan; (H.N.); (A.T.); (S.S.)
| | - Taiki Nagatomo
- Laboratory of Pharmaceutics, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi 274-8555, Japan; (N.S.); (T.K.); (T.N.); (T.S.)
| | - Toyofumi Suzuki
- Laboratory of Pharmaceutics, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi 274-8555, Japan; (N.S.); (T.K.); (T.N.); (T.S.)
| | - Takanori Kanazawa
- Department of Clinical Pharmacology, Graduate School of Biomedical Sciences, Tokushima University, 1-78-1 Shoumachi, Tokushima 770-8505, Japan;
| | - Yasuhiro Kosuge
- Laboratory of Pharmacology, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi 274-8555, Japan; (H.N.); (A.T.); (S.S.)
| | - Hiroko Miyagishi
- Laboratory of Pharmacology, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi 274-8555, Japan; (H.N.); (A.T.); (S.S.)
| |
Collapse
|
3
|
Dhir S, Derue H, Ribeiro-da-Silva A. Temporal changes of spinal microglia in murine models of neuropathic pain: a scoping review. Front Immunol 2024; 15:1460072. [PMID: 39735541 PMCID: PMC11671780 DOI: 10.3389/fimmu.2024.1460072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 11/18/2024] [Indexed: 12/31/2024] Open
Abstract
Neuropathic pain (NP) is an ineffectively treated, debilitating chronic pain disorder that is associated with maladaptive changes in the central nervous system, particularly in the spinal cord. Murine models of NP looking at the mechanisms underlying these changes suggest an important role of microglia, the resident immune cells of the central nervous system, in various stages of disease progression. However, given the number of different NP models and the resource limitations that come with tracking longitudinal changes in NP animals, many studies fail to truly recapitulate the patterns that exist between pain conditions and temporal microglial changes. This review integrates how NP studies are being carried out in murine models and how microglia changes over time can affect pain behavior in order to inform better study design and highlight knowledge gaps in the field. 258 peer-reviewed, primary source articles looking at spinal microglia in murine models of NP were selected using Covidence. Trends in the type of mice, statistical tests, pain models, interventions, microglial markers and temporal pain behavior and microglia changes were recorded and analyzed. Studies were primarily conducted in inbred, young adult, male mice having peripheral nerve injury which highlights the lack of generalizability in the data currently being collected. Changes in microglia and pain behavior, which were both increased, were tested most commonly up to 2 weeks after pain initiation despite aberrant microglia activity also being recorded at later time points in NP conditions. Studies using treatments that decrease microglia show decreased pain behavior primarily at the 1- and 2-week time point with many studies not recording pain behavior despite the involvement of spinal microglia dysfunction in their development. These results show the need for not only studying spinal microglia dynamics in a variety of NP conditions at longer time points but also for better clinically relevant study design considerations.
Collapse
Affiliation(s)
- Simran Dhir
- Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| | - Hannah Derue
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Alfredo Ribeiro-da-Silva
- Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| |
Collapse
|
4
|
Fan X, Chu R, Jiang X, Ma P, Chu Y, Hua T, Yang M, Ding R, Li J, Xiang Z, Yuan H. LPAR6 Participates in Neuropathic Pain by Mediating Astrocyte Cells via ROCK2/NF-κB Signal Pathway. Mol Neurobiol 2024; 61:8402-8413. [PMID: 38509397 DOI: 10.1007/s12035-024-04108-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 03/07/2024] [Indexed: 03/22/2024]
Abstract
Neuropathic pain (NPP) is a common type of chronic pain. Glial cells, including astrocytes (AS), are believed to play an important role in the progression of NPP. AS cells can be divided into various types based on their expression profiles, among which A1 and A2 types have clear functions. A1-type AS cells are neurotoxic, while A2-type AS cells exert neuroprotective functions. Some types of lysophosphatidic acid receptors (LPAR) have been shown to play a role in NPP. However, it remains unclear how AS cells and LPAR6 affect the occurrence and progression of NPP. In this study, we established a mouse model of chronic constriction injury (CCI) to simulate NPP. It was found that the expression of LPAR6 in AS cells of the spinal dorsal horn was increased in the CCI model, and the thresholds of mechanical and thermal pain were elevated after knocking out LPAR6, indicating that LPAR6 and AS cells participated in the occurrence of NPP. The experiment involved culturing primary AS cells and knocking down LPAR6 by Lentivirus. The results showed that the NF-κB signal pathway was activated and the number of A1-type AS cells increased in the CCI model. However, LPAR6 knockdown inhibited the NF-κB signal pathway and A1-type AS cells. The results of the mRNA sequencing and immunoprecipitation test indicate an interaction between LPAR6 and ROCK2. Inhibiting ROCK2 by Y-27632 increased mechanical and thermal pain thresholds and alleviated NPP at the molecular level. The study presents evidence that LPAR6 activates the NF-κB pathway through ROCK2 and contributes to the progression of NPP by increasing A1-type AS and decreasing A2-type AS. This suggests that LPAR6 could be a potential therapeutic target for alleviating NPP. Clinical applications that are successful can offer new therapeutic options, enhance the quality of life for patients, and potentially uncover new mechanisms for pain modulation.
Collapse
Affiliation(s)
- Xiaoyi Fan
- Department of Anesthesiology, Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, No.415 Fengyang Road, Shanghai, 200003, People's Republic of China
| | - Ruitong Chu
- Department of Anesthesiology, Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, No.415 Fengyang Road, Shanghai, 200003, People's Republic of China
| | - Xin Jiang
- Department of Anesthesiology, Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, No.415 Fengyang Road, Shanghai, 200003, People's Republic of China
| | - Peng Ma
- Department of Anesthesiology, Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, No.415 Fengyang Road, Shanghai, 200003, People's Republic of China
| | - Yan Chu
- Department of Anesthesiology, Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, No.415 Fengyang Road, Shanghai, 200003, People's Republic of China
| | - Tong Hua
- Department of Anesthesiology, Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, No.415 Fengyang Road, Shanghai, 200003, People's Republic of China
| | - Mei Yang
- Department of Anesthesiology, Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, No.415 Fengyang Road, Shanghai, 200003, People's Republic of China
| | - Ruifeng Ding
- Department of Anesthesiology, Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, No.415 Fengyang Road, Shanghai, 200003, People's Republic of China
| | - Jian Li
- Department of Anesthesiology, Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, No.415 Fengyang Road, Shanghai, 200003, People's Republic of China
| | - Zhenghua Xiang
- Department of Neurobiology, Key Laboratory of Molecular Neurobiology, Ministry of Education, Naval Medical University, No.800 Xiangyin Road, Shanghai, 200433, People's Republic of China.
| | - Hongbin Yuan
- Department of Anesthesiology, Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, No.415 Fengyang Road, Shanghai, 200003, People's Republic of China.
- Department of Neurobiology, Key Laboratory of Molecular Neurobiology, Ministry of Education, Naval Medical University, No.800 Xiangyin Road, Shanghai, 200433, People's Republic of China.
| |
Collapse
|
5
|
Abdelaziz MA, Chen WH, Chang YW, Mindaye SA, Chen CC. Exploring the role of spinal astrocytes in the onset of hyperalgesic priming signals in acid-induced chronic muscle pain. PNAS NEXUS 2024; 3:pgae362. [PMID: 39228816 PMCID: PMC11370897 DOI: 10.1093/pnasnexus/pgae362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/13/2024] [Indexed: 09/05/2024]
Abstract
Hyperalgesic priming, a form of pain plasticity initiated by initial injury, leads to heightened sensitivity to subsequent noxious stimuli, contributing to chronic pain development in animals. While astrocytes play active roles in modulating synaptic transmission in various pain models, their specific involvement in hyperalgesic priming remains elusive. Here, we show that spinal astrocytes are essential for hyperalgesic priming formation in a mouse model of acid-induced muscle pain. We observed spinal astrocyte activation 4 h after initial acid injection, and inhibition of this activation prevented chronic pain development upon subsequent acid injection. Chemogenetic activation of spinal astrocytes mimicked the first acid-induced hyperalgesic priming. We also demonstrated that spinal phosphorylated extracellular regulated kinase (pERK)-positive neurons were mainly vesicular glutamate transporter-2 positive (Vglut2+) neurons after the first acid injection, and inhibition of spinal pERK prevented astrocyte activation. Furthermore, pharmacological inhibition of astrocytic glutamate transporters glutamate transporter-1 and glutamate-aspartate transporter abolished the hyperalgesic priming. Collectively, our results suggest that pERK activation in Vglut2+ neurons activate astrocytes through astrocytic glutamate transporters. This process eventually establishes hyperalgesic priming through spinal D-serine. We conclude that spinal astrocytes play a crucial role in the transition from acute to chronic pain.
Collapse
Affiliation(s)
- Mohamed Abbas Abdelaziz
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Cheng Kung University and Academia Sinica, Taipei 11529, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
- Zoology Department, Faculty of Science, Al-Azhar University Assiut Branch, Assiut 71524, Egypt
| | - Wei-Hsin Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Yu-Wang Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Selomon Assefa Mindaye
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Cheng Kung University and Academia Sinica, Taipei 11529, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Chien-Chang Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
6
|
Gao F, Wei M, Wang M, Yang Y, Duan X, Yang L, Sun L. The Role and Mechanism of Spinal NF-κB-CXCL1/CXCR2 in Rats with Nucleus Pulposus-induced Radicular Pain. Spine (Phila Pa 1976) 2024; 49:E87-E99. [PMID: 38098294 PMCID: PMC10927303 DOI: 10.1097/brs.0000000000004899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/27/2023] [Indexed: 03/13/2024]
Abstract
STUDY DESIGN Experimental study of the role and mechanism of spinal NFκB-CXCL1/CXCR2 in rats with nucleus pulposus-induced radicular pain. OBJECTIVE This study investigated the role and mechanism of spinal NFκB-CXCL1/CXCR2 in autologous nucleus pulposus-induced pain behavior in rats and to clarify the involvement and regulation of spinal NFκB as an upstream molecule of CXCL1 in autologous nucleus pulposus-induced radicular pain in rats. SUMMARY OF BACKGROUND DATA The inflammatory response of nerve roots is an important mechanism for the occurrence of chronic pain. NFκB-CXCL1/CXCR2 pathway plays an important role in the development of radicular pain, but its regulatory mechanism in the model of radicular pain induced by autologous nucleus pulposus is still unclear. MATERIALS AND METHODS We established a rat model of autologous medullary nucleus transplantation. We observed and recorded the changes in 50% mechanical withdrawal threshold and thermal withdrawal latency before and after the administration of CXCL1-neutralizing antibodies, CXCR2 inhibitor, and NFκB inhibitor in each group of rats and evaluated the expression of NFκB, CXCL1, and CXCR2 in the spinal dorsal horn using immunofluorescence and Western blot. To compare differences between groups in behavioral testing, analysis of variance was employed. Dunnett's method was used to compare differences at different time points within a group and between different groups at the same time point. A comparison of the relative concentration of protein, relative concentration of mRNA, and semiquantitative data from immunofluorescence staining was conducted utilizing one-way ANOVA and Dunnett's pairwise comparison. RESULTS Autologous nucleus pulposus transplantation can induce radicular pain in rats and upregulate the expression of CXCL1, CXCR2, and NFκB in the spinal cord. CXCL1 is co-expressed with astrocytes, CXCR2 with neurons, and NFκB with both astrocytes and neurons. The application of CXCL1 neutralizing antibodies, CXCR2 inhibitors, and NFκB inhibitors can alleviate pain hypersensitivity induced by autologous nucleus pulposus transplantation in rats. Inhibitors of NFκB could downregulate the expression of CXCL1 and CXCR2. CONCLUSIONS We found that spinal NFκB is involved in NP-induced radicular pain in rats through the activation of CXCL1/CXCR2, enriching the mechanism of medullary-derived radicular pain and providing a possible new target and theoretical basis for the development of more effective anti-inflammatory and analgesic drugs for patients with chronic pain following LDH.
Collapse
Affiliation(s)
- Fengjiao Gao
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ming Wei
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Meiyue Wang
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yongting Yang
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xuan Duan
- Department of Anesthesiology, Guangzhou Panyu Central Hospital, Guangzhou, Guangdong, China
| | - Lin Yang
- Department of Anesthesiology, Guangzhou Panyu Central Hospital, Guangzhou, Guangdong, China
| | - Laibao Sun
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
7
|
Neha, Wali Z, Pinky, Hattiwale SH, Jamal A, Parvez S. GLP-1/Sigma/RAGE receptors: An evolving picture of Alzheimer's disease pathology and treatment. Ageing Res Rev 2024; 93:102134. [PMID: 38008402 DOI: 10.1016/j.arr.2023.102134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/18/2023] [Accepted: 11/19/2023] [Indexed: 11/28/2023]
Abstract
According to the facts and figures 2023stated that 6.7 million Americans over the age of 65 have Alzheimer's disease (AD). The scenario of AD has reached up to the maximum, of 4.1 million individuals, 2/3rd are female patients, and approximately 1 in 9 adults over the age of 65 have dementia with AD dementia. The fact that there are now no viable treatments for AD indicates that the underlying disease mechanisms are not fully understood. The progressive neurodegenerative disease, AD is characterized by amyloid plaques and neurofibrillary tangles (NFTs) of abnormally hyperphosphorylated tau protein and senile plaques (SPs), which are brought on by the buildup of amyloid beta (Aβ). Numerous attempts have been made to produce compounds that interfere with these characteristics because of significant research efforts into the primary pathogenic hallmark of this disorder. Here, we summarize several research that highlights interesting therapy strategies and the neuroprotective effects of GLP-1, Sigma, and, AGE-RAGE receptors in pre-clinical and clinical AD models.
Collapse
Affiliation(s)
- Neha
- Department of Toxicology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| | - Zitin Wali
- Department of Toxicology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Pinky
- Department of Toxicology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| | - Shaheenkousar H Hattiwale
- Department of Basic Medical Sciences, College of Medicine, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Azfar Jamal
- Department of Biology, College of Science Al-Zulfi, Majmaah University, Al-Majmaah 11952, Saudi Arabia; Health and Basic Science Research Centre, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Suhel Parvez
- Department of Toxicology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
8
|
Ueda H, Neyama H. Fibromyalgia Animal Models Using Intermittent Cold and Psychological Stress. Biomedicines 2023; 12:56. [PMID: 38255163 PMCID: PMC10813244 DOI: 10.3390/biomedicines12010056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Fibromyalgia (FM) is a chronic pain condition characterized by widespread musculoskeletal pain and other frequent symptoms such as fatigue, sleep disturbance, cognitive impairment, and mood disorder. Based on the view that intermittent stress would be the most probable etiology for FM, intermittent cold- and intermittent psychological stress-induced generalized pain (ICGP and IPGP) models in mice have been developed and validated as FM-like pain models in terms of the patho-physiological and pharmacotherapeutic features that are shared with clinical versions. Both models show long-lasting and generalized pain and female-predominant sex differences after gonadectomy. Like many other neuropathic pain models, ICGP and IPGP were abolished in lysophosphatidic acid receptor 1 (LPAR1) knock-out mice or by LPAR1 antagonist treatments, although deciding the clinical importance of this mechanism depends on waiting for the development of a clinically available LPAR1 antagonist. On the other hand, the nonsteroidal anti-inflammatory drug diclofenac with morphine did not suppress hyperalgesia in these models, and this is consistent with the clinical findings. Pharmacological studies suggest that the lack of morphine analgesia is associated with opioid tolerance upon the stress-induced release of endorphins and subsequent counterbalance through anti-opioid NMDA receptor mechanisms. Regarding pharmacotherapy, hyperalgesia in both models was suppressed by pregabalin and duloxetine, which have been approved for FM treatment in clinic. Notably, repeated treatments with mirtazapine, an α2 adrenergic receptor antagonist-type antidepressant, and donepezil, a drug for treating Alzheimer's disease, showed potent therapeutic actions in these models. However, the pharmacotherapeutic treatment should be carried out 3 months after stress, which is stated in the FM guideline, and many preclinical studies, such as those analyzing molecular and cellular mechanisms, as well as additional evidence using different animal models, are required. Thus, the ICGP and IPGP models have the potential to help discover and characterize new therapeutic medicines that might be used for the radical treatment of FM, although there are several limitations to be overcome.
Collapse
Affiliation(s)
- Hiroshi Ueda
- Department of Pharmacology and Therapeutic Innovation, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8521, Japan;
- Department and Graduate Institute of Pharmacology, National Defense Medical Center, Taipei 114201, Taiwan
| | - Hiroyuki Neyama
- Department of Pharmacology and Therapeutic Innovation, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8521, Japan;
- Multiomics Platform, Center for Cancer Immunotherapy and Immunobiology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| |
Collapse
|
9
|
Morita M, Watanabe S, Nomura N, Takano-Matsuzaki K, Oyama M, Iwai T, Tanabe M. Sulfatide-selectin signaling in the spinal cord induces mechanical allodynia. J Neurochem 2023; 164:658-670. [PMID: 36528843 DOI: 10.1111/jnc.15743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/08/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022]
Abstract
Sulfatide is a sulfated glycosphingolipid that is present abundantly in myelin sheaths of the brain and spinal cord. It is synthesized by a cerebroside sulfotransferase encoded by Gal3st1, which catalyzes the transfer of sulfate from 3'-phosphoadenylylsulfate to galactosylceramide. We previously reported that Gal3st1 gene expression in the spinal cord is up-regulated 1 day after intraplantar injection of complete Freund's adjuvant (CFA), indicating that sulfatide is involved in inflammatory pain. In the present study, we found that intrathecal injection of sulfatide led to mechanical allodynia. Sulfatide caused levels of glial fibrillary acidic protein (GFAP) and nitric oxide in the spinal cord to increase. Mechanical allodynia induced by intrathecal injection of sulfatide was blocked by nitric oxide synthase inhibitors and by suppression of astrocyte activation by L-α-aminoadipate. These results suggest that sulfatide-induced mechanical allodynia involved glial activation and nitric oxide production. Blocking selectin, a sulfatide-binding protein, with bimosiamose attenuated sulfatide-induced allodynia and ameliorated CFA-induced mechanical allodynia during inflammatory pain. Finally, elevated levels of sulfatide concentration in the spinal cord were observed during CFA-induced inflammatory pain. The elevated sulfatide levels enhanced selectin activation in the spinal cord, resulting in mechanical allodynia. Our data suggest that sulfatide-selectin interaction plays a key role in inflammatory pain.
Collapse
Affiliation(s)
- Motoki Morita
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan.,Medicinal Research Laboratories, School of Pharmacy, Kitasato University, Tokyo, Japan
| | - Shun Watanabe
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan.,Medicinal Research Laboratories, School of Pharmacy, Kitasato University, Tokyo, Japan
| | - Natsumi Nomura
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan.,Medicinal Research Laboratories, School of Pharmacy, Kitasato University, Tokyo, Japan
| | - Kanako Takano-Matsuzaki
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan.,Medicinal Research Laboratories, School of Pharmacy, Kitasato University, Tokyo, Japan
| | - Misa Oyama
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan.,Medicinal Research Laboratories, School of Pharmacy, Kitasato University, Tokyo, Japan
| | - Takashi Iwai
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan.,Medicinal Research Laboratories, School of Pharmacy, Kitasato University, Tokyo, Japan
| | - Mitsuo Tanabe
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan.,Medicinal Research Laboratories, School of Pharmacy, Kitasato University, Tokyo, Japan
| |
Collapse
|
10
|
Zhang D, Decker AM, Woodhouse K, Snyder R, Patel P, Harris DL, Tao YX, Li JX, Zhang Y. Isoquinolone derivatives as lysophosphatidic acid receptor 5 (LPA5) antagonists: Investigation of structure-activity relationships, ADME properties and analgesic effects. Eur J Med Chem 2022; 243:114741. [PMID: 36126387 PMCID: PMC10155261 DOI: 10.1016/j.ejmech.2022.114741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/26/2022] [Accepted: 09/01/2022] [Indexed: 11/18/2022]
Abstract
Blockade of lysophosphatidic acid receptor 5 (LPA5) by a recently reported antagonist AS2717638 (2) attenuated inflammatory and neuropathic pains, although it showed moderate in vivo efficacy and its structure-activity relationships and the ADME properties are little studied. We therefore designed and synthesized a series of isoquinolone derivatives and evaluated their potency in LPA5 calcium mobilization and cAMP assays. Our results show that substituted phenyl groups or bicyclic aromatic rings such as benzothiophenes or benzofurans are tolerated at the 2-position, 4-substituted piperidines are favored at the 4-position, and methoxy groups at the 6- and 7-positions are essential for activity. Compounds 65 and 66 showed comparable in vitro potency, excellent selectivity against LPA1-LPA4 and >50 other GPCRs, moderate metabolic stability, and high aqueous solubility and brain permeability. Both 65 and 66 significantly attenuated nociceptive hypersensitivity at lower doses than 2 and had longer-lasting effects in an inflammatory pain model, and 66 also dose-dependently reduced mechanical allodynia in the chronic constriction injury model and opioid-induced hyperalgesia at doses that had no effect on the locomotion in rats. These results suggest that these isoquinolone derivatives as LPA5 antagonists are of promise as potential analgesics.
Collapse
Affiliation(s)
- Dehui Zhang
- Research Triangle Institute, Research Triangle Park, NC, 27709, USA
| | - Ann M Decker
- Research Triangle Institute, Research Triangle Park, NC, 27709, USA
| | - Kristen Woodhouse
- Department of Pharmacology and Toxicology, University at Buffalo, The State University of New York, Buffalo, NY, 14203, USA
| | - Rodney Snyder
- Research Triangle Institute, Research Triangle Park, NC, 27709, USA
| | - Purvi Patel
- Research Triangle Institute, Research Triangle Park, NC, 27709, USA
| | - Danni L Harris
- Research Triangle Institute, Research Triangle Park, NC, 27709, USA
| | - Yuan-Xiang Tao
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA
| | - Jun-Xu Li
- Department of Pharmacology and Toxicology, University at Buffalo, The State University of New York, Buffalo, NY, 14203, USA
| | - Yanan Zhang
- Research Triangle Institute, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
11
|
Dong H, Zhang Y, Huang Y, Deng H. Pathophysiology of RAGE in inflammatory diseases. Front Immunol 2022; 13:931473. [PMID: 35967420 PMCID: PMC9373849 DOI: 10.3389/fimmu.2022.931473] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/06/2022] [Indexed: 12/24/2022] Open
Abstract
The receptor for advanced glycation end products (RAGE) is a non-specific multi-ligand pattern recognition receptor capable of binding to a range of structurally diverse ligands, expressed on a variety of cell types, and performing different functions. The ligand-RAGE axis can trigger a range of signaling events that are associated with diabetes and its complications, neurological disorders, cancer, inflammation and other diseases. Since RAGE is involved in the pathophysiological processes of many diseases, targeting RAGE may be an effective strategy to block RAGE signaling.
Collapse
|
12
|
Neyama H, Nishiyori M, Cui Y, Watanabe Y, Ueda H. Lysophosphatidic acid receptor type-1 mediates brain activation in micro-Positron Emission Tomography analysis in a fibromyalgia-like mouse model. Eur J Neurosci 2022; 56:4224-4233. [PMID: 35666711 DOI: 10.1111/ejn.15729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 05/30/2022] [Indexed: 11/26/2022]
Abstract
The intermittent cold stress-induced generalized pain response mimics the pathophysiological and pharmacotherapeutic features reported for fibromyalgia patients, including the presence of chronic generalized pain and female dominance. In addition, the intermittent cold stress-induced generalized pain is abolished in lysophosphatidic acid receptor type-1 knockout mice, as reported in many cases of neuropathic pain models. This study aimed to identify the brain loci involved in the intermittent cold stress generalized pain response and test their dependence on the lysophosphatidic acid receptor type-1. Positron emission tomography analyses using 2-deoxy-2-[18 F]fluoro-D-glucose in the presence of a pain stimulus showed that intermittent cold stress causes a significant increase in uptake in the ipsilateral regions, including the salience networking-related anterior cingulate cortex and insular cortex and the cognition-related hippocampus. A significant decrease was observed in the default mode network-related posterior cingulate cortex. Almost these intermittent cold stress-induced changes were abolished in lysophosphatidic acid receptor type-1 knockout mice. There results suggest that the intermittent cold stress-induced generalized pain response is mediated by the lysophosphatidic acid receptor type-1 in specific brain loci related to salience networking and cognition, which may lead to further developments in the treatment of fibromyalgia.
Collapse
Affiliation(s)
- Hiroyuki Neyama
- Department of Pharmacology and Therapeutic Innovation, Nagasaki University Institute of Biomedical Sciences, Nagasaki, Japan.,Laboratory for Biofunction Dynamics Imaging, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Michiko Nishiyori
- Department of Pharmacology and Therapeutic Innovation, Nagasaki University Institute of Biomedical Sciences, Nagasaki, Japan
| | - Yilong Cui
- Laboratory for Biofunction Dynamics Imaging, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Yasuyoshi Watanabe
- Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Hiroshi Ueda
- Department of Pharmacology and Therapeutic Innovation, Nagasaki University Institute of Biomedical Sciences, Nagasaki, Japan.,Laboratory for the Study of Pain, Research Institute for Production Development, Kyoto, Japan
| |
Collapse
|
13
|
Dang SJ, Wei WB, Li RL, Song CX, Xu J. Z-Guggulsterone Relieves Neuropathic Pain by Inhibiting the Expression of Astrocytes and Proinflammatory Cytokines in the Spinal Dorsal Horn. J Pain Res 2022; 15:1315-1324. [PMID: 35546904 PMCID: PMC9084390 DOI: 10.2147/jpr.s360126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/02/2022] [Indexed: 11/29/2022] Open
Abstract
Objective The study objective was to investigate whether Z-guggulsterone can relieve neuropathic pain in sciatic nerve chronic constriction injury (CCI) mice by inhibiting the expression of astrocytes and proinflammatory cytokines in the spinal dorsal horn. Methods Neuropathic pain was induced and assessed in CCI mice. Z-guggulsterone was administered multiple times via intraperitoneal injection. Pain behaviour assessments were made by conducting paw withdrawal mechanical threshold (PWMT) and thermal withdrawal latency (TWL) tests. The expression level of the glial fibrillary acidic protein (GFAP) in the spinal dorsal horn was observed by immunofluorescence. The levels of the proinflammatory cytokines, IL-1β, IL-6 and TNF-α in the spinal cord were measured by ELISA. Data were analysed using one-way ANOVA or two-way ANOVA. Results The PWMT and TWL were higher on the 5th, 7th, 10th and 14th days after CCI, the expression level of GFAP in the spinal dorsal horn was lower, and the levels of IL-1β, IL-6 and TNF-α in the spinal cord were lower in the CCI+Z-GS-L, CCI+Z-GS-M and CCI+Z-GS-H groups than in the CCI+Veh group in a dose-dependent manner (P < 0.05). Conclusion Z-guggulsterone can relieve neurological pain in CCI mice, which may be related to the inhibition of astrocytes and proinflammatory cytokines in the spinal dorsal horn.
Collapse
Affiliation(s)
- Sha-Jie Dang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, 710049, People’s Republic of China
- Department of Anesthesiology, Shaanxi Provincial Cancer Hospital, Xi’an, 710061, People’s Republic of China
| | - Wen-Bo Wei
- Department of Orthopedics, Shaanxi Provincial People’s Hospital, Xi’an, 710068, People’s Republic of China
| | - Rui-Li Li
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi’an, 710032, People’s Republic of China
| | - Can-Xu Song
- Department of Ultrasound, Shaanxi Provincial Cancer Hospital, Xi’an, 710061, People’s Republic of China
| | - Jin Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, 710049, People’s Republic of China
- Correspondence: Jin Xu, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, 710049, People’s Republic of China, Email
| |
Collapse
|
14
|
Su J, Krock E, Barde S, Delaney A, Ribeiro J, Kato J, Agalave N, Wigerblad G, Matteo R, Sabbadini R, Josephson A, Chun J, Kultima K, Peyruchaud O, Hökfelt T, Svensson CI. Pain-like behavior in the collagen antibody-induced arthritis model is regulated by lysophosphatidic acid and activation of satellite glia cells. Brain Behav Immun 2022; 101:214-230. [PMID: 35026421 DOI: 10.1016/j.bbi.2022.01.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 12/14/2021] [Accepted: 01/07/2022] [Indexed: 12/30/2022] Open
Abstract
Inflammatory and neuropathic-like components underlie rheumatoid arthritis (RA)-associated pain, and lysophosphatidic acid (LPA) is linked to both joint inflammation in RA patients and to neuropathic pain. Thus, we investigated a role for LPA signalling using the collagen antibody-induced arthritis (CAIA) model. Pain-like behavior during the inflammatory phase and the late, neuropathic-like phase of CAIA was reversed by a neutralizing antibody generated against LPA and by an LPA1/3 receptor inhibitor, but joint inflammation was not affected. Autotaxin, an LPA synthesizing enzyme was upregulated in dorsal root ganglia (DRG) neurons during both CAIA phases, but not in joints or spinal cord. Late-phase pronociceptive neurochemical changes in the DRG were blocked in Lpar1 receptor deficient mice and reversed by LPA neutralization. In vitro and in vivo studies indicated that LPA regulates pain-like behavior via the LPA1 receptor on satellite glia cells (SGCs), which is expressed by both human and mouse SGCs in the DRG. Furthermore, CAIA-induced SGC activity is reversed by phospholipid neutralization and blocked in Lpar1 deficient mice. Our findings suggest that the regulation of CAIA-induced pain-like behavior by LPA signalling is a peripheral event, associated with the DRGs and involving increased pronociceptive activity of SGCs, which in turn act on sensory neurons.
Collapse
Affiliation(s)
- Jie Su
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, 17177 Stockholm, Sweden; Department of Medical Biochemistry and Biophysics, Division of Molecular Neurobiology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Emerson Krock
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Swapnali Barde
- Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Ada Delaney
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, 17177 Stockholm, Sweden
| | | | - Jungo Kato
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Nilesh Agalave
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Gustaf Wigerblad
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, 17177 Stockholm, Sweden
| | | | - Roger Sabbadini
- LPath Inc, San Diego, United States; Department of Biology, San Diego State University, 92182, United States
| | - Anna Josephson
- Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Jerold Chun
- Translational Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, United States
| | - Kim Kultima
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, 17177 Stockholm, Sweden; Department of Medical Sciences, Uppsala University, 75185 Uppsala, Sweden
| | | | - Tomas Hökfelt
- Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Camilla I Svensson
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, 17177 Stockholm, Sweden.
| |
Collapse
|
15
|
Tanaka K, Dozono N, Neyama H, Nagai J, Tsukahara R, Nagayasu K, Kaneko S, Ueda H. Secreted PLA 2-III is a possible therapeutic target to treat neuropathic pain. Biochem Biophys Res Commun 2021; 568:167-173. [PMID: 34237486 DOI: 10.1016/j.bbrc.2021.06.058] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 06/15/2021] [Indexed: 10/20/2022]
Abstract
Lysophosphatidic acid (LPA) plays a critical role in developing and maintaining chronic pain in various animal models. Previous studies have reported that cytosolic and calcium-independent phospholipase A2 (PLA2) is involved in the LPA receptor-mediated amplification of LPA production in the spinal dorsal horn (SDH) after nerve injury, while the involvement of secreted PLA2 (sPLA2) remains unclear. The present study revealed that only sPLA2 -III among 11 species of PLA2 showed a significant upregulation of gene expression in the SDH. Intraspinal injection of adeno-associated virus-miRNA targeting sPLA2-III prevented hyperalgesia and unique hypoalgesia in mice treated with partial sciatic nerve ligation. In addition, intrathecal treatment with antisense oligodeoxynucleotide or siRNA targeting sPLA2-III significantly reversed the established thermal hyperalgesia. In the high-throughput screening of sPLA2-III inhibitors from the chemical library, we identified two hit compounds. Through in vitro characterization of PLA2 inhibitor profiles and in vivo assessment of the anti-hyperalgesic effects of known PLA2 inhibitors as well as hit compounds, sPLA2-III was found to be a novel therapeutic target molecule for the treatment of Neuropathic pain.
Collapse
Affiliation(s)
- Keigo Tanaka
- Department of Molecular Pharmacology, Kyoto University Graduate School of Pharmaceutical Sciences, Kyoto, 606-8501, Japan
| | - Naoki Dozono
- Department of Molecular Pharmacology, Kyoto University Graduate School of Pharmaceutical Sciences, Kyoto, 606-8501, Japan; Department of Pharmacology and Therapeutic Innovation, Nagasaki University Institute of Biomedical Sciences, 852-8521, Japan
| | - Hiroyuki Neyama
- Department of Pharmacology and Therapeutic Innovation, Nagasaki University Institute of Biomedical Sciences, 852-8521, Japan; RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Jun Nagai
- Department of Pharmacology and Therapeutic Innovation, Nagasaki University Institute of Biomedical Sciences, 852-8521, Japan
| | - Ryoko Tsukahara
- Department of Pharmacology and Therapeutic Innovation, Nagasaki University Institute of Biomedical Sciences, 852-8521, Japan
| | - Kazuki Nagayasu
- Department of Molecular Pharmacology, Kyoto University Graduate School of Pharmaceutical Sciences, Kyoto, 606-8501, Japan
| | - Shuji Kaneko
- Department of Molecular Pharmacology, Kyoto University Graduate School of Pharmaceutical Sciences, Kyoto, 606-8501, Japan
| | - Hiroshi Ueda
- Department of Molecular Pharmacology, Kyoto University Graduate School of Pharmaceutical Sciences, Kyoto, 606-8501, Japan; Department of Pharmacology and Therapeutic Innovation, Nagasaki University Institute of Biomedical Sciences, 852-8521, Japan; Laboratory for the Study of Pain, Research Institute for Production Development, Kyoto, 606-0805, Japan.
| |
Collapse
|
16
|
Rivera R, Williams NA, Kennedy GG, Sánchez-Pavón P, Chun J. Generation of an Lpar1-EGFP Fusion Knock-in Transgenic Mouse Line. Cell Biochem Biophys 2021; 79:619-627. [PMID: 34652685 PMCID: PMC8551097 DOI: 10.1007/s12013-021-01033-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2021] [Indexed: 10/25/2022]
Abstract
Lysophosphatidic acid (LPA) is a lysophospholipid that acts as an extracellular signal through the activation of cognate G protein-coupled receptors (GPCRs). There are six known LPA receptors (LPA1-6). The first such receptor, LPA1, was identified in the embryonic brain and has been studied extensively for gene expression throughout the body, including through studies of receptor-null mice. However, identifying receptor protein expression in situ and in vivo within living cells and tissues has been difficult because of biologically low receptor expression and variable antibody specificity. To visualize native LPA1 receptor expression in situ, we generated a knock-in mouse produced by homologous recombination in murine embryonic stem (ES) cells to replace a wildtype Lpar1 allele with a mutant allele created by in-frame fusion of EGFP to the 4th exon of Lpar1 (Lpar1-EGFP knock-in allele). Homozygous knock-in mice appeared normal and the expected mendelian ratios of knock-in allele transmission were present in females and males. Histological assessments of the fetal and adult central nervous system (CNS) demonstrated expression patterns that were consistent with prior in situ hybridization studies. This new mouse line will be useful for studies of LPA1 in the developing and adult CNS, as well as other tissues, and for receptor assessments in living tissues and disease models.
Collapse
Affiliation(s)
- Richard Rivera
- Translational Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Nyssa A Williams
- Translational Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Grace G Kennedy
- Translational Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Paloma Sánchez-Pavón
- Translational Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Jerold Chun
- Translational Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
17
|
Critical Roles of Lysophospholipid Receptors in Activation of Neuroglia and Their Neuroinflammatory Responses. Int J Mol Sci 2021; 22:ijms22157864. [PMID: 34360625 PMCID: PMC8346064 DOI: 10.3390/ijms22157864] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/21/2021] [Accepted: 07/21/2021] [Indexed: 12/12/2022] Open
Abstract
Activation of microglia and/or astrocytes often releases proinflammatory molecules as critical pathogenic mediators that can promote neuroinflammation and secondary brain damages in diverse diseases of the central nervous system (CNS). Therefore, controlling the activation of glial cells and their neuroinflammatory responses has been considered as a potential therapeutic strategy for treating neuroinflammatory diseases. Recently, receptor-mediated lysophospholipid signaling, sphingosine 1-phosphate (S1P) receptor- and lysophosphatidic acid (LPA) receptor-mediated signaling in particular, has drawn scientific interest because of its critical roles in pathogenies of diverse neurological diseases such as neuropathic pain, systemic sclerosis, spinal cord injury, multiple sclerosis, cerebral ischemia, traumatic brain injury, hypoxia, hydrocephalus, and neuropsychiatric disorders. Activation of microglia and/or astrocytes is a common pathogenic event shared by most of these CNS disorders, indicating that lysophospholipid receptors could influence glial activation. In fact, many studies have reported that several S1P and LPA receptors can influence glial activation during the pathogenesis of cerebral ischemia and multiple sclerosis. This review aims to provide a comprehensive framework about the roles of S1P and LPA receptors in the activation of microglia and/or astrocytes and their neuroinflammatory responses in CNS diseases.
Collapse
|
18
|
Puigdomenech-Poch M, Martínez-Muriana A, Andrés-Benito P, Ferrer I, Chun J, López-Vales R. Dual Role of Lysophosphatidic Acid Receptor 2 (LPA 2) in Amyotrophic Lateral Sclerosis. Front Cell Neurosci 2021; 15:600872. [PMID: 33841099 PMCID: PMC8026865 DOI: 10.3389/fncel.2021.600872] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 03/01/2021] [Indexed: 11/13/2022] Open
Abstract
Lysophosphatidic acid (LPA) is a pleiotropic extracellular lipid mediator with many physiological functions that signal through six known G protein-coupled receptors (LPA1-6). In the central nervous system (CNS), LPA mediates a wide range of effects including neural progenitor cell physiology, neuronal cell death, axonal retraction, and inflammation. Since inflammation is a hallmark of most neurological conditions, we hypothesized that LPA could be involved in the physiopathology of amyotrophic lateral sclerosis (ALS). We found that LPA2 RNA was upregulated in post-mortem spinal cord samples of ALS patients and in the sciatic nerve and skeletal muscle of SOD1G93A mouse, the most widely used ALS mouse model. To assess the contribution of LPA2 to ALS, we generated a SOD1G93A mouse that was deficient in Lpar2. This animal revealed that LPA2 signaling accelerates disease onset and neurological decline but, unexpectedly, extended the lifespan. To gain insights into the early harmful actions of LPA2 in ALS, we studied the effects of this receptor in the spinal cord, peripheral nerve, and skeletal muscle of ALS mice. We found that LPA2 gene deletion increased microglial activation but did not contribute to motoneuron death, astrogliosis, degeneration, and demyelination of motor axons. However, we observed that Lpar2 deficiency protected against muscle atrophy. Moreover, we also found the deletion of Lpar2 reduced the invasion of macrophages into the skeletal muscle of SOD1G93A mice, linking LPA2 signaling with muscle inflammation and atrophy in ALS. Overall, these results suggest for the first time that LPA2 contributes to ALS, and its genetic deletion results in protective actions at the early stages of the disease but shortens survival thereafter.
Collapse
Affiliation(s)
- Maria Puigdomenech-Poch
- Departament de Biologia Cellular, Fisiologia i Immunologia, Institut de Neurociències, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Universitat Autònoma de Barcelona, Bellaterra, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Anna Martínez-Muriana
- Departament de Biologia Cellular, Fisiologia i Immunologia, Institut de Neurociències, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Pol Andrés-Benito
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Departament de Patologia i Terapèutica Experimental, Hospital Universitari de Bellvitge, IDIBELL, L’Hospitalet de Llobregat, Universitat de Barcelona, Barcelona, Spain
| | - Isidre Ferrer
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Departament de Patologia i Terapèutica Experimental, Hospital Universitari de Bellvitge, IDIBELL, L’Hospitalet de Llobregat, Universitat de Barcelona, Barcelona, Spain
| | - Jerold Chun
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Rubèn López-Vales
- Departament de Biologia Cellular, Fisiologia i Immunologia, Institut de Neurociències, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Universitat Autònoma de Barcelona, Bellaterra, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|
19
|
Dimethyl Trisulfide Diminishes Traumatic Neuropathic Pain Acting on TRPA1 Receptors in Mice. Int J Mol Sci 2021; 22:ijms22073363. [PMID: 33806000 PMCID: PMC8036544 DOI: 10.3390/ijms22073363] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/20/2022] Open
Abstract
Pharmacotherapy of neuropathic pain is still challenging. Our earlier work indicated an analgesic effect of dimethyl trisulfide (DMTS), which was mediated by somatostatin released from nociceptor nerve endings acting on SST4 receptors. Somatostatin release occurred due to TRPA1 ion channel activation. In the present study, we investigated the effect of DMTS in neuropathic pain evoked by partial ligation of the sciatic nerve in mice. Expression of the mRNA of Trpa1 in murine dorsal-root-ganglion neurons was detected by RNAscope. Involvement of TRPA1 ion channels and SST4 receptors was tested with gene-deleted animals. Macrophage activity at the site of the nerve lesion was determined by lucigenin bioluminescence. Density and activation of microglia in the spinal cord dorsal horn was verified by immunohistochemistry and image analysis. Trpa1 mRNA is expressed in peptidergic and non-peptidergic neurons in the dorsal root ganglion. DMTS ameliorated neuropathic pain in Trpa1 and Sstr4 WT mice, but not in KO ones. DMTS had no effect on macrophage activity around the damaged nerve. Microglial density in the dorsal horn was reduced by DMTS independently from TRPA1. No effect on microglial activation was detected. DMTS might offer a novel therapeutic opportunity in the complementary treatment of neuropathic pain.
Collapse
|
20
|
Birgbauer E. Lysophosphatidic Acid Signalling in Nervous System Development and Function. Neuromolecular Med 2021; 23:68-85. [PMID: 33151452 PMCID: PMC11420905 DOI: 10.1007/s12017-020-08630-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/30/2020] [Indexed: 02/06/2023]
Abstract
One class of molecules that are now coming to be recognized as essential for our understanding of the nervous system are the lysophospholipids. One of the major signaling lysophospholipids is lysophosphatidic acid, also known as LPA. LPA activates a variety of G protein-coupled receptors (GPCRs) leading to a multitude of physiological responses. In this review, I describe our current understanding of the role of LPA and LPA receptor signaling in the development and function of the nervous system, especially the central nervous system (CNS). In addition, I highlight how aberrant LPA receptor signaling may underlie neuropathological conditions, with important clinical application.
Collapse
Affiliation(s)
- Eric Birgbauer
- Department of Biology, Winthrop University, Rock Hill, SC, USA.
| |
Collapse
|
21
|
Uranbileg B, Ito N, Kurano M, Kano K, Uchida K, Sumitani M, Aoki J, Yatomi Y. Inhibition of autotaxin activity ameliorates neuropathic pain derived from lumbar spinal canal stenosis. Sci Rep 2021; 11:3984. [PMID: 33597645 PMCID: PMC7889906 DOI: 10.1038/s41598-021-83569-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 02/04/2021] [Indexed: 12/13/2022] Open
Abstract
Lumbar spinal canal stenosis (LSS) or mechanical compression of dorsal root ganglion (DRG) is one of the causes of low back pain and neuropathic pain (NP). Lysophosphatidic acid (LPA) is a potent bioactive lipid mediator that is produced mainly from lysophosphatidylcholine (LPC) via autotaxin (ATX) and is known to induce NP via LPA1 receptor signaling in mice. Recently, we demonstrated that LPC and LPA were higher in cerebrospinal fluid (CSF) of patients with LSS. Based on the possible potential efficacy of the ATX inhibitor for NP treatment, we used an NP model with compression of DRG (CD model) and investigated LPA dynamics and whether ATX inhibition could ameliorate NP symptoms, using an orally available ATX inhibitor (ONO-8430506) at a dose of 30 mg/kg. In CD model, we observed increased LPC and LPA levels in CSF, and decreased threshold of the pain which were ameliorated by oral administration of the ATX inhibitor with decreased microglia and astrocyte populations at the site of the spinal dorsal horn projecting from injured DRG. These results suggested possible efficacy of ATX inhibitor for the treatment of NP caused by spinal nerve root compression and involvement of the ATX-LPA axis in the mechanism of NP induction.
Collapse
Affiliation(s)
- Baasanjav Uranbileg
- Department of Clinical Laboratory Medicine, The University of Tokyo, Tokyo, Japan
| | - Nobuko Ito
- Department of Anesthesiology and Pain Relief Center, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| | - Makoto Kurano
- Department of Clinical Laboratory Medicine, The University of Tokyo, Tokyo, Japan
| | - Kuniyuki Kano
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Kanji Uchida
- Department of Anesthesiology and Pain Relief Center, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Masahiko Sumitani
- Department of Pain and Palliative Medicine, The University of Tokyo Hospital, Tokyo, Japan
| | - Junken Aoki
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yutaka Yatomi
- Department of Clinical Laboratory Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
22
|
Pathogenic mechanisms of lipid mediator lysophosphatidic acid in chronic pain. Prog Lipid Res 2020; 81:101079. [PMID: 33259854 DOI: 10.1016/j.plipres.2020.101079] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023]
Abstract
A number of membrane lipid-derived mediators play pivotal roles in the initiation, maintenance, and regulation of various types of acute and chronic pain. Acute pain, comprising nociceptive and inflammatory pain warns us about the presence of damage or harmful stimuli. However, it can be efficiently reversed by opioid analgesics and anti-inflammatory drugs. Prostaglandin E2 and I2, the representative lipid mediators, are well-known causes of acute pain. However, some lipid mediators such as lipoxins, resolvins or endocannabinoids suppress acute pain. Various types of peripheral and central neuropathic pain (NeuP) as well as fibromyalgia (FM) are representatives of chronic pain and refractory owing to abnormal pain processing distinct from acute pain. Accumulating evidence demonstrated that lipid mediators represented by lysophosphatidic acid (LPA) are involved in the initiation and maintenance of both NeuP and FM in experimental animal models. The LPAR1-mediated peripheral mechanisms including dorsal root demyelination, Cavα2δ1 expression in dorsal root ganglion, and LPAR3-mediated amplification of central LPA production via glial cells are involved in the series of molecular mechanisms underlying NeuP. This review also discusses the involvement of lipid mediators in emerging research directives, including itch-sensing, sexual dimorphism, and the peripheral immune system.
Collapse
|
23
|
Neyama H, Dozono N, Uchida H, Ueda H. Mirtazapine, an α2 Antagonist-Type Antidepressant, Reverses Pain and Lack of Morphine Analgesia in Fibromyalgia-Like Mouse Models. J Pharmacol Exp Ther 2020; 375:1-9. [PMID: 32665319 DOI: 10.1124/jpet.120.265942] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 07/13/2020] [Indexed: 12/16/2022] Open
Abstract
Treatment of fibromyalgia is an unmet medical need; however, its pathogenesis is still poorly understood. In a series of studies, we have demonstrated that some pharmacological treatments reverse generalized chronic pain but do not affect the lack of morphine analgesia in the intermittent cold stress (ICS)-induced fibromyalgia-like pain model in mice. Here we report that repeated intraperitoneal treatments with mirtazapine, which is presumed to disinhibit 5-hydroxytriptamine (5-HT) release and activate 5-HT1 receptor through mechanisms of blocking presynaptic adrenergic α2 and postsynaptic 5-HT2 and 5-HT3 receptors, completely reversed the chronic pain for more than 4 to 5 days after the cessation of treatments. The repeated mirtazapine treatments also recovered the morphine analgesia after the return of nociceptive threshold to the normal level. The microinjection of small interfering RNA (siRNA) adrenergic α2a receptor (ADRA2A) into the habenula, which showed a selective upregulation of α2 receptor gene expression after ICS, reversed the hyperalgesia but did not recover the morphine analgesia. However, both reversal of hyperalgesia and recovery of morphine analgesia were observed when siRNA ADRA2A was administered intracerebroventricularly. As the habenular is reported to be involved in the emotion/reward-related pain and hypoalgesia, these results suggest that mirtazapine could attenuate pain and/or augment hypoalgesia by blocking the habenular α2 receptor after ICS. The recovery of morphine analgesia in the ICS model, on the other hand, seems to be mediated through a blockade of α2 receptor in unidentified brain regions. SIGNIFICANCE STATEMENT: This study reports possible mechanisms underlying the complete reversal of hyperalgesia and recovery of morphine analgesia by mirtazapine, a unique antidepressant with adrenergic α2 and serotonergic receptor antagonist properties, in a type of intermittently repeated stress (ICS)-induced fibromyalgia-like pain model. Habenula, a brain region which is related to the control of emotional pain, was found to play key roles in the antihyperalgesia, whereas other brain regions appeared to be involved in the recovery of morphine analgesia in the ICS model.
Collapse
Affiliation(s)
- Hiroyuki Neyama
- Department of Pharmacology and Therapeutic Innovation, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Naoki Dozono
- Department of Pharmacology and Therapeutic Innovation, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hitoshi Uchida
- Department of Pharmacology and Therapeutic Innovation, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hiroshi Ueda
- Department of Pharmacology and Therapeutic Innovation, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
24
|
Lysophosphatidic Acid Receptor 1- and 3-Mediated Hyperalgesia and Hypoalgesia in Diabetic Neuropathic Pain Models in Mice. Cells 2020; 9:cells9081906. [PMID: 32824296 PMCID: PMC7465054 DOI: 10.3390/cells9081906] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/08/2020] [Accepted: 08/13/2020] [Indexed: 12/28/2022] Open
Abstract
Lysophosphatidic acid (LPA) signaling is known to play key roles in the initiation and maintenance of various chronic pain models. Here we examined whether LPA signaling is also involved in diabetes-induced abnormal pain behaviors. The high-fat diet (HFD) showing elevation of blood glucose levels and body weight caused thermal, mechanical hyperalgesia, hypersensitivity to 2000 or 250 Hz electrical-stimulation and hyposensitivity to 5 Hz stimulation to the paw in wild-type (WT) mice. These HFD-induced abnormal pain behaviors and body weight increase, but not elevated glucose levels were abolished in LPA1−/− and LPA3−/− mice. Repeated daily intrathecal (i.t.) treatments with LPA1/3 antagonist AM966 reversed these abnormal pain behaviors. Similar abnormal pain behaviors and their blockade by daily AM966 (i.t.) or twice daily Ki16425, another LPA1/3 antagonist was also observed in db/db mice which show high glucose levels and body weight. Furthermore, streptozotocin-induced similar abnormal pain behaviors, but not elevated glucose levels or body weight loss were abolished in LPA1−/− and LPA3−/− mice. These results suggest that LPA1 and LPA3 play key roles in the development of both type I and type II diabetic neuropathic pain.
Collapse
|
25
|
Rivera RR, Lin M, Bornhop EC, Chun J. Conditional Lpar1 gene targeting identifies cell types mediating neuropathic pain. FASEB J 2020; 34:8833-8842. [PMID: 32929779 PMCID: PMC7383719 DOI: 10.1096/fj.202000317r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 01/26/2023]
Abstract
LPA1 is one of six known receptors (LPA1-6) for lysophosphatidic acid (LPA). Constitutive Lpar1 null mutant mice have been instrumental in identifying roles for LPA-LPA1 signaling in neurobiological processes, brain development, and behavior, as well as modeling human neurological diseases like neuropathic pain. Constitutive Lpar1 null mutant mice are protected from partial sciatic nerve ligation (PSNL)-induced neuropathic pain, however, the cell types that are functionally responsible for mediating this protective effect are unknown. Here, we report the generation of an Lpar1flox/flox conditional null mutant mouse that allows for cre-mediated conditional deletion, combined with a PSNL pain model. Lpar1flox/flox mice were crossed with cre transgenic lines driven by neural gene promoters for nestin (all neural cells), synapsin (neurons), or P0 (Schwann cells). CD11b-cre transgenic mice were also used to delete Lpar1 in microglia. PSNL-initiated pain responses were reduced following cre-mediated Lpar1 deletion with all three neural promoters as well as the CD11b promoter, supporting involvement of Schwann cells, central and/or peripheral neurons, and microglia in mediating pain. Interestingly, rescue responses were nonidentical, implicating distinct roles for Lpar1-expressing cell types. Our results with a new Lpar1 conditional mouse mutant expand an understanding of LPA1 signaling in the PSNL model of neuropathic pain.
Collapse
Affiliation(s)
- Richard R. Rivera
- Degenerative Disease ProgramSanford Burnham Prebys Medical Discovery InstituteLa JollaCAUSA
| | - Mu‐En Lin
- Molecular Biology Department, Dorris Neuroscience CenterThe Scripps Research InstituteLa JollaCAUSA
- Biomedical Sciences Graduate ProgramUniversity of California San DiegoLa JollaCAUSA
- Present address:
RevMAb BiosciencesSouth San FranciscoCAUSA
| | - Emily C. Bornhop
- Degenerative Disease ProgramSanford Burnham Prebys Medical Discovery InstituteLa JollaCAUSA
| | - Jerold Chun
- Degenerative Disease ProgramSanford Burnham Prebys Medical Discovery InstituteLa JollaCAUSA
| |
Collapse
|
26
|
Neyama H, Dozono N, Ueda H. NR2A-NMDA Receptor Blockade Reverses the Lack of Morphine Analgesia Without Affecting Chronic Pain Status in a Fibromyalgia-Like Mouse Model. J Pharmacol Exp Ther 2020; 373:103-112. [PMID: 31941720 DOI: 10.1124/jpet.119.262642] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 01/13/2020] [Indexed: 03/08/2025] Open
Abstract
We have developed an experimental fibromyalgia-like mouse model using intermittent cold stress (ICS), where chronic pain is generalized, female predominant, and abolished in type 1 lysophosphatidic acid receptor-knockout (LPA1 -/-) mice but is not reversed by systemic or brain treatment with morphine. We investigated two issues in the present study: (1) whether chronic pain mechanisms and lack of brain morphine analgesia are associated in the ICS model and (2) what mechanisms are involved in the lack of morphine analgesia. ICS-induced hyperalgesia was not affected in μ-opioid receptor-knockout (MOPr -/-) mice, whereas the lack of brain morphine analgesia remained unchanged in LPA1 -/- mice, which completely abolished the hyperalgesia in the ICS model. In contrast, the lack of morphine analgesia was abolished in NR2A-NMDA receptor-knockout (NR2A -/- ) mice and blocked by intracerebroventricular (i.c.v.) injection of (R)-CPP, an NR2A antagonist, or by microinjection of siRNA NR2A into the periaqueductal gray matter region, whereas no change was observed with Ro 04-5595, an NMDA receptor subtype 2B antagonist (i.c.v.). The lack of morphine analgesia was also reversed by concomitant treatment with 1 mg/kg intraperitoneal (i.p.) of dextromethorphan, which possesses NMDA receptor antagonist activity but no analgesic activity. Finally, the hyperalgesia was completely reversed by methadone, which possesses both MOPr agonist and NMDA receptor antagonist activity. Indeed, methadone analgesia was abolished in MOPr -/- mice. These results suggest that chronic pain status and lack of morphine analgesia are independent of each other, and that lack of morphine analgesia is mediated by activation of the NR2A-NMDA receptor system. SIGNIFICANCE STATEMENT: This study reports that a type of intermittently repeated stress causes widespread pain that does not respond to morphine. Because this lack of morphine analgesia is not affected in mice, in which chronic pain is abolished, the mechanisms underlying chronic pain and lack of morphine analgesia are independent of each other. Through speculation that a lack of morphine analgesia may be a secondary event to endogenous opioid analgesic tolerance, the authors demonstrate that an antiopioid N-methyl-D-aspartate receptor system counterbalances the μ-opioid receptor-mediated analgesic mechanisms in the intermittent cold stress model.
Collapse
Affiliation(s)
- Hiroyuki Neyama
- Department of Pharmacology and Therapeutic Innovation, Nagasaki University Institute of Biomedical Sciences, Nagasaki, Japan
| | - Naoki Dozono
- Department of Pharmacology and Therapeutic Innovation, Nagasaki University Institute of Biomedical Sciences, Nagasaki, Japan
| | - Hiroshi Ueda
- Department of Pharmacology and Therapeutic Innovation, Nagasaki University Institute of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
27
|
Deftu AF, Suter MR. Glia and Pain in Spinal Cord. THE SENSES: A COMPREHENSIVE REFERENCE 2020:235-248. [DOI: 10.1016/b978-0-12-809324-5.24214-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
28
|
Ueda H. LPA receptor signaling as a therapeutic target for radical treatment of neuropathic pain and fibromyalgia. Pain Manag 2019; 10:43-53. [PMID: 31852400 DOI: 10.2217/pmt-2019-0036] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Since the first discovery that the bioactive lipid, lysophosphatidic acid (LPA) and LPA1 receptor signaling play a role in the initiation of neuropathic pain (NeuP), accumulated reports have supported the original findings and extended the study toward possible therapeutic applications. The present review describes beneficial roles of LPA receptor signaling in a variety of chronic pain, such as peripheral NeuP induced by nerve injury, chemotherapy and diabetes, central NeuP induced by cerebral ischemia with hemorrhage and spinal cord injury, and fibromyalgia-like wide spread pain induced by repeated cold, psychological and muscular acidic stress. Emerging mechanistic findings are the feed-forward amplification of LPA production through LPA1, LPA3 and microglia and the evidence for maintenance of chronic pain by LPA receptor signaling.
Collapse
Affiliation(s)
- Hiroshi Ueda
- Department of Molecular Pharmacology, Kyoto University Graduate School of Pharmaceutical Sciences, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
29
|
Ueda H. [Lysophosphatidic Acid Receptor Signaling Underlying Chronic Pain and Neuroprotective Mechanisms through Prothymosin α]. YAKUGAKU ZASSHI 2019; 139:1403-1415. [PMID: 31685737 DOI: 10.1248/yakushi.19-00160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
For my Ph.D. research topic, I isolated endogenous morphine-like analgesic dipeptide, kyotorphin, which mediates Met-enkephalin release, and discovered kyotorphin synthetase, a putative receptor and antagonist. Furthermore, I succeeded in purifying μ-opioid receptor and functional reconstitution with purified G proteins. After receiving my full professor position at Nagasaki University in 1996, I worked on two topics of research, molecular mechanisms of chronic pain through lysophosphatidic acid (LPA) and identification and characterization of neuroprotective protein, prothymosin α. In a series of studies, we have shown that LPA signaling defines the molecular mechanisms of neuropathic pain and fibromyalgia in terms of development and maintenance. Above all, the discovery of feed-forward system in LPA production and pain memory may contribute to better understanding of chronic pain and future analgesic drug discovery. Regarding prothymosin α, we first discovered it as neuronal necrosis-inhibitory molecule through two independent mechanisms, such as toll-like receptor and F0/F1 ATPase, both which protect neurons through indirect mechanisms. Prothymosin α is released by non-classical and non-vesicular mechanisms on various stresses, such as ischemia, starvation, and heat-shock. Thus it may be called a new type of neuroprotective damage-associated molecular patterns (DAMPs)/Alarmins. Heterozygotic mice showed a defect in memory-learning and neurogenesis as well as anxiogenic behaviors. Small peptide, P6Q derived from prothymosin α retains neuroprotective actions, which include blockade of cerebral hemorrhage caused by late treatment with tissue plasminogen activator in the stroke model in mice.
Collapse
Affiliation(s)
- Hiroshi Ueda
- Department of Pharmacology and Therapeutic Innovation, Nagasaki University, Institute of Biomedical Sciences
| |
Collapse
|
30
|
Affiliation(s)
- Hiroshi Ueda
- Graduate School of Pharmaceutical Sciences, Kyoto University
| |
Collapse
|
31
|
Liu C, Fan L, Xing J, Wang Q, Lin C, Liu C, Deng X, Ning C, Zhou L, Rong L, Liu B. Inhibition of astrocytic differentiation of transplanted neural stem cells by chondroitin sulfate methacrylate hydrogels for the repair of injured spinal cord. Biomater Sci 2019; 7:1995-2008. [PMID: 30839020 DOI: 10.1039/c8bm01363b] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Neural stem cell (NSC) transplantation exerts a therapeutic effect on spinal cord injury (SCI) but is limited to an unregulated differentiation pattern by which NSCs preferentially differentiate into astrocytes, with relatively few neurons. It is well established that the increased NSC-derived astrocytes exhibit aberrant axonal sprouting associated with allodynia-like symptoms of the forepaws. Some strategies have been used to overcome this issue, such as regulation of major pathways, ex vivo gene transfer, and genetic overexpression. However, lack of efficiency, viral vector safety issues and the risk of tumorigenesis have hindered the clinical application of these treatments. Here, we show that astrocytic differentiation of NSCs in vitro and in vivo can be inhibited by encapsulation of cells in a three-dimensional chondroitin sulfate methacrylate (CSMA) hydrogel. When CSMA hydrogels were used to transplant NSCs, the combinatory implant promoted functional recovery and attenuated the hypersensitivity responses of the forepaws. Further analysis showed that transplantation of NSCs within CSMA hydrogels reduced injured cavity areas and promoted neurogenesis rather than fibroglial formation after graft implantation. Furthermore, the treatment prevented allodynia-related CGRP/GAP43-positive nociception due to fibers sprouting into inappropriate lamina regions. Taken together, these findings show that CSMA/NSCs combined transplantation helps prevent adverse side effects of NSCs treatment and promotes recovery of SCI.
Collapse
Affiliation(s)
- Can Liu
- Department of Spine Surgery, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, Guangdong Province, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Gaire BP, Sapkota A, Song MR, Choi JW. Lysophosphatidic acid receptor 1 (LPA 1) plays critical roles in microglial activation and brain damage after transient focal cerebral ischemia. J Neuroinflammation 2019; 16:170. [PMID: 31429777 PMCID: PMC6701099 DOI: 10.1186/s12974-019-1555-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 08/05/2019] [Indexed: 12/29/2022] Open
Abstract
Background Lysophosphatidic acid receptor 1 (LPA1) is in the spotlight because its synthetic antagonist has been under clinical trials for lung fibrosis and psoriasis. Targeting LPA1 might also be a therapeutic strategy for cerebral ischemia because LPA1 triggers microglial activation, a core pathogenesis in cerebral ischemia. Here, we addressed this possibility using a mouse model of transient middle cerebral artery occlusion (tMCAO). Methods To address the role of LPA1 in the ischemic brain damage, we used AM095, a selective LPA1 antagonist, as a pharmacological tool and lentivirus bearing a specific LPA1 shRNA as a genetic tool. Brain injury after tMCAO challenge was accessed by determining brain infarction and neurological deficit score. Role of LPA1 in tMCAO-induced microglial activation was ascertained by immunohistochemical analysis. Proinflammatory responses in the ischemic brain were determined by qRT-PCR and immunohistochemical analyses, which were validated in vitro using mouse primary microglia. Activation of MAPKs and PI3K/Akt was determined by Western blot analysis. Results AM095 administration immediately after reperfusion attenuated brain damage such as brain infarction and neurological deficit at 1 day after tMCAO, which was reaffirmed by LPA1 shRNA lentivirus. AM095 administration also attenuated brain infarction and neurological deficit at 3 days after tMCAO. LPA1 antagonism attenuated microglial activation; it reduced numbers and soma size of activated microglia, reversed their morphology into less toxic one, and reduced microglial proliferation. Additionally, LPA1 antagonism reduced mRNA expression levels of proinflammatory cytokines and suppressed NF-κB activation, demonstrating its regulatory role of proinflammatory responses in the ischemic brain. Particularly, these LPA1-driven proinflammatory responses appeared to occur in activated microglia because NF-κB activation occurred mainly in activated microglia in the ischemic brain. Regulatory role of LPA1 in proinflammatory responses of microglia was further supported by in vitro findings using lipopolysaccharide-stimulated cultured microglia, showing that suppressing LPA1 activity reduced mRNA expression levels of proinflammatory cytokines. In the ischemic brain, LPA1 influenced PI3K/Akt and MAPKs; suppressing LPA1 activity decreased MAPK activation and increased Akt phosphorylation. Conclusion This study demonstrates that LPA1 is a new etiological factor for cerebral ischemia, strongly indicating that its modulation can be a potential strategy to reduce ischemic brain damage. Electronic supplementary material The online version of this article (10.1186/s12974-019-1555-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bhakta Prasad Gaire
- Laboratory of Neuropharmacology, College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Yeonsu-gu, Incheon, 406-799, Republic of Korea
| | - Arjun Sapkota
- Laboratory of Neuropharmacology, College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Yeonsu-gu, Incheon, 406-799, Republic of Korea
| | - Mi-Ryoung Song
- School of Life Sciences, Gwangju Institute of Science and Technology, Buk-gu, Gwangju, 500-712, Republic of Korea.
| | - Ji Woong Choi
- Laboratory of Neuropharmacology, College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Yeonsu-gu, Incheon, 406-799, Republic of Korea.
| |
Collapse
|
33
|
Braga AV, Costa SOAM, Rodrigues FF, Melo ISF, Morais MI, Coelho MM, Machado RR. Thiamine, riboflavin, and nicotinamide inhibit paclitaxel-induced allodynia by reducing TNF-α and CXCL-1 in dorsal root ganglia and thalamus and activating ATP-sensitive potassium channels. Inflammopharmacology 2019; 28:201-213. [DOI: 10.1007/s10787-019-00625-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 07/29/2019] [Indexed: 10/26/2022]
|
34
|
Liang YJ, Feng SY, Qi YP, Li K, Jin ZR, Jing HB, Liu LY, Cai J, Xing GG, Fu KY. Contribution of microglial reaction to increased nociceptive responses in high-fat-diet (HFD)-induced obesity in male mice. Brain Behav Immun 2019; 80:777-792. [PMID: 31108168 DOI: 10.1016/j.bbi.2019.05.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 05/11/2019] [Accepted: 05/16/2019] [Indexed: 12/27/2022] Open
Abstract
The progressive increase in the prevalence of obesity in the population can result in increased healthcare costs and demands. Recent studies have revealed a positive correlation between pain and obesity, although the underlying mechanisms still remain unknown. Here, we aimed to clarify the role of microglia in altered pain behaviors induced by high-fat diet (HFD) in male mice. We found that C57BL/6CR mice on HFD exhibited enhanced spinal microglial reaction (increased cell number and up-regulated expression of p-p38 and CD16/32), increased tumor necrosis factor-α (TNF-α) mRNA and brain-derived neurotrophic factor (BDNF) protein expression as well as a polarization of spinal microglial toward a pro-inflammatory phenotype. Moreover, we found that using PLX3397 (a selective colony-stimulating factor-1 receptor (CSF1R) kinase inhibitor) to eliminate microglia in HFD-induced obesity mice, inflammation in the spinal cord was rescued, as was abnormal pain hypersensitivity. Intrathecal injection of Mac-1-saporin (a saporin-conjugated anti-mac1 antibody) resulted in a decreased number of microglia and attenuated both mechanical allodynia and thermal hyperalgesia in HFD-fed mice. These results indicate that the pro-inflammatory functions of spinal microglia have a special relevance to abnormal pain hypersensitivity in HFD-induced obesity mice. In conclusion, our data suggest that HFD induces a classical reaction of microglia, characterized by an enhanced phosphorylation of p-38 and increased CD16/32 expression, which may in part contribute to increased nociceptive responses in HFD-induced obesity mice.
Collapse
Affiliation(s)
- Ya-Jing Liang
- Center for TMD and Orofacial Pain, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Shi-Yang Feng
- Center for TMD and Orofacial Pain, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Ya-Ping Qi
- Center for TMD and Orofacial Pain, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Kai Li
- Center for TMD and Orofacial Pain, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Zi-Run Jin
- Department of Neurobiology, School of Basic Medical Sciences and Neuroscience Research Institute, Peking University, Beijing 100083, China
| | - Hong-Bo Jing
- Department of Neurobiology, School of Basic Medical Sciences and Neuroscience Research Institute, Peking University, Beijing 100083, China
| | - Ling-Yu Liu
- Department of Neurobiology, School of Basic Medical Sciences and Neuroscience Research Institute, Peking University, Beijing 100083, China
| | - Jie Cai
- Department of Neurobiology, School of Basic Medical Sciences and Neuroscience Research Institute, Peking University, Beijing 100083, China
| | - Guo-Gang Xing
- Department of Neurobiology, School of Basic Medical Sciences and Neuroscience Research Institute, Peking University, Beijing 100083, China; Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing 100083, China.
| | - Kai-Yuan Fu
- Center for TMD and Orofacial Pain, Peking University School and Hospital of Stomatology, Beijing 100081, China; Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing 100083, China.
| |
Collapse
|
35
|
Lysophosphatidic acids and their substrate lysophospholipids in cerebrospinal fluid as objective biomarkers for evaluating the severity of lumbar spinal stenosis. Sci Rep 2019; 9:9144. [PMID: 31235770 PMCID: PMC6591408 DOI: 10.1038/s41598-019-45742-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 06/14/2019] [Indexed: 12/28/2022] Open
Abstract
Lysophospholipids (LPLs) are known to have potentially important roles in the initiation and maintenance of neuropathic pain in animal models. This study investigated the association between the clinical severity of lumbar spinal stenosis (LSS) and the cerebrospinal fluid (CSF) levels of LPLs, using human samples. We prospectively identified twenty-eight patients with LSS and fifteen controls with idiopathic scoliosis or bladder cancer without neurological symptoms. We quantified LPLs from CSF using liquid chromatography-tandem mass spectrometry. We assessed clinical outcome measures of LSS (Neuropathic Pain Symptom Inventory (NPSI) and Zurich Claudication Questionnaire (ZCQ)) and categorized patients into two groups according to their severity. Five species of lysophosphatidic acid (LPA), nine species of lysophosphatidylcholine (LPC), and one species of lysophosphatidylinositol (LPI) were detected. The CSF levels of all species of LPLs were significantly higher in LSS patients than controls. Patients in the severe NPSI group had significantly higher LPL levels (three species of LPA and nine species of LPC) than the mild group. Patients in the severe ZCQ group also had significantly higher LPL levels (four species of LPA and nine species of LPC). This investigation demonstrates a positive correlation between the CSF levels of LPLs and the clinical severity of LSS. LPLs are potential biomarkers for evaluating the severity of LSS.
Collapse
|
36
|
Roza C, Campos-Sandoval JA, Gómez-García MC, Peñalver A, Márquez J. Lysophosphatidic Acid and Glutamatergic Transmission. Front Mol Neurosci 2019; 12:138. [PMID: 31191247 PMCID: PMC6546900 DOI: 10.3389/fnmol.2019.00138] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 05/10/2019] [Indexed: 11/29/2022] Open
Abstract
Signaling through bioactive lipids regulates nervous system development and functions. Lysophosphatidic acid (LPA), a membrane-derived lipid mediator particularly enriched in brain, is able to induce many responses in neurons and glial cells by affecting key processes like synaptic plasticity, neurogenesis, differentiation and proliferation. Early studies noted sustained elevations of neuronal intracellular calcium, a primary response to LPA exposure, suggesting functional modifications of NMDA and AMPA glutamate receptors. However, the crosstalk between LPA signaling and glutamatergic transmission has only recently been shown. For example, stimulation of presynaptic LPA receptors in hippocampal neurons regulates glutamate release from the presynaptic terminal, and excess of LPA induce seizures. Further evidence indicating a role of LPA in the modulation of neuronal transmission has been inferred from animal models with deficits on LPA receptors, mainly LPA1 which is the most prevalent receptor in human and mouse brain tissue. LPA1 null-mice exhibit cognitive and attention deficits characteristic of schizophrenia which are related with altered glutamatergic transmission and reduced neuropathic pain. Furthermore, silencing of LPA1 receptor in mice induced a severe down-regulation of the main glutaminase isoform (GLS) in cerebral cortex and hippocampus, along with a parallel sharp decrease on active matrix-metalloproteinase 9. The downregulation of both enzymes correlated with an altered morphology of glutamatergic pyramidal cells dendritic spines towards a less mature phenotype, indicating important implications of LPA in synaptic excitatory plasticity which may contribute to the cognitive and memory deficits shown by LPA1-deficient mice. In this review, we present an updated account of current evidence pointing to important implications of LPA in the modulation of synaptic excitatory transmission.
Collapse
Affiliation(s)
- Carolina Roza
- Departamento de Biología de Sistemas, Edificio de Medicina Universidad de Alcalá, Alcalá de Henares, Spain
| | - José A Campos-Sandoval
- Laboratorio de Química de Proteínas, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Campus de Teatinos, Málaga, Spain
| | - María C Gómez-García
- Laboratorio de Química de Proteínas, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Campus de Teatinos, Málaga, Spain
| | - Ana Peñalver
- Laboratorio de Química de Proteínas, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Campus de Teatinos, Málaga, Spain
| | - Javier Márquez
- Laboratorio de Química de Proteínas, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Campus de Teatinos, Málaga, Spain
| |
Collapse
|
37
|
Ueda H, Neyama H, Sasaki K, Miyama C, Iwamoto R. Lysophosphatidic acid LPA 1 and LPA 3 receptors play roles in the maintenance of late tissue plasminogen activator-induced central poststroke pain in mice. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2019; 5:100020. [PMID: 31194070 PMCID: PMC6550111 DOI: 10.1016/j.ynpai.2018.07.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/17/2018] [Accepted: 07/19/2018] [Indexed: 11/17/2022]
Abstract
We developed a mouse model for central post-stroke pain (CPSP), a centrally-originated neuropathic pain (NeuP). In this mode, mice were first injected with Rose Bengal, followed by photo-irradiation of left middle cerebral artery (MCA) to generate thrombosis. Although the MCA thrombosis was soon dissolved, the reduced blood flow remained for more than 24 h due to subsequent occlusion of microvessels. This photochemically induced thrombosis (PIT) model showed a hypersensitivity to the electrical stimulation of both sides of paw, but did not show any abnormal pain in popular thermal or mechanical nociception tests. When tissue-type plasminogen activator (tPA) was injected 6 h after the PIT stress, tPA-dependent hypersensitivity to the electrical paw stimulation and stable thermal and mechanical hyperalgesia on both sides for more than 17 or 18 days after the PIT treatment. These hyperalgesic effects were abolished in lysophosphatidic acid receptor 1 (LPA1)- and lysophosphatidic acid receptor 3 (LPA3)-deficient mice. When Ki-16425, an LPA1 and LPA3 antagonist was treated twice daily for 6 days consecutively, the thermal and mechanical hyperalgesia at day 17 and 18 were significantly reversed. The liquid chromatography-mass spectrometry (LC-MS/MS) analysis revealed that there is a significant increase in several species of LPA molecules in somatosensory S-I and medial dorsal thalamus (MD), but not in striatum or ventroposterior thalamus. All these results suggest that LPA1 and LPA3 signaling play key roles in the development and maintenance of CPSP.
Collapse
Key Words
- CPSP, central post-stroke pain
- Central poststroke pain
- DMSO, dimethyl sulfoxide
- EPW, electrical stimulation-induced paw withdrawal
- HE, Hematoxylin and Eosin
- LC–MS/MS
- LC–MS/MS, liquid chromatography–mass spectrometry
- LPA1, lysophosphatidic acid receptor 1
- LPA1-KO, LPA1-deficient
- LPA3, lysophosphatidic acid receptor 3
- Lysophosphatidic acid
- MCA, middle cerebral artery
- MD, medial dorsal thalamus
- MRM, multiple reaction monitoring
- NeuP, neuropathic pain
- PFA, paraformaldehyde
- PIT, photochemically induced thrombosis
- PWL, paw withdrawal latency
- Photochemically induced thrombosis
- RB, Rose Bengal
- S-I, sensory cortex
- TTC, 2,3,5-triphenyltetrazolium chloride
- i.v., intravenously
- pSNL, partial sciatic nerve ligation
- tMCAO, transient middle cerebral artery occlusion
- tPA
- tPA, tissue-type plasminogen activator
Collapse
Affiliation(s)
- Hiroshi Ueda
- Department of Pharmacology and Therapeutic Innovation, Nagasaki University, Institute of Biomedical Sciences, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | | | | | | | | |
Collapse
|